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Abstract

Tumor angiogenesis, the growth of new blood vessels towards a tumor, plays a critical role in cancer progression. Tumors
release tumor angiogenic factors (TAF) that trigger angiogenesis upon reaching a pre-existing capillary. Although not fre-
quently studied, the convective transport of TAF plays a key role in determining the resulting shape of the vasculature. In this
work, we propose a computational method that couples an angiogenesis model with Stokes—Darcy flow to simulate the impact
of flow on angiogenesis. We use the phase-field method to implicitly describe the vasculature and capture the temporally
evolving interface between the intra- and extravascular flow. The implicit description of the interface eliminates the need to
re-mesh the vasculature which would otherwise be required due to the movement of the interface. We propose a finite-element
discretization to solve the coupled problem and illustrate the accuracy of the algorithm by comparing a numerical solution
with a manufactured test case in a simplified scenario. The numerical simulations demonstrate the impact of the convective
transport of TAF on the shape of the vasculature. It predicts that the vasculature network grows prominently against the flow

direction and that the growth of vasculature is enhanced with increasing interstitial flow magnitude.

Keywords Angiogenesis - Phase field - Vascular flow - Stokes—Darcy

1 Introduction

During the early stages of cancer development, cancerous
cells receive the required nutrition from the existing vascular
network. As the tumor grows, it requires additional nutri-
ents and oxygen which cannot be delivered by the existing
capillary network. This creates hypoxic cells which release
chemical signals, generically called tumor angiogenic
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factors (TAF), that trigger tumor angiogenesis [1]. Tumor
angiogenesis is the growth of new capillaries in the direc-
tion of the tumor and is a critical stage in the development
of cancer as it leads to increased malignancy of the tumor
and metastasis [2].

In the past decades, tumor angiogenesis research has
focused on the biochemical signaling pathways. In particu-
lar, a number of TAFs that promote vessel growth have been
identified. However, despite its importance, the role of bio-
physical cues has received less attention. Recent experimen-
tal research indicates that various flow-based biophysical
cues have a significant impact on angiogenesis [3—10]. The
research conducted suggests that the intravascular fluid shear
stress controls the location of sprouting in angiogenesis [6,
10], the growth of vasculature is biased against the direction
of interstitial flow [4], and interstitial flow magnitudes affect
the growth rate of vasculature [3]. Thus, the determination
of intravascular and interstitial flow is key to understanding
tumor angiogenesis.

Despite recent advancements in microfluidics that enable
in vitro models of interstitial flow in micro-vascular tissues,
it remains challenging to understand the complex coupling
of flow and angiogenesis in vivo. Under certain assumptions,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01889-6&domain=pdf
http://orcid.org/0000-0002-2553-9091

742

Engineering with Computers (2024) 40:741-759

computational modeling can provide high-resolution infor-
mation on fluid flow and vasculature growth, making it a
promising approach to studying this problem.

Earlier computational models of flow-mediated angio-
genesis have shown success using simplified flow models
(see [11-14]), but they cannot perform high fidelity simula-
tions of angiogenesis coupled with intra- and extravascular
flow on a temporally evolving capillary network. Here, we
propose an angiogenesis model coupled with a multiphys-
ics flow model which uses Stokes flow and Darcy flow to
represent the intra- and extravascular flow, respectively. The
angiogenesis model was developed using the work of [15].
The main computational challenge in this model is that the
vascular network is evolving with time due to angiogenic
growth. Therefore, classical interface-tracking formulations
[16] of the Stokes—Darcy problem [17] would require moving
meshes that discretize the time-evolving intra- and extravas-
cular spaces. We address this challenge using the phase-field
approach, which is a mathematical modeling technique to
reformulate moving boundary problems as differential equa-
tions posed on a fixed domain [18, 19].

We develop space and time discretization schemes that
successfully handle the nonlinear and multiphysics nature
of the problem. We show that our algorithm is second-order
accurate in space using a manufactured solution for a simpli-
fied flow problem. We then show that the model naturally
predicts the experimental observation that the vasculature
grows prominently against the flow and that the growth of
the vasculature is enhanced by increasing interstitial flow
magnitude. This work opens new opportunities to under-
stand the complex interplay between flow and vessel growth
in biological systems. The algorithms developed here may
also be applicable to other important engineering problems
such as flow on a propagating crack embedded in a porous
medium.

2 Mathematical model

We propose a flow-mediated angiogenesis model that cou-
ples capillary growth and vascular flow. We capture capillary
growth with a hybrid model developed using the work of
[13, 15]. We capture the intra- and extravascular flow with
the Stokes—Darcy model for an incompressible fluid, where
the intravascular flow is governed by the Stokes equation
and the interstitial (i.e., extravascular) flow is controlled
by the Darcy equation for saturated flow in porous media.
The angiogenesis and flow models are fully coupled. On
the one hand, flow biases the transport of TAF and, hence,
the growth of new capillaries. On the other hand, continu-
ous changes in the vascular network reshape the Stokes and
Darcy domains, which modifies the fluid flow.

@ Springer

In the following sections, we describe the angiogenesis
model, the Stokes—Darcy flow model, and the coupling
between the two models. We denote the problem domain
as £2, the intravascular region as £2¢, and the extravascular
region as £2,,, where Q, U 2, = Q2 and 2 N 2;, = @. Note
that £ is fixed, while £ and £, evolve in time due to the
growth of new capillaries.

2.1 Angiogenesis model

We use a hybrid model similar to that described in [13, 15]
to capture capillary growth. The continuous compartment
of the model accounts for the vascular network and TAF
dynamics, while the discrete compartment controls the evo-
lution of tip endothelial cells (TECs). TEC motion, which is
controlled by TAF gradients, drives the growth of the capil-
laries. The model unknowns are c(x, ) and f(x,t), which
represent the vascular network and the TAF concentration,
respectively, where x € £2. We also consider the flow veloc-
ity u(x, r), which represents the Darcy flow in the interstit-
ium and the Stokes flow in the vascular network. The flow
velocity u is computed with the Stokes—Darcy flow model
(see Sect. 2.2).

Continuous compartment

We resort to the phase-field method [19, 20] to capture
the evolution of the capillary network. For more details on
the phase-field approach, see [18]. In our model, the phase
field ¢ takes the value 1 in the intravascular region, —1 in
the interstitium, and smoothly transitions between —1 and 1
across the capillary wall. The evolution of ¢ is governed by
a Cahn—Hilliard equation extended with a proliferation term,
which is expressed as
dc

— =V [MV(u(c) — *Ac)]| + B(f)cH(c)

in Q.
Y n ey

where the constant M > 0 is the mobility, 4 is a parameter
that represents the width of the capillary wall, H is the Heav-
iside function, and u(c) = —c + ¢ is the chemical poten-
tial. The first term of the right-hand side accounts for the
Cahn—Hilliard dynamics of mass-conserved systems, while
the second term is a proliferation term that enforces the for-
mation of the capillary behind the advancing TEC (TEC
motion is described below in this section). The proliferation
function B is defined as

_ [ Bof, iff <f,

where the constant B, is the proliferation rate and f, is the
TAF cut-off value for maximum proliferation.

