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Abstract
Tumor angiogenesis, the growth of new blood vessels towards a tumor, plays a critical role in cancer progression. Tumors 
release tumor angiogenic factors (TAF) that trigger angiogenesis upon reaching a pre-existing capillary. Although not fre-
quently studied, the convective transport of TAF plays a key role in determining the resulting shape of the vasculature. In this 
work, we propose a computational method that couples an angiogenesis model with Stokes–Darcy flow to simulate the impact 
of flow on angiogenesis. We use the phase-field method to implicitly describe the vasculature and capture the temporally 
evolving interface between the intra- and extravascular flow. The implicit description of the interface eliminates the need to 
re-mesh the vasculature which would otherwise be required due to the movement of the interface. We propose a finite-element 
discretization to solve the coupled problem and illustrate the accuracy of the algorithm by comparing a numerical solution 
with a manufactured test case in a simplified scenario. The numerical simulations demonstrate the impact of the convective 
transport of TAF on the shape of the vasculature. It predicts that the vasculature network grows prominently against the flow 
direction and that the growth of vasculature is enhanced with increasing interstitial flow magnitude.

Keywords  Angiogenesis · Phase field · Vascular flow · Stokes–Darcy

1  Introduction

During the early stages of cancer development, cancerous 
cells receive the required nutrition from the existing vascular 
network. As the tumor grows, it requires additional nutri-
ents and oxygen which cannot be delivered by the existing 
capillary network. This creates hypoxic cells which release 
chemical signals, generically called tumor angiogenic 

factors (TAF), that trigger tumor angiogenesis [1]. Tumor 
angiogenesis is the growth of new capillaries in the direc-
tion of the tumor and is a critical stage in the development 
of cancer as it leads to increased malignancy of the tumor 
and metastasis [2].

In the past decades, tumor angiogenesis research has 
focused on the biochemical signaling pathways. In particu-
lar, a number of TAFs that promote vessel growth have been 
identified. However, despite its importance, the role of bio-
physical cues has received less attention. Recent experimen-
tal research indicates that various flow-based biophysical 
cues have a significant impact on angiogenesis [3–10]. The 
research conducted suggests that the intravascular fluid shear 
stress controls the location of sprouting in angiogenesis [6, 
10], the growth of vasculature is biased against the direction 
of interstitial flow [4], and interstitial flow magnitudes affect 
the growth rate of vasculature [3]. Thus, the determination 
of intravascular and interstitial flow is key to understanding 
tumor angiogenesis.

Despite recent advancements in microfluidics that enable 
in vitro models of interstitial flow in micro-vascular tissues, 
it remains challenging to understand the complex coupling 
of flow and angiogenesis in vivo. Under certain assumptions, 
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computational modeling can provide high-resolution infor-
mation on fluid flow and vasculature growth, making it a 
promising approach to studying this problem.

Earlier computational models of flow-mediated angio-
genesis have shown success using simplified flow models 
(see [11–14]), but they cannot perform high fidelity simula-
tions of angiogenesis coupled with intra- and extravascular 
flow on a temporally evolving capillary network. Here, we 
propose an angiogenesis model coupled with a multiphys-
ics flow model which uses Stokes flow and Darcy flow to 
represent the intra- and extravascular flow, respectively. The 
angiogenesis model was developed using the work of [15]. 
The main computational challenge in this model is that the 
vascular network is evolving with time due to angiogenic 
growth. Therefore, classical interface-tracking formulations 
[16] of the Stokes–Darcy problem [17] would require moving 
meshes that discretize the time-evolving intra- and extravas-
cular spaces. We address this challenge using the phase-field 
approach, which is a mathematical modeling technique to 
reformulate moving boundary problems as differential equa-
tions posed on a fixed domain [18, 19].

We develop space and time discretization schemes that 
successfully handle the nonlinear and multiphysics nature 
of the problem. We show that our algorithm is second-order 
accurate in space using a manufactured solution for a simpli-
fied flow problem. We then show that the model naturally 
predicts the experimental observation that the vasculature 
grows prominently against the flow and that the growth of 
the vasculature is enhanced by increasing interstitial flow 
magnitude. This work opens new opportunities to under-
stand the complex interplay between flow and vessel growth 
in biological systems. The algorithms developed here may 
also be applicable to other important engineering problems 
such as flow on a propagating crack embedded in a porous 
medium.

2 � Mathematical model

We propose a flow-mediated angiogenesis model that cou-
ples capillary growth and vascular flow. We capture capillary 
growth with a hybrid model developed using the work of 
[13, 15]. We capture the intra- and extravascular flow with 
the Stokes–Darcy model for an incompressible fluid, where 
the intravascular flow is governed by the Stokes equation 
and the interstitial (i.e., extravascular) flow is controlled 
by the Darcy equation for saturated flow in porous media. 
The angiogenesis and flow models are fully coupled. On 
the one hand, flow biases the transport of TAF and, hence, 
the growth of new capillaries. On the other hand, continu-
ous changes in the vascular network reshape the Stokes and 
Darcy domains, which modifies the fluid flow.

In the following sections, we describe the angiogenesis 
model, the Stokes–Darcy flow model, and the coupling 
between the two models. We denote the problem domain 
as � , the intravascular region as �S , and the extravascular 
region as �D , where �S ∪�D = � and �S ∩�D = � . Note 
that � is fixed, while �S and �D evolve in time due to the 
growth of new capillaries.

2.1 � Angiogenesis model

We use a hybrid model similar to that described in [13, 15] 
to capture capillary growth. The continuous compartment 
of the model accounts for the vascular network and TAF 
dynamics, while the discrete compartment controls the evo-
lution of tip endothelial cells (TECs). TEC motion, which is 
controlled by TAF gradients, drives the growth of the capil-
laries. The model unknowns are c(x, t) and f (x, t) , which 
represent the vascular network and the TAF concentration, 
respectively, where x ∈ � . We also consider the flow veloc-
ity u(x, t) , which represents the Darcy flow in the interstit-
ium and the Stokes flow in the vascular network. The flow 
velocity u is computed with the Stokes–Darcy flow model 
(see Sect. 2.2).

Continuous compartment
We resort to the phase-field method [19, 20] to capture 

the evolution of the capillary network. For more details on 
the phase-field approach, see [18]. In our model, the phase 
field c takes the value 1 in the intravascular region, −1 in 
the interstitium, and smoothly transitions between −1 and 1 
across the capillary wall. The evolution of c is governed by 
a Cahn–Hilliard equation extended with a proliferation term, 
which is expressed as

where the constant M > 0 is the mobility, � is a parameter 
that represents the width of the capillary wall, H is the Heav-
iside function, and �(c) = −c + c3 is the chemical poten-
tial. The first term of the right-hand side accounts for the 
Cahn–Hilliard dynamics of mass-conserved systems, while 
the second term is a proliferation term that enforces the for-
mation of the capillary behind the advancing TEC (TEC 
motion is described below in this section). The proliferation 
function B is defined as

where the constant B0 is the proliferation rate and fp is the 
TAF cut-off value for maximum proliferation.

