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ARTICLE INFO ABSTRACT

Keywords: Many Human-Robot Interaction (HRI) researchers are exploring the use of healthcare robots. Due to the sensitive

Hﬁlman'mb"t interaction nature of care, privacy concerns play a significant role in determining robot utility and adoption. While HRI

Ertl"l]'icy research has explored some dimensions of privacy for robots in general, to our knowledge, no prior work has
ility

empirically studied how human-like robot design affects people’s privacy and utility perceptions of robots across
different healthcare contexts and tasks. We conducted a 3 x 3 x 3 study (n = 239) to understand these re-
lationships, varying robot Human Likeness (HL) (low, medium, and high) and scenario/task type (hospital
waiting room/robot check-in support, hospital patient room/robot mobility support, home care/robot neuro-
rehabilitation support) via a mixed between-within subjects design. To our knowledge, this is one of the first
studies that operationalizes complex constructs of privacy, healthcare, and HL across multiple realistic healthcare
contexts, with a high degree of cognitive fidelity. Our results suggest the tasks and contexts in which privacy is
considered in healthcare contexts with robots is more impactful than other factors like robot HL appearance. In
particular, some settings include more complex tradeoffs between privacy and utility for robots than others. For
example, HRI researchers and practitioners who want to build healthcare robots intended for the home may
encounter the greatest challenges for balancing privacy risks. Finally, for the community, we demonstrate that
design fiction animations can be a useful way to facilitate cognitive fidelity for supporting studies in HRI and
serving as a bridge between narrative methods and the use of real-world robots.

Healthcare robots

1. Introduction

Robots are entering people’s daily lives, where they actively interact
as social actors Belpaeme et al. (2018); Leite et al. (2013); Broekens et al.
(2009). This increase in social robot adoption in human spaces, ranging
from industrial environments to hospitals and to homes, has prompted
vast interdisciplinary research on psychological De Graaf and Allouch
(2013), ethical Malle and Scheutz (2020), design Moharana et al.
(2019); Taylor et al. (2022), privacy Rueben et al. (2018, 2017) and
technological considerations Kubota et al. (2020); Alonso-Martin and
Salichs (2011) in developing such robots.

Healthcare, in particular, is witnessing a rapid growth in social robot
adoption Riek (2017). Robots are increasingly serving in patient-facing
roles, both in hospitals and homes, to support care delivery. In hospitals,
especially during the pandemic, robots supported patient triage and
check-in, delivered items, provided telemedicine, and companionship
Shen et al. (2020). In homes, robots are supporting people with physical
and cognitive rehabilitation, medication management, and physical task
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assistance Robinson et al. (2014).

Something unique about the use of robots in healthcare is that they
are providing support to people who may be in a vulnerable state. Like
healthcare providers, healthcare robots may also have a duty to protect
humans physically, psychologically, and socially. Many factors affect
how people trust robots in healthcare, including concerns about their
privacy, social influence from others, and familiarity with technology Xu
et al. (2018); Langer et al. (2019); Borenstein et al. (2017). All of these
factors ultimately impact robot adoption. Studies have shown that pri-
vacy concerns negatively impact people’s trust in robots, and adversely
affect their adoption Alaiad and Zhou (2014). Other studies have shown
that perceived anthropomorphism of the robot positively correlates with
people’s trust in robots Natarajan and Gombolay (2020). This suggests
HL could affect people’s privacy perceptions of social robots.

Privacy-sensitive robotics is an emerging area of research that ex-
plores the unique privacy requirements of the embodied intelligent
technologies that are robots. Prior research has characterized the di-
mensions of privacy associated with social robots Lutz et al. (2019),
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explored future research directions for privacy-sensitive robots Rueben
et al. (2018), and exploited software and data vulnerabilities in existing
robots Denning et al. (2009). However, many of these studies are
qualitative with small sample sizes, and their results may not be
generalizable to larger populations.

Anthropomorphism is the human tendency to attribute human-like
characteristics to nonhuman objects. On the other hand, HL of robots
is in part defined by the constituent human-like features that make up its
overall design, where specific features and combinations of features
predict how human-like the robot is perceived to be Phillips et al.
(2018). Studies suggest that human-like design cues can have a positive
effect on the acceptance of social robots, and in building long-term re-
lationships with social robots Fink (2012).

A lot of prior privacy literature mentions the possibility of anthro-
pomorphic robot design influencing people’s perceptions of privacy Lutz
etal. (2019); Lutz and Tamd-Larrieux (2020); Rueben and Smart (2016);
Lutz and Tamo (2016); Darling (2015). However, to our knowledge, no
prior research has empirically studied whether and how HL design af-
fects people’s privacy perceptions of robots across different healthcare
contexts and tasks. Also, prior research confirms the existence of a
privacy-utility tradeoff observed in human intent to use a social robot
despite being aware of the privacy concerns implicitly associated with
using it Lutz and Tamo-Larrieux (2020). We are interested to explore
whether robot HL could influence privacy-utility trade offs.

In this paper, we explore three research questions related to human
privacy perceptions of social healthcare robots.

RQ1: How is human-like robot design related to privacy perceptions?
RQ2: How is human-like robot design related to the privacy-utility
tradeoff?

RQ3: How does context affect privacy perceptions of social health-
care robots?

To explore these questions, we conducted a large-scale quantitative
study (n = 239) to understand how robot HL affects people’s perceptions
of privacy within the context of healthcare robots. We developed design
fictions to serve as our stimuli, which were animated videos that
depicted three social healthcare robots (Moro, Pepper, and Geminoid)
providing assistance across three realistic healthcare contexts (hospital
waiting room, hospital patient room, and home).

To our knowledge, this is one of the first studies that operationalizes
complex constructs of privacy, utility, healthcare, and HL across mul-
tiple realistic healthcare contexts, with a high degree of cognitive fi-
delity. Most prior work in this space, including for privacy and social
healthcare robots, employ static stimuli or vignettes, whereas we
created a series of engaging design fiction Noortman et al. (2019); Wong
and Mulligan (2016) animations, enabling participants to imagine
future robots.

Our results revealed the tasks and contexts in which privacy is
considered in healthcare contexts with robots is more impactful than
other factors like robot human-like appearance. In particular, some
settings include more complex tradeoffs between privacy and utility for
robots than others. For example, HRI researchers and practitioners who
want to build healthcare robots intended for the home may encounter
the greatest challenges for balancing privacy risks.

2. Background
2.1. Privacy in HRI

Various definitions of privacy have been explored in HRI. Rueben
and Smart (2016) discussed multidisciplinary definitions of privacy
under broad themes of informational privacy, constitutional privacy,
and access privacy. In their characterization of privacy themes for social
robots, Lutz et al. (2019) also provided a number of existing definitions
of privacy under four themes: informational privacy, social privacy,
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psychological privacy, and physical privacy. Informational privacy re-
fers to the privacy of personal information, social privacy refers to pri-
vacy among social actors, psychological privacy refers to the privacy of
thoughts and values, and physical privacy refers to the privacy of
physical boundaries.

While there is a large body of research on informational privacy,
including legal and technical frameworks to preserve it, Tavani (2008);
Cohen (2017); Floridi (2006), and application-specific considerations (e.
g., drones Luppicini and So (2016), the Internet of Things (IoT) Lee
(2020)), informational privacy is insufficient for HRI. Social robots are
embodied social entities, so exploring these other privacy concerns
raised by Lutz et al. (2019) is equally important for HRIL.

Generally HRI research explores privacy from a multifaceted lens.
There are studies that explore the privacy implications of robots
developed for a particular context. For example, Lutz et al. characterized
privacy concerns of social robots in a scoping literature review with
expert interviews Lutz et al. (2019). Other researchers have studied
privacy with respect to telepresence robots Rueben et al. (2017); Krupp
et al. (2017), healthcare robots Lutz and Tamo (2016), and household
robots Denning et al. (2009). All such HRI studies acknowledge that
defining privacy for robotics can be challenging, and address the
importance of clearly stating the specific aspects of privacy that a study
intends to address.