In our model, TAF is produced by hypoxic cells that are
located in the interstitium. We account for TAF diffusion,
natural degradation, and uptake by the endothelial cells. We
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also account for the advective transport of TAF driven by u.
The evolution equation for TAF is written as

DLV wf) =V - DV + Pylfiye —f)

ot 3
—U(e)f in £,

where D, is the TAF diffusion coefficient in the interstitium,
the constant fy;yc represents the maximum TAF concentra-
tion inside the hypoxic cells, and the function P, accounts
for TAF production, such that

NHYC

Pix,t)= ) Pp(x,0). )
i=1

In Eq. (4), Nyyc is the total number of hypoxic cells, and
the function P;; accounts for the TAF production of each
hypoxic cell. We assume that the hypoxic cells are circles
that do not move. We denote the center of the hypoxic cell i
as Xyyc ;- Following [13], we can express Py ; as:

’Pfe_o'SI"*’ if |x = Xpyc,l < Ruyes
Pri(e.) =4 " CUS R
: \ if |x — Xyyc,l = Ruyes

where Ryy is the hypoxic cell radius and P is the produc-
tion rate. When a capillary approaches a hypoxic cell, the
hypoxic cell receives the necessary nutrients and oxygen
and, hence, TAF production stops. We model this process
through the TAF-production decay time 7, which we define
as

&)

A 0, ift<Tl.*, 6
T =Ty, ift > Ty, (6)

where 77 is the time at which the center of any TEC gets
closer than d,, to the center of the hypoxic cell i. The
constant d,, represents the characteristic oxygen diffu-
sion length. The last term in the right-hand side of Eq. (3)
accounts for the TAF natural degradation and the TAF
uptake by the endothelial cells. The function U is defined as

Uy, ifc>0,
vler= { —Uc, if ¢ <0, 7

where U, is the endothelial cell uptake rate and U, is the
TAF decay rate.

We consider the following boundary conditions for the
angiogenesis model:

0 = MV (u(c) — A*Ac) - nyy, on 0L, (®)
0=MAAc on 0£2, 9)
0=DyVf -ny, on 042, (10)

where 042 is the boundary of €2 and n,, is the unit outward
normal to 0€2. These boundary conditions account for free
flux of the vascular network [21, 22] and a permeable bound-
ary to TAF advection, but not to TAF diffusion.

Discrete compartment

The discrete agents of the angiogenesis model represent
TECs. We assume TECs are circles centered at xppc- with
radius Rpgc. A new TEC emerges centered at any point
x € Q if the following conditions are achieved:

L. c(x) > ¢y
2. fO)> foer

3. drpc®) > dyoiens

where ¢, is the minimum value of ¢ for TEC activation,
Jae: 15 the minimum TAF concentration for TEC activation,
drgc(x) is the distance from x to the center of the closest
TEC, and dy, is the Delta-Notch distance [23]. Condi-
tion 1 ensures that TECs are created inside capillaries,
condition 2 ensures that vascular growth is triggered above
a minimum TAF concentration, and condition 3 accounts
for the lateral inhibition mechanism [23]. TECs are deac-
tivated when condition 2 is no longer achieved at xpc.
TEC motion is directed by the TAF gradient according to
the expression

if [Vf] < Gy,

w4V "
TEC =\ MGy i 171 2 Gy, (b

where u g is the velocity of the TEC, the constant # is pro-
portional to the chemotactic speed, and G, is the cut-off
value of | Vf| for maximum TEC velocity.

TECs develop filopodia to detect neighboring capillar-
ies and modify the direction of motion to conduct anas-
tomosis [13]. We model filopodia by defining an array of
checkpoints in an annular disk sector centered at X-pc,
with an angle of 2?” centered around the direction of uppc.
The annular disk sector has an inner and outer radius of
2Ry and 4R, respectively. At these checkpoints, we
determine the existence of a capillary with the condi-
tion ¢ > c,,. If the capillary exists, the direction of wygc
changes toward the successful checkpoint. To detect anas-
tomosis, we perform a similar check with a circular disk
of radius 1.5Rygc. If ¢ > ¢, at any checkpoint, we assume
anastomosis has occurred and the TEC is deactivated.

The coupling between the continuous and discrete com-
partments is performed by imposing ¢ = 1 in the region
occupied by each TEC. More details about the model and
the coupling between the continuous and discrete compart-
ments may be found in [24, 25].

@ Springer
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2.1.1 Weak form of the angiogenesis model

We obtain the weak form of the angiogenesis model by
multiplying Eqgs. (1) and (3) with weighting functions g,
and g, respectively, and integrating in £2. We then inte-

grate by parts and impose the boundary conditions defined
in Egs. (8)-(10). We define the forms

Rc(qc,c,f)=/qc% dV+/MVqC-V,u(c)dV
Q Q0

+ / Ag.MA*AcdV (12)
Q

—/qCB(f)cH(c)dV,
Q

0
L v
0

Rf(Qf’c’f’u)Zqu ¢

+/qu-(uf)dV
Q

+/D0qu'Vde (13)
Q

_/quPf(fHYC -fdav

+/qu(c)de.
Q

We next define the Sobolev and Lebesgue spaces:

Definition 1 17(L2) is a Lebesgue space defined as

/(@)= (¥ : @ - R} such that [P, =/ [P[PdV < oo,
Q
(14)
where p is a natural number, || - || is the norm, and | - |is the
absolute value.

H’(Q) is the Sobolev space associated with the L?> norm
and is defined as

H(@Q)={Yel Q) :D'Ye X @VIpl <}, (15)

where f is a multi-index, D?¥ is the mixed partial, weak
derivative of ¥ [26], and Z is a natural number.

The angiogenesis problem can be stated as

Definition 2 Find (¢,f) € H*(R2) x H'(£2) such that for all
(9. q;) € H () x H'(Q)

R.(q. ¢.f) + R(gy, c.f,u) = 0. (16)

2.2 Coupled Stokes-Darcy flow

In this section, we first describe the coupled Stokes—Darcy
equations for incompressible fluid flow. The model is com-
prised of the Stokes equations posed in £2(¢), the Darcy
equations posed in £2,(¢), and the interface conditions
posed on I'(¢), where I'(¢) is the interface that separates g
and 2, (see Fig. 1). Next, we derive the weak form of the
Stokes—Darcy problem, where the integrals are posed in
Q(1), 2p(1), and I'(r). We denote this description of the
weak form as the sharp-interface weak form of the problem.