In our model, TAF is produced by hypoxic cells that are 
located in the interstitium. We account for TAF diffusion, 
natural degradation, and uptake by the endothelial cells. We 

(1)
�c

�t
= ∇ ⋅

[
M∇

(
�(c) − �2Δc

)]
+ B(f )cH(c) in �,

(2)B(f ) =

{
B0f , if f < fp,

B0fp, if f ≥ fp,
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also account for the advective transport of TAF driven by u . 
The evolution equation for TAF is written as

where D0 is the TAF diffusion coefficient in the interstitium, 
the constant fHYC represents the maximum TAF concentra-
tion inside the hypoxic cells, and the function Pf  accounts 
for TAF production, such that

In Eq. (4), NHYC is the total number of hypoxic cells, and 
the function Pf ,i accounts for the TAF production of each 
hypoxic cell. We assume that the hypoxic cells are circles 
that do not move. We denote the center of the hypoxic cell i 
as xHYC,i . Following [13], we can express Pf ,i as:

where RHYC is the hypoxic cell radius and Pf  is the produc-
tion rate. When a capillary approaches a hypoxic cell, the 
hypoxic cell receives the necessary nutrients and oxygen 
and, hence, TAF production stops. We model this process 
through the TAF-production decay time t∗

i
 , which we define 

as

where T∗
i
 is the time at which the center of any TEC gets 

closer than dox to the center of the hypoxic cell i. The 
constant dox represents the characteristic oxygen diffu-
sion length. The last term in the right-hand side of Eq. (3) 
accounts for the TAF natural degradation and the TAF 
uptake by the endothelial cells. The function U is defined as

where Uu is the endothelial cell uptake rate and Ud is the 
TAF decay rate.

We consider the following boundary conditions for the 
angiogenesis model:

(3)
�f

�t
+ ∇ ⋅ (u f ) = ∇ ⋅ (D0∇f ) + Pf

(
fHYC − f

)

− U(c)f in �,

(4)Pf (x, t) =

NHYC∑
i=1

Pf ,i(x, t).

(5)Pf ,i(x, t) =

{
Pf e

−0.5ti∗, if |x − xHYC,i| < RHYC,

0, if |x − xHYC,i| ≥ RHYC,

(6)ti∗ =

{
0, if t < T∗

i
,

t − Ti∗, if t ≥ Ti∗,

(7)U(c) =

{
Uuc, if c ≥ 0,

−Udc, if c < 0,

(8)0 = M∇(�(c) − �2Δc) ⋅ n�� on ��,

(9)0 = M�2Δc on ��,

(10)0 = D0∇f ⋅ n�� on ��,

where �� is the boundary of � and n�� is the unit outward 
normal to �� . These boundary conditions account for free 
flux of the vascular network [21, 22] and a permeable bound-
ary to TAF advection, but not to TAF diffusion.

Discrete compartment
The discrete agents of the angiogenesis model represent 

TECs. We assume TECs are circles centered at xTEC with 
radius RTEC . A new TEC emerges centered at any point 
x ∈ � if the following conditions are achieved: 

1.	 c(x) > cact,
2.	 f (x) > fact,
3.	 dTEC(x) > dNotch,

where cact is the minimum value of c for TEC activation, 
fact is the minimum TAF concentration for TEC activation, 
dTEC(x) is the distance from x to the center of the closest 
TEC, and dNotch is the Delta-Notch distance [23]. Condi-
tion 1 ensures that TECs are created inside capillaries, 
condition 2 ensures that vascular growth is triggered above 
a minimum TAF concentration, and condition 3 accounts 
for the lateral inhibition mechanism [23]. TECs are deac-
tivated when condition 2 is no longer achieved at xTEC . 
TEC motion is directed by the TAF gradient according to 
the expression

where uTEC is the velocity of the TEC, the constant � is pro-
portional to the chemotactic speed, and GM is the cut-off 
value of |∇f | for maximum TEC velocity.

TECs develop filopodia to detect neighboring capillar-
ies and modify the direction of motion to conduct anas-
tomosis [13]. We model filopodia by defining an array of 
checkpoints in an annular disk sector centered at xTEC , 
with an angle of 2�

3
 centered around the direction of uTEC . 

The annular disk sector has an inner and outer radius of 
2RTEC and 4RTEC , respectively. At these checkpoints, we 
determine the existence of a capillary with the condi-
tion c > cact . If the capillary exists, the direction of uTEC 
changes toward the successful checkpoint. To detect anas-
tomosis, we perform a similar check with a circular disk 
of radius 1.5RTEC . If c > cact at any checkpoint, we assume 
anastomosis has occurred and the TEC is deactivated.

The coupling between the continuous and discrete com-
partments is performed by imposing c = 1 in the region 
occupied by each TEC. More details about the model and 
the coupling between the continuous and discrete compart-
ments may be found in [24, 25].

(11)uTEC =

{
𝜂∇f , if |∇f | < GM ,

𝜂GM
∇f

|∇f | , if |∇f | ≥ GM ,
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2.1.1 � Weak form of the angiogenesis model

We obtain the weak form of the angiogenesis model by 
multiplying Eqs. (1) and (3) with weighting functions qc 
and qf  , respectively, and integrating in � . We then inte-
grate by parts and impose the boundary conditions defined 
in Eqs. (8)–(10). We define the forms

We next define the Sobolev and Lebesgue spaces:

Definition 1  Lp(�) is a Lebesgue space defined as

(12)

Rc(qc, c, f ) = ∫
�

qc
�c

�t
dV + ∫

�

M∇qc ⋅ ∇�(c) dV

+ ∫
�

ΔqcM�2Δc dV

− ∫
�

qcB(f )cH(c) dV ,

(13)

Rf (qf , c, f , u) = ∫
�

qf
�f

�t
dV

+ ∫
�

qf∇ ⋅ (uf ) dV

+ ∫
�

D0∇qf ⋅ ∇f dV

− ∫
�

qf Pf (fHYC − f ) dV

+ ∫
�

qfU(c)f dV .

where p is a natural number, ‖ ⋅ ‖ is the norm, and | ⋅ | is the 
absolute value.

H�(�) is the Sobolev space associated with the L2 norm 
and is defined as

where � is a multi-index, D�Ψ is the mixed partial, weak 
derivative of Ψ [26], and � is a natural number.

The angiogenesis problem can be stated as

Definition 2  Find (c, f ) ∈ H2(�) × H1(�) such that for all 
(qc, qf ) ∈ H2(�) × H1(�)

2.2 � Coupled Stokes–Darcy flow

In this section, we first describe the coupled Stokes–Darcy 
equations for incompressible fluid flow. The model is com-
prised of the Stokes equations posed in �S(t) , the Darcy 
equations posed in �D(t) , and the interface conditions 
posed on Γ(t) , where Γ(t) is the interface that separates �S 
and �D (see Fig. 1). Next, we derive the weak form of the 
Stokes–Darcy problem, where the integrals are posed in 
�S(t) , �D(t) , and Γ(t) . We denote this description of the 
weak form as the sharp-interface weak form of the problem. 

(14)

Lp(𝛺) = {Ψ ∶ 𝛺 → ℝ} such that ‖Ψ‖p
Lp(𝛺)

= ∫
𝛺

�Ψ�p dV < ∞,

(15)H�(�) =
{
Ψ ∈ L2(�) ∶ D�Ψ ∈ L2(�) ∀ |�| ≤ �

}
,

(16)Rc(qc, c, f ) + Rf (qf , c, f , u) = 0.

Fig. 1   Sketch of the computational domain � . The Stokes and Darcy 
domains are represented by �S(t) and �D(t) , respectively. The bound-
ary of � may be divided into four regions, namely, ��S,1 , ��S,2 , 
��D,1 , and ��D,2 , where the indices S and D refer to the Stokes and 
Darcy domains, respectively, and the indices 1 and 2 refer to Dirichlet 
and Neumann boundary conditions, respectively. The unit outward 

normal to � in �S and �D are denoted as nS and nD , respectively. 
�S and �D are separated by the moving interface � (t) . The unit nor-
mal to �  pointing into �D is denoted as n and the unit tangent vector 
is denoted as � . In the sharp-interface description, we solve for the 
Stokes velocity (uS) and pressure (pS) in �S and the Darcy pressure 
(pD) in �D
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Finally, we leverage the phase-field method and derive the 
diffuse-interface approximation of the weak form of the 
Stokes–Darcy problem, where the integrals are posed in �.