Privacy literature also notes the existence of discrepancies between
user attitudes and user behaviors termed as the “privacy paradox” Barth
and De Jong (2017). In other words, while users claim to be concerned
to a certain level about their privacy, they do not follow the required
measures to maintain this level of privacy they claim. HRI researchers
have observed the privacy paradox in the context of social robot use,
where perceived benefits of these robots outweigh the potential privacy
concerns of using them Lutz and Tamo-Larrieux (2020). This inverse
relationship between privacy concerns and perceived benefits has also
been referred to as the privacy-utility tradeoff. Some HRI and
Human-Computer Interaction (HCI) studies have explored
privacy-utility tradeoffs through algorithmic approaches that enable
data intensive applications to perform adequately and provide utility
using minimal data Butler et al. (2015); Jin et al. (2022).

Empirical studies have used and developed different instruments to
measure privacy. The Internet Users’ Information Privacy Concerns
(IUIPC) Malhotra et al. (2004) scale is one of the most widely used scales
of information privacy. Other studies have adapted this scale to measure
information privacy concerns in various different applications Lutz and
Tamo-Larrieux (2020); Dang et al. (2021). Psychological scales of pri-
vacy measure privacy under the idea of the “right to be left alone”
Pedersen (1999). Lutz and Tamo-Larrieux developed a measure of pri-
vacy for social robots which included informational privacy concerns,
trusting beliefs, overall concerns, and developed a new subscale for
measuring physical privacy Lutz and Tamo-Larrieux (2020).

2.2. HL in HRI

Robot appearance has been found to influence people’s perceptions
of a robot’s intelligence Haring et al. (2016); Sims et al. (2005), credi-
bility Burgoon et al. (2000), trust in the robot Natarajan and Gombolay
(2020), and acceptance of the robot Murphy et al. (2019). Human-like
appearance of robots can influence people’s empathy towards the
robot Riek et al. (2009), and willingness to work alongside the robot
Hancock et al. (2011). Additionally, humans respond positively to
human-like social cues, which can impact human-robot interaction and
inform users’ judgements of these robots Hegel et al. (2011); Eyssel et al.
(2010).

Research has characterized features and dimensions of robots that
contribute to people’s perceptions of robot humanness DiSalvo et al.
(2002); von der Piitten and Kramer (2012). Phillips et al. developed a
measure of HL of robots Phillips et al. (2018) based on their constituent
human-like  physical features. =~ Other  works characterize
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anthropomorphism as a combination of HL in appearance and HL in
interaction and behavior Carpinella et al. (2017); Spatola et al. (2021).

3. Methodology

The study followed a 3 (HL: Low, Medium, High) x 3 (Scenarios/
Robot Tasks: hospital waiting room/robot check-in support, hospital
patient room/robot mobility support, home care/robot neuro-
rehabilitation support) x 3 (repeated administration of measures) mixed
between-within subjects design. The animated medical scenarios were
treated as a within-subjects variable where participants viewed all three
of the animated medical scenarios but with only one of the robots (i.e.,
between-subjects) depicted across each of the scenarios. We selected this
design so participants did not need to frame switch between both
different scenarios and different robots, as this can lead to participants
getting cognitively overloaded.

3.1. Participants and power analysis

A power analysis was conducted using G*Power software Faul et al.
(2007) for a mixed within-between subjects F-test to detect potentially
small effect sizes with power of # = 0.80 and @ = 0.05. We also planned
to sample 120% of this number to account for potential participant
attrition in online studies. Thus, we aimed to recruit N = 240 partici-
pants for this study. Participants were recruited using Prolific. 239
participants (114 females, 118 males, 1 transgender, 4 non-binary, and 1
not reported), with ages ranging from 18 to 83 years, Mgg = 37.03,
SDgge = 13.80 completed the study. All participants passed “bot check”
and audio-video check procedures before viewing our video stimuli.

3.2. Measures

We measured privacy perceptions using three subscales from the
Lutz and Tamd-Larrieux privacy questionnaire for social robots Lutz and
Tamo-Larrieux (2020) — trusting beliefs, overall privacy concerns, and
physical privacy concerns. To measure informational privacy concern,
we used the health information disclosure scale Dang et al. (2021), since
it specifically addressed informational privacy from a health informa-
tion perspective.

Additionally, we created a custom three-item utility scale to explore
the privacy/utility tradeoff more explicitly. We first looked in the
literature to explore existing perceptions of utility measures. We found
that in many studies, researchers used existing measures of usability as a
proxy for utility (e.g., Klow et al. (2017), while others integrated
perceived value into their measurement techniques (e.g., Tran and
Nguyen (2021)). By definition (Merriam-Webster), utility differs from
usability in that utility implies there is a specific need for the item/-
product/design independent of whether it works well, is liked, or is
unnecessarily complex. Thus, existing usability measures are likely an
insufficient representation of the construct of utility and the trade-off
between privacy and utility. Thus, we derived three items based on
the definitions given of utility that represent elements of the focal
construct including being useful, beneficial, and fulfilling a need. To
capture the privacy-utility tradeoff when administering the items after
each healthcare scenario, we asked participants to imagine the ambig-
uous action of the robot and then respond to the item, e.g., “If the robot
in this scenario did not clear its screen before the next check-in it could
still [be useful/be beneficial/fulfill a need] for hospital check-in.” Par-
ticipants provided their response using a 5-point Likert-type scale
anchored from 1 (Strongly disagree) to 5 (Strongly agree). All our
questions can be found in Table 4.

We also asked participants to respond to one qualitative open-ended
question at the end of the study: “Please use this space to leave us honest
feedback concerning the study.”
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3.3. Scenarios

To support ecological validity, we developed three scenarios
depicting healthcare robots across three of the most common uses for
healthcare robots (aside from surgical robots) Kyrarini et al. (2021);
Riek (2017), each conveying dimensions of privacy risk. Each scenario
intentionally ended in an ambiguous way, where it was not clear what
the robot would do. This was to further explore the interactions between
context, HL, and privacy concerns.

The first scenario was a hospital waiting room, and depicted a hos-
pital check-in robot that asked triage questions. At the end of the sce-
nario the robot had highly personal medical information still on the
screen (e.g, the patient’s loss of bladder control) as it turned to face
another patient in the waiting room (see Fig. 3). In the second scenario,
we showed a mobility assistance robot deployed in a hospital patient
room. At the end of the scenario, the robot may have to provide physical
mobility support to the person just as they are on the verge of falling.
Finally, the third scenario takes place in a person’s living room at home,
and depicted a social robot that supports neurorehabilitation. Here, the
robot may be about to unintentionally disclose the person’s emotional
vulnerability (which they disclosed to the robot in confidence) to a
friend who comes to visit.

We wrote and animated each scenario from the participant’s
perspective, so they were making privacy decisions for themselves
rather than for another person to avoid the effects of decision aversion
Beattie et al. (1994). At the beginning of the study, we asked participants
to consider a situation where they have experienced a stroke. The reason
we chose this particular condition is because a person who has experi-
enced a stroke might use all the three robots across all three contexts
(both acute care and post-acute rehabilitation at home).

Psychological or cognitive fidelity is a construct often used in the
simulation and training literature and refers to how well a simulation
replicates the necessary and sufficient cues and mental processes (e.g.,
thoughts, feelings, mental models) of a task being targeted for simula-
tion. Cognitive fidelity argues that shifting the ecology of simulated
worlds from designs emphasizing visual fidelity in isolation to ones
aimed toward cognitive fidelity is a fruitful way to replicate the unique
demands and processes envisioned for human-agent teams. Thus, we
targeted cognitive fidelity in our animatic simulations of the human
interactions with robots in healthcare contexts.

3.4. Stimuli creation

To manipulate the level of HL of the robots included in the study, we
selected three robots from the Anthropomorphic RoBOT (ABOT) Data-
base Phillips et al. (2018). ABOT quantifies robots’ overall HL using data
obtained from empirical studies with human judges and averaged over
multiple independent raters. Each robot in ABOT catalogs the salience of
16 human-like features (i.e., feature scores) and an overall HL score,
which ranges from 0 (Not human-like at all) to 100 (Just like a human).
Thus, for any given robot, ABOT can be used to determine the robot’s
overall HL as well as the constituent features that derive it. For this
study, we selected one robot from the bottom tertile, middle tertile, and
upper tertile of HL scores across the range of available robots in the
database (see Fig. 2).