0125,

s

(1)

np

8_QD,2 QD (t)

0f2pa

(us,ps) | s,
005

3

(pp)

Fig. 1 Sketch of the computational domain £2. The Stokes and Darcy
domains are represented by Q(¢) and £2,,(¢), respectively. The bound-
ary of £ may be divided into four regions, namely, 082, 0825,
082y, and 092, ,, where the indices S and D refer to the Stokes and
Darcy domains, respectively, and the indices 1 and 2 refer to Dirichlet
and Neumann boundary conditions, respectively. The unit outward
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normal to £ in Qg and 2, are denoted as ng and np, respectively.
£, and 2, are separated by the moving interface I'(f). The unit nor-
mal to I" pointing into €2/, is denoted as n and the unit tangent vector
is denoted as 7. In the sharp-interface description, we solve for the
Stokes velocity (ug) and pressure (pg) in £2¢ and the Darcy pressure

(pp)in 2,
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Finally, we leverage the phase-field method and derive the
diffuse-interface approximation of the weak form of the
Stokes—Darcy problem, where the integrals are posed in £2.

2.2.1 Sharp-interface description of the Stokes-Darcy

problem
Stokes flow
The Stokes equations for incompressible fluid flow read
V-ug=0 in £, a7
-V-.-o=>b inQq, (18)

where ug(xg, 1), with xg € Qg, is the fluid velocity in £
and b is the body force per unit mass. The stress tensor is
defined as 6 = —pgl + 2vVSug, where pg(xg, 1) is the pres-
sure normalized by the fluid density, [ is the identity tensor,
v is the kinematic viscosity, and V" is the symmetric gradient
defined as VS = %(V + V7).

We consider the following boundary conditions on 02
and 08, (see Fig. 1):

ug =ity on 0L, ong =1t on d8,, (19)
where g is the boundary fluid velocity, # is the boundary
traction, and ng is the outward normal to 0£2 in Q2 (Fig. 1).
Darcy flow
The equations for incompressible fluid flow through a sat-
urated porous medium (i.e., the interstitium) are expressed
as

V-up=0 1in £, (20)

k .
up = _;VPD in £, (1)

where u,(xp, 1) is the Darcy velocity, k is the interstitium
permeability, u is the dynamic viscosity of the interstitial
fluid, and p,(xp, ) is the interstitial fluid pressure, with
Xp € £25,. We can reduce the number of unknowns by sub-
stituting Eq. (21) into Eq. (20). The final equation reads

k .
-V <;VpD> =0 in Q). (22)
We consider the following boundary conditions on 0£2,
and 082, , (see Fig. 1):

Pp =Dp on oL, up-np =i on 082 ,, 23)

where pj, is the boundary Darcy pressure, i, is the boundary
Darcy velocity in the normal direction, and n, is the unit
outward normal to d€2 in £, (Fig. 1).

Stokes—Darcy interface conditions

The Stokes and Darcy equations are coupled through the
interface conditions imposed on I'(¢). We denote the unit nor-
mal vector to I pointing into €2/, as n, and the unit tangent vec-
tor to I" as 7 (Fig. 1). The interface conditions are expressed as

Ug-n=up-n onl, (24)
n'cm=—@ on I, (25)
p
v
a—@ug—up)-t=—1t-0on onl, (26)

where « is the Beavers-Joseph parameter. We assume that
these fluid properties take a constant value. Note that we
include the density into Eq. (25), because the stress ten-
sor o (and, hence, py) is normalized by the fluid density
p, but not the Darcy pressure pj,. Equation (24) ensures
mass conservation across the interface, Eq. (25) enforces
the balance of normal traction across the interface, and
Eq. (26) is an empirical law proposed by Beavers and
Joseph [27] that relates the Stokes shear stress with the dif-
ference between the Stokes and Darcy tangential velocities.
The Darcy tangential velocity is usually smaller than the
Stokes tangential velocity on I', which allows us to assume
(ug —up) - T = ug - vin Eq. (26). This modification is called
Beavers—Joseph—Saffman law and is widely used in the lit-
erature [27-29]. The friction parameter a controls the trans-
vascular permeability [30] and is experimentally estimated.
Due to the lack of experiments to estimate « for vascular
flows, we adjust @, such that it matches experimentally
observed values of transvascular permeability.

2.2.2 Sharp-interface weak form of the Stokes-Darcy
problem

We obtain the sharp-interface weak form of the Stokes—Darcy
problem by multiplying Egs. (17), (18), and (22) with weight-
ing functions and integrating in the corresponding domains.
We next integrate by parts and substitute the natural boundary
conditions defined in Eqgs. (19) and (23). The sharp-interface
description of the Stokes—Darcy problem can be stated as

Definition 3 Find (ug, ps. pp) € H'(2) X L*(Q4) x H'(2))
such that for all (w, g5, qp) € H'(2g) X L*(2¢) X H' ()

@ Springer
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0=/ 2uVw : Viugdv —/ (V-w)pgdV
Q4 Q4

—/ w-bdV
‘QS
—/ w-idS—/w-o-ndS
095, r
QS
k
+ —Vqp - VppdV +
o, H Yo
—/unD-ndS.
r

We incorporate the interface conditions into the weak
form by using Eqgs. (24)—(26) to replace the boundary inte-
grals over I' in Eq. (27) in the following manner:

—/w-o-ndS:/@w-ndS
r r P

@7

qpitp dS

D2

/ Y (- )w - 1) dS e

+ — ° * P}

Fa\/%us HWw- T

_/unD.ndS=_/unS-ndS. (29)
r r

2.2.3 Diffuse-interface approximation

The weak form defined in Eq. (27) involves integrals in mov-
ing domains. The numerical solution of Eq. (27) requires the
use of moving meshes and entails important numerical chal-
lenges. Here, we leverage the phase-field method and reformu-
late the Stokes—Darcy problem by deriving a diffuse-interface
approximation of the weak form that involves integrals in
£ only. Thus, we can solve the diffuse-interface weak form
by using a single and fixed mesh. We start by defining the
phase-field variables and properties that we need to derive the
diffuse-interface weak form.

We use the phase-field variable ¢(x, ), with x € €2, to cap-
ture the domain £24(¢), such that ¢ = 1in £, ¢ = 0in £,
and ¢ smoothly transitions from O to 1 across the interface I"
(see Fig. 2). We define the phase field ¢ as a function of the
vascular density c (see Sect. 2.1), which is also a phase-field
variable. Note that ¢ ranges from ¢ = —1 in the interstitium
(£2p) to ¢ = linside the capillaries (£24). Thus, we define ¢ as

l+c¢

¢ = o (30)

Likewise, we capture the domain £2,,(#) with the expression

(1 -¢).