2.2.1 � Sharp‑interface description of the Stokes–Darcy 
problem

Stokes flow
The Stokes equations for incompressible fluid flow read

where uS(xS, t) , with xS ∈ �S , is the fluid velocity in �S 
and b is the body force per unit mass. The stress tensor is 
defined as � = −pS� + 2�∇S

uS , where pS(xS, t) is the pres-
sure normalized by the fluid density, � is the identity tensor, 
� is the kinematic viscosity, and ∇S is the symmetric gradient 
defined as ∇S =

1

2
(∇ + ∇T ).

We consider the following boundary conditions on ��S,1 
and ��S,2 (see Fig. 1):

where ūS is the boundary fluid velocity, t̄ is the boundary 
traction, and nS is the outward normal to �� in �S (Fig. 1).

Darcy flow
The equations for incompressible fluid flow through a sat-

urated porous medium (i.e., the interstitium) are expressed 
as

where uD(xD, t) is the Darcy velocity, k is the interstitium 
permeability, � is the dynamic viscosity of the interstitial 
fluid, and pD(xD, t) is the interstitial fluid pressure, with 
xD ∈ �D . We can reduce the number of unknowns by sub-
stituting Eq. (21) into Eq. (20). The final equation reads

We consider the following boundary conditions on ��D,1 
and ��D,2 (see Fig. 1):

(17)∇ ⋅ uS = 0 in �S,

(18)− ∇ ⋅ � = b in �S,

(19)uS = ūS on 𝜕𝛺S,1, �nS = t̄ on 𝜕𝛺S,2,

(20)∇ ⋅ uD = 0 in �D,

(21)uD = −
k

�
∇pD in �D,

(22)−∇ ⋅

(
k

�
∇pD

)
= 0 in �D.

(23)pD = p̄D on 𝜕𝛺D,1, uD ⋅ nD = ūD on 𝜕𝛺D,2,

where p̄D is the boundary Darcy pressure, ūD is the boundary 
Darcy velocity in the normal direction, and nD is the unit 
outward normal to �� in �D (Fig. 1).

Stokes–Darcy interface conditions
The Stokes and Darcy equations are coupled through the 

interface conditions imposed on Γ(t) . We denote the unit nor-
mal vector to Γ pointing into �D as n , and the unit tangent vec-
tor to Γ as � (Fig. 1). The interface conditions are expressed as

where � is the Beavers-Joseph parameter. We assume that 
these fluid properties take a constant value. Note that we 
include the density into Eq. (25), because the stress ten-
sor � (and, hence, pS ) is normalized by the fluid density 
� , but not the Darcy pressure pD . Equation (24) ensures 
mass conservation across the interface, Eq. (25) enforces 
the balance of normal traction across the interface, and 
Eq.  (26) is an empirical law proposed by Beavers and 
Joseph [27] that relates the Stokes shear stress with the dif-
ference between the Stokes and Darcy tangential velocities. 
The Darcy tangential velocity is usually smaller than the 
Stokes tangential velocity on Γ , which allows us to assume 
(uS − uD) ⋅ � ≈ uS ⋅ � in Eq. (26). This modification is called 
Beavers–Joseph–Saffman law and is widely used in the lit-
erature [27–29]. The friction parameter � controls the trans-
vascular permeability [30] and is experimentally estimated. 
Due to the lack of experiments to estimate � for vascular 
flows, we adjust � , such that it matches experimentally 
observed values of transvascular permeability.

2.2.2 � Sharp‑interface weak form of the Stokes–Darcy 
problem

We obtain the sharp-interface weak form of the Stokes–Darcy 
problem by multiplying Eqs. (17), (18), and (22) with weight-
ing functions and integrating in the corresponding domains. 
We next integrate by parts and substitute the natural boundary 
conditions defined in Eqs. (19) and (23). The sharp-interface 
description of the Stokes–Darcy problem can be stated as

Definition 3  Find (uS, pS, pD) ∈ H1(�S) × L2(�S) × H1(�D) 
such that for all (w, qS, qD) ∈ H1(�S) × L2(�S) × H1(�D)

(24)uS ⋅ n = uD ⋅ n on � ,

(25)n ⋅ �n = −
pD

�
on � ,

(26)�
�√
k
(uS − uD) ⋅ � = −� ⋅ �n on � ,
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We incorporate the interface conditions into the weak 
form by using Eqs. (24)–(26) to replace the boundary inte-
grals over �  in Eq. (27) in the following manner:

2.2.3 � Diffuse‑interface approximation

The weak form defined in Eq. (27) involves integrals in mov-
ing domains. The numerical solution of Eq. (27) requires the 
use of moving meshes and entails important numerical chal-
lenges. Here, we leverage the phase-field method and reformu-
late the Stokes–Darcy problem by deriving a diffuse-interface 
approximation of the weak form that involves integrals in 
� only. Thus, we can solve the diffuse-interface weak form 
by using a single and fixed mesh. We start by defining the 
phase-field variables and properties that we need to derive the 
diffuse-interface weak form.

We use the phase-field variable �(x, t) , with x ∈ � , to cap-
ture the domain �S(t) , such that � = 1 in �S , � = 0 in �D , 
and � smoothly transitions from 0 to 1 across the interface Γ 
(see Fig. 2). We define the phase field � as a function of the 
vascular density c (see Sect. 2.1), which is also a phase-field 
variable. Note that c ranges from c = −1 in the interstitium 
( �D ) to c = 1 inside the capillaries ( �S ). Thus, we define � as

Likewise, we capture the domain �D(t) with the expression 
(1 − �).

(27)

0 = ∫
𝛺S

2𝜈∇w ∶ ∇S
uS dV − ∫

𝛺S

(∇ ⋅ w)pS dV

− ∫
𝛺S

w ⋅ b dV

− ∫
𝜕𝛺S,2

w ⋅ t̄ dS − ∫
𝛤

w ⋅ �n dS

+ ∫
𝛺S

qS(∇ ⋅ uS) dV

+ ∫
𝛺D

k

𝜇
∇qD ⋅ ∇pD dV + ∫

𝜕𝛺D,2

qDūD dS

− ∫
𝛤

qDuD ⋅ n dS.

(28)

−∫
�

w ⋅ �n dS = ∫
�

pD

�
w ⋅ n dS

+ ∫
�

�
�√
k
(uS ⋅ �)(w ⋅ �) dS,

(29)−∫
�

qDuD ⋅ n dS = −∫
�

qDuS ⋅ n dS.

(30)� =
1 + c

2
.

To discuss the phase-field properties, we first define 
weighted function spaces following [31]:

Definition 4  For a positive weight function � , a positive 
integer r, and a bounded domain � , we define weighted Leb-
esgue spaces and their norms as

We define the weighted Sobolev space associated with the 
L2 norm as

Let us consider a function g(x, t) ∈ L2(�,�) . The first 
phase-field property [18, 32] can be stated as

where � is the parameter that controls the width of the diffuse 
interface (see Fig. 2). The phase-field formulation has an 
analogous property for integrals on interfaces, which reads

(31)
Lr(�,�) =

�
Ψ ∶ � → ℝ ∶ �Ψ�r� ∈ L1(�)

�
,

‖Ψ‖r
Lr(�,�)

= ∫
�

�Ψ�r� dV .

(32)
H�(�,�) =

{
Ψ ∈ L2(�,�) ∶ D�Ψ ∈ L2(�,�) ∀ |�| ≤ �

}
.

(33)∫
�

�(x, t)g(x, t) dV → ∫
�S

g(x, t) dV as � → 0,

(34)∫
�

�Γ(�)g(x, t) dV → ∫Γ

g(x, t) dS as � → 0,

Fig. 2   1D representation of the phase field � that captures the Stokes 
domain �S(t) . The phase field � is an approximation of the character-
istic function (marked by the dashed red line) centered at the inter-
face x� (t) . The characteristic function is a discontinuous function that 
takes the value of 0 in the Darcy domain and 1 in the Stokes domain. 
The parameter � represents the characteristic width of the interface. 
The figure also shows the complementary phase field 1 − � that cap-
tures the Darcy domain �D(t) (color figure online)
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where the function �Γ(�) is a marker of the interface Γ , such 
that �Γ is zero far from the interface and takes a positive 
value around the interface. The marker �Γ(�) may take dif-
ferent expressions (see [18] for more details). Here, we take 
�Γ(�) = |∇�|.