We predetermined that each robot selected met the following
criteria: each robot needed to include two feasibly functional arms that
the robot could use to help a patient stand up, and each robot needed to
include a mechanism that could be used for locomotion (e.g., wheels,
legs). We were not concerned with whether each robot indeed has these
functional capabilities or is used for these purposes in their real-world
applications, but rather that it was feasible to a lay observer that the
robot might serve these functions. Choosing a robot low in HL, but with
no arms, for instance, would not make sense in a scenario in which a
robot is helping someone to stand up. From these criteria we selected the
Moro robot, the Pepper robot, and the Geminoid robot as low, medium,
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and high HL respectively (see Fig. 2).

Then, a professional animator created stylized versions of each ro-
bot’s ABOT image illustrated in 2D and then animated in three health-
care scenarios (see Fig. 1). The animator was instructed to ensure that
each of the human-like (and machine-like) features present in the real-
world versions of the robots were retained, for example, number of
fingers, hair, etc.

3.4.1. Overadll robot design

We based robot design on Moro, Pepper, and Geminoid/Android
since they represent a range from nonrepresentational human to fully
representational human. In each animation, the animator established a
stylized world made of flattened shapes, abstracted colors, and stylized
background characters to ensure that the viewer quickly realigns their
conception of what is “lifelike”. This way, we ensured that by the time
the Geminoid/Android robot appeared, respondents would accept that
this character is only meant to mimic a real human being. We decided to
use a stylized, cartoon-like human form to represent the Geminoid and
retained original features while stylizing Moro and Pepper.

3.4.2. Gender neutrality

In order to omit any bias towards a gendered robot (male vs female),
we removed the hourglass waistline silhouette on Pepper, and designed
the Geminoid/Android robot with ambiguous gender markers such as
hair, facial design and clothing choice.

We chose to animate the Geminoid robot to appear androgenous in
gender expression, because we wanted to control for any potentially
confounding effects of explicit robot gender - as neither the Moro nor the
Pepper were created with clear gender identities.

We used motion graphic animations with minimal movement in
order to adjust to the project’s scope. Compared to the cost and time
involved in shooting live action film with real robots and real actors,
animation allowed us to iterate and test quickly and efficiently, as well
as use an imagined gender-neutral Geminoid/Android robot design.

3.5. Manipulation checks

Because each robot stimulus obtained from the database was trans-
formed from a photorealistic depiction to an animated depiction, we
decided to perform a manipulation check of our newly animated robot
stimuli to determine if their relative placement on the HL spectrum was
retained when they were animated in the scenarios in 2D. We also
wanted to ensure participants observed appropriate privacy risks in each
scenario. Thus, we recruited 93 participants from Prolific (www.prolific.

/[ \

Fig. 1. Our study used animations of three robots ranging from very robotlike to very human-like: Moro, Pepper, and Geminoid. We presented each of the three
robots robots across three scenarios: a hospital waiting room (check in), a hospital patient room (mobility support), and at home (cognitive rehab).
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co) to complete the manipulation check study (45 females, 43 males, 1
transgender, 1non-binary, 1 agender, 1 prefer not to answer, 1 other, 1
not reported), with ages ranging from 20 to 74 years, (Mg = 35.29,
SDgge = 12.6) completed the study. Participants were randomly assigned
to rate the three animated robots each presented in only one scenario
video. Participants were also explicitly instructed that the entities shown
in the videos were robots. These manipulation checks helped us estimate
both the visual and cognitive fidelity of the animations.

3.5.1. Placement on the HL spectrum

After viewing the scenario, participants were asked to rate each ro-
bot’s overall HL and Robot-Likeness (RL) by answering the following:
“Does this look physically human-like?” and “Does this look physically
robot-like?”. Participants responded to each question by dragging a
slider (pre-set at the middle point of the scale) along a scale labeled from
0 (Not human/robot-like at all) to 100 (Just like a human/robot). It was
important for our pre-test that we include ratings of both HL and RL as
we wanted to be sure that the animations of the three robots showed
similar patterns of HL scores (low, medium, high) as their photorealistic
depictions from the database while being simultaneously perceived as
indeed a robot which was a concern for the high HL (i.e., Geminoid)
robot selected for inclusion. Clearly the conversion from photorealism to
animation suppressed perceptions of each robot’s overall HL, but the
relative ordering of the robots from low to medium to high was retained.
RL scores revealed that people indeed perceived the illustrated robots to
be robots, although the Moro and the Pepper had similarly high scores.
The results of the manipulation check were as anticipated and confirmed
the visual fidelity of the HL and RL of the animated robots. Average HL
and RL score along with ABOT Database scores are presented in Table 1.

3.5.2. Perception of scenarios

To ensure participants perceived privacy types in each scenario, we
also asked participants about perceived privacy type as part of our
manipulation check. We asked the participants to “Select all options that
best describe the type of privacy that might be at risk in this scenario”.
We listed all privacy risks with brief dictionary definitions and one op-
tion for “Not Applicable” for this question. We also asked participants
the open ended question “What do you think happened at the end of this
video?”. We found that participants perceived different privacy risks
that were alluded to in each scenario, however, privacy risks were not
mutually exclusive.

We used this manipulation to evaluate the cognitive fidelity of the
scenarios. We define cognitive fidelity by the robustness of the experi-
ence participants had within the animated scenarios Liu et al. (2008).
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Fig. 2. The three robots selected from the Anthropomorphic RoBOT (ABOT) database in increasing order of HL scores. Left: Moro has an ABOT HL score of 14.6,/100.
Middle: Pepper has an ABOT score of 42.17/100. Right: Geminoid H1-4 has an ABOT score 92.6/100.

Fig. 3. An example storyboard from one of our three animated scenarios (see full animation in sup. materials). Here, one of our three robots (Pepper) assists a patient
check-in to the ER. The robot asks the person, who recently experienced a stroke, a series of questions about their health. The end of the interaction ends ambig-
uously, where is may not fully clear its screen.

For example, “[the robot] went to see other patients and the next patient
saw the part about bladder control.” and “People maybe overheard and
wondered about other people’s reasons for showing up to the clinic.

Table 1
Results of manipulation check to test HL and RL of our animated stimuli.

Robot Human-likeness ABOT human-likeness Robot-likeness Also, the person sharing their symptoms may have felt Slightly embar-
Moro 10.47 14.6 86.28 rassed about sharing that information out loud.”

Pepper 24.02 42.17 86.33 Patient Room: All participants said the person fell/may have fallen.
Geminoid/Android 71.43 92.6 32.92

For example, “the person stumbled and the robot caught them gently”.
Physical (29%) and informational risks (41%) were the most salient.

The results of this manipulation check revealed that 1) participants were Home: Psychological (50%) and social (50%) privacy risks were the
sufficiently grounded in our scenarios to identify various privacy risks most salient, and most participants stated that the robot revealed the
and 2) participants were able to anticipate what may have happened at embarrassing experience. For example, “the robot told the friend ... the
the end of the scenario. In the absence of a validated measure of fidelity, person was upset because words wouldn’t come out correctly”. These
the resulting robustness of participants’ perceptions of the scenario in results suggest it is difficult to isolate different privacy types across
this test indicates high cognitive fidelity of our scenarios. healthcare settings.

Waiting Room: Participants identified informational (63%) and In this study, we focus more on ecological/external validity, noting
social (66%) privacy risks as most salient, and identified the specific risk. that doing so would mean potentially affecting internal validity within
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some scenarios.

3.6. Procedure

After giving informed consent, participants were randomly assigned
a robot from the three selected robots, and were presented the three
scenarios in a randomized order. Before starting the main study, we
asked participants to consider the hypothetical situation where they
recently experienced a stroke. Then, participants were presented the
first video, and then completed the aforementioned measures. We
repeated the same procedure for the next two scenarios. Finally, we
concluded the survey with a demographic questionnaire. The study took
about 12 minutes to complete. At the end, participants were asked the
qualitative open-ended question “Please use this space to leave us honest
feedback concerning the study.” Participants were compensated $4 in
return for their participation and all study procedures were determined
to be exempt by the George Mason University IRB under protocol
number 1798803-2.

