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We consider vanishing properties of exponential sums of the Liouville function i of the form
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where C C T. The case C = T corresponds to the local 1-Fourier uniformity conjecture of Tao, a central
open problem in the study of multiplicative functions with far-reaching number-theoretic applications.
We show that the above holds for any closed set C C T of zero Lebesgue measure. Moreover, we prove
that extending this to any set C with non-empty interior is equivalent to the C = T case, which shows
that our results are essentially optimal without resolving the full conjecture. We also consider higher-

order variants. We prove that if the linear phase e2" is replaced by a polynomial phase 27 for
t > 2 then the statement remains true for any set C of upper box-counting dimension < 1/t. The
statement also remains true if the supremum over linear phases is replaced with a supremum over
all nilsequences coming form a compact countable ergodic subsets of any t-step nilpotent Lie group.
Furthermore, we discuss the unweighted version of the local 1-Fourier uniformity problem, showing
its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all
closed subsets of zero Lebesgue measure.

1 Introduction

The aim of this paper is to establish new results concerning the local t-Fourier uniformity conjecture
over sets of measure zero resulting from recent progress in our understanding of the Chowla and Sarnak
conjectures. Throughout, let A(n) = (=1)%™ denote the Liouville function, where Q(n) is the number of
prime divisors of n (counted with multiplicities).

1.1 Local t-Fourier uniformity

A t-step nilmanifold is a quotient space G/T', where G is a t-step nilpotent Lie group and I is a
discrete cocompact subgroup of G. For technical reasons, we assume throughout this work that every
nilpotent Lie group under consideration is either connected or spanned by the connected component
of the identity element and finitely many other group elements. (This, or similar, restrictions on G are
a standard convention when studying nilsystems in ergodic theory and encompasses most relevant
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examples; see [17, Subsection 2.1] or [10, p. 155] together with Appendix B.) For f: N — C, we write

Enanf (M) = Z fom) and E2E,f(m >—logMZf(m)

m<M

for the Cesaro and logarithmic averages of f, respectively. The local t-Fourier uniformity conjecture of
Tao states the following.

Conjecture 1 [29, Conjecture 1.7]. Lett € N. For each t-step nilmanifold G/T" and any f € C(G/T),
we have

lim lim sup E- sup ’Ethum +hf (ghl“)’ =0 (1.1)

H—>o0 Moo

or, for the logarithmic averages,

lim lim sup ]Em<M sup ‘EhSHX(m + h)f(ghl")‘ =0. (1.2)
9eG

H=oo Moo

(We remark that Tao’s original formulation of the conjecture assumes G to be connected and simply
connected and f to be Lipschitz continuous. The restriction on f can be relaxed since the space of
Lipschitz functions on G/T is dense in the space of continuous functions by the Stone-Weierstrass
theorem. Concerning the restriction on G, it follows from Proposition B.1 that Conjecture 1 for connected
and simply connected G is equivalent to our formulation.) As shown by Tao [29, Theorem 1.8], the
validity of the logarithmic local t-Fourier uniformity conjecture (1.2) for all t > 1 is equivalent to two
important conjectures in multiplicative number theory, namely the logarithmic Chowla conjecture
on autocorrelations of the Liouville function and the logarithmically averaged version of Sarnak’s
Mobius orthogonality conjecture. We recall that the logarithmically averaged Chowla conjecture is the
statement that for any k € N and any natural numbers h; < ... < h, we have

lim E°8

lim B8 A (m 4 hy) - A+ he) = 0. (1.3)

The logarithmically averaged Sarnak conjecture in turn is the statement that for any deterministic
sequence a: N — C, we have

log
m<M

A}[im E . A(m)ya(m) = 0.

See, for example, the survey [5] for a discussion of these conjectures and for some of the progress
made towards them.

1.2 Local 1-Fourier uniformity for small sets

The local t-Fourier uniformity problem is still open, and even the case t = 1 seems to be out of reach
using present techniques. By Fourier expansion, the local 1-Fourier uniformity problem is equivalent to

hm lim sup En<m sup [En<eA(m + hye(ha)| = 0, (1.4)

H—oo  po

where we use the standard notation e(t) = e?t for t € R. This was proved in the regime H > M* for any
fixed & > 0 in [20], and improved to H > exp((logM)?) for any fixed 6 > 5/8 in [22], and very recently
further to H > exp(C(logM)*?(loglog M)"/?) for some C > 0 in [32].

Until a few years ago, (1.4) was known to hold only in the case when the supremum in « is taken
over a finite set, which follows from the work of Matomaki-Radziwilt-Tao [21]. McNamara [23] was the
first to improve on this result in the logarithmic case by showing that for all (closed; by continuity,

20z 1SNBny g uo Jasn AYisioniun uojedulld Aq £46969./88Y L LIS L/¥Z0Z/I0IMe/uiW/wod dno olwspese//:sd)y Wolj papeojumod



11490 | A.Kanigowski et al.

the problem of taking sup,. is the same as taking supg, so all the results in the paper are about closed
subsets) sets C c T of box-counting dimension < 1, we have

Hhm lim supE M sup |En<nA(m + hye(ha)| = 0. (1.5)
— 00 M

McNamara also gave an example of C satisfying (1.5) and of full Hausdorff dimension. A larger class
of C satisfying (1.5) was provided by Huang-Xu-Ye [11] by considering the class of closed subsets whose
packing dimension is < 1. Additionally, they provided the first example of an infinite, closed, and
uncountable subset C of T for which the non-logarithmic version of (1.5) holds. More precisely, they
showed

11m lim sup Ey<y sup |En<nA(m + hye(ha)| = 0, (1.6)

H-oo00 Moo

for all sets C of packing dimension 0. We note that all sets considered in [11] and [23] are closed with
zero Lebesgue measure.
Our first result is the following.

Corollary 1.1. For each closed C c T with Leb(C) = 0, the logarithmic local 1-Fourier uniformity
(1.5) holds.

We also show (in Section 4) that the restriction to sets of measure zero in Corollary 1.1 is crucial,
as relaxing this condition somewhat would lead to a resolution of the full logarithmic local 1-Fourier
uniformity conjecture.

Theorem 1.2. Suppose that there exists a set C ¢ T with non-empty interior such that the
logarithmic local 1-Fourier uniformity (1.5) holds for C. Then the same holds for C =T.

We will also show in Theorem 4.1 below that a slight extension of Corollary 1.1 (allowing Dirichlet
character twists, which we can handle with the same argument) cannot be extended to any positive
measure set without settling the logarithmic local 1-Fourier uniformity conjecture in full.

Corollary 1.1 is a special case of Theorem 1.3 below which deals with Cesaro averages instead
of logarithmic averages. To state this theorem, we introduce the following notation. For a set M =
{M1,M5,Ms, ...} c Nwith M; < My < M3 < ... and a function f: M — C, write

limsupf(M) =limsupf(;) and lim f(M) = limfM)),
MeM 00 MeMm =00

M= oo M—o0

where the latter is only defined when the limit on the right-hand side exists.
Theorem 1.3. There exists a set M C Noflogarithmic density 1such that the following holds. (The

logarithmic density §(M) of a set M C Nis limM%mE W a(m) when this limit exists.) Let
C c T be any closed set with Leb(C) = 0. Then we have

m<M

lim lim sup E<y SUp Em5h<m+Hk(h)e(ha)‘ =0. (1.7)
H—o0 Mi’;’é aeC

Corollary 1.1 follows from Theorem 1.3 by partial summation. (Indeed, by partial summation, for any
bounded sequence a: N — R, we have

limsup1 2 Z amm) —hmsup1 MZk 2> am).

M—o0 m<k
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The claim follows by applying this with a(m) being the sequence inside the averaging operator in
(1.7).) To obtain the Cesaro statement (1.6), we need to put some further restrictions on C.