Based on the properties defined in Eqs. (33) and (34), we 
can approximate the integrals of g(x, t) as

where the Neumann boundary extension ��e
S,2

 (respectively, 
��e

D,2
 ) represents an extension of ��S,2 (respectively, ��D,2 ) 

off Γ along the corresponding edge of � . We localize the 
integral to ��S,2 (respectively, ��D,2 ) by including the 
phase field � (respectively, 1 − � ) in the boundary integral 
in Eq. (37). Analogously, we define the Dirichlet boundary 
extension ��e

S,1
 (respectively, ��e

D,1
 ) as an extension of ��S,2 

(respectively, ��D,2 ) off Γ along the corresponding edge of 
� . Finally, we can define the normal to Γ as a function of � , 
such that n = −∇�∕|∇�| . We construct the tangent vector 
� by rotating n by 90◦ in the counter-clockwise direction.

2.2.4 � Diffuse‑interface weak form of the Stokes–Darcy 
problem

Using Eqs. (35)–(37), we aim to approximate integrals in 
the sharp-interface weak form (Eq. (27)). In Eqs. (35)–(37), 
the support of g(x, t) is � . However, the support of the 
Stokes–Darcy unknowns uS , pS , and pD is �S , �S , and 
�D , respectively. To utilize Eqs. (35)–(37) to approximate 
the sharp-interface weak form, we need to consider the 
unknowns whose support is � . Thus, we define the diffuse-
interface unknowns u�

S
(x, t) , p�

S
(x, t) , and p�

D
(x, t) whose sup-

port is � . The diffuse interface unknowns u�
S
(x, t) and p�

S
(x, t) 

(respectively, p�
D
(x, t) ) approximate uS and pS (respectively, 

pD ) in �S (respectively, �D ). The values of the diffuse-inter-
face unknowns u�

S
(x, t) and p�

S
(x, t) (respectively, p�

D
(x, t) ) 

far from �  in �D(respectively, �D ) are not relevant. Fur-
ther, there are several known quantities in Eq. (27) (such 
as b ) that are not completely supported in � . We define the 

(35)
∫
�S

g(x, t) dV ≈ ∫
�

�g(x, t) dV ,

∫
�D

g(x, t) dV ≈ ∫
�

(1 − �)g(x, t) dV ,

(36)∫Γ

g(x, t) dS ≈ ∫
�

g(x, t)|∇�| dV ,

(37)
∫
��S,2

g(x, t) dS ≈ ∫
��e

S,2

� g(x, t) dS,

∫
��D,2

g(x, t) dS ≈ ∫
��e

D,2

(1 − �) g(x, t) dS,

diffuse-interface extensions be , t̄e , ūe
D
 , ūe

S
 and p̄e

D
 whose sup-

port is in � and result from extending b , t̄ , ūD , ūS and p̄D 
respectively off �  constant in the normal direction.

Next, we define the following forms where we approx-
imate the integrals in the sharp-interface weak form 
(Eq. (27)) using the properties defined in Sect. 2.2.3:

Here, we assume the fluid properties ( � , � , k, � ) take con-
stant values. Otherwise, we should consider the extended 
functions of these properties off Γ constant in the normal 
direction.

Finally, the diffuse-interface approximation of the 
Stokes–Darcy problem can be stated as

Definition 5  Find (u�
S
, p�

S
, p�

D
) ∈ H1(�,�) × L2(�,�) × H1

(�, 1 − �) such that for all (w, qS, qD) ∈ H1(�,�) × L2(�,�)

×H1(�, 1 − �)

Further, the Dirichlet boundary conditions ūe
S
 and p̄e

D
 are 

strongly imposed on ��e
S,1

 and ��e
D,1

 , respectively.
Due to the non-zero value of � , the diffuse-interface weak 

form (Definition 5) is not equivalent to the sharp-interface 
weak form (Definition 3). Hence, the diffuse-interface solu-
tion u�

S
 and p�

S
 (respectively, p�

D
 ) will only be approximately 

equal to uS and pS (respectively, pD ) in �S (respectively, 
�D ). We call the discrepancy between the diffuse and sharp-
interface solutions the modeling error. The modeling error 

(38)

RuS
(w, u�

S
, p�

S
, p�

D
,�) = ∫

�

2��∇w ∶ ∇S
u
�

S
dV

− ∫
�

�(∇ ⋅ w)p�
S
dV − ∫

�

�w ⋅ b
e dV

− ∫
��e

S,2

�w ⋅ t̄
e
dS

+ ∫
�

p�
D

�
w ⋅ n �∇�� dV

+ ∫
�

�
�√
k
(u�

S
⋅ 𝝉)(w ⋅ 𝝉) �∇�� dV ,

(39)RpS
(qS, u

�

S
,�) = ∫

�

�qS(∇ ⋅ u
�

S
) dV ,

(40)

RpD
(qD, u

𝜖

S
, p𝜖

D
,𝜙) = ∫

𝛺

(1 − 𝜙)
k

𝜇
∇qD ⋅ ∇p𝜖

D
dV

+ ∫
𝜕𝛺e

D,2

(1 − 𝜙) qDū
e
D
dS

− ∫
𝛺

qDu
𝜖

S
⋅ n|∇𝜙| dV .

(41)
RuS

(w,u�
S
, p�

S
, p�

D
,�) + RpS

(qS, u
�

S
,�)

+ RpD
(qD, u

�

S
, p�

D
,�) = 0.
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converges to zero when we refine � . More details on the 
convergence rates of this error may be found in [31].

The coupling between the angiogenesis and the 
Stokes–Darcy flow model is completed with the definition 
of the multiphysics velocity u(x, t) , with x ∈ � , defined as

where � is computed with Eq. (30) and u�
D
 is computed with 

Eq. (21) considering p�
D
 instead of pD . The flow velocity u 

affects the transport of TAF in the angiogenesis model. For 
visualization purposes, we also define the multiphysics pres-
sure p(x, t) as p = ��p�

S
+ (1 − �)p�

D
.

3 � Numerical method

3.1 � Implementation details

The phase field c may display values slightly lower than −1 
and larger than 1 due to numerical errors and the proliferation 
term (see Eq. (1)). To limit the values of �(x, t) between 0 and 
1, instead of using Eq. (30), we redefine �(c) as

where min(c) and max(c) are the minimum and maxi-
mum values of c(x, t) in � . Equation  (43) ensures that 
�∗(x, t) ∈ [0, 1] while keeping the characteristic tanh-profile 
across the interface.

The diffuse-interface weak form of the Stokes–Darcy 
problem (Definition 5) includes integrals that are zero over 
large regions in � (e.g., the Jacobian of the residual RuS

 
equals zero far from �S , because � = 0 far from �S ). Due to 
this effect, the numerical solution of Eq. (41) (see Sect. 3.3) 
involves a linear system that is ill-conditioned. There are 
different approaches to fix this issue. Here, we resort to a 
regularization of the phase field � , such that � and (1 − �) 
never take the value 0, but values close to 0 that do not affect 
the problem dynamics [31]. We define the regularized phase 
field �� as

where �∗(c) is defined in Eq. (43) and � = 10−4 is the regu-
larization parameter. We replace �(x, t) by ��(x, t) in the 
diffuse-interface weak form of the Stokes–Darcy problem 
(Eq. (41)). This procedure leads to linear systems with lower 
condition numbers, while the dynamics of the Stokes–Darcy 
problem are not affected.