4. Results

All analyses were conducted using the statistical software, Jamovi
version 2.3 Sahin and Aybek (2019). We conducted reliability analyses
on the items in each of our privacy subscales and the utility-privacy
tradeoff subscale. The results of the Cronbach a analyses are reported
in Table 2.

4.1. HL and privacy perceptions

To examine the connection between robot HL and privacy percep-
tion, we ran four mixed repeated measures ANOVAs, one for each sub-
scale, with the robot type as the between-subjects factor, and each of the
privacy subscale scores collected across healthcare scenarios as the
repeated measures dependent variables (DV)s. We chose multiple
ANOVAs as opposed to MANOVA because we treated the different pri-
vacy subscales as conceptually distinct. In all ANOVAs, the assumption
of sphericity was violated. For these results, we report the Greenhouse-
Geisser corrected F statistics. Across all four of the privacy subscales
there were significant main effects for the healthcare scenario in which
the subscale scores were collected.

For trusting beliefs, there was a significant main effect for the
healthcare scenario, F(2, 468) = 33.11, p < 0.001, 112 = 0.032 such that
participants reported the highest scores on the trusting beliefs subscale
in the home healthcare scenario. And trusting belief scores in the home
healthcare scenario (M = 3.65, SE = 0.06) were significantly higher than
in the patient room scenario (M = 3.25, SE = 0.06), and the patient
check-in scenario (M = 3.53, SE = 0.06), bonferroni corrected post-hoc
test p's < 0.05. The main effect of robot type and the interaction between
robot type and scenario were not significant.

There was also a significant main effect for the healthcare scenario
on the physical privacy subscale scores F(2, 468) = 23.79, p < 0.001, 52
= 0.019 with again no main effect of robot type or interaction between
robot types across scenarios. Again, participants reported the highest
mean scores on the physical privacy subscale in the home healthcare
scenario (M = 2.34, SE = 0.07), significantly higher than in the patient

Table 2
Table of Cronbach’s a for items in the privacy subscales, N = 237. Note: * in-
dicates scale has reverse-scaled items.

Subscale # of items Cronbach alpha
Trusting Beliefs 5 0.90
Physical Privacy 5% 0.87
Overall Privacy 4* 0.89
Health Information Disclosure 4* 0.61

Utility tradeoff 3 0.95
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room scenario (M = 2.03, SE = 0.06), and the patient check-in scenario
(M = 2.10, SE = 0.06), all bonferroni corrected post-hoc test p's < 0.01.

For overall privacy concern subscale, there was a significant main
effect for scenario F(2, 468) = 4.14, p < 0.05, 172 = 0.004 with no main
effect of robot type and no interaction effects. Participants reported the
highest overall concern in the patient room scenario (M = 2.81, SE =
0.07) which was significantly higher than in the patient check-in sce-
nario (M = 2.65, SE = 0.08, p < 0.05), but not in the home healthcare
scenario.

Finally, again there was a significant main effect of healthcare sce-
nario with no effect of robot type or interaction effects on scores on the
health information disclosure subscale scores, F(2, 468) = 15.11, p <
0.001, 42 = 0.05. Participants in the home healthcare scenario reported
the lowest scores on the health information disclosure subscale (M =
2.69, SE = 0.07), significantly lower than in the patient room (M = 3.17,
SE = 0.06) and in the check-in scenario (M = 3.11, SE = 0.05), all
Bonferroni corrected post-hoc test p’s < 0.01. The estimated marginal
means of all subscales can be found in Table 3.

4.2. HL and privacy-utility trade-offs

To investigate the relationship between robot HL and privacy-utility
tradeoff, we again ran a mixed repeated measures ANOVA with robot
type as the between-subjects factor and the scenario in which the utility-
privacy scale was collected as the repeated measures DV. The scores on
each of the utility subscales were averaged together. This time, the
ANOVA met all statistical assumptions. Again, there was only a signifi-
cant main effect of scenario on the privacy-utility trade-off scores F(2,
468) = 33.89, p < 0.001, 5> = 0.06. And again participants indicated the
most utility for robots in the home healthcare scenario (M = 3.14, SE =
0.08), significantly higher than in the patient room (M = 2.43, SE =
0.08) and check-in scenarios (M = 2.65, SE = 0.08).

4.3. Privacy and utility

To further explore the relationships between privacy and utility, we
aggregated the scores on the privacy subscales, by averaging each sub-
scale score across all three healthcare scenarios. Doing so yielded four
overall privacy subscale scores: Trusting beliefs, Physical privacy,
Overall privacy, and Health Information Disclosure. We repeated this
process for the utility tradeoff subscale to yield an overall utility tradeoff
score. We then ran Pearson’s correlation to examine the relationships
between the different privacy subscales and the utility subscale. All of
the privacy subscales were statistically significantly correlated with the
utility tradeoff subscale. The trusting beliefs and health information
disclosure were positively correlated with utility (p = 0.531, p = 0.442),
and the physical privacy concerns and overall privacy concern subscales
were negatively correlated with utility (p = —0.317, p = —0.491), all p's
< 0.001 (See supplementary material).

4.4. Qualitative findings

We analyzed the responses to our open ended study feedback ques-
tion using Reflexive Thematic Analysis (RTA) Braun and Clarke (2006,
2012). Two researchers coded the questions via an inductive coding
process independantly, then discussed the final themes as a group. We

Table 3

Estimated marginal means of privacy subscales.
Privacy Subscale Wait Room Patient Room Home

M SE M SE M SE

Trusting Beliefs 3.53 0.06 3.25 0.06 3.65 0.06
Physical Privacy 2.10 0.06 2.03 0.06 2.34 0.07
Overall Privacy 2.65 0.08 2.81 0.07 2.69 0.07
Health Info. Disclosure 3.11 0.05 3.17 0.06 2.69 0.07
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Table 4
Questionnaire.

Privacy Questions

Trusting Beliefs (based on Lutz and
Tamo-Larrieux)

Physical Privacy Concerns (based on
Lutz and Tamd-Larrieux)

Overall Privacy Concerns (based on
Lutz and Tamé-Larrieux)

Informational Privacy Concerns
(Health Information Disclosure
Subscale)

Please tell us how much you agree or
disagree with the following statements.
(1-Strongly Disagree to 5-Strongly Agree)
1 believe that the robot acted in my best
interest.

If I required help, this robot would do its
best to help me.

This robot performed its role of offering
personal services really well.

This robot was truthful in its dealings with
me.

This robot would keep its commitments.
Please indicate your level of concern
about the following potential privacy
risks that arise in using this robot. (1-No
concern at all to 5-Very high concern)
The robot damaging or dirtying my personal
belongings.

The robot asking me personal questions.
The robot snooping through my personal
belongings.

The robot entering areas it should not
access.

The robot using items that it should not use.
Please tell us how much you agree or
disagree with the following statements.
(1-Strongly Disagree to 5-Strongly Agree)
Overall, I see a real threat to my privacy due
to the robot.

I fear that something unpleasant can happen
to me due to the presence of the robot.

1 do not feel safe due to the presence of the
robot.

Overall, I find it risky to have such a robot.
Please tell us how much you agree or
disagree with the following statements.
(1-Strongly Disagree to 5-Strongly Agree)
1 am very likely to disclose my health
information to the robot.

I feel good that the robot uses my health
information.

It is okay to share my personal information
with the health care robot.

1 do not feel uncomfortable about sharing
my personal information with the health
care robot.

Utility and Post-Scenario (PS) Questions

Waiting Room

Patient Room

Home Healthcare

PS1: How confident are you that the
robot will clear its screen before
checking in the next patient?

If the robot in this scenario did not clear its
screen before the next check-in, it could still
be useful for hospital check-ins.

If the robot in this scenario did not clear its
screen before the next check-in, it could still
be beneficial for hospital check-ins.

If the robot in this scenario did not clear its
screen before the next check-in, it could still
fulfill a need regarding hospital check-ins.
PS2: How confident are you that the
robot is going to catch you?