Theorem 1.4. Assume that C c T is a closed set for which there is a sequence (g,) of natural
numbers such that

nlim Igneell = O for eacha € C (1.8)
and
(qn) has bounded prime volume, that is, sup Z 1 < 400. (1.9)
" pep
pldn

(Given t € R, ||l stands for the distance of t to the nearest integer(s).) Then (1.6) holds.

We will show in Appendix C that there exist sets C c T of full Hausdorff dimension satisfying (1.8)
and (1.9).

1.3 Local polynomial t-Fourier uniformity for small sets

We now consider the t > 2 case of Conjecture 1, with the supremum over g being taken over a sparse
set. An important special case is that when G/T is isomorphic to a torus T¢, d e N; then, by Fourier
expansion, the claim is equivalent to

lim imsupEp<y sup |Epcur(m + h)eP(h))| =0, (1.10)
H—oo Moo deg(P)<t

where the supremum is over polynomials P(X) € R[X] of degree at most t. See [22] for a result establishing
this in the regime H > exp((logM)?), for any fixed 6 > 5/8. Less is known in the case t > 2 compared to
the t = 1 case about statements of the form

log

lim limsupE, 2,

H—-00 Moo

sup |Ep<uA(m + hye(ah’)| = 0. (1.17)
aeC

To our knowledge, the only previous result here is the case where C is finite; this follows from [1,
Theorem 5]. We can improve on this by showing that any closed set C of box-counting dimension < 1/t
has this property. Recall that the upper box-counting dimension of a set C c T is defined as the infimum
over all s > 0 such that

min{k > 1: C can be covered by k intervals of length < 1/J} _

lim sup 0.

oo J

The lower box-counting dimension of C is defined similarly with liminf in place of lim sup, but we
will not make use of this notion.

Theorem 1.5. Lett > 2. There exists a set M C N of logarithmic density 1 such that for any closed
C c T of upper box-counting dimension < 1/t, we have

lim lim sup ~ Ep<y SUp |Ep<gr(m 4+ h)e(eh®)| = 0. (1.12)
0 MeM aeC
— 00

Again by partial summation, we can also obtain a version of (1.12), where we use limsup,,_, ., and a

. . log
logarithmic average E,,2),.
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1.4 A stronger local t-Fourier uniformity problem

We now turn to the case of general nilpotent Lie groups G. Together with (1.1) and (1.2), we could consider
their stronger and more symmetric versions:

11m lim sup Ey<y sup |Ep<ur(m + h)f (g™g'm)| = 0 (1.13)

H—-00 Moo

and

lim Tlim supIE t sup |Encur(m + h)f (g™"g'T)| = 0 (1.14)
M—

for all f € C(G/T). See [22] for a result proving this in the regime M > H® with ¢ > 0 fixed. (By [22,
Theorem 4.3] and the non-pretentiousness of the Liouville function ([21, (1.12)]), for any ¢ > 0 one has
Epn<m sup, [Ep<pd(m + f(@m + )| = om—o(D) in the regime M > Hf, where the supremum is over
all polynomial sequences g: Z — G. Specializing to polynomial sequences of the form n — g"g’ with
9,9 € G, we get a similar supremum as in (1.13).) These symmetric versions have rather neat dynamical
reformulations (see the strong LOMO property below), and in the case t = 1 they are equivalent to (1.1)
and (1.2), respectively, as itis enough to consider f being a character of G/ I'. Moreover, by Tao’s work [29],
the statement (1.2) implies the logarithmic Chowla conjecture (1.3), and also (1.3) implies (1.14), so (1.2)
and (1.14) turn out to be equivalent. (The implication from (1.2) to (1.3) follows from [29, Theorem 1.8
and Remark 1.9]. For the implication from (1.3) to (1.14), note that the proof in [29] that the logarithmic
Chowla conjecture (1.3) implies (1.2) works equally well to show that (1.3) implies (1.14) (or even a more
general version in which g"*"g’ is replaced with g(m + h), where g(-) is any polynomial sequence from
Z 10 G).)

Despite the equivalence of (1.2) and (1.14), for t > 2 partial progress on (1.14) with the supremum
over a small set is harder to obtain than for (1.2). This is already seen in the case of abelian G, where we
are now interested in sets C c T for which we can show

lim lim supIE sup |[Em<heminAi(e®(h))| = 0. (1.15)
H—oo Moo P(n):omtJrQ(Yl)
aeC,deg(Q)=<t-1

For this problem, one can show (see Subsection 6.1) that if (1.15) holds for some infinite, closed C
containing a rational number, then (1.15) holds with t — 1 in place of t for the full set C = T. Hence,
we cannot hope to be able to show (1.15) for very “large” infinite sets (in particular those that contain
at least one rational number). On the other hand, whenever C is countably infinite and contains no
rational numbers, we are able to prove (1.15). In fact (1.15) for such C is a straightforward consequence
of the following theorem:

Theorem 1.6. Let t € N. Let G/T be a t-step nilmanifold and let f € C(G/TI'). For each countable

compact subset C C G for which for all g € C the nil-rotation g'T + gg'T is ergodic,

hm lim sup]E Sy Sup  (Ep<pr(m+ h)f(g"‘*hg’l")‘ =0. (1.16)
7P M-oo geC,g'eG

(We recall Leibman’s condition (Thm. 2.17 in [17]): If G is generated by its connected component
G° and g, then the translation by g on G/T is ergodic if and only if it is ergodic on the torus
G/([G,G]I).) In particular, the local t-Fourier uniformity holds on C.

As a corollary, we get that (1.15) holds for sets C as in the above theorem.
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Corollary 1.7. Let t > 2. For each countable, closed subset C c T of irrational numbers, we have

lim limsupE%,  sup  [Epik(m+ heP(m + h))‘ =o0. (1.17)
H>0o Moo P(m)=an'+Q(n)
aeC, deg(Q=t-1

1.5 A dynamical interpretation and the strong LOMO property

In order to see the relationship of the stronger local t-Fourier uniformity statements (1.13), (1.14)
with dynamics, more precisely with Sarnak’s conjecture [26], recall first the concept of strong LOMO
(acronym of “Liouville orthogonality of moving orbits”; or logarithmic strong LOMO) introduced and
studied in [1], [2], [9], and [13]. Given a homeomorphism T of a compact metric space X, we say that it
satisfies the strong LOMO property if for all increasing sequences (by) C N with density d({bx: k > 1}) =
0, all sequences (x) C X and all f € C(X), we have

lim — Z‘ D f(T“xk)).(n)‘ =0 (1.18)

k<K bp<n<bis.

or in its logarithmic form (here we assume that §({by: k > 1}) = 0)

1
lim > —f(T"Xk)l(n) =0. (1.19)
foee log 3 ‘ by <n<be,1 ’
(The density of A ¢ N is defined as d(A) = limy. . Em<uda(m) (when this exists).) Even

though the strong LOMO property looks much stronger than the Liouville orthogonality, that is,
limy_ oo Enanf (T"x)A() = O for all f € C(X) and x € X, Sarnak’s conjecture (predicting the Liouville
orthogonality of all zero topological entropy dynamical systems (X,T)) is equivalent to the strong
LOMO property for the class of zero topological entropy systems [2].

In order to see the relationship between (1.13) and the strong LOMO property (1.18), we consider the
homeomorphism T: G x G/T — G x G/ T given by

T: (9,9T) — (9,99'T). (1.20)

Then (1.13) can be read as (remembering that f € C(G/I")

Jim lim sup Bz sup [Epud(m+hf o T (g, QT)’ =0 (1.21)
H-ooo Moo 9.9'€G
while (1.18) can be read as
lim .- > sup | > AmfeT'@gm)|=0 (1.22)

K 7
e bK k<k 9:9'€G by <n<bypiq

(see, e.g., [9]). Now, the equivalence of (1.21) and (1.22) follows from the following simple lemma.

Lemma 1.8. Let B be a normed space, and let (z,) C B be bounded. Then

lim lim sup En<y

H—o00 Moo

‘EhSHzmM H -0 (1.23)
if and only if for each increasing sequence (by) ¢ N with d({bx: k > 1}) = 0, we have

lim — =0. (1.24)
Koo bK g:l( H bk<n<bb+1
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An analogous result holds for logarithmic averages (with the logarithmic density § in place of the
density d).