@ Springer

1.0 A
0.8 A
0.6 1 — ==~ Characteristic Function
0.4 — 1- ¢
0.2 1
2p(t) Ns(t)
0.0 A

Fig.2 1D representation of the phase field ¢ that captures the Stokes
domain £24(f). The phase field ¢ is an approximation of the character-
istic function (marked by the dashed red line) centered at the inter-
face x (). The characteristic function is a discontinuous function that
takes the value of 0 in the Darcy domain and 1 in the Stokes domain.
The parameter e represents the characteristic width of the interface.
The figure also shows the complementary phase field 1 — ¢ that cap-
tures the Darcy domain ,(¢) (color figure online)

To discuss the phase-field properties, we first define
weighted function spaces following [31]:

Definition 4 For a positive weight function @, a positive
integer r, and a bounded domain £2, we define weighted Leb-
esgue spaces and their norms as

UQw={Y:2->R:|¥wel(Q)},

r r (€29)
91 = [ 1900V,
Q

We define the weighted Sobolev space associated with the
L? norm as

H(Qw)={¥ e} (Qw) : D'VYe*(Qw)V|p <}
(32)

Let us consider a function g(x, ) € L*(2, ¢). The first
phase-field property [18, 32] can be stated as

/q’)(x, Ngx,ndvV —>/ gx,ndV ase— 0, (33)
Q Q

where e is the parameter that controls the width of the diffuse
interface (see Fig. 2). The phase-field formulation has an
analogous property for integrals on interfaces, which reads

/ op(¢)glx,H)dV — /g(x, HdS ase—0, (34)
Q T
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where the function 6-(¢) is a marker of the interface I', such
that &1 is zero far from the interface and takes a positive
value around the interface. The marker 6,-(¢) may take dif-
ferent expressions (see [18] for more details). Here, we take
5r($) = |V

Based on the properties defined in Egs. (33) and (34), we
can approximate the integrals of g(x, 7) as

/ g(x,t)dV%/q’)g(x,t)dV,
Q Q

(35)
/ gx,ndV =~ /(1 —p)gx,0)dV,
Q, Q
/ glx,ndS ~ / g(x. n)|Veldv, (36)
r Q
/ glx,ndS ~ ¢gx,)dS,
09, 09,
37

/ glx,ndS ~ / (1 —-¢)gx,dS,
02p, 09

D2

where the Neumann boundary extension 0.(2;2 (respectively,
042, ,) represents an extension of €2, (respectively, 02, )
off T along the corresponding edge of £2. We localize the
integral to d<2;, (respectively, 0€2p,) by including the
phase field ¢ (respectively, 1 — ¢) in the boundary integral
in Eq. (37). Analogously, we define the Dirichlet boundary
extension 6.(2;’1 (respectively, 0!23 }) as an extension of 042,
(respectively, 0€2p, ,) off I' along the corresponding edge of
€. Finally, we can define the normal to I" as a function of ¢,
such that n = —V¢/|V¢|. We construct the tangent vector
T by rotating r by 90° in the counter-clockwise direction.

2.2.4 Diffuse-interface weak form of the Stokes-Darcy
problem

Using Egs. (35)-(37), we aim to approximate integrals in
the sharp-interface weak form (Eq. (27)). In Egs. (35)-(37),
the support of g(x,7) is 2. However, the support of the
Stokes—Darcy unknowns ug, pg, and pj, is £2g, Qg, and
£, respectively. To utilize Egs. (35)-(37) to approximate
the sharp-interface weak form, we need to consider the
unknowns whose support is £2. Thus, we define the diffuse-
interface unknowns ug(x, 1), pg(x, 1), and p{(x, f) whose sup-
port is £2. The diffuse interface unknowns ug(x, t)and p§(x, 1)
(respectively, py,(x, 7)) approximate ug and py (respectively,
pp) in &g (respectively, £),). The values of the diffuse-inter-
face unknowns ug(x,7) and p(x, 1) (respectively, p; (x,1))
far from I' in Qp(respectively, £),) are not relevant. Fur-
ther, there are several known quantities in Eq. (27) (such
as b) that are not completely supported in 2. We define the

diffuse-interface extensions b¢, 7, ug,, g and pg, whose sup-
port is in 2 and result from extending b, 7, i, @iy and p,
respectively off I" constant in the normal direction.

Next, we define the following forms where we approx-
imate the integrals in the sharp-interface weak form
(Eq. (27)) using the properties defined in Sect. 2.2.3:

Rus(w,u§,p§,pi),¢)=/92v¢Vw D Viusdv

—/dJ(V'W)Png—/dJW-b"’dV
Q0 Q0

- ow-£dS
0%,

Pp
+ [ —=w-n|V¢|dV
QP

+ [ o=@ 1)w-1)|Ve|dV,
R

(38)
R, (g5, ug, @) = / $qs(V - ug)dv, (39)
Q
R, (qp,us.pp. §) = /(1 - ¢)§qu - Vppdv
Q
+ / 1-9¢) qDﬁE) ds (40)
BQZ.Z

- / gpug -n|Ve|dVv.
Q

Here, we assume the fluid properties (v, p, k, 1) take con-
stant values. Otherwise, we should consider the extended
functions of these properties off I' constant in the normal
direction.

Finally, the diffuse-interface approximation of the
Stokes—Darcy problem can be stated as

Definition 5 Find (uS, pt, pS,) € H'(Q, ¢) X LX(2, §) x H!
(@2, 1 — ¢p)such that for all (w, g5, ) € H'(2, $) X L*(£2, ¢)
XH'(2,1- ¢)

R, w,ug,p§,pp,, &) + R, (g5, ug. ¢)

e e 41
+R, (GpouS py, ) = 0. @b

Further, the Dirichlet boundary conditions iteg and ﬁg are
strongly imposed on 08¢, and 04y, respectively.

Due to the non-zero value of ¢, the diffuse-interface weak
form (Definition 5) is not equivalent to the sharp-interface
weak form (Definition 3). Hence, the diffuse-interface solu-
tion u§ and pg (respectively, p;)) will only be approximately
equal to ug and pg (respectively, pp) in £2¢ (respectively,
£2p,). We call the discrepancy between the diffuse and sharp-
interface solutions the modeling error. The modeling error

@ Springer
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converges to zero when we refine €. More details on the
convergence rates of this error may be found in [31].

The coupling between the angiogenesis and the
Stokes—Darcy flow model is completed with the definition
of the multiphysics velocity u(x, t), with x € £, defined as

u = dus+ (1 - pus, (42)

where ¢ is computed with Eq. (30) and u}, is computed with
Eq. (21) considering pj, instead of pj,. The flow velocity u
affects the transport of TAF in the angiogenesis model. For
visualization purposes, we also define the multiphysics pres-

sure p(x, 1) as p = ¢ppp§ + (1 — p)ps,.

3 Numerical method
3.1 Implementation details

The phase field ¢ may display values slightly lower than —1
and larger than 1 due to numerical errors and the proliferation
term (see Eq. (1)). To limit the values of ¢(x, ) between 0 and
1, instead of using Eq. (30), we redefine ¢(c) as

¢ — max(c)

P*(c) =

" max(c) — min(c)’ 43)

where min(c) and max(c) are the minimum and maxi-
mum values of c(x,?) in Q. Equation (43) ensures that
¢*(x,t) € [0, 1] while keeping the characteristic tanh-profile
across the interface.