If the robot in this scenario was not able to
catch me, it could still be useful for mobility
support.

If the robot in this scenario was not able to
catch me, it could still be beneficial for
mobility support.

If the robot in this scenario was not able to
catch me, it could still fulfill a need
regarding mobility support.

PS3: How confident are you that the
robot will not tell your friend about your
embarrassing experience?
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Table 4 (continued)

Privacy Questions

If the robot in this scenario disclosed my
embarrassing experience, it could still be
useful for home-based rehabilitation.

If the robot in this scenario disclosed my
embarrassing experience, it could still be
beneficial for home-based rehabilitation.

If the robot in this scenario disclosed my
embarrassing experience, it could still fulfill
a need regarding home-based
rehabilitation.

resolved inconsistencies and refined themes through discussion Clarke
and Braun (2013). Since we aimed to generate recurring themes and
salient concepts, we did not calculate inter-rater reliability, as per cur-
rent best practices in the RTA literature Braun and Clarke (2021);
McDonald et al. (2019).

A few participants commented on the degree of HL of the robots, and
whether it was necessary. “I wonder their might be much simpler robots
that look and act more like a ‘rooma’ (sic) but designed to do the tasks
mentioned in someway.””

Several participants stated that the programming of healthcare ro-
bots should implicitly reflect existing legal protections (e.g., HIPAA) and
social conventions (e.g., selecting what information you share with
whom and when). “There is a place for robots in healthcare as long as it
is properly programmed to adhere to federal laws such as HIPAA,
HITECH, PHI, etc”.

Another common theme was about the actual capability of robots,
and the importance of not overstating them. “I don’t think robots can
replace humans for situations that require noting body language, facial
expressions, tone of voice ... the robot may misinterpret the severity of a
situation. However, they could be useful for collecting basic de-
mographic and insurance information.” Another participant said, “The
robot [...] was asking personal questions in front of people in a waiting
room. That’s just wrong. And we can’t even get customer service bots to
function well; I can’t see getting this type of robot to do any better for the
foreseeable future.”

Two participants expressed concerns about worker displacement.
“My concern is the fact that we have such high demand for these posi-
tions, yet instead of encouraging people to enroll in fields of study that
we have such demand, we are replacing or trying to replace careers in
these fields with robots. We have such high unemployment as it is, using
robots will increase unemployment. Not help it.” Another participant
said, “This is honestly scary as a healthcare worker to see a robot in my
shoes.”

Another healthcare worker who took the study expressed concerns
about healthcare robots. “I was a very experienced RN in many aspects
of nursing in Acute Care from cardiac care to Operating room, to reha-
bilitation hospital and [...] as a visiting nurse in NYC the Bronx area. I
am also the recipient of Acute, Rehab hospital and home care. I defi-
nitely would not like to receive care from a robot.”

In contrast, one respondent who was a stroke survivor had a very
different view, “I really enjoyed it. It made me think of the different
scenarios as how they would have helped me as I recently experienced a
stroke and the recovery process. I would have benefited from having an
active home care help from the robot. My home health care worker sat
on my couch and didn’t help me much the entire time.”

Finally, one person critiqued HRI methods in general, as well as how
even the questions themselves seemed technosolutionist. “I do not un-
derstand why there seems to be a focus in all the robot related surveys to
assign human mental or emotional state to the programmed actions of a
machine. Is it because people are too stupid to know the difference or
because there is a desire to reinforce that idea in the hopes robots will be
more widely accepted (sell better)? I just don’t understand.”
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5. Discussion
5.1. The importance of task and context

Across all types of privacy and utility measures the task and context
in which the robot was embedded was the most important driver of
perceptions of privacy risk and utility tradeoffs. In particular, home
healthcare settings often revealed perceptions of the most risk to privacy
while simultaneously eliciting high trusting beliefs and high likelihood
to disclose private health information to a robot. Home healthcare set-
tings also had the highest perceptions of utility across all scenarios.

Taken together, these findings underscore that robots may have the
most potential to fulfill needs in home settings while simultaneously
being the most sensitive to a variety of potential risks to privacy. Home
healthcare settings may be one of the more complex places to deploy
assistive robots given the need to balance serving useful functions while
protecting people’s privacy. These findings add further nuance to studies
that suggest that privacy concerns negatively impact trust and adoption
of home healthcare robots Alaiad and Zhou (2014), and support the
findings of studies that emphasize context as a determinant of privacy
and utility perceptions of household robots Rueben et al. (2017); Butler
et al. (2015).

In our qualitative findings, some participants questioned whether
robot assisted tasks may lead to healthcare worker displacement, and
whether the deployment of such robots could be considered to be
technosolutionist. While it is true that solving the worldwide crisis of
healthcare staff shortages could tackle most problems that healthcare
robots aim to address Riek (2017), in the absence of system-wide
changes, robots could bridge some of these issues. This suggests that
robots could act as healthcare extensions, bridging those gaps that arise
from demand for better care provision. This was also a sentiment that
participants indicated in their free-form responses. However, it is
important to contextualize the robot’s tasks within the existing legal and
ethical frameworks for care delivery, and envision the wider impacts of
deploying such robots prior to their development.

For robot assisted tasks within hospital contexts, like getting checked
in or receiving care in a patient room, people may be more likely to
acknowledge that disclosing private information is necessary and ex-
pected in order to receive care. Typically people lack a choice in whether
to disclose certain types of information to healthcare providers. In
several of the free responses obtained from participants, they mentioned
that they would expect robots to adhere to existing legal protections and
social conventions (e.g., checking before sharing data), which may be
inherently expected in the hospital scenario, but not necessarily the
home.

Further research will help elucidate these relationships in more
depth.

5.2. Human Likeness

Overall we did not see significant effects of HL across our privacy or
utility measures, but we did see significant effects across the scenarios.
There may be several reasons for this. We selected robots to include
systematically, which allowed us to control for their overall HL. In
studies that support the importance of robot appearance, it is hard to
know whether or not other contexts might surpass the importance of HL
in explaining the results if HL is not as systematically controlled.

Also, our pilot test found that ratings of RL were not inversely related
to ratings of HL. Robots were not as equally low on RL as they were high
on HL. This finding implies that the two appearance constructs may not
be in opposition to one another. This aligns with the fact that the HL of
robot design has been extensively studied Riek et al. (2009); von der
Piitten and Kramer (2012); Hegel et al. (2011); Burgoon et al. (2000);
Haring et al. (2016) and various HL measurement instruments have been
developed Phillips et al. (2018); von Zitzewitz et al. (2013). However,
robots are assumed to be robot-like, and therefore RL has not been
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studied as a construct to the best of our knowledge. The uncanny valley
is one example in HRI where some aspect of RL is explored, due to its
eerie effects Mori et al. (2012); Kim et al. (2022). Thus, any studies
which explore the effects of robot appearance on outcomes could benefit
from systematically selecting robots from spectrums of human or
robot-like appearance.

Many prior studies of HL have also used static imagery as stimuli
Phillips et al. (2018); Malle et al. (2016); Riek et al. (2009). We created
animated design fictions which allowed us to place robots in contexts in
which they do not yet operate but are imagined to in the near future. By
doing so, we suppressed some of the HL scores from their original
depiction in the ABOT Database. However, similarly adding context and
movement could change overall HL of the robots depicted in the data-
base. More work would need to be done to reassess the HL of the robots
in the ABOT Database if they were depicted with movement in their
photorealistic form.

5.3. Design fictions and cognitive fidelity

Design fictions seemed to be good at eliciting cognitive fidelity.
Because the scenarios and tasks are so strong, the use of design fictions
could move our field beyond static stimuli and more toward dynamic
things even when those things don’t exist yet. Many researchers are
forced to use vignettes or static imagery for robot stimuli because of a
lack of access to physical robots or sensitive settings (such as a hospital).
Design fictions present an exciting research opportunity in HRI, and
their use is starting to gain traction in the field Ostrowski and Breazeal
(2022); Lee et al. (2019).

