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Learning performance comparison

Numerous machine learning algorithms have been developed to tackle MABs. Among them,

Upper Confidence Bound (UCB) and Thompson Sampling (TS) are widely recognized as the

most prominent approaches for standard MABs. Discounted UCB (DUCB) and switching-

window UCB (SWUCB) have been devised to handle changing environments in non-station-

ary scenarios. In addition to these canonical bandit algorithms, some neuro-bandit algorithms

that utilize feedforward or recurrent neural networks to model the agent’s policy have been

developed in recent years.

To perform a thorough yet not overly exhaustive assessment of learning performance, we

analyze the asymptotic cumulative regret of our approach in comparison to selective algo-

rithms across various scenarios. For stationary MABs, we evaluate our method against the

UCB and TS algorithms, as well as RNN-based models including LSTM, vRNN, and GRU. In

the context of non-stationary MABs, our method is compared to DUCB, SWUCB, and other

RNN-based algorithms. It’s worth noting that the training procedures for all RNN-based mod-

els remain consistent with the previously described methodology.

Supporting information

S1 Appendix. The supplementary appendix file contains the mathematical analysis of the

models and extensive simulation results stated in the main text.

(PDF)
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