The diffuse-interface weak form of the Stokes—Darcy
problem (Definition 5) includes integrals that are zero over
large regions in €2 (e.g., the Jacobian of the residual R,
equals zero far from £2g, because ¢ = 0 far from £y). Due to
this effect, the numerical solution of Eq. (41) (see Sect. 3.3)
involves a linear system that is ill-conditioned. There are
different approaches to fix this issue. Here, we resort to a
regularization of the phase field ¢, such that ¢ and (1 — ¢)
never take the value 0, but values close to O that do not affect
the problem dynamics [31]. We define the regularized phase
field ¢, as

$e(0) = (1= 204" () + x, 44)

where ¢*(c) is defined in Eq. (43) and k = 107 is the regu-
larization parameter. We replace ¢(x, ¢) by ¢,.(x,¢) in the
diffuse-interface weak form of the Stokes—Darcy problem
(Eq. (41)). This procedure leads to linear systems with lower
condition numbers, while the dynamics of the Stokes—Darcy
problem are not affected.

The multiphysics velocity u represents the velocity of
the fluid in both intravascular and extravascular regions.
The intravascular flow velocity magnitude is significantly
higher than the extravascular flow magnitude. We use the
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multiphysics velocity solution to solve the angiogenesis
model (Eq. (16)). Due to the extreme variation in the mul-
tiphysics velocity magnitude, the numerical solution of Eq.
(16) (see Sect. 3.3) involves a nonlinear system with a high
condition number. This increases the simulation time. To
improve the speed of the simulation, we approximate the
flow velocity u in Eq. (16) as u = (1 — ¢)uj,. This approxi-
mation is justified as the TAF is almost exclusively located
in the extravascular region (see Fig. 7 a—c).

3.2 Stabilized weak form of the Stokes-Darcy
problem

The diffuse-interface weak form of the Stokes—Darcy prob-
lem (Definition 5) constitutes a saddle point problem. Thus,
we require the discrete spaces to satisfy the Ladyzhens-
kaya—Babuska—Brezzi (LBB) condition [33]. Due to the
inherent complexity of the diffuse-interface approximation
of the Stokes—Darcy problem, it is unclear which are the dis-
crete spaces that satisfy the LBB condition. To circumvent
this requirement, we incorporate stabilization terms into the
diffuse-interface weak form, based on the Galerkin Least
Squares (GLS) formulation [33]. We define the stabilized
diffuse-interface weak form of the Stokes—Darcy problem as

Rsp(W. 45, 4p. U, P§. Pys ©)
= R, w.ug.pg.pp. d.(c)
+ R, (g5, u5, ()
+R, (qp.u. pp, &, (c)) (45)

NE

+ Z / T61s(VP§ — 20V - (Viu$) — b)(Vgs
=17/,

-2V - (VW) (c)dV,

where ¢,.(c) is defined in Eq. (44), N, is the number of ele-
ments of the mesh, £, denotes the space occupied by ele-
ment e, and 7, ¢ is the stabilization parameter [34] defined
as

/’12
m.e
T = —, (46)
GLS =
where h, , is the size of the mesh element e. Since we use
a triangular mesh for the Stokes-Darcy equations, £, , is
defined as the radius of the circumcircle of element e.

3.3 Spatial and time discretization

We use Finite-Element Analysis to solve our flow-mediated
angiogenesis model. We implement a staggered algorithm to
solve the coupled problem. At each time step, we first solve
the angiogenesis problem considering a fixed velocity u, and
then, we use the updated vascular geometry to compute ¢,
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and solve the Stokes—Darcy problem. In the following para-
graphs, we provide more details about the staggered algo-
rithm and the spatial and time discretization.

3.3.1 Spatial discretization

We use two different spatial discretizations to solve the
Stokes—Darcy problem and the angiogenesis problem.

The spatial discretization of the Stokes—Darcy problem
(Definition 5) requires discrete solution and weighting func-
tion spaces that are a subset of H'(£2, ¢,.). We denote the dis-
crete solution (ug‘h , pg‘h , p;‘h) € W' and the discrete weight-
ing functions W", ¢, ¢%)) € W, where W is a discrete space
composed of first-order Lagrange basis functions. The dis-
crete diffuse-interface weak form of the Stokes—Darcy prob-
lem is obtained by replacing the unknowns and weighting
functions by their discrete approximations in Eq. (45).

The spatial discretization of the angiogenesis problem
(Definition 2) is more restrictive, since it requires discrete
solution and weighting function spaces that are a subset of
H*(£2). We solve the angiogenesis problem using Isogeo-
metric Analysis [35, 36], which is a generalization of the
Finite-Element Method that uses splines as basis functions.
We denote the discrete solution (¢, f7) € V" and the discrete
weighting functions (¢”, quf) €V, where V' is a discrete

space comprised of quadratic C'-continuous B-splines. The
discrete weak form of the angiogenesis problem is obtained
by replacing c, f, g, and g, by their discrete approximations
in Eq. (16).

Here, we use a uniform mesh composed of square ele-
ments to construct Vh, while we use a mesh composed of
triangular elements to construct ", In general, the triangle
mesh used in the Stokes—Darcy problem is coarser than the
square mesh used in the angiogenesis problem. Thus, we
exploit the capability of controlling the resolution of both
meshes independently to speed up the simulations.

To solve Eq. (16), we need the value of the multiphysics
velocity u at the Gaussian quadrature points of the elements
that comprise the quadratic B-spline mesh. We interpolate
these values using the solution vector of Eq. (45), which is
constructed using Lagrange basis functions of the triangular
mesh. We use a similar method to transfer the phase field ¢
from the quadratic B-spline mesh to the triangular mesh to
solve the Stokes—Darcy problem (Definition 5).

3.3.2 Time discretization

We divide the time interval of interest [0, 7] into N, time
steps (¢, 1,1 ), where T'is the final time of the simulation. We
denote the discrete solution of the Stokes—Darcy problem
and the angiogenesis problem at time 7, as (u%, p, pj,) and

(c",f™), respectively, where we removed the superscripts &
and e for the sake of simplicity. Assuming that we know
the discrete solution at time ¢,, namely (ug,pg,p’é, L fm,
we obtain the discrete solution at time 7,,,, namely
(ug“,pg“,p”D“, ™1 1), in the following way:

First, we solve the angiogenesis problem (Definition 2)
considering a fixed velocity # = ", which is calculated
using ¢" instead of ¢. We use the generalized-a method [37,
38] to solve the angiogenesis problem (more details about
the implementation in [13, 24]). We use the Newton—Raph-
son method to solve the nonlinear system of Eq. (16). Each
iteration of the Newton—Raphson algorithm involves the
solution of a linear system, which we carry out using the
GMRES method [39].

Second, we use the solution of the angiogenesis prob-
lem (¢!, f"*!) to compute ¢"*! following Eqs. (43) and
(44). We then take ¢>Z“ and solve the Stokes—Darcy prob-
lem (see Eq. (45)) to obtain the Stokes—Darcy solution
@i, pirt, pih). We use MUMPS [40] to solve the linear
equations of the Stokes—Darcy problem.