It follows that the stronger local t-Fourier uniformity problem (1.13) is equivalent to the strong LOMO
property of the homeomorphisms of the form (1.20) and similarly with logarithmic averages (cf. [13]).
(The space G x G/T is locally compact but need not be compact. However, the problem of Liouville
orthogonality (or of LOMO) of T can still be studied here since we have a lot of probability T-invariant
measures: each such measure can be disintegrated over its projection on the first coordinate and the
conditional (probability) measures are invariant under fiber nil-rotations. Since the latter are of zero
entropy, in particular, it is natural to consider T as a zero entropy homeomorphism of G x G/T'. In
particular, the Liouville orthogonality (or LOMO) can be studied for special continuous observables, for
example, for the continuous functions depending only on the second coordinate. Of course, the problem
of non-compactness disappears if we take C C G a compact subset and consider the relevant restriction
of T. The problem is also irrelevant in abelian case, as we can simply consider T as defined on G/ ' x G/ T
T(gT',g'T) = (gT',gg'T).) Hence, Sarnak’s conjecture implies the local t-Fourier uniformity for each t > 1.
Although Lemma 1.8 is practically proved in [1], [13], and [15], for the sake of completeness we will
provide a proof in Appendix A.

1.6 Strategy of the proofs

1.6.1 Proof of Theorems 1.3 and 1.5

The proofs of Theorems 1.3 and 1.5 are number-theoretic in nature. For the proof of Theorem 1.3, we
use the union bound, the second moment method and the density version of the two-point Chowla
conjecture, proved in [31]. When combined with the fact that e((@ — g)h) = 1 + O(hla — ), we prove
the result for all sets C that can be covered by o()) intervals of length 1/] as ] — oo. A relatively short
measure-theoretic argument shows that this property holds for all closed C of Lebesgue measure 0. For
the proof of Theorem 1.5, we use largely the same strategy. The main difference is that for t > 2 we have
e((a — p)ht) = 1+ O(h'|a — B), so we can only obtain the desired conclusion for sets C that can be covered
by o(J/!) intervals of length 1/] as ] — oo.

1.6.2 Proofs of Theorems 1.4 and 1.6

The proofs of Theorems 1.4 and 1.6 are dynamical; we prove these results by showing that the strong
LOMO or logarithmic strong LOMO holds for certain systems; see [6], [11], [14], and [28] for some other
systems for which this property has been shown (see also Corollary 3.25 in [5]). The scheme of proofs
of our results is as follows:

e Take a class of topological systems for which we know that the (logarithmic) Liouville orthogonality
holds.

e Prove thatin fact all the systems of this class satisfy the (logarithmic) strong LOMO property.

e For Theorem 1.6, we use the class & of those zero entropy topological systems for which the set of
ergodic measures is countable, relying on a celebrated theorem of Frantzikinakis and Host [6]. For
Theorem 1.4, we use the class & of systems whose all invariant measures yield measure-theoretic
systems that are (qn)-rigid, relying on a result from [14]. Lastly, we give an alternative proof of
Corollary 1.1 by considering the class % of systems whose invariant measures yield measure-
theoretic systems with singular spectra, relying on a dynamical interpretation of Tao’s two-point
logarithmic Chowla result [28], given in Corollary 3.25 in the survey [5].

In Appendix A, we give the proof of Lemma 1.8, in Appendix B we show that results of a certain type
can be extended from connected, simply connected Lie groups to more general Lie groups (which is
needed for the proof of Theorem 1.6), and in Appendix C, we show a general construction of subsets
C c T of full Hausdorff dimension for which (1.6) is satisfied.

2 Proof of Theorem 1.3
2.1 Lemmas for Theorem 1.3

We start with two-point Chowla, with Cesaro averages at almost all scales.
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Lemma 2.1. There exists a set M C N with §(M) = 1 such that the following holds. For any
integer h # 0,

lim Ep<pyA(M)A(M +h) = 0.
Mem

M—o0

Proof. This is [31, Corollary 1.13(ii)] with g1 = g» = A. |

Lemma 2.1 quickly implies the following lemma about the frequency of large values of the sum
2 net Mm 4+ h)e(ah®). We use A « B to denote that |A| < CB for some absolute constant C.

Lemma 2.2. There exists a set M C N with §(M) = 1 such that for any ¢ > 0 and H > 1,

where the supremum is taken over all sequences a: N — C with [|a]o = sup,y la(n)| < 1.

g2
L =,

1
li ~ ~
imsup ~ sup T

Mem llalleo <1
M—oo

‘m € [1,M]NN: l; > am+ha(h)

h<H

Proof. Let M be as in Lemma 2.1. Let S, be the set whose cardinality we are interested in. By
Chebyshev’s inequality and the fact that the number of hy, h, < H with h, —h; = his max{H — |h|, 0}, we
obtain

2

< (eH)Emey | D AmM + hya(h)

[Sauml
M h<H

=@ > Enah(n+h)hm+ hy)ahahy)

hy,ho<H
D) e 2H
<@ D [Enadk(MAM +hy —hy)| +
M
hi,hp<H
= (¢H)2 > (H — [h])[Enspd(mA(m + h ¢’H
= - m=<M ( ) ( + ) + M

|hi<H

The contribution of the terms h # 01s, by Lemma 2.1, « H™'% (say) as soon as M € M is large enough
in terms of H. The contribution of the term h = 0 in turn is « ¢~2/H. Hence, we conclude that

limsup ~ sup ~ |Seuml/M < e 2/H,
MerM™ Jalesl
—00

as desired. [ |

2.2 Reduction from zero measure to covering numbers

In this subsection, we show that C being closed and of measure zero implies a condition that is easier
to work with in our proof of Theorem 1.3. In fact, we prove this in a slightly more general form for sets
that are allowed to have positive measure (we thank the referee for pointing out this generalization).
For a set C C R, let N;(C) be the least number of closed intervals of length r whose union covers C.

Lemma 2.3. Let C C [0, 1] be a closed set. Then,

lim sup rN,(C) < Leb(C).

r—0
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Proof. Thisis somewhat similar to [27, Lemma 6.6]. Let ¢ > 0. By the definition of the Lebesgue measure,
there is an open set U such that C ¢ U and Leb(U) < Leb(C) + ¢. By compactness, we can assume that
U is a union of finitely many intervals Iy, ..., Iy for some natural number K. Removing any overlapping
parts of the intervals [; (and possibly adding some singleton intervals), we may also assume that the [;
are disjoint. Note that each [j satisfies lim,_,o rN;(;) = Leb(l;). Hence,

limsuprN,(C) < th sup rN;(j) = ZLeb(I) < Leb(C) +«.

=0 j=1 =0 j=1

Letting ¢ — 0, the claim follows. [ |

2.3 Proof of Theorem 2.4

We will in fact prove the following more general theorem from which Theorem 1.3 is an immediate
consequence.