Human-Computer Interaction (HCI) research has extensively used
design fiction as tools to envision technologies, the impacts of these
technologies, and as a way of communicating ideas for innovation
Tanenbaum (2014). Our results support HCI research that suggests
design fiction can be successfully used to 1) foresee challenges for future
technology and envision societal impact Misra et al. (2023) by raising
critical discussion on themes such as healthcare worker displacement
and 2) inspire future design by acting as a prototyping tool Briggs et al.
(2012).

HCI research has also explored using various types of stimuli
including storytelling probes Nagele et al. (2018), short films Briggs
et al. (2012), world-building Sturdee et al. (2016) and even Virtual
Reality (VR) stimuli McVeigh-Schultz et al. (2018) in order to create
immersive experiences and plausible design fictions to help participants
envision scenarios. Moving forward, HRI researchers can adopt meth-
odological ideas from such works to enhance participants’ experiences
while interacting with design fictions.

Design fictions also allow us to leverage some of the benefits of
methodological techniques where large sample sizes can be achieved.
With results in hand, we can narrow the number of combinatorial
experimental conditions using design fictions and then focus on the ones
that would be most meaningful to run with real robots in a lab or in real-
world contexts.

Design fictions may be a way to address a methodological gap be-
tween static imagery and operating robots in the real world. Essentially
this could be a way to try out and refine experimental ideas before going
to the real robots.

5.4. Limitations and future work

While we did our best to operationalize these complex constructs of
HL, privacy, and healthcare delivery, and piloted extensively, we ulti-
mately had to make decisions about what was feasible given both
methodological and fiscal constraints. In future work, it would be
interesting to explore other scenarios, different types of robots, and
different interactions.

As our study was the first to explore privacy and utility perceptions of
social healthcare robots, we encountered a tradeoff between validated
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measures of constructs and measures specific to our context. As a result
of this tradeoff, we decided to retain data from the information disclo-
sure subscale despite a lower internal consistency than acceptable.

Although our study participants represented a diverse sample in
terms of their reported age, gender identity, and race/ethnicity, we were
not able to stratify our sample to the extent we might have liked. We
were unable to explore across socioeconomic status, countries outside
the United States, other languages, etc; all of which, of course, play a
huge role in one’s experience and perceptions of healthcare, technology,
and privacy Park and Chung (2017); Blackstock and Choo (2020). This
offers an exciting opportunity for future work.

Along these lines, upon publication we plan to release all of our
animations and materials to support other HRI researchers interested in
replicating this work.

Future research could further explore privacy-sensitive robotics in
the healthcare space to gain a more holistic understanding of how to best
improve privacy outcomes.

6. Conclusion

Our work presents an empirical evaluation of how HL and context
affect peoples’ perceptions of privacy and utility of social healthcare
robots. We showed that the context in which the robot operates is a key
driver of peoples’ perceptions of privacy and utility of the robot. We
identified that healthcare robots can best serve needs in the home, and
further highlighted considerations to support roboticists in developing
these robots.

Our study also showed that animated design fictions elicited high
cognitive fidelity in enabling participants to envision technologies that
do not yet exist. Design fiction in future HRI research could help re-
searchers leverage large participant sample sizes, and help them refine
methodological ideas before diving into complex robot development
tasks.

These contributions explore the design of inherently privacy-
sensitive robots through the thoughtful development of robot opera-
tion contexts, while centering end-users’ requirements for privacy.

7. Funding
This work was funded by National Science Foundation, IIS-1915734.
CRediT authorship contribution statement

Sandhya Jayaraman: Conceptualization, Formal analysis, Investi-
gation, Methodology, Writing — original draft, Writing — review &
editing. Elizabeth K. Phillips: Conceptualization, Formal analysis,
Investigation, Methodology, Writing — original draft. Daisy Church:
Methodology, Conceptualization, Visualization, Writing - original draft.
Laurel D. Riek: Conceptualization, Formal analysis, Funding acquisi-
tion, Investigation, Methodology, Project administration, Supervision,
Writing — original draft, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.chbah.2023.100039.

Computers in Human Behavior: Artificial Humans 2 (2024) 100039

References

Alaiad, A., & Zhou, L. (2014). The determinants of home healthcare robots adoption: An
empirical investigation. International Journal of Medical Informatics, 83, 825-840.

Alonso-Martin, F., & Salichs, M. A. (2011). Integration of a voice recognition system in a
social robot. Cybernetics & Systems: International Journal, 42, 215-245.

Barth, S., & De Jong, M. D. (2017). The privacy paradox-investigating discrepancies
between expressed privacy concerns and actual online behavior-a systematic
literature review. Telematics and Informatics, 34, 1038-1058.

Beattie, J., Baron, J., Hershey, J. C., & Spranca, M. D. (1994). Psychological determinants
of decision attitude. Journal of Behavioral Decision Making, 7, 129-144.

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social
robots for education: A review. Science Robotics, 3, Article eaat5954.

Blackstock, U., & Choo, E. K. (2020). Race as a dynamic state: Triangulation in health
care. The Lancet, 395, 21.

Borenstein, J., Wagner, A., & Howard, A. (2017). A case study in caregiver overtrust of
pediatric healthcare robots. In RSS workshop on morality and social trust in
autonomous robots.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
Research in Psychology, 3, 77-101.

Braun, V., & Clarke, V. (2012). Thematic analysis. American Psychological Association.

Braun, V., & Clarke, V. (2021). One size fits all? What counts as quality practice in
(reflexive) thematic analysis? Qualitative Research in Psychology, 18, 328-352.

Briggs, P., Blythe, M., Vines, J., Lindsay, S., Dunphy, P., Nicholson, J., Green, D.,
Kitson, J., Monk, A., & Olivier, P. (2012). Invisible design: Exploring insights and
ideas through ambiguous film scenarios. In Proceedings of the designing interactive
systems conference (pp. 534-543).

Broekens, J., Heerink, M., Rosendal, H., et al. (2009). Assistive social robots in elderly
care: A review. Gerontechnology, 8, 94-103.

Burgoon, J. K., Bonito, J. A., Bengtsson, B., Cederberg, C., Lundeberg, M., & Allspach, L.
(2000). Interactivity in human-computer interaction: A study of credibility,
understanding, and influence. Computers in Human Behavior, 16, 553-574.

Butler, D. J., Huang, J., Roesner, F., & Cakmak, M. (2015). The privacy-utility tradeoff
for remotely teleoperated robots. In Proceedings of the tenth annual ACM/IEEE
international conference on human-robot interaction (pp. 27-34).

Carpinella, C. M., Wyman, A. B., Perez, M. A., & Stroessner, S. J. (2017). The robotic
social attributes scale (rosas) development and validation. In Proceedings of the 2017
ACMY/IEEE international conference on human-robot interaction (pp. 254-262).

Clarke, V., & Braun, V. (2013). Successful qualitative research: A practical guide for
beginners. Successful qualitative research, 1-400.

Cohen, J. E. (2017). Examined lives: Informational privacy and the subject as object. In
Law and society approaches to cyberspace (pp. 473-538). Routledge.

Dang, Y., Guo, S., Guo, X., Wang, M., Xie, K., et al. (2021). Privacy concerns about health
information disclosure in mobile health: Questionnaire study investigating the
moderation effect of social support. JMIR mHealth and uHealth, 9, Article e19594.

Darling, K. (2015). 'who’s johnny?’anthropomorphic framing in human-robot interaction,
integration, and policy. Anthropomorphic Framing in Human-Robot Interaction,
Integration, and Policy (March 23, 2015). ROBOT ETHICS 2.

De Graaf, M. M., & Allouch, S. B. (2013). Exploring influencing variables for the
acceptance of social robots. Robotics and Autonomous Systems, 61, 1476-1486.
Denning, T., Matuszek, C., Koscher, K., Smith, J. R., & Kohno, T. (2009). A spotlight on
security and privacy risks with future household robots: Attacks and lessons. In

Proceedings of the 11th international conference on Ubiquitous computing (pp. 105-114).

DiSalvo, C. F., Gemperle, F., Forlizzi, J., & Kiesler, S. (2002). All robots are not created
equal: The design and perception of humanoid robot heads. In Proceedings of the 4th
conference on designing interactive systems: Processes (pp. 321-326). practices,
methods, and techniques.