To speed up the simulations, we implement an adaptive
time stepping scheme, where the time step size (f,; —t,)
depends on the number of Newton—Raphson iterations used
to solve the angiogenesis problem (more details in [11]).

3.3.3 Computational Details

We use a combination of the FEniCS [41-46] comput-
ing platform and in-house research code to simulate the
flow-mediated anagiogenesis model. Each simulation in
sections 4.2 and 4.3 is performed using 64 cores. We ran
the simulations using a triangular mesh (used to build W")
with 128,954 elements for the flow problem and a quadratic
B-spline mesh (used to build V") with 256 x 256 elements
for the angiogenesis problem.

The parameter values used in the
lations are listed in Table 1. The values of
M, A, BO’ f}?’ DO’ fHYC’ Pf’ Uu’ Ud’ dox’ Cact> f;lcl’ dNarch and
Ry presented in Table 1 are estimated in [13]. Following
[15], we set the values for the chemotactic constant # and
the cut-off velocity G,,, such that nG,, equals the maximum
TEC velocity of 0.35 yum/s. The flow model parameters
(p, v, u and k) have been obtained from [47].

simu-

4 Results

In this section, we demonstrate the capabilities of the
flow-mediated angiogenesis model. We first validate the
Stokes—Darcy flow model by comparing the numerical solu-
tion with an exact manufactured solution on a rectangular
domain. Then, we present two numerical simulations of
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Table 1 Parameter values

Description Value References
M Mobility 1.002 x 10" cm? 57! [25]
A Interface width 1.25 yum [48]
B, Proliferation rate 4.987 x 10® mlng~'s7! [15]
5 TAF concentration for highest proliferation 54ngml~! [15]
D, TAF diffusion coefficient 1.002 x 1077 cm?s™! [49]
Suve Maximum TAF value 180ng ml™! [50, 51]
Py TAF production rate 6.410x 1072157 Numerical
U, Endothelial cell uptake rate 4.006 % 1071 157! Estimated
U, TAF natural decay 6.410x 1075 157! [52]
d,, Nutrient and oxygen diffusion length 25 ym [53, 54]
Chet TEC activation condition 0.9 [15]
Foet TEC activation condition 0.72 ng ml™! [25]
dnoteh Delta-Notch distance 80 ym [53, 54]
Rigc TEC radius 5 pm [55]
Ryyc Hypoxic cell radius 6.25 ym Estimated
n Chemotactic constant 0.243 ym?ng~! s~ ml™! [15]
Gy Cutoff value for TEC velocity 1.44 ng ml~! ym=! [15]
v Kinematic viscosity 3.1x 1070 m?s7! [47]
U Dynamic viscosity 3.1x 103 kgmls7! [47]
k Permeability 1.55 x 10714 m? [47]
P) Fluid density 1000 kg m~3 [47]
a Beavers-Joseph friction parameter 1073 Numerical
ﬂow-mediated' angiog.enesis where we explore the impact Ps(6,y) = Psos (48)
of flow on angiogenesis.
4.1 Flow model validation through a manufactured Pp(x,y) = pg exp(y) sin(x) + ppgo, (49)
solution where K is the hydraulic conductivity defined as K = %, g

Due to the complex nature of the coupled Stokes—Darcy
problem, we use the method of manufactured solutions
to validate our numerical formulation for the diffuse-
interface approximation of the Stokes—Darcy problem.
We define a sharp-interface Stokes—Darcy problem (Defi-
nition 3) with known solution by imposing appropriate
body forces and boundary conditions. We consider a rec-
tangular domain 2 = (0, 7) X (—1, 1), where the Stokes
domain is Q¢ =(0,7) X% (0,1), the Darcy domain is
Q5 = (0, 7) X (—1,0), and the interface is I = (0, #) x {0}.
For simplicity, the Stokes and Darcy domains are time-inde-
pendent. The exact solution of the manufactured problem,
(ug, ps.pp) € H' (2g) x L2(2¢) x H' (), is expressed as

Q) cos(x)

uglx,y)=| &

w(y) sin(x) |’ 7

. gy K ag\ ,
thw(y) = —K — & (———> ,
with w(y) w2 2
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is the acceleration due to gravity, py, is a constant, and the
rest of the parameters are introduced in Sect. 2.2. This solu-
tion results from setting the parameters values k = 1 and
v = lin the governing equations and imposing the manufac-
tured body force [56, 57]:

[_§ + (vK - %)y] cos(x)

b(x,y) =
ag g vK ag 2 .
[3 —2vK — Y+ <7 - R)y ] sin(x)

(50)

We solve the diffuse-interface approximation of the
Stokes—Darcy manufactured problem using the numerical
algorithm described in the previous sections. We consider a
phase field ¢ that is time-independent, with ¢ = 1in £ and
¢ = —1in ;. We compute c using the 1D steady state solu-
tion to the Cahn—Hilliard equation, as shown in [18]. The
phase field c is defined as

c=tanh(§>, (51)
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where the interface width e depends on the mesh, such that
€ = hy,., where A, is the maximum size of the mesh ele-
ments. We set the parameter values g=1,a =1, p=1,
and pg, = 1. We set Dirichlet boundary conditions on the
entire boundary. The top, left and right edges comprise the
extended Stokes boundary 0!2;‘1 and the bottom, left, and
right edges comprise the extended Darcy boundary 0.(231.
We obtain ug (respectively, pj,) by evaluating the manufac-
tured solution (Eqgs. (47)—~(49)) on 082 ; (respectively, 082p, ;)
and constantly extending the interfacial value along the edge
defined by 0.(2;,2 N £2, (respectively, 6(21‘5,1 N £24). We solve
the diffuse-interface approximation (Eq. (45)) of the manu-
factured problem using a uniform triangular mesh with mesh
size h,,. We show the simulation results for 4,, = 0.012 in
Fig. 3, where we plotted the multiphysics velocity u on the
left and the multiphysics pressure p on the right.