Theorem 2.4. There exists a set M C N of logarithmic density 1 such that the following holds.
Let C C T be any closed set. Then we have

lim lim sup Ey<y sup Emgkax(h)e(ha)‘ <« Leb(C)V4.

o Mem aeC
M—o0

Proof. Let M C N with §(M) = 1 be as in Lemma 2.2. Write ¢ = Leb(C) € [0, 1]. Then by Lemma 2.3 for
every H large enough in terms of ¢ there exist some ] = Jy < 2¢¥*H and a3, ..., € R (depending on H)
such that

Sl/4
CCU[OlJ,Ol) q :|

jg

Using e(B) = 1+ O(|B)), it follows that

sup + O(eY*H).

aeC

> Am + he(ah)

h<H

> Am + hye;h)

< max
= h<H

Dividing both sides by H and considering the values of

sup
aeC

Z A(m + h)e(ah)

h<H

smaller than Koe*H (and greater than this number), for K, a large absolute constant and for ¢ > 0 small
enough, we obtain

lim sup Ey<y SUp ‘ — Z A(m+ h)e(ah)‘

Mem aeC
M—o0

<Koe'/* +lim sup — {m < M: max Zx(m +We(esh)| = e/*H

MGM h<H
— 00
<Koe™/* + > lim sup [m <M: > am+he@h)| > 51/4H’ .
Mem
g MIse h<H
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By Lemma 2.2, this is
< Koe"* + 0™V /H) < e'/4,
recalling that ] < 2¢%*H. This completes the proof. |

3 Proof of Theorem 1.5

Proof of Theorem 1.5. Let M C N with §(M) = 1 be as guaranteed by Lemma 2.2. We must show that
for any ¢ > 0 and for any C c [0, 1] of upper box-counting dimension < 1/t, we have

. . 1
lim suplim sup Ep<y sup | — Z A(m + h)e(@ht)| < e. (3.1)
H—o00 Mi/;/lo aeC H h<H

Since C has upper box-counting dimension < 1/t, for any large enough H there is some ] < ¢*H and
some a1, ...,o; € R such that we have

&2
Cc U[ai'ai+ﬁ:|'

j<I
Note that since e(8) = 1 + O(|8|) we have
sup | > A(m + hye(@h’)| < max|>" A(m + he(eh)| + O(e’H).
aeC h<H g h<H

If we let

h<H

1
Sy = ‘m eN: ‘H ZX(m—i—h)e(aht)

&
> _

then, for ¢ > 0 small enough and H sufficiently large, by the union bound, we have

lim sup Ey<y SUp

MeM aeC
M—oo

% > A(m+hje(ah')

h<H

% > am+he(hh)| + 0(e?)

<lim sup E,<y max
2 -
<H

MeM )=
M—oo

<% L lim sup En<ymax 1s, (m) + O(s?H)
2 MGM - jg J
— 00

<Eq Z(lim sup Em<yls, (m)).
2 i< Mem ’

Applying Lemma 2.2 with a(h) = e(a)-ht), this is

‘e 2]
< 2-i-O(‘s H)Ss

for & > 0 small enough, recalling that ] < *H. ]
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4 Optimality of Results

In this section, we prove two theorems showing that our results on the logarithmic local 1-Fourier
uniformity problem cannot be extended much without settling the full conjecture. One of them is
Theorem 1.2, stated in the introduction. The other one is the following implication.

Theorem 4.1. Suppose that there is a measurable set C C T of positive Lebesgue measure such
that for all Dirichlet characters x we have

log

limsuplimsupE, 2,

H—oo M—oo

sup |Ep<grA(m + h) x (m + h)e(ha)| = 0. (4.1)
aeC

Then the logarithmic local 1-Fourier uniformity conjecture holds.

Morally speaking, the assumption (4.1) is not much stronger than the case x = 1 (for example, the
proof of Corollary 1.1 carries through with a character twist), although we cannot prove a rigorous
implication from the case x = 1 to the general case.

4.1 Proof of Theorem 4.1
In this subsection, we prove Theorem 4.1.

Proof of Theorem 4.1. We first claim that under the assumption of the theorem we have

lim sup lim sup E°8,, sup [Ey <A (M + h)e(har) 1n=amodn| = O (4.2)

H—o00 M— o0 aeC

for any integers a,r > 1. Indeed, we have

lim suplim sup Eiﬁim sup |Ep<ud (M + h)e(het) Lh=amodn)|
aeC

H—o00 M—o0

. . 1
= lim sup lim sup E;iMrlmz_aH(modU sup |En<gA (M + h)e(ha) Ih=amodr|

H—o00 M—o0 aeC

. . 1
=lim sup lim sup ]ErZEMrlmz—aJrl(modr) sup |Eh§H)~(m + h)e(ha)1m+hzl(modr)|

H—o0 M—oo aeC

=0,

since 1y+h=1(modn 1 @ finite linear combination of Dirichlet characters (modr) evaluated at m+h. Taking
linear combinations of (4.2), we now conclude that

H—o0 M—oo a

lim sup lim sup EﬁEM sup |Ep<gA(m + h)e(h(a + B))| =0 4.3)
eC

for every rational number 8.

Let ¢ € (0,1). Since C is measurable and of positive measure, by Lebesgue’s density theorem there
exist integers O < a < q— 1 such that for the interval I = [a/q, (a + 1)/q] we have Leb(CNI) > (1 —¢)Leb(l).
Therefore, we have

q-1

Leb([o, myJe+ g)) <e. (4.4)
b:

=0
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We now estimate

lim sup limsup E\%,, sup |En-pzA(m + hye(ha)|

'm<M
H—o0 M—o0 ael0,1]

< limsuplim sup Eiﬁ:iM sup  |[Ep<pr(m + he(ha)|

H—o0 M—o0 ﬂEUg;(l,(Cer/q)

+ lim sup lim sup EiﬁiM sup [En<gA(m + hye(ha)|
Hooo o M—oo «€l01\NUL (C+b/a)

q-1 . b

< Z lim sup lim sup E,.%,, sup |Ep<gA(m + hye(h(a 4+ -))|

oo Hoo0 M—o0 ~ aeC q

+ lim suplim sup Ei,?EM sup |[En<gA(m + h)e(ha)|.
H—oo  M—oo T a0 I\NULLCHb/g)

Each of the summands in the sum over b is 0 by (4.3). Moreover, the expression on the last line is by
Theorem 2.4 and (4.4),

q-1 1/4
< Leb([o, 1\ Ye+ b/q)) <4
b=1

Letting ¢ — 0, the claim follows. |

4.2 Proof of Theorem 1.2

In this subsection, we prove Theorem 1.2.
We begin with the following lemma about the discrepancy of the sequence pa(mod1), where p runs
over primes. As usual, we define the discrepancy of a sequence (xx)¥_, C [0,1] by

1
sup |=I{k <K:xp €I}| — Leb()|.
1c[0,1]
I'interval

Lemma 4.2. Let ¢ € (0,1) and P > ¢ Let « € R. Then the discrepancy of the sequence
(pa(mod1)),<p is < & unless there exists an integer 1 < ¢ « ¢~ '° such that |[¢a| <« e~°/P.

Proof. By the Erd6s-Turan inequality, if the discrepancy of (pa(mod1)),<p is > ¢, then for some integer
1<k « &2 we have

|Ep<pe(kpa)| > &”. (4.5)

LetQ = sSP/(log P)'°. Then, Dirichlet’s approximation theorem tells us that for some integers 1 < ¢ <
Q and a we have |a —a/¢| < 1/(¢Q) < 1/¢%. Using a standard estimate for exponential sums of the primes
[12, Theorem 13.6], this implies that ¢ « ¢~>(logP)'°. But then

e (logpP)1°

EHE P

a
14

(This is stated with the von Mangoldt weight, but a similar estimate holds for the unweighted prime
sum.) This gives the desired claim if ¢ < (logP)~2. Suppose then that ¢ > (logP)~2. Then we have o =
a/e¢ + M/P for some (logP)!® < |[M| « (logP)?°. But now, splitting into short intervals and arithmetic
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progressions, we have

a M
e (7))

akji\ 1 [* M
= z e 7) 7/ Et<pst+52M*1P1pzj(mode)e -t dt+o(82)
¢t )Py P

1sj<¢t
(,0)=1

2

1 e~
K —— 40D,
) M (

where for the last line we used the Siegel-Walfisz theorem, an evaluation of the Ramanujan sum, and
the bounds ¢ > (logP)~?, M| « (logP)?°. Comparing with (4.5), we conclude that ¢ « ¢7'% and M « ¢,
so the claim follows. |

Proof of Theorem 1.2. Since C has non-empty interior, there exist real numbers 0 < a < b < 1 such that
[a,b] c C. Hence, by assumption we have

lim sup im sup EL%, sup [Ex-pexrik(We(an)| = 0. (4.6)

x<X
H-oo X—>o0 ag(a,b]

Our task now is to show that for any function «: R — [0, 1] we have

limsuplim sup E%,

H-o00 X—o00

[Ex<n<xsnr(Me@mn)] = 0. (4.7)

Let ¢ > 0 be small, and let P be large enough in terms of ¢. We first claim that

lim sup lim sup ]ELOSEXIE;?P |Ex<n<xstd(e(a(x)n)

H—oo X—o00 (48)

+ ]Ex/p<m5(x+H)/p)v(m)e(pa(X)m)| <e.