Eyssel, F., Hegel, F., Horstmann, G., & Wagner, C. (2010). Anthropomorphic inferences
from emotional nonverbal cues: A case study. In 19th international symposium in robot
and human interactive communication (pp. 646-651). IEEE.

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* power 3: A flexible statistical
power analysis program for the social, behavioral, and biomedical sciences. Behavior
Research Methods, 39, 175-191.

Fink, J. (2012). Anthropomorphism and human likeness in the design of robots and
human-robot interaction. In International conference on social robotics (pp. 199-208).
Springer.

Floridi, L. (2006). Four challenges for a theory of informational privacy. Ethics and
Information Technology, 8, 109-119.

Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y., De Visser, E. J., &
Parasuraman, R. (2011). A meta-analysis of factors affecting trust in human-robot
interaction. Human Factors, 53, 517-527.

Haring, K. S., Silvera-Tawil, D., Takahashi, T., Watanabe, K., & Velonaki, M. (2016). How
people perceive different robot types: A direct comparison of an android, humanoid,
and non-biomimetic robot. In 2016 8th international conference on knowledge and
smart technology (kst) (pp. 265-270). IEEE.

Hegel, F., Gieselmann, S., Peters, A., Holthaus, P., & Wrede, B. (2011). Towards a
typology of meaningful signals and cues in social robotics. In 2011 RO-MAN (pp.
72-78). IEEE.

Jin, H., Liu, G., Hwang, D., Kumar, S., Agarwal, Y., & Hong, J. I. (2022). Peekaboo: A
hub-based approach to enable transparency in data processing within smart homes.
In 2022 IEEE symposium on security and privacy (SP) (pp. 303-320). IEEE.

Kim, B., de Visser, E., & Phillips, E. (2022). Two uncanny valleys: Re-Evaluating the
uncanny valley across the full spectrum of real-world human-like robots. Computers
in Human Behavior, 135, Article 107340.

Klow, J., Proby, J., Rueben, M., Sowell, R. T., Grimm, C. M., & Smart, W. D. (2017).
Privacy, utility, and cognitive load in remote presence systems. In Proceedings of the


https://doi.org/10.1016/j.chbah.2023.100039
https://doi.org/10.1016/j.chbah.2023.100039
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref1
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref1
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref2
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref2
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref3
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref3
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref3
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref4
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref4
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref5
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref5
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref6
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref6
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref7
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref7
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref7
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref8
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref8
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref9
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref10
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref10
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref11
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref11
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref11
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref11
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref12
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref12
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref13
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref13
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref13
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref14
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref14
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref14
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref15
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref15
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref15
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref16
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref16
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref17
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref17
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref18
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref18
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref18
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref19
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref19
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref19
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref20
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref20
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref21
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref21
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref21
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref22
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref22
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref22
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref22
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref23
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref23
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref23
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref24
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref24
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref24
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref25
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref25
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref25
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref26
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref26
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref27
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref27
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref27
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref28
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref28
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref28
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref28
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref29
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref29
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref29
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref30
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref30
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref30
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref31
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref31
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref31
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref32
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref32

S. Jayaraman et al.

companion of the 2017 ACM/IEEE international conference on human-robot interaction
(pp. 167-168).

Krupp, M. M., Rueben, M., Grimm, C. M., & Smart, W. D. (2017). A focus group study of
privacy concerns about telepresence robots. In 2017 26th IEEE international
symposium on robot and human interactive communication (RO-MAN) (pp.
1451-1458). IEEE.

Kubota, A., Peterson, E. L., Rajendren, V., Kress-Gazit, H., & Riek, L. D. (2020). Jessie:
Synthesizing social robot behaviors for personalized neurorehabilitation and
beyond. In Proceedings of the 2020 ACM/IEEE international conference on human-robot
interaction (pp. 121-130).

Kyrarini, M., Lygerakis, F., Rajavenkatanarayanan, A., Sevastopoulos, C.,

Nambiappan, H. R., Chaitanya, K. K., Babu, A. R., Mathew, J., & Makedon, F. (2021).
A survey of robots in healthcare. Technologies, 9, 8.

Langer, A., Feingold-Polak, R., Mueller, O., Kellmeyer, P., & Levy-Tzedek, S. (2019).
Trust in socially assistive robots: Considerations for use in rehabilitation.
Neuroscience & Biobehavioral Reviews, 104, 231-239.

Lee, H. (2020). Home iot resistance: Extended privacy and vulnerability perspective.
Telematics and Informatics, 49, Article 101377.

Lee, W. Y., Hou, Y. T. Y., Zaga, C., & Jung, M. (2019). Design for serendipitous
interaction: Bubblebot-bringing people together with bubbles. In 2019 14th ACM/
IEEE international conference on human-robot interaction (HRI) (pp. 759-760). IEEE.

Leite, I., Martinho, C., & Paiva, A. (2013). Social robots for long-term interaction: A
survey. International Journal of Social Robotics, 5, 291-308.

Liu, D., Yu, J., Macchiarella, N. D., & Vincenzi, D. A. (2008). Simulation fidelity. In
Human factors in simulation and training (pp. 91-108). CRC Press.

Luppicini, R., & So, A. (2016). A technoethical review of commercial drone use in the
context of governance, ethics, and privacy. Technology in Society, 46, 109-119.
Lutz, C., Schottler, M., & Hoffmann, C. P. (2019). The privacy implications of social robots:
Scoping review and expert interviews (Vol. 7, pp. 412-434). Mobile Media &

Communication.

Lutz, C., & Tamo, A. (2016). Privacy and healthcare robots—an ant analysis. We Robot.

Lutz, C., & Tamo-Larrieux, A. (2020). The robot privacy paradox: Understanding how
privacy concerns shape intentions to use social robots. Human-Machine
Communication, 1, 87-111.

Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users’ information privacy
concerns (iuipc): The construct, the scale, and a causal model. Information Systems
Research, 15, 336-355.

Malle, B. F., & Scheutz, M. (2020). Moral competence in social robots. In Machine ethics
and robot ethics (pp. 225-230). Routledge.

Malle, B. F., Scheutz, M., Forlizzi, J., & Voiklis, J. (2016). Which robot am i thinking
about? The impact of action and appearance on people’s evaluations of a moral
robot. In 2016 11th ACM/IEEE international conference on human-robot interaction
(HRI) (pp. 125-132). IEEE.

McDonald, N., Schoenebeck, S., & Forte, A. (2019). Reliability and inter-rater reliability
in qualitative research: Norms and guidelines for cscw and hci practice. Proceedings
of the ACM on human-computer interaction, 3, 1-23.

McVeigh-Schultz, J., Kreminski, M., Prasad, K., Hoberman, P., & Fisher, S. S. (2018).
Immersive design fiction: Using vr to prototype speculative interfaces and
interaction rituals within a virtual storyworld. In Proceedings of the 2018 designing
interactive systems conference (pp. 817-829).

Misra, S., Dhar, D., & Nandi, S. (2023). Design fiction: A way to foresee the future of
human-computer interaction design challenges. In International conference on
research into design (pp. 809-822). Springer.

Moharana, S., Panduro, A. E., Lee, H. R., & Riek, L. D. (2019). Robots for joy, robots for
sorrow: Community based robot design for dementia caregivers. In 2019 14th ACM/
IEEE international conference on human-robot interaction (HRI) (pp. 458-467). IEEE.

Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley [from the field].
IEEE Robotics and Automation Magazine, 19, 98-100.

Murphy, J., Gretzel, U., & Pesonen, J. (2019). Marketing robot services in hospitality and
tourism: The role of anthropomorphism. Journal of Travel & Tourism Marketing, 36,
784-795.

Négele, L. V., Ryoppy, M., & Wilde, D. (2018). Pdfi: Participatory design fiction with
vulnerable users. In Proceedings of the 10th nordic conference on human-computer
interaction (pp. 819-831).