To study the convergence of our numerical algorithm, we
run simulations with decreasing mesh size £,,,. To validate the
performance of our algorithm, we need to compare the numer-
ical solution, namely (ug’h, pg’h, pg’h), with the exact solution to
the diffuse-interface approximation of the manufactured prob-
lem, namely (ug, pS, pj,)- Since we do not know (ug, pS, py,),
we instead estimate the numerical error using an error norm
based on weighted Lebesgue spaces (see Eq. 31) to compare
the numerical solution with the exact solution of the manufac-
tured problem. The relative error norms of the Stokes—Darcy
unknowns are defined below

v
||u§ - us||L2(QS,¢)

; (52)

eus =

||zeg ”LZ(QS)

751
h
Ips" = Psllizco
eps — S ( s¢)’ (53)
||Ps||L2(QS)
h
(128 = Pollre, 1-
epD — D (2p, ¢)’ (54)

lpp ”LZ(QD)

where (ug, pg, pp) is the exact solution of the manufac-
tured problem. We show the convergence of our numeri-
cal algorithm for the Stokes—Darcy problem in Fig. 4. The
figure shows the errors s €p, and €, which decrease with
decreasing mesh size #,,,,. Note that the interface width ¢
decreases at the same rate as the mesh size #,,,.. We observe
that the convergence rates are in good agreement with theo-

retical convergence rates [31].
4.2 Prominent vasculature growth against the flow

In this section, we demonstrate the effect of flow on angio-
genesis. To do that, we simulate a scenario similar to the
experiment carried out in [4]. In this experiment, capillaries
grow within an in-vitro microfluidic platform that simultane-
ously controls interstitial flow and TAF concentration. The
experiment shows that the vascular network grows more
prominently against the direction of the interstitial flow.
Here, we consider three different cases, namely, inflow,
outflow, and control. Figure 5 shows the geometry and
the flow model boundary conditions associated with the
control, inflow, and outflow simulations. The control case
corresponds to angiogenesis with no flow (Fig. 6). The

A2

Juf (ms™)

FEa

p (Pa)

Fig. 3 Manufactured Stokes—Darcy problem: Simulation results using a triangular mesh with element size &,, = 0.012. a Magnitude of the mul-
tiphysics velocity |u| with overlaid white streamlines. The arrows indicate the direction of u. b Distribution of the multiphysics pressure p
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Fig.4 Manufactured Stokes— 10°
Darcy problem: Convergence

of the relative error defined in

Egs. (52), (53), and (54) for the 10-1
Stokes velocity, Stokes pressure,

and Darcy pressure. The solid

lines with circular markers are S o
log-log plots of the error norm o
with decreasing mesh size 4,,. g
The circular markers denote ©
the error norm values obtained & 107

from the simulation results. The
dashed lines represent reference
trends of a first- and second- 107
order accurate algorithm -
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Fig.5 Geometry and boundary conditions for the control, inflow, and
outflow simulations: The initial capillary placement and the location
of the hypoxic cells are indicated in red and blue color, respectively.
The flow model boundary conditions for the inflow and outflow cases
are shown in green and purple color, respectively (color figure online)

inflow case represents a vein that is at a lower pressure
than the interstitium. Hence, fluid flows from the inter-
stitium into the vein (Fig. 7). The outflow case represents
an artery that is at a higher pressure than the interstitium
and, hence, fluid flows from the artery to the interstitium
(Fig. 8). To simulate the three cases, we consider a square
domain £ of size 428 x 428 ym. We initially consider a
20 pm-wide vertical capillary at the center of the domain
and hypoxic cells at the left and right sides of the domain,
as shown in Fig. 5.
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The control case has no flow, so we can disregard the
Stokes—Darcy problem. We consider the following bound-
ary conditions for the inflow and outflow cases. For the
Darcy equation, we consider a zero normal velocity i, = 0
at the top and bottom boundaries, while we impose a con-
stant Darcy pressure pj, on the left and right boundaries.
In particular, we take p,, = 0.75Pa for the inflow case and
Pp = —0.05Pa for the outflow case. For the Stokes equa-
tions, we impose a zero traction (# = 0) on the top bound-
ary and we impose the Stokes velocity &g on the bottom
boundary. We take ftg = [0, 100] um/s for the inflow case,
where we use the notation ﬁg = [ugyx, “g,y] with u;X and ug’y
representing the velocity components in the x- and y-direc-
tion respectively. We take &g = [0, 10] um/s for the outflow
case. Note that the Dirichlet boundary condition for the
Stokes equation (@) is imposed in the entire bottom
boundary, not only in the boundary section occupied by
the initial capillary. The phase-field formulation (Defini-
tion 5) naturally disregards the Stokes fluid flow outside
the capillaries. According to these boundary conditions,
fluid inside the initial capillary flows from the bottom to
the top for both inflow and outflow cases. We adjusted the
value of pj, so that the magnitude of the interstitial flow
velocity (up,) is approximately 0.1 pm/s, which is in agree-
ment with the experimentally observed interstitial flow [4].

The transport of TAF in the control case simulation is
facilitated by diffusion only. Figure 6 shows the effect of
diffusive transport on the TAF distribution and the result-
ing vasculature. We observe the length of new capillaries
protruding from the initial capillary is approximately equal
in the control case.

The inflow case unveils the underlying biophysics of
flow-mediated angiogenesis. We show the simulation
results of the inflow case in Fig. 7, where we plot the
TAF distribution and vascular geometry (top row), the
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to =~ 0 hrs t1 ~ 3.6 hrs

a)

Fig.6 Control case: The simulation shows vascular growth in the
absence of interstitial flow. Time evolution of the TAF distribu-
tion and the vascular network at times a f, ~ Oh, b ¢, = 3.6h, and

multiphysics velocity # (middle row), and the multiphys-
ics pressure p (bottom row). Note that the magnitude
of the intravascular flow is significantly larger than the
magnitude of the interstitial flow. Due to this reason, we
have employed a nonlinear color scale to visualize u in
Fig. 7d—f. The nonlinear color scale combines two linear
scales to separately capture the variation of u in extravas-
cular and intravascular regions. Figure 7d shows u at initial
time f,. We observe interstitial flow from the left and right
boundaries merging into the initial capillary (see arrows
in Fig. 7d). At time #; = 3.6h, multiple TECs have been
activated, creating new branches from the main capillary
(Fig. 7b). Compared to ¢, the multiphysics velocity u at
¢, 1s no longer a pure inflow pattern due to the presence of
new capillaries (compare Fig. 7d and e). The sprouting of
the new branches increases the pressure around the bottom
of the initial capillary (Fig. 7h and i), which causes local-
ized outflow from the initial capillary to the interstitium.

Figure 7a—c showcases the combined effect of TAF
advection and diffusion in the inflow case. Upon comparing
with the control case (Fig. 6), we observe increased TAF
concentration in the regions of high inflow velocity for the
inflow case (compare Figs. 6b and 7b). At time ¢, ~ 10h, we
observe that the new capillaries have significantly altered the
interstitial flow pattern (Fig. 7f). The final geometry of the
vascular network in the inflow simulation is different from
the control simulation (compare Figs. 6¢ and 7c). These
observations underscore the complex coupling between the
vascular network geometry and the interstitial flow.

We plot the simulation results of the outflow case in
Fig. 8. The inflow, outflow, and control case simulations
display different rates of vascular growth. At the final time
of the simulation (#, & 10h), the inflow case displays larger
new capillaries than the control case, and the control case

3 Hypoxic Cell
H Capillary
— 160.0
100
50
| 0.0
b) ' <)

to = 10 hrs

f (ngml™)

¢ t, % 10h. The red region represents the vascular network. The
hypoxic cells are marked with a blue outline in a (color figure online)

displays larger new capillaries than the outflow case (com-
pare Figs. 6c¢, 7c, and 8c). This trend is in agreement with
experiments [4]. Preferential capillary growth against the
flow is caused by the advective transport of TAF. Advective
transport of TAF toward the initial capillary is higher for the
inflow case. Thus, TAF arrives earlier at the initial capil-
lary, which provokes a faster TEC activation for the inflow
case. The results also show that TAF gradients at the TECs
are higher for the inflow case, which leads to larger TEC
velocities (see Eq. (11)). These two mechanisms combined
produce larger branches for the inflow case. The opposite
effects are observed for the outflow case.