Indeed, by the complete multiplicativity of A and Elliott’s inequality [20, Proposition 2.5] (with f(n) =
A(me(a(x)n) and § = (loglog P)~Y/1%), for any x > H > P > 3 we have

—Expem=irtprMe@X)pm) = Expexpur(me(@(x)n) + O(loglogP)~/1%)

for all primes p < P outside an exceptional set of p with logarithmic sum « (loglogP)/>. Now, averaging
over p <P, we get

EE | — Exjpemeeetph(Me@E)PM) — Exnzmh(e(@(m)] < (loglogP)~/10.

Further taking logarithmic averages over x < X and taking limsups the claim (4.8) follows (since P is
large enough in terms of ¢).
Now we have (4.8). Restricting the p average in that estimate, we obtain

. . log 1
lim sup lim sup Exofpr(;gp Lpaye[ab]mod1) | Ex<nzxruh (M)e(@()n)

H—o0 X—o00

+ Ex/pam<x+hypr(Me(pa(x)ym)| < e.
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By the dilation invariance of logarithmic averages and (4.6), we can bound

. . 1
lim sup lim sup Exofpr@ 1pa(X)e[a b](mod1) |Ex/p<m<(x+H)/P}~(m)e(pl¥ xym)|
H—o0 X—o00

. . 1
= lim sup lim sup E\% E Ly pyye(ablmody [Ey<may-+/pA (M)e e (py)ym)|

H—o0 X—o00

< IE °€, lim sup lim sup Ey<x Lpaqyefablmod) By <m<y+H/pA (M)e(pa (py)m)|
H-ooo X—o00
=0.
Hence, by the triangle inequality, (4.9) implies

. . 1
limsuplimsupE 8 1Ep<p1pu(x>e[a plmodD) | Ex<nzx+HA(Me(@(X)n)| < e. (4.10)

x<X
H—o0 X—o00

Introduce the sets

Tpa
X, = {x e[1,X]: ZW zal/ZloglogP-i-l},

p=<P

X =[1,X]\ A1

Then it suffices to show that forj € {1,2} we have

lim sup lim sup I[EX<X1XJ ()| Exanzxsur(Me(@xn)| < g2, (4.17)

H—o0 X—o00

as letting ¢ — 0 the desired claim (4.7) follows.
Using (4.10), we have

lim sup lim sup IEX<X 1, (X) |[Excn<x+ur(Me(@(X)n)|

H—oo X—o00
< ¢ Y?limsuplim sup ]EX<X1X1 (X)]Ep<p]-pa(x)e[a blmod1) | Ex<nsx+nA (Me(a (X)n)| (4.12)
H-o0o X—o00
< 81/2.

Hence, what remains to be shown is that

lim sup lim sup ]E)le;(2 () [Excnsxsnr(Me@n)| < &2, (4.13)

H—o00 X—o00

Note that for x € A, there exists P’ € [logP, P/2] such that pa(x) € [a,b](modl) holds for < b—g“%
primes p € [P/, 2P]. By Lemma 4.2, we conclude that there exists an absolute constant Co > 1 such that,
for each x € A3, there is an integer 1 < ¢ < Coe™ % for which [[€a(x)]| < Coe°/(logP). Since P is large
enough in terms of ¢, by splitting the sums of length H into sums of length (logP)"/? and applying the

triangle inequality, we see that
limsuplim supIE)KXl,\g2 (X)|Ex<nex+uA(n)e(e(x)n)|
H—oo X—00

< HmSupEE, 1 x, (0 Eycnest togryz Mme@(m)| + O(e?)

X—00

< Z lim supIEX<X ]Ex<n<x+(1ogp)m).(n)e( )‘ +0(e%).

1<k<t<Coe-10 X
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But by the Matomaki-Radziwilt-Tao estimate [21, Theorem 1.3] for short exponential sums of the
Liouville function, and the assumption that P is large enough in terms of ¢, this is < ¢ if ¢ > 0 is small
enough. This gives (4.13), completing the proof. |

5 An Alternative Proof of Corollary 1.1

Let us recall some basic notions of topological dynamics and ergodic theory. Let T be a homeomorphism
of a compact metric space X. By M(X) we denote the space of all (Borel) probability measures on X.
M(X) endowed with the weak-* topology is compact and the set M(X, T) of T-invariant Borel probability
measures on X is a non-empty and closed subset of it.

Any member u € M(X,T) yields a measure-theoretic system (X, u, T). Moreover, T induces a unitary
operator Ur(f) = Tf := f o T on L2(X, ). Then, the Herglotz theorem implies that each f determines a
unique (Borel) positive finite measure of on S' whose Fourier transform is given by

) = /S z“daf@:/xmf.fdu forall nez

Among spectral measures there are maximal ones (with respect to the absolute continuity relation).
Those maximal elements are called measures of maximal spectral type that are all mutually absolutely
continuous with respect to one another. Recall that (X, u, T) is rigid along (q,) if Tf — f in L?(X, n) for
each f € L%(X, n). As G¢(qn) — 1 for each f € L2(X, u) with ||f| = 1, by the Riemann-Lebesgue lemma, it
follows that rigid systems have singular maximal spectral type.

If (X', w,T) is another measure-theoretic system, then by a joining of it with (X, u,T) we mean an
element of p € M(X' x X, T" x T) such that its projections on X’ and X are x' and u, respectively. Clearly,
(X' x X, p, T' x T) is a measure-theoretic dynamical system.

5.1 Lemmas

Lemma 5.1. Assume that (X, x, T) and (Y, v,Id) are two dynamical systems. Let p be a joining of
T and Id. Then the maximal spectral types of T and of T x Id are the same.

Proof. Consider F = f ® g with |g| = 1. We have
/Po(T x 1)"Fdp :/ﬂT”x)W- gy’ dp(x,y) :/ﬂT"x)Wdu(x),

so the spectral measure of F is the same as that of f. |
Lemma 5.2. Let G be a compact abelian group and C a closed subset of it. Let T: Cx G — C x G be

given by T(x,g) = (x,g + x). Then T is a homeomorphism of C x G and for each p € M(C x G, T)
the maximal spectral type of the unitary operator Ur acting on L?(C x G, p) is equal to

or = ZaxX*(G)v

xea
where a, > 0,3 g0, <+o00 and o = 7.(p) with n(x,9) = x.

(By x«(o) we denote the image of o via the map x.)

Proof. Let F(x,9) = f(X)x(g9) with x € G. Then

/ F(T" (x, 9))F(%,9) dp(x, §) = / XMRIFCOPdp(x, 9)

=/(x<x))”1f(x>|2dp<x, 9 =/<x(x>)”u‘<x)|2da(x)=/z” dx=(If %0,
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SO
or = x:(If°0) < x:(0) = 016
and the result follows. |
Lemma 5.3. Let (X, T) be a topological system in which for all v € M(X,T) the corresponding
measure-theoretic dynamical system (X, v, T) has singular spectral type. Then (X, T) satisfies

the logarithmic strong LOMO property.