Natarajan, M., & Gombolay, M. (2020). Effects of anthropomorphism and accountability
on trust in human robot interaction. In Proceedings of the 2020 ACM (pp. 33-42).
IEEE International Conference on Human-Robot Interaction.

10

Computers in Human Behavior: Artificial Humans 2 (2024) 100039

Noortman, R., Schulte, B. F., Marshall, P., Bakker, S., & Cox, A. L. (2019). Hawkeye-
deploying a design fiction probe. In Proceedings of the 2019 CHI conference on human
factors in computing systems (pp. 1-14).

Ostrowski, A. K., & Breazeal, C. (2022). Design justice for robot design and policy
making. In 2022 17th ACM/IEEE international conference on human-robot interaction
(HRD (pp. 1170-1172). IEEE.

Park, Y. J., & Chung, J. E. (2017). Health privacy as sociotechnical capital. Computers in
Human Behavior, 76, 227-236.

Pedersen, D. M. (1999). Model for types of privacy by privacy functions. Journal of
Environmental Psychology, 19, 397-405.

Phillips, E., Zhao, X., Ullman, D., & Malle, B. F. (2018). What is human-like?:
Decomposing robots” human-like appearance using the anthropomorphic robot
(abot) database. In 2018 13th ACM/IEEE international conference on human-robot
interaction (HRI) (pp. 105-113). IEEE.

von der Piitten, A. M., & Kramer, N. C. (2012). A survey on robot appearances. In
Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot
Interaction (pp. 267-268).

Riek, L. D. (2017). Healthcare robotics. Communications of the ACM, 60, 68-78.

Riek, L. D., Rabinowitch, T. C., Chakrabarti, B., & Robinson, P. (2009). Empathizing with
robots: Fellow feeling along the anthropomorphic spectrum. In 2009 3rd international
conference on affective computing and intelligent interaction and workshops (pp. 1-6).
IEEE.

Robinson, H., MacDonald, B., & Broadbent, E. (2014). The role of healthcare robots for
older people at home: A review. International Journal of Social Robotics, 6, 575-591.

Rueben, M., Aroyo, A. M., Lutz, C., Schmolz, J., Van Cleynenbreugel, P., Corti, A.,
Agrawal, S., & Smart, W. D. (2018). Themes and research directions in privacy-
sensitive robotics. In 2018 IEEE workshop on advanced robotics and its social impacts
(ARSO) (pp. 77-84). IEEE.

Rueben, M., Bernieri, F. J., Grimm, C. M., & Smart, W. D. (2017). Framing effects on
privacy concerns about a home telepresence robot. In Proceedings of the 2017 ACM/
IEEE international conference on human-robot interaction (pp. 435-444).

Rueben, M., & Smart, W. D. (2016). Privacy in human-robot interaction: Survey and future
work. We robot 2016, 5th.

Sahin, M., & Aybek, E. (2019). Jamovi: An easy to use statistical software for the social
scientists. International Journal of Assessment Tools in Education, 6, 670-692.

Shen, Y., Guo, D., Long, F., Mateos, L. A, Ding, H., Xiu, Z., Hellman, R. B., King, A.,
Chen, S., Zhang, C., et al. (2020). Robots under covid-19 pandemic: A
comprehensive survey. IEEE Access, 9, 1590-1615.

Sims, V. K., Chin, M. G., Sushil, D. J., Barber, D. J., Ballion, T., Clark, B. R.,

Garfield, K. A., Dolezal, M. J., Shumaker, R., & Finkelstein, N. (2005).
Anthropomorphism of robotic forms: A response to affordances?. In Proceedings of the
human factors and ergonomics society annual meeting (pp. 602-605). Los Angeles, CA:
SAGE Publications Sage CA.

Spatola, N., Kithnlenz, B., & Cheng, G. (2021). Perception and evaluation in
human-robot interaction: The human-robot interaction evaluation scale (hries)—a
multicomponent approach of anthropomorphism. International Journal of Social
Robotics, 13, 1517-1539.

Sturdee, M., Coulton, P., Lindley, J. G., Stead, M., Ali, H., & Hudson-Smith, A. (2016).
Design fiction: How to build a voight-kampff machine. In Proceedings of the 2016 CHI
conference extended abstracts on human factors in computing systems (pp. 375-386).

Tanenbaum, T. J. (2014). Design fictional interactions: Why hci should care about
stories. Interactions, 21, 22-23.

Tavani, H. T. (2008). Informational privacy: Concepts, theories, and controversies. The
handbook of information and computer ethics, 131-164.

Taylor, A., Murakami, M., Kim, S., Chu, R., & Riek, L. D. (2022). Hospitals of the future:
Designing interactive robotic systems for resilient emergency departments.

Tran, C. D., & Nguyen, T. T. (2021). Health vs. privacy? The risk-risk tradeoff in using
covid-19 contact-tracing apps. Technology in Society, 67, Article 101755.

Wong, R. Y., & Mulligan, D. K. (2016). These aren’t the autonomous drones you're
looking for: Investigating privacy concerns through concept videos. Journal of
Human-Robot Interaction, 5, 26-54.

Xu, J., De’Aira, G. B., & Howard, A. (2018). Would you trust a robot therapist? Validating
the equivalency of trust in human-robot healthcare scenarios. In 2018 27th IEEE
international symposium on robot and human interactive communication (pp. 442-447).
IEEE: RO-MAN).

von Zitzewitz, J., Boesch, P. M., Wolf, P., & Riener, R. (2013). Quantifying the human
likeness of a humanoid robot. International Journal of Social Robotics, 5, 263-276.


http://refhub.elsevier.com/S2949-8821(23)00039-7/sref32
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref32
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref33
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref33
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref33
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref33
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref34
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref34
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref34
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref34
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref35
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref35
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref35
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref36
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref36
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref36
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref37
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref37
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref38
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref38
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref38
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref39
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref39
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref40
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref40
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref41
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref41
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref42
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref42
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref42
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref43
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref44
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref44
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref44
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref45
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref45
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref45
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref46
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref46
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref47
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref47
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref47
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref47
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref48
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref48
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref48
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref49
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref49
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref49
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref49
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref50
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref50
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref50
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref51
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref51
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref51
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref52
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref52
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref53
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref53
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref53
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref54
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref54
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref54
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref55
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref55
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref55
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref56
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref56
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref56
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref57
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref57
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref57
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref58
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref58
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref59
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref59
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref60
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref60
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref60
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref60
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref61
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref61
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref61
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref62
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref63
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref63
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref63
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref63
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref64
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref64
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref65
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref65
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref65
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref65
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref66
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref66
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref66
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref67
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref67
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref68
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref68
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref69
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref69
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref69
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref70
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref70
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref70
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref70
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref70
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref71
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref71
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref71
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref71
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref72
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref72
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref72
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref73
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref73
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref74
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref74
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref75
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref75
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref76
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref76
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref77
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref77
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref77
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref78
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref78
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref78
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref78
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref79
http://refhub.elsevier.com/S2949-8821(23)00039-7/sref79

	Privacy and utility perceptions of social robots in healthcare
	1 Introduction
	2 Background
	2.1 Privacy in HRI
	2.2 HL in HRI

	3 Methodology
	3.1 Participants and power analysis
	3.2 Measures
	3.3 Scenarios
	3.4 Stimuli creation
	3.4.1 Overall robot design
	3.4.2 Gender neutrality

	3.5 Manipulation checks
	3.5.1 Placement on the HL spectrum
	3.5.2 Perception of scenarios

	3.6 Procedure

	4 Results
	4.1 HL and privacy perceptions
	4.2 HL and privacy-utility trade-offs
	4.3 Privacy and utility
	4.4 Qualitative findings

	5 Discussion
	5.1 The importance of task and context
	5.2 Human Likeness
	5.3 Design fictions and cognitive fidelity
	5.4 Limitations and future work

	6 Conclusion
	7 Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	References