4.3 Interstitial flow enhances vasculature growth
in a magnitude-dependent manner

In this section, we simulate a scenario similar to the experi-
ments performed in [3] where they investigated the effect of
interstitial flow and TAF concentration on micro-vascular
network formation. These experiments were conducted using
an in-vitro microfluidic device. The experiment showed that
the growth of the vascular network increases with increasing
interstitial flow magnitude.

Our goal is to reproduce this experimental observa-
tion by simulating flow-mediated angiogenesis in three
different cases, where we impose different inflow Darcy
velocities. We perform the simulations on a 428 X 428 pm
domain and place the initial capillary near the left edge
of the domain (see Fig. 9a). We place ten equally spaced
hypoxic cells near the right edge of the domain as shown
in Fig. 10a. Unless otherwise stated, the parameter values
used in this section are listed in Table 1. We modify the
TAF threshold for TEC activation to raccommodate for the
increased distance between the capillary and the hypoxic
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to ~ 0 hrs

g
-
h)

g)

Fig.7 Inflow case: The simulation shows vascular growth when fluid
flows from the interstitium into the capillary. Capillary growth is
more prominent against the flow. Time evolution of the a—c¢ TAF dis-
tribution and capillary network, d—f magnitude of multiphysics veloc-

cells [15], such that f, ., = 0.18 ng/ml. For the Stokes prob-
lem, we consider analogous boundary conditions as in the
previous section, i.e., zero traction on the top boundary
and a fixed inflow Stokes velocity l‘tg =[0,10] yum s~! on
the entire bottom boundary. For the Darcy problem, we
consider a zero normal Darcy velocity on the bottom, top,
and left boundaries. On the right boundary, we impose
a fixed inflow normal Darcy velocity i,. To analyze the
effect of the interstitial flow magnitude on angiogenesis,
we run three simulations with different values of #. In
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W

ity |u|, and g—i multiphysics pressure p at times f, = Oh, t; ~ 3.6h,
and #, ~ 10h. White lines in d—f represent streamlines of u and the
arrows indicate the direction of u. The hypoxic cells are marked with
a blue outline in a (color figure online)

particular, we consider low (i1, = —0.05 ym/s), medium
(#p = —0.075 um/s), and high (i1, = —0.1 ym/s) Darcy
velocity.

We plot the simulation results in Fig. 9, where the normal
Darcy velocity i, increases from bottom to top rows. The
results show that the length of the new capillaries at the final
time (#, & 11.5h) increases as i1, increases. Thus, vascular
growth is more prominent for higher interstitial flow magni-
tude, which is in qualitative agreement with experiments [3].
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to ~ 0 hrs

d)
)

h)

Fig.8 Outflow case: The simulation shows vascular growth when
fluid flows from the capillary network into the intertitium. Time evo-
lution of the a—c¢ TAF distribution and capillary network, d—f mag-
nitude of multiphysics velocity |u|, and (g—i) multiphysics pressure

We explain this behavior by comparing the growth of the
upper capillary for high and low &, (top and bottom rows,
respectively, in Fig. 9). Figure 10 shows the evolution of
TAF concentration with time for high ii;,. We note that the
results shown in Fig. 10 are indicative of the trend of TAF
distribution exhibited by medium and low ii;, and we will
utilize the trend of TAF distribution shown in Fig. 10 to
detail our reasoning.

ty &~ 10 hrs
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| | Capillary
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p at times 7, ~ Oh, ¢, ~ 3.6h, and 7, ~ 10h. White lines in d—f repre-
sent streamlines of # and the arrows indicate the direction of u. The
hypoxic cells are marked with a blue outline in a (color figure online)

First, we denote the center of the TEC driving the growth
of the upper capillary as x;, the magnitude of the TAF
gradient at x; as | Vf|,, the magnitude of the multiphys-
ics velocity at x; as uy, and the distance between x; and
the closest hypoxic cell as dy. The vascular growth rate of
the new capillaries is proportional to |Vf|, (see Eq. (11)),
which increases with (1) increasing u, and (2) decreasing
dy. Since TAF uptake by the vascular network is high, we
observe that the TAF concentration at x; is close to zero.
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t2 ~ 11.5 hrs

ap = —0.075 pm s~

0.2

ul(pm s71)
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Fig.9 Effect of the interstitial flow magnitude on vascular growth. shows the magnitude of the multiphysics velocity u, where the white
Simulation results for the boundary interstitial fluid flow #;, =-0.1 (a— lines are streamlines of # and arrows indicate the velocity direction.
The black contour line represents the outline of the capillary network

¢), —0.075 (d-f), and —0.05 pm/s (g-i) at times ¢, ~ Oh (left column),
t; = 5h (center column), and #, ~ 11.5h (right column). The figure (color figure online)
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Fig. 10 Effect of the interstitial flow magnitude on vascular growth.
Simulation results for inflow normal Darcy velocity at the boundary
i, = —0.1 ym/s. a—c shows the time evolution of TAF distribution at

a)

Thus, the TAF gradient inside the TEC is proportional to the
TAF concentration at the border of the TEC, which increases
with higher advective transport, i.e., higher u;. Likewise,
we observe that the TAF concentration at the hypoxic cell
is fuyc and has a quasi-linear distribution between the TEC
and the hypoxic cell. Hence, the TAF gradient between those
two cells and | Vf|, increase as the distance d; decreases.
Thus, capillary growth is faster as i, increases and TECs get
closer to the hypoxic cells. This behavior persists until TECs
reach the maximum speed determined by G,, (see Eq. (11)).
We observe this behavior in Fig. 9. At the initial time (%),
uy is higher for higher i, while d; is the same in the three
simulations. Thus, new capillaries grow faster for higher
iy, (top row in Fig. 9) due to higher u;. As the simulation
evolves, the distance d; decreases faster for larger i}, (com-
pare Fig. 9b and e), which provokes a positive feedback that
accelerates vascular growth for higher #,,. These two com-
bined factors provoke a faster capillary growth for higher
interstitial flow (compare Fig. 9c, f, and i) as long as TAF
gradients are below the limit G,, for maximum TEC speed.

5 Conclusion

The impact of intravascular and interstitial flow on tumor
angiogenesis is not well understood. Several experiments
have suggested that shear stress and flow velocity affect
crucial events in angiogenesis, such as the TEC sprouting
location, TEC velocity, and anastomosis. The design of
experiments in flow-controlled and TAF-controlled condi-
tions to study flow-mediated angiogenesis is challenging.
In silico investigation bypasses some of the experimental
challenges and has the potential to unveil the tight inter-