Proof. Let (xx) C X and let (by) C N satisfy §({bx: k > 1}) = 0. We want to show that

Z‘ %f(T"Xk)).(n)‘ ) (5.1)

IOgbK k<K be<n<bi;
Consider the space X x Y, with Y = {¢27§/3: j = 0,1,2) (on Y we consider the action of identity). Let
((Xk, @x))e=1 C X x Y with ay to be specified shortly. Set f(x,7) = f(x)n for x € X and n € Y. Then

1~
logbKZ 2 ﬁf(Tnkaak)M”)

k<K b <n<bpi1

k<K bk <n<bpiq

and we can select (ay) C Y so that the values ai Zbkﬁkbm %f(T”Xk) lie in a fixed convex cone (in C) of
angle < m. Let S denote the left-shift on the symbolic shift-space {—1, 1} and let X; denote the orbit
closure of A under S (where we view A as an element of {—1, 1}% by extending it to Z in an arbitrary way
using +1). In view of [2, Lemma 18], (5.1) is now equivalent to

K—>:>o log bx z z *f(TnXk)ﬂo(S”l)

k<K b <n<by,q

= lim > ‘ %f(T“xk)no(S“l) .

K00 log by
e OgbK k<K ' by<n<be,:

To compute the limit of the left-hand side above, consider the sequence

<10g bk Z Z S(TXIdXS)"(xk a, l)) CMX xY x Xp).

k<K bk<n<bk+1 K>1

By passing to a subsequence if necessary, we can assume that this sequence converges to a measure p
which, by the zero logarithmic density of (by), must be T x Id x S-invariant. So,itis a joining of v € M(X, T),
v € M(Y,1d) and a Furstenberg system « of A [6]; the latter is true because « € M(X,, S), where « satisfies

1 1 1
= I%Loo logbK Z Z 783” - 1~>oo 10gb]( ;( S

k<K b}e<n<bk+1

Hence, the limit of the left-hand side in (5.2) is ff@no dp.Because of Lemma 2.1, the spectral measure
oy, TOr 7o understood as an element of L?(p) (this spectral measure is precisely the same as the spectral
measure of 7y when viewed as an element of L?(Xy, k) since p is a joining) is the Lebesgue measure on
the circle, see [5]. On the other hand, by Lemma 5.1 and our assumption that any measure in M(X, T)
yields a dynamical system of singular spectral type, the spectral measure of of f e L2(p) is singular.

Therefore, f and 7o are orthogonal and hence (5.2) holds. |
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5.2 Proof of Corollary 1.1

We apply the above to T(x,y) = (x,x+y) on C x T. In view of Lemma 5.2, for each invariant measure for
T the maximal spectral type of the measure-theoretic system corresponding to the measure is singular
(as C has Lebesgue measure zero, each measure on it must be singular with respect to the Lebesgue
measure). It follows from Lemma 5.3 that (C x T, T) satisfies the logarithmic strong LOMO property,
which we apply to f(x,y) = e*V. Finally, use Lemma 1.8.

6 Proofs of Theorem 1.6 and Corollary 1.7

Theorem 1.6 is an immediate consequence of the following lemma:

Lemma 6.1. Let C = {gx: k > 1} C G, where the nil-rotations Ly, (gT") = gigI" are ergodic. Then,
the homeomorphism T: C x G/T — C x G/T, T(gx,g'T) = (gk, grg'T) satisfies the strong LOMO

property.

Proof. Because of our assumptions on the set C, the homeomorphism T has only countably many
ergodic measures. Indeed, it follows from [8, 17] that a nil-rotation Ly, is ergodic if and only if it is
uniquely ergodic. Hence, for each g € C, there is exactly one measure invariant on the fiber over
gk Hence, by the work of Frantzikinakis and Host [6, Theorem 1.1], it satisfies the logarithmic Sarnak
conjecture. In fact, as noticed in [9, Corollary 1.2], the theorem of Frantzikinakis and Host implies that
all zero entropy systems with a countable set of ergodic measures satisfy the logarithmic strong LOMO
property. It follows that T satisfies the logarithmic strong LOMO property. |

Proof of Corollary 1.7. Let C = {ax: k € N} C T be closed with all «, irrational. Consider the following
groups of (d+ 1) x (d + 1) upper triangular matrices:

12 2z - Z Z R 12 2 - 7 7 Z
1 2 -~ Z 7 R 1 2 - Z 7 %
00 1 - Z Z R 00 1 - Z Z Z

G= o=
0 0 0 1 Z R 0 0 0 1 z %
0 0 0 0 1 R 0 0 0 0 1 Z
0 0 0 0 0 1 0 0 0 0 0 1

Note that G is a d-step nilpotent Lie group generated by the connected component of the identity and
a finitely generated torsion-free subgroup, and I' is a discrete and cocompact subgroup of G. Through
the diffeomorphic map

1 0 0 xq
0 1 0 Xg-1
er (X, Xaen X)) oy e ("
0 0 1 x1
0O 0 0 O 1

we can identify the nilmanifold G/ T with the torus T¢. Also, define

1 1 O 0 0

0o 1 1 0 O
gr = . .

0 O 1 1 0

0 0 0 1 o

0 0 O 0 0 1
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and note that the nil-rotation induced by g, on G/ T is ergodic and congruent, via ¢, to the affine linear
transformation Te(X1, X2, ..., X3) = (X1 4+ ak, X2 + X1, . .., Xd + X4_1) on T4

By applying Theorem 1.6 to the nilmanifold G/ I" and the countable closed set of ergodic nil-rotations
{9x: k € N} C G, and invoking the isomorphism ¢, we get for any continuous function f: T¢ — C that

. . 1
im limsup E, 8, sup sup

1 En<th(m + h)f (TF+1x)
H=oo Moo keN  xeTd

=0.

Iterating the transformation Ty yields

d
TQ(X:],XQ, o Xq) = (Yl(llk +X1,..., (g)ﬁlk + Z (dyl I)Xl) (61)
i=1

So, by selecting x = (x1,...,%q) € T% appropriately, we can achieve in the last coordinate of
Tp(x1,X2,...,Xg) any polynomial of degree d whose leading coefficient is «;. The conclusion of Corollary
1.7 now follows from (6.1) applied to the function f(x1,...,Xq) = e(Xq). [ ]

6.1 What happens if C contains a rational number?

We will now show that if (1.17) holds for some t > 2 and some set C containing a rational number, then
(1.17) holds with t — 1 in place of t with the full set C = T. So, while

im lim sup ]El‘njiM sug |En<ur(m + hye(@h’| =0 (6.2)
oE

1
H—-00 Moo

holds for t = 1 and all closed sets C ¢ T with Leb(C) = 0 by Theorem 1.5, we do not expect that our
methods can prove (6.2) for all closed sets C C T with Leb(C) = 0 in the case t > 2.
Leta € Z, q € N be such that (1.17) holds with t for the set C = {%} Then, since the function n

e (—%nt) is g-periodic, we have a Fourier expansion

bn

q a,
1= cbe(fn +—)
bzzll q q

for some complex numbers ¢,. Multiplying both sides by e(Q(n)), where Q is any polynomial of degree
< t—1, we see from the triangle inequality that (1.17) holds with t — 1 in place of t for the full set C = T.

7 Proof of Theorem 1.4
7.1 Some Cantor sets and rigidity

We are interested in C C T that are closed and for which there exists a sequence (q,) such that, for any
a € C, we have

lim jigner|| = 0. (7.7)

Remark 7.1. In general, consider any strictly increasing sequence k, and let

C=[leeT: [2"all < 1/t).

n>1

Then the set C is closed and it satisfies (7.1) if ¢, — oo. Some information about Hausdorff
dimension of such sets can be found in [18]. In Appendix C, using rather standard tools, we
will present constructions of Cantor sets satisfying (7.1) and having full Hausdorff dimension.
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Lemma 7.2. If C satisfies (7.1) then for all invariant measures v of the homeomorphism T(x,y) =
(x,x + V) acting on C x T the sequence (qn) is a rigidity time for (C x T, v, T).

Proof. For each « € C, on {«} x T, the homeomorphism T acts as the rotation by « and the observation
follows by (7.1) (T% (e, y) = (&, ¥ + qner) — (o, y) pointwise). |

7.2 Rigidity and a proof of Theorem 1.4

Lemma 7.3. Let us fix (q,) with bounded prime volume. If (X,T) is a topological system such
that all invariant measures yield rigidity, with (g,) being a rigidity time, then (X, T) satisfies
the strong LOMO property. (Since we are talking about rigidity along a fixed sequence, the
assumption “all” can be replaced with “all ergodic”.)