The multiphysics velocity u represents the velocity of 
the fluid in both intravascular and extravascular regions. 
The intravascular flow velocity magnitude is significantly 
higher than the extravascular flow magnitude. We use the 

(42)u = �u�
S
+ (1 − �)u�

D
,

(43)�∗(c) =
c −max(c)

max(c) −min(c)
,

(44)��(c) = (1 − 2�)�∗(c) + �,

multiphysics velocity solution to solve the angiogenesis 
model (Eq. (16)). Due to the extreme variation in the mul-
tiphysics velocity magnitude, the numerical solution of Eq. 
(16) (see Sect. 3.3) involves a nonlinear system with a high 
condition number. This increases the simulation time. To 
improve the speed of the simulation, we approximate the 
flow velocity u in Eq. (16) as u ≈ (1 − �)u�

D
 . This approxi-

mation is justified as the TAF is almost exclusively located 
in the extravascular region (see Fig. 7 a–c).

3.2 � Stabilized weak form of the Stokes–Darcy 
problem

The diffuse-interface weak form of the Stokes–Darcy prob-
lem (Definition 5) constitutes a saddle point problem. Thus, 
we require the discrete spaces to satisfy the Ladyzhens-
kaya–Babuška–Brezzi (LBB) condition [33]. Due to the 
inherent complexity of the diffuse-interface approximation 
of the Stokes–Darcy problem, it is unclear which are the dis-
crete spaces that satisfy the LBB condition. To circumvent 
this requirement, we incorporate stabilization terms into the 
diffuse-interface weak form, based on the Galerkin Least 
Squares (GLS) formulation [33]. We define the stabilized 
diffuse-interface weak form of the Stokes–Darcy problem as

where ��(c) is defined in Eq. (44), Ne is the number of ele-
ments of the mesh, �e denotes the space occupied by ele-
ment e, and �GLS is the stabilization parameter [34] defined 
as

where hm,e is the size of the mesh element e. Since we use 
a triangular mesh for the Stokes–Darcy equations, hm,e is 
defined as the radius of the circumcircle of element e.

3.3 � Spatial and time discretization

We use Finite-Element Analysis to solve our flow-mediated 
angiogenesis model. We implement a staggered algorithm to 
solve the coupled problem. At each time step, we first solve 
the angiogenesis problem considering a fixed velocity u , and 
then, we use the updated vascular geometry to compute �� 

(45)

RSD(w, qS, qD, u
�

S
, p�

S
, p�

D
, c)

= RuS
(w,u�

S
, p�

S
, p�

D
,��(c))

+ RpS
(qS, u

�

S
,��(c))

+ RpD
(qD, u

�

S
, p�

D
,��(c))

+

Ne∑
e=1

∫
�e

�GLS(∇p
�

S
− 2�∇ ⋅ (∇S

u
�

S
) − b

�)(∇qS

− 2�∇ ⋅ (∇S
w))��(c) dV ,

(46)�GLS =
h2
m,e

4�
,



749Engineering with Computers (2024) 40:741–759	

1 3

and solve the Stokes–Darcy problem. In the following para-
graphs, we provide more details about the staggered algo-
rithm and the spatial and time discretization.

3.3.1 � Spatial discretization

We use two different spatial discretizations to solve the 
Stokes–Darcy problem and the angiogenesis problem.

The spatial discretization of the Stokes–Darcy problem 
(Definition 5) requires discrete solution and weighting func-
tion spaces that are a subset of H1(�,��) . We denote the dis-
crete solution (u�,h

S
, p

�,h

S
, p

�,h

D
) ∈ W

h and the discrete weight-
ing functions (wh, qh

S
, qh

D
) ∈ W

h , where Wh is a discrete space 
composed of first-order Lagrange basis functions. The dis-
crete diffuse-interface weak form of the Stokes–Darcy prob-
lem is obtained by replacing the unknowns and weighting 
functions by their discrete approximations in Eq. (45).

The spatial discretization of the angiogenesis problem 
(Definition 2) is more restrictive, since it requires discrete 
solution and weighting function spaces that are a subset of 
H2(�) . We solve the angiogenesis problem using Isogeo-
metric Analysis [35, 36], which is a generalization of the 
Finite-Element Method that uses splines as basis functions. 
We denote the discrete solution (ch, f h) ∈ V

h and the discrete 
weighting functions (qh

c
, qh

f
) ∈ V

h , where Vh is a discrete 
space comprised of quadratic C1-continuous B-splines. The 
discrete weak form of the angiogenesis problem is obtained 
by replacing c, f, qc , and qf  by their discrete approximations 
in Eq. (16).

Here, we use a uniform mesh composed of square ele-
ments to construct Vh , while we use a mesh composed of 
triangular elements to construct Wh . In general, the triangle 
mesh used in the Stokes–Darcy problem is coarser than the 
square mesh used in the angiogenesis problem. Thus, we 
exploit the capability of controlling the resolution of both 
meshes independently to speed up the simulations.

To solve Eq. (16), we need the value of the multiphysics 
velocity u at the Gaussian quadrature points of the elements 
that comprise the quadratic B-spline mesh. We interpolate 
these values using the solution vector of Eq. (45), which is 
constructed using Lagrange basis functions of the triangular 
mesh. We use a similar method to transfer the phase field c 
from the quadratic B-spline mesh to the triangular mesh to 
solve the Stokes–Darcy problem (Definition 5).

3.3.2 � Time discretization

We divide the time interval of interest [0, T] into NT time 
steps (tn, tn+1) , where T is the final time of the simulation. We 
denote the discrete solution of the Stokes–Darcy problem 
and the angiogenesis problem at time tn as (un

S
, pn

S
, pn

D
) and 

(cn, f n) , respectively, where we removed the superscripts h 
and � for the sake of simplicity. Assuming that we know 
the discrete solution at time tn , namely (un

S
, pn

S
, pn

D
, cn, f n) , 

we obtain the discrete solution at time tn+1 , namely 
(un+1

S
, pn+1

S
, pn+1

D
, cn+1, f n+1) , in the following way:

First, we solve the angiogenesis problem (Definition 2) 
considering a fixed velocity u = u

n , which is calculated 
using �n

�
 instead of � . We use the generalized-� method [37, 

38] to solve the angiogenesis problem (more details about 
the implementation in [13, 24]). We use the Newton–Raph-
son method to solve the nonlinear system of Eq. (16). Each 
iteration of the Newton–Raphson algorithm involves the 
solution of a linear system, which we carry out using the 
GMRES method [39].

Second, we use the solution of the angiogenesis prob-
lem (cn+1, f n+1) to compute �n+1

�
 following Eqs. (43) and 

(44). We then take �n+1
�

 and solve the Stokes–Darcy prob-
lem (see Eq.  (45)) to obtain the Stokes–Darcy solution 
(un+1

S
, pn+1

S
, pn+1

D
) . We use MUMPS [40] to solve the linear 

equations of the Stokes–Darcy problem.
To speed up the simulations, we implement an adaptive 

time stepping scheme, where the time step size (tn+1 − tn) 
depends on the number of Newton–Raphson iterations used 
to solve the angiogenesis problem (more details in [11]).

3.3.3 � Computational Details

We use a combination of the FEniCS [41–46] comput-
ing platform and in-house research code to simulate the 
flow-mediated anagiogenesis model. Each simulation in 
sections 4.2 and 4.3 is performed using 64 cores. We ran 
the simulations using a triangular mesh (used to build Wh ) 
with 128,954 elements for the flow problem and a quadratic 
B-spline mesh (used to build Vh ) with 256 × 256 elements 
for the angiogenesis problem.