Proof. We need to prove that in the orbital models (extended by the three-point space A = {e(j/3): j =
0, 1,2}, cf. the proof of [2, Corollary 9]) obtained by (by) and (xi), the points are quasi-generic only for

(qn)-rigid measures and then we use [14, Theorem 2.1].
Solet Y = (X x A)N and let S be the left shift. Let

Y= ), Yn =T""x forbe <1 < by

and a = (an) wWith a, = a; for by < n < byyq. Clearly, the set Z := {u € Y: (v1,a1) = (Tvp, do)} is closed.
Hence, because of the properties of v @D,

(Ni 2. 55"@@)(2) > 1.

r n<Ny

Basic properties of weak-+-topology then yield that if p is the limit of these empiric measures then p
is S-invariant and

p({((x, @), (Tx, @), (T?x,0),...): xeX,ae A} =1.

Let us see now what is the projection p; of p on the first coordinate X x A: namely, it is the limit of
(assuming that by < N; < bg1)

1
E(Z z a(TYIX}'aﬁ)J’_ Z 5(T“XK,OIK))v

j<K b)§n<b]+1 bg<n<N,
so we obtain a measure thatis T x Id-invariant. It is hence a joining of a measure that is T-invariant and

of a measure on A. Since these two measures are (qn)-rigid, p is (qn)-rigid. Now, by the above, p is just
the image of p1 by the embedding

x ) ~ (%, a),5x a),5%xa),...),

so also p is (qn)-rigid. For the remaining points in the closure of the orbit of (y,a), we apply the same
argument as in [1] or [2]. (If nj — oo and v = lim;_, S" v, @, then for some x1,x, € X and a;,a, € A, we

have v = ((x1,a1), (Tx1,a1), ..., (T*X1,a1), (X2, a2), (TX2, @), .. .) for some € > 0.) |
Proof of Theorem 1.4. The result follows from Lemmas 7.2 and 7.3. [ |
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Appendix A. Proof of Lemma 1.8

We first show that (1.23) implies (1.24). Let (by) be an increasing sequence with d({bx: k > 1}) = 0. Then
we have limg_,., K/bx = 0. Let H > 1 be an integer. We have

< H.

PIREEE D I

b <n<bpi by<m<bg41 h<H

Hence,

>

by <n<bp 1

. 1
shmeupp 2, 2

k<K by<m<byy1

z Zm+h

h<H

Z Zm+h

h<H

lim sup bi >
K

K—o0 k<K

= limsup % Z .
K

K—oo m<by

Letting H — oo shows that (1.23) implies (1.24).

We now show that (1.24) implies (1.23). Observe that if (1.23) fails, then there is some increasing
function H: N — N with H(m) < logm + 1 (say) and some increasing sequence (M) satisfying My, > M?
such that

limsup Ey<y

1—00

Zk
m<k<m+H(M;)

> 0. (A1)

1
"HM;)

By the pigeonhole principle, for each i > 1 there exists a(i) € [1,2H(M;)] N N such that the left-hand
side of (A.1) is

. 1
< lim sup HM) E<mHm=aiymod2tiovty) 777~ Zg| - (A.2)
i—o00 H(Ml)
m<k<m-+H(M;)
By passing to a subsequence if necessary, we may assume that lim;_, H“(;l/f) = ap € [0, 2] exists. Now
we see that (A.2) is
lim sup = Z Z Zp
i M;
—o o< M || e+ag)HM;) <k<(204+14a0)H(M;)
= 2RO
(A3)
. 1
=limsup e > Ze | -
im0 "ty i | 20Ha0 HOM) k=204 14 a0)HM)
:

ZHOM)
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Now, let M} denote the least element of the sequence (M;) that is > ¢. Then Mj = M; for all ¢ €
[(ZHI(\AM)))g/m,MJ (recalling that M; > Mi{l). Define a strictly increasing sequence (bx) by by, = [(2k +
ao)HM) ], bory1 = [(2k + 1 4+ ag)H(M})|. Then bpy1 — by — oo as k — oo, so d({bx: k = 1}) = 0. Also, we
have by, /onemy) < M. Hence, (1.24) with this sequence (by) contradicts (A.1).

The case of logarithmic averages is proved completely analogously.

Appendix B. Assumptions on Nilpotent Lie Groups

The aim of this section is to prove that a wide range of nilpotent Lie groups can be realized as a factor of
a subgroup of a connected, simply connected nilpotent Lie group. The precise statement is as follows.

Proposition B.1. Let G be a nilpotent Lie group, I' a discrete cocompact subgroup of G, and assume
that G is spanned by the connected component of the identity element and finitely many other
group elements. Then there exists a connected and simply connected Lie group G with the same
mlpotency step as G, a closed Lie subgroup G of G and a SUI’JGCUVE Lie group homomorphism
%G — Gsuch that T = # (I is a cocompact lattice in G. In particular, the nilmani-
fold G/T is isomorphic to the nilmanifold G/T which embeds as a subnilmanifold into the
nilmanifold G/T.

In what follows let G° denote the connected component of the identity element of a nilpotent Lie
group G. If G° is simply connected and G/G° is a finitely generated and torsion-free group then the
conclusion of Proposition B.1 follows directly from [25, Theorem 2.20]. In the case when G/G° is a finitely
generated abelian group, Proposition B.1 was proved in [10,Lemma 7, p. 156]. The main ingredient in our
proof of Proposition B.1is a generalization of [10,Lemma 7, p. 156] from the abelian case to the nilpotent
case given in the next lemma. The notion of a free nilpotent group is defined in Section B.1.

Lemma B.2. Let G be an s-step nilpotent Lie group and assume that G is spanned by G° and q
elements 71,...,74. Then there exist a simply connected s-step nilpotent Lie group Ganda
surjective Lie group homomorphism 7 : G — G whose kernel ker(%) is discrete. Moreover, there
exist 7,...,%, € G such that #(%) = t; fori = 1,...,q, G is spanned by G° and 7, ..., 7;, and the
group (71, ..., %) is a free s-step nilpotent group and isomorphic to G/G°. In particular, G/G° is
a finitely generated and torsion-free group.

Proof of Proposition B.1 assuming Lemma B.2. Let G and I' be as in the statement of Proposition B.1. In
view of Lemma B.2, there exists a simply connected Lie group G of the same nilpotency step as G such
that G/G* is a finitely generated torsion-free group, and a surjective Lie group homomorphism 7 : G — G
whose kernel ker(7) is discrete. Define T' = #~(I") and note that I is a discrete and cocompact subgroup
of G and the nilmanifolds G/T and G/ I are isomorphic. We can now apply [25, Theorem 2.20] and embed
G into a connected, simply connected nilpotent Lie group G of the same nilpotency step and such that
the induced embedding T of T into G remains a discrete and cocompact subgroup of G. |

Free nilpotent cover

Given a group H let H, denote the nth term of the lower central series of H, thatis H; = Hand Hy41 = [Hy, H,
n € N. (Given two subsets L, M of H we denote by [L, M] the subgroup of H generated by all commutators
Lm] = Iml='m~! with | € L,m e M. [L,M] is a normal subgroup of H whenever L,M are normal.) By
definition, the group H is nilpotent (of step < n) if Ho11 = {e} for some n. It is easy to check that H, is the
subgroup of H generated by all commutators of the form

[---[l91,92], 93], -, gul,
where g, ..., gn € H. Note that, for every group H, the factor H/H,1 is a nilpotent group (of step < n).

For every n € N there exists a surjective homomorphism H/H, 1 — H/H, with the kernel isomorphic
to Hn/Hn+1. In other words, there is a short exact sequence

{e} - Hy/Hpy1 — H/Hp1 — H/H, — {e}. (B.1)
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If F is a free group in q generators then F/F,y1 is called a free n-step nilpotent group in q generators.