The parameter  va lues  used  in  the  s imu-
lations are l isted in Table  1.  The values of 
M, �, B0, fp, D0, fHYC, Pf , Uu, Ud, dox, cact, fact, dNotch and 
RTEC presented in Table 1 are estimated in [13]. Following 
[15], we set the values for the chemotactic constant � and 
the cut-off velocity GM , such that �GM equals the maximum 
TEC velocity of 0.35�m/s. The flow model parameters 
( �, �,� and k) have been obtained from [47].

4 � Results

In this section, we demonstrate the capabilities of the 
flow-mediated angiogenesis model. We first validate the 
Stokes–Darcy flow model by comparing the numerical solu-
tion with an exact manufactured solution on a rectangular 
domain. Then, we present two numerical simulations of 
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flow-mediated angiogenesis where we explore the impact 
of flow on angiogenesis.

4.1 � Flow model validation through a manufactured 
solution

Due to the complex nature of the coupled Stokes–Darcy 
problem, we use the method of manufactured solutions 
to validate our numerical formulation for the diffuse-
interface approximation of the Stokes–Darcy problem. 
We define a sharp-interface Stokes–Darcy problem (Defi-
nition 3) with known solution by imposing appropriate 
body forces and boundary conditions. We consider a rec-
tangular domain � = (0,�) × (−1, 1) , where the Stokes 
domain is �S = (0,�) × (0, 1) , the Darcy domain is 
�D = (0,�) × (−1, 0) , and the interface is � = (0,�) × {0} . 
For simplicity, the Stokes and Darcy domains are time-inde-
pendent. The exact solution of the manufactured problem, 
(uS, pS, pD) ∈ H1(�S) × L2(�S) × H1(�D) , is expressed as

(47)
uS(x, y) =

[
dw(y)

dy
cos(x)

w(y) sin(x)

]
,

with w(y) = −K −
gy

2�
+
(
K

2
−

�g

4�2

)
y2,

where K is the hydraulic conductivity defined as K =
k�g

�
 , g 

is the acceleration due to gravity, pS0 is a constant, and the 
rest of the parameters are introduced in Sect. 2.2. This solu-
tion results from setting the parameters values k = 1 and 
� = 1 in the governing equations and imposing the manufac-
tured body force [56, 57]:

We solve the diffuse-interface approximation of the 
Stokes–Darcy manufactured problem using the numerical 
algorithm described in the previous sections. We consider a 
phase field c that is time-independent, with c = 1 in �S and 
c = −1 in �D . We compute c using the 1D steady state solu-
tion to the Cahn–Hilliard equation, as shown in [18]. The 
phase field c is defined as

(48)pS(x, y) = pS0,

(49)pD(x, y) = �g exp(y) sin(x) + �pS0,

(50)b(x, y) =

⎡⎢⎢⎣

�
−

g

2
+
�
�K −

�g

2�

�
y
�
cos(x)�

�g

2�
− 2�K −

g

2
y +

�
�K

2
−

�g

4�

�
y2
�
sin(x)

⎤⎥⎥⎦
.

(51)c = tanh
(y
�

)
,

Table 1   Parameter values Description Value References

M Mobility 1.002 × 10−11 cm2 s−1 [25]
� Interface width 1.25�m [48]
B0 Proliferation rate 4.987 × 10−6 ml ng−1 s−1 [15]
fp TAF concentration for highest proliferation 54 ngml−1 [15]
D0 TAF diffusion coefficient 1.002 × 10−7 cm2 s−1 [49]
fHYC Maximum TAF value 180 ngml−1 [50, 51]
Pf TAF production rate 6.410 × 10−2 l s−1 Numerical
Uu Endothelial cell uptake rate 4.006 × 10−1 l s−1 Estimated
Ud TAF natural decay 6.410 × 10−5 l s−1 [52]
dox Nutrient and oxygen diffusion length 25�m [53, 54]
cact TEC activation condition 0.9 [15]
fact TEC activation condition 0.72 ng ml−1 [25]
dNotch Delta-Notch distance 80�m [53, 54]
RTEC TEC radius 5�m [55]
RHYC Hypoxic cell radius 6.25�m Estimated
� Chemotactic constant 0.243�m2 ng−1 s−1 ml−1 [15]
GM Cutoff value for TEC velocity 1.44 ng ml−1 �m−1 [15]
� Kinematic viscosity 3.1 × 10−6 m2 s−1 [47]
� Dynamic viscosity 3.1 × 10−3 kg m−1 s−1 [47]
k Permeability 1.55 × 10−14 m2 [47]
� Fluid density 1000 kg m−3 [47]
� Beavers-Joseph friction parameter 10−3 Numerical
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where the interface width � depends on the mesh, such that 
� = hmax , where hmax is the maximum size of the mesh ele-
ments. We set the parameter values g = 1 , � = 1 , � = 1 , 
and pS0 = 1 . We set Dirichlet boundary conditions on the 
entire boundary. The top, left and right edges comprise the 
extended Stokes boundary ��e

S,1
 and the bottom, left, and 

right edges comprise the extended Darcy boundary ��e
D,1

 . 
We obtain u�

S
 (respectively, p�

D
 ) by evaluating the manufac-

tured solution (Eqs. (47)–(49)) on ��S,1 (respectively, ��D,1 ) 
and constantly extending the interfacial value along the edge 
defined by ��e

S,2
∩�D (respectively, ��e

D,1
∩�S ). We solve 

the diffuse-interface approximation (Eq. (45)) of the manu-
factured problem using a uniform triangular mesh with mesh 
size hm . We show the simulation results for hm = 0.012 in 
Fig. 3, where we plotted the multiphysics velocity u on the 
left and the multiphysics pressure p on the right.

To study the convergence of our numerical algorithm, we 
run simulations with decreasing mesh size hm . To validate the 
performance of our algorithm, we need to compare the numer-
ical solution, namely (u�,h

S
, p

�,h

S
, p

�,h

D
) , with the exact solution to 

the diffuse-interface approximation of the manufactured prob-
lem, namely (u�

S
, p�

S
, p�

D
) . Since we do not know (u�

S
, p�

S
, p�

D
) , 

we instead estimate the numerical error using an error norm 
based on weighted Lebesgue spaces (see Eq. 31) to compare 
the numerical solution with the exact solution of the manufac-
tured problem. The relative error norms of the Stokes–Darcy 
unknowns are defined below

(52)e
uS

=
‖u�,h

S
− uS‖L2(�S ,�)

‖uS‖L2(�S)

,

where (uS, pS, pD) is the exact solution of the manufac-
tured problem. We show the convergence of our numeri-
cal algorithm for the Stokes–Darcy problem in Fig. 4. The 
figure shows the errors e

uS
 , epS and epD , which decrease with 

decreasing mesh size hmax . Note that the interface width � 
decreases at the same rate as the mesh size hmax . We observe 
that the convergence rates are in good agreement with theo-
retical convergence rates [31].

4.2 � Prominent vasculature growth against the flow

In this section, we demonstrate the effect of flow on angio-
genesis. To do that, we simulate a scenario similar to the 
experiment carried out in [4]. In this experiment, capillaries 
grow within an in-vitro microfluidic platform that simultane-
ously controls interstitial flow and TAF concentration. The 
experiment shows that the vascular network grows more 
prominently against the direction of the interstitial flow.

Here, we consider three different cases, namely, inflow, 
outflow, and control. Figure 5 shows the geometry and 
the flow model boundary conditions associated with the 
control, inflow, and outflow simulations. The control case 
corresponds to angiogenesis with no flow (Fig. 6). The 

(53)epS =
‖p�,h

S
− pS‖L2(�S ,�)

‖pS‖L2(�S)

,

(54)epD =
‖p�,h

D
− pD‖L2(�D,1−�)

‖pD‖L2(�D)

,

Fig. 3   Manufactured Stokes–Darcy problem: Simulation results using a triangular mesh with element size hm = 0.012 . a Magnitude of the mul-
tiphysics velocity |u| with overlaid white streamlines. The arrows indicate the direction of u . b Distribution of the multiphysics pressure p 
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inflow case represents a vein that is at a lower pressure 
than the interstitium. Hence, fluid flows from the inter-
stitium into the vein (Fig. 7). The outflow case represents 
an artery that is at a higher pressure than the interstitium 
and, hence, fluid flows from the artery to the interstitium 
(Fig. 8). To simulate the three cases, we consider a square 
domain � of size 428 × 428� m. We initially consider a 
20 μm-wide vertical capillary at the center of the domain 
and hypoxic cells at the left and right sides of the domain, 
as shown in Fig. 5.

The control case has no flow, so we can disregard the 
Stokes–Darcy problem. We consider the following bound-
ary conditions for the inflow and outflow cases. For the 
Darcy equation, we consider a zero normal velocity ūe

D
= 0 

at the top and bottom boundaries, while we impose a con-
stant Darcy pressure p̄D on the left and right boundaries. 
In particular, we take p̄D = 0.75 Pa for the inflow case and 
p̄D = −0.05 Pa for the outflow case. For the Stokes equa-
tions, we impose a zero traction (t̄e = 0) on the top bound-
ary and we impose the Stokes velocity ūe

S
 on the bottom 

boundary. We take ūe
S
= [0, 100]𝜇m∕s for the inflow case, 

where we use the notation ūe
S
= [ue

S,x
, ue

S,y
] with ue

S,x
 and ue

S,y
 

representing the velocity components in the x- and y-direc-
tion respectively. We take ūe

S
= [0, 10]𝜇m∕s for the outflow 

case. Note that the Dirichlet boundary condition for the 
Stokes equation (ūe

S
) is imposed in the entire bottom 

boundary, not only in the boundary section occupied by 
the initial capillary. The phase-field formulation (Defini-
tion 5) naturally disregards the Stokes fluid flow outside 
the capillaries. According to these boundary conditions, 
fluid inside the initial capillary flows from the bottom to 
the top for both inflow and outflow cases. We adjusted the 
value of p̄D , so that the magnitude of the interstitial flow 
velocity (uD) is approximately 0.1 μm/s, which is in agree-
ment with the experimentally observed interstitial flow [4].

The transport of TAF in the control case simulation is 
facilitated by diffusion only. Figure 6 shows the effect of 
diffusive transport on the TAF distribution and the result-
ing vasculature. We observe the length of new capillaries 
protruding from the initial capillary is approximately equal 
in the control case.

The inflow case unveils the underlying biophysics of 
flow-mediated angiogenesis. We show the simulation 
results of the inflow case in Fig. 7, where we plot the 
TAF distribution and vascular geometry (top row), the 

Fig. 4   Manufactured Stokes–
Darcy problem: Convergence 
of the relative error defined in 
Eqs. (52), (53), and (54) for the 
Stokes velocity, Stokes pressure, 
and Darcy pressure. The solid 
lines with circular markers are 
log–log plots of the error norm 
with decreasing mesh size hm . 
The circular markers denote 
the error norm values obtained 
from the simulation results. The 
dashed lines represent reference 
trends of a first- and second-
order accurate algorithm
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Fig. 5   Geometry and boundary conditions for the control, inflow, and 
outflow simulations: The initial capillary placement and the location 
of the hypoxic cells are indicated in red and blue color, respectively. 
The flow model boundary conditions for the inflow and outflow cases 
are shown in green and purple color, respectively (color figure online)
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multiphysics velocity u (middle row), and the multiphys-
ics pressure p (bottom row). Note that the magnitude 
of the intravascular flow is significantly larger than the 
magnitude of the interstitial flow. Due to this reason, we 
have employed a nonlinear color scale to visualize u in 
Fig. 7d–f. The nonlinear color scale combines two linear 
scales to separately capture the variation of u in extravas-
cular and intravascular regions. Figure 7d shows u at initial 
time t0 . We observe interstitial flow from the left and right 
boundaries merging into the initial capillary (see arrows 
in Fig. 7d). At time t1 ≈ 3.6 h, multiple TECs have been 
activated, creating new branches from the main capillary 
(Fig. 7b). Compared to t0 , the multiphysics velocity u at 
t1 is no longer a pure inflow pattern due to the presence of 
new capillaries (compare Fig. 7d and e). The sprouting of 
the new branches increases the pressure around the bottom 
of the initial capillary (Fig. 7h and i), which causes local-
ized outflow from the initial capillary to the interstitium.

Figure  7a–c showcases the combined effect of TAF 
advection and diffusion in the inflow case. Upon comparing 
with the control case (Fig. 6), we observe increased TAF 
concentration in the regions of high inflow velocity for the 
inflow case (compare Figs. 6b and 7b). At time t2 ≈ 10 h, we 
observe that the new capillaries have significantly altered the 
interstitial flow pattern (Fig. 7f). The final geometry of the 
vascular network in the inflow simulation is different from 
the control simulation (compare Figs. 6c and 7c). These 
observations underscore the complex coupling between the 
vascular network geometry and the interstitial flow.

We plot the simulation results of the outflow case in 
Fig. 8. The inflow, outflow, and control case simulations 
display different rates of vascular growth. At the final time 
of the simulation ( t2 ≈ 10h), the inflow case displays larger 
new capillaries than the control case, and the control case 

displays larger new capillaries than the outflow case (com-
pare Figs. 6c, 7c, and 8c). This trend is in agreement with 
experiments [4]. Preferential capillary growth against the 
flow is caused by the advective transport of TAF. Advective 
transport of TAF toward the initial capillary is higher for the 
inflow case. Thus, TAF arrives earlier at the initial capil-
lary, which provokes a faster TEC activation for the inflow 
case. The results also show that TAF gradients at the TECs 
are higher for the inflow case, which leads to larger TEC 
velocities (see Eq. (11)). These two mechanisms combined 
produce larger branches for the inflow case. The opposite 
effects are observed for the outflow case.

4.3 � Interstitial flow enhances vasculature growth 
in a magnitude‑dependent manner

In this section, we simulate a scenario similar to the experi-
ments performed in [3] where they investigated the effect of 
interstitial flow and TAF concentration on micro-vascular 
network formation. These experiments were conducted using 
an in-vitro microfluidic device. The experiment showed that 
the growth of the vascular network increases with increasing 
interstitial flow magnitude.

Our goal is to reproduce this experimental observa-
tion by simulating flow-mediated angiogenesis in three 
different cases, where we impose different inflow Darcy 
velocities. We perform the simulations on a 428 × 428 μ m 
domain and place the initial capillary near the left edge 
of the domain (see Fig. 9a). We place ten equally spaced 
hypoxic cells near the right edge of the domain as shown 
in Fig. 10a. Unless otherwise stated, the parameter values 
used in this section are listed in Table 1. We modify the 
TAF threshold for TEC activation to raccommodate for the 
increased distance between the capillary and the hypoxic 

Fig. 6   Control case: The simulation shows vascular growth in the 
absence of interstitial flow. Time evolution of the TAF distribu-
tion and the vascular network at times a t0 ≈ 0 h, b t1 ≈ 3.6 h, and 

c t2 ≈ 10 h. The red region represents the vascular network. The 
hypoxic cells are marked with a blue outline in a (color figure online)



754	 Engineering with Computers (2024) 40:741–759

1 3

cells [15], such that fact = 0.18 ng/ml . For the Stokes prob-
lem, we consider analogous boundary conditions as in the 
previous section, i.e., zero traction on the top boundary 
and a fixed inflow Stokes velocity ūe

S
= [0, 10]𝜇m s−1 on 

the entire bottom boundary. For the Darcy problem, we 
consider a zero normal Darcy velocity on the bottom, top, 
and left boundaries. On the right boundary, we impose 
a fixed inflow normal Darcy velocity ūD . To analyze the 
effect of the interstitial flow magnitude on angiogenesis, 
we run three simulations with different values of ūD . In 

particular, we consider low (ūD = −0.05𝜇m/s) , medium 
(ūD = −0.075𝜇m/s) , and high (ūD = −0.1𝜇m/s) Darcy 
velocity.