Lemma B.3. For every finitely generated n-step nilpotent group H there exists a free finitely
generated n-step nilpotent group H and a surjective group homomorphism H — H.

Proof. Assume that g;...g, generate H and H is nilpotent of step n. Let F be the free group with r free

generators fy,...,f;. Then the mapping f; + gi, 1 = 1,...,r induces a surjective group homomorphism
from F/F,;1 to H. The group H = F/Fny1 is a free finitely generated nilpotent group of step n, finishing
the proof. |

Remark B.4. The groups F/Fn;1 are free objects in the variety of the nilpotent groups of degree
<n, see [16, Chap. VI] and [30]. Recall also the well-known fact that F/F, - the abelianization of
a free group F - is free abelian.

Lemma B.5. Let F be a free group in q generators. Then F/F, is torsion-free for every n € N.

Proof. It follows from [19, Theorem 5.12] that F,,/Fp1 is a free abelian fintely generated group for every
n € N, therefore also torsion-free (see also [24]). If both the end terms of a short exact sequence of groups
are torsion-free, then the middle term is also torsion-free. (Assume that B is a normal subgroup of A
and both B and A/B are torsion-free. Let a € A be an element of finite rank, say, a" = e. Then the coset of
a is of finite rank in A/B, so, since A/B is torsion-free, a € B. But B is torsion-free, so a = e.) We apply this
observation to the sequences (B.1) with H =F:

{e} > F/F2 — F/F; — F/F1 = {e} — {e},
{e}—>F2/F3—>F/F3—>F/F2—>{e}, (B2)
{e} - F3/F4 — F/F4 — F/F3 — {e}, ’

and we derive the lemma by induction on n. |

Proof of Lemma B.2

Proof of Lemma B.2. Recall that that G is an s-step nilpotent Lie group generated by its connected
component G° and (r1,...,17q) (both subgroups being obviously nilpotent of step < s). (Note that a
connected Lie group is automatically path connected.)

Denote by G° the universal cover of G° with the homomorphism 7y : G° — G°. Let ¢ € Aut(G°) be
given by ¢;(g) = ‘L'J'gl'j_l,j =1,...,q. By the universal property of the universal cover, each such ¢ lifts
uniquely to an automorphism ¢; of Ge. Let H be the group generated by #,j=1,...,qand, using Lemma
B.3, let H denote the free nilpotent cover of H. Let p: H — H be the induced factor map and let ¢4, ..., ¢q
denote the generators of H satisfying p(¢) = 6.

Note that p(g) is an automorphism of G° for every ¢ € H. So we can define the semi-direct product
G := G° x O, where

@.9)- (G, ¢) =G p@)@),¢-¢)  ¥a ), @G ¢)eC xH

Observe that: (a) G° x {e} is a normal subgroup of G; (b) as a topological space G = G° x H (in particular,

G° x {eg} is an open subgroup); (c) If 7 = (ez., ¢) then (71, ...,7) is isomorphic to H.
It follows from (a) and (b) that G° x {eg} is the connected component of ez and it follows from (c) that
G is spanned by G° x {e} and 7, ..., %,. Therefore, G/G® is isomorphic to H = (%, ..., %), which is a free

s-step nilpotent group. In particular, this group is torsion-free due to Lemma B.5.
Every element of ¢ of H can be written as ¢ = ]'[521 @, withjie{l,...,q},i=1,..., K. Then7 : G — G,

K
7g.9) =7 ][] (B.3)

i=1

20z 1SNBny g uo Jasn AYisioniun uojedulld Aq £46969./88Y L LIS L/¥Z0Z/I0IMe/uiW/wod dno olwspese//:sd)y Wolj papeojumod



11510 | A.Kanigowski et al.

is a well defined homomorphism satisfying #(7)) = ¢ fori=1,..., q. We have the following:
Claim I. ker(7) is discrete.

Indeed, let (g, ¢) € ker(@), ¢ = Hf;l @;,- Then, by (B.3), 7o (9) belongs to a countable subgroup generated
by 17, But 7o is countable to 1, hence, g belongs to a countable subset of G°. Since ker(7) is also closed,
it must be discrete.

Claim II. G is s-step nilpotent.

Indeed, since ﬁ(ésH) C Ggy1 = {eg) as 7 is a homomorphism, 6s+1 c ker(7) must also be discrete. On
the other hand this commutator is connected (see below), so Gy is trivial and therefore G is an s-step
nilpotent group.

To complete the proof of the proposition we need to show that Gs,q is connected. In our situation,
G = G° x H, where G° is (normal) path connected, and H is at most s-step nilpotent.

We take t > s+1. Then for each fixed (g1, ... q:) € {eg.} x H' we consider themap B, .4 : (GC°x{egh! — G
given

B (@1, ..., a) = [a1q1[a2qa[...[at-1qt-1, arqt]]]]]-

Then fy,,...q, 1 continuous for each choice of (g1, ..., ;). We use now Lemma 2 (p. 12) of [10] to obtain
that ésH is spanned by the union over all t-tuples (qu, ..., qr), t = s+ 1, of the sets g, ., qz((a" x {eghh).
It follows that Gs;4 is the group generated by a union of sets each of which is pathwise connected.
However, each of these sets contains ez, by taking a; = ez and using the fact that H is s-step nilpotent (so
this commutator equals {ez}). By the first observation in the proof of Lemma 5 (p. 155) [10] we conclude

that Gy is pathwise connected. |

Appendix C. Construction of Full Hausdorff Dimension Cantor Sets
with a Certain Diophantine Approximation Property

In this appendix, we prove the following complement to Theorem 1.4.

Proposition C.1. There exists a closed set C c [0, 1] of full Hausdorff dimension such that, for
some sequence (q,) of natural numbers, we have

nlim llgnee]l = 0 for each @ € C
and

1
sup Z — < 4o00.
n pelP
Plan

The proof is based on the following lemma. We follow [7] based on [4] (see [4, Example 4.6] and its
proof), see also [3, Lemma 9].

Lemma C.2. Let (Ch)n=1 C R be a decreasing sequence of closed sets each of which is a finite
union of pairwise disjoint closed intervals, called n-th level basic intervals. We assume that
each n— 1-stlevel basic interval of C,_; includes at least m, > 2 n-th level basic intervals of C,,.
Also assume that the maximal length of n-th level basic intervals tends to zero when n — oo.
Furthermore, assume that the gap between two consecutive n-th level basic intervals is at least
en (With ey > ep1 > 0).

Then, the Hausdorff dimension dimy(C) of the intersection C = (),.1Cy is at least
log(my-+Mn_1)

liminf,_ g -

Proof. This is proved in [7, Section 6]. |

Proof of Proposition C.1. Fix a monotone sequence 0 < §, — 0. To construct sets C of the desired form
we will take a sparse sequence (k,) (how sparse this sequence is depends on (§,)) and have at stagen—1
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a closed set C,_; consisting of the union of small neighbourhoods [j;kij J;rij] of ijfl for some values
of j. So the distance between the n — 1-st level basic intervals is at least zkn{l (1—28,-1). Now, if k, is large

enough, we form the family of n-th level basic intervals and hence C, by first partitioning each n — 1-st
level basic interval I into many intervals of the form [5f, 5] (two of these intervals may overlap I only
partially) and then around each point 5 choosing a small interval [, Z] c L.

Note that for x € C,, we have ||2%x| < §,. Now, each n — 1-st level basic interval contains at least

_1
Sn—1 Rn1
L
2kn

= 81207 = my,
n-th level basic intervals. Moreover, the distance between any consecutive n-th level basic intervals is

1
> n = (1= 280).

It follows that
—log(enmy) = kn—1 —10g(8s-1(1 — 281))

and
n—1

log(ml cooMp1) = (kg — 1) + Zlogsj,l.

j=1

Now, Lemma C.2 gives

. . (R =D A+ Z}:f log§_+
(@ = hmgf k-1 —log(8n-1(1 — 28,)) -

if k, is growing fast enough compared to 1/8,. The claim follows, since the sequence (2%) certainly has
bounded prime volume.
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