We plot the simulation results in Fig. 9, where the normal 
Darcy velocity ūD increases from bottom to top rows. The 
results show that the length of the new capillaries at the final 
time (t2 ≈ 11.5 h) increases as ūD increases. Thus, vascular 
growth is more prominent for higher interstitial flow magni-
tude, which is in qualitative agreement with experiments [3].

Fig. 7   Inflow case: The simulation shows vascular growth when fluid 
flows from the interstitium into the capillary. Capillary growth is 
more prominent against the flow. Time evolution of the a–c TAF dis-
tribution and capillary network, d–f magnitude of multiphysics veloc-

ity |u| , and g–i multiphysics pressure p at times t0 ≈ 0 h, t1 ≈ 3.6 h, 
and t2 ≈ 10 h. White lines in d–f represent streamlines of u and the 
arrows indicate the direction of u . The hypoxic cells are marked with 
a blue outline in a (color figure online)
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We explain this behavior by comparing the growth of the 
upper capillary for high and low ūD (top and bottom rows, 
respectively, in Fig. 9). Figure 10 shows the evolution of 
TAF concentration with time for high ūD . We note that the 
results shown in Fig. 10 are indicative of the trend of TAF 
distribution exhibited by medium and low ūD and we will 
utilize the trend of TAF distribution shown in Fig. 10 to 
detail our reasoning.

First, we denote the center of the TEC driving the growth 
of the upper capillary as xT  , the magnitude of the TAF 
gradient at xT as |∇f |T , the magnitude of the multiphys-
ics velocity at xT as uT , and the distance between xT and 
the closest hypoxic cell as dT . The vascular growth rate of 
the new capillaries is proportional to |∇f |T (see Eq. (11)), 
which increases with (1) increasing uT and (2) decreasing 
dT . Since TAF uptake by the vascular network is high, we 
observe that the TAF concentration at xT is close to zero. 

Fig. 8   Outflow case: The simulation shows vascular growth when 
fluid flows from the capillary network into the intertitium. Time evo-
lution of the a–c TAF distribution and capillary network, d–f mag-
nitude of multiphysics velocity |u| , and (g–i) multiphysics pressure 

p at times t0 ≈ 0 h, t1 ≈ 3.6 h, and t2 ≈ 10 h. White lines in d–f repre-
sent streamlines of u and the arrows indicate the direction of u . The 
hypoxic cells are marked with a blue outline in a (color figure online)
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Fig. 9   Effect of the interstitial flow magnitude on vascular growth. 
Simulation results for the boundary interstitial fluid flow ūD =-0.1 (a–
c), −0.075 (d–f), and −0.05�m/s (g–i) at times t0 ≈ 0 h (left column), 
t1 ≈ 5 h (center column), and t2 ≈ 11.5 h (right column). The figure 

shows the magnitude of the multiphysics velocity u , where the white 
lines are streamlines of u and arrows indicate the velocity direction. 
The black contour line represents the outline of the capillary network 
(color figure online)
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Thus, the TAF gradient inside the TEC is proportional to the 
TAF concentration at the border of the TEC, which increases 
with higher advective transport, i.e., higher uT . Likewise, 
we observe that the TAF concentration at the hypoxic cell 
is fHYC and has a quasi-linear distribution between the TEC 
and the hypoxic cell. Hence, the TAF gradient between those 
two cells and |∇f |T increase as the distance dT decreases. 
Thus, capillary growth is faster as ūD increases and TECs get 
closer to the hypoxic cells. This behavior persists until TECs 
reach the maximum speed determined by GM (see Eq. (11)).

We observe this behavior in Fig. 9. At the initial time (t0) , 
uT is higher for higher ūD , while dT is the same in the three 
simulations. Thus, new capillaries grow faster for higher 
ūD (top row in Fig. 9) due to higher uT . As the simulation 
evolves, the distance dT decreases faster for larger ūD (com-
pare Fig. 9b and e), which provokes a positive feedback that 
accelerates vascular growth for higher ūD . These two com-
bined factors provoke a faster capillary growth for higher 
interstitial flow (compare Fig. 9c, f, and i) as long as TAF 
gradients are below the limit GM for maximum TEC speed.

5 � Conclusion

The impact of intravascular and interstitial flow on tumor 
angiogenesis is not well understood. Several experiments 
have suggested that shear stress and flow velocity affect 
crucial events in angiogenesis, such as the TEC sprouting 
location, TEC velocity, and anastomosis. The design of 
experiments in flow-controlled and TAF-controlled condi-
tions to study flow-mediated angiogenesis is challenging. 
In silico investigation bypasses some of the experimental 
challenges and has the potential to unveil the tight inter-
play between capillary growth and vascular flow in some 
scenarios. However, previous modeling efforts resorted to 

simplified flow models to reproduce intra- and extravascular 
flow on changing capillary geometries [11–13, 58]. In this 
work, we develop a computational model of flow-mediated 
angiogenesis which accurately predicts flow on temporally 
evolving vascular networks. Our model couples the angio-
genesis model proposed in [15] with the Stokes–Darcy flow 
equations and uses the phase-field method to capture the 
time-evolving geometry of the vessels. Built on the phase-
field method, we derive a diffuse-interface formulation for 
both the angiogenesis and the Stokes–Darcy equations which 
avoids the computational cost of re-meshing, as opposed to 
other sharp-interface methods. We demonstrate the validity 
of the flow model by comparing the numerical solution to a 
manufactured test case. We find that the convergence rate of 
the weighted error norm of the solution is in good agreement 
with theoretical results.

Our modeling framework successfully reproduces intra- 
and extravascular flow on growing vascular networks. Our 
simulation results show that the convective transport of TAF 
has a significant impact on the shape of the vasculature. 
Thus, our model offers a fluid-dynamics explanation for the 
prominent growth of vasculature against the flow direction 
observed in experiments in [4]. Further, our model predicts 
enhanced vasculature growth with increasing interstitial 
flow magnitude, which was observed experimentally in [3]. 
Our results suggest that the dominant mechanism behind 
the observed trend is the dependence of TEC velocity mag-
nitude on the TAF gradient. The simulations indicate that 
higher interstitial flow leads to an increased TAF gradient 
at the TEC, which causes the observed trend.

In future work, we plan to integrate various flow-based 
biophysical cues into our modeling framework and investi-
gate their effect on angiogenesis [3–10]. We are particularly 
interested in the effect of shear stress on the capillary sprout-
ing location [6, 8, 10]. We believe that the coupling between 

Fig. 10   Effect of the interstitial flow magnitude on vascular growth. 
Simulation results for inflow normal Darcy velocity at the boundary 
ūD = −0.1 𝜇m/s. a–c shows the time evolution of TAF distribution at 

times t0 ≈ 0 h (a), t1 ≈ 5 h (b) and t2 ≈ 11.5 h (c). The hypoxic cells 
are marked with a blue outline in a (color figure online)



758	 Engineering with Computers (2024) 40:741–759

1 3

the sprouting mechanism, the fluid flow, and the vasculature 
growth will yield interesting insights into the biophysics of 
tumor angiogenesis. Our model can be further improved in 
several ways. For instance, the model can be extended with 
the evolution equations for the nutrients and oxygen that 
control the irrigation of the hypoxic cells, as shown in [59]. 
This would lead to a more accurate representation of the 
TAF-production decay of the hypoxic cells. Another pos-
sible improvement to the intravascular model is to include 
the shear thinning behavior of blood.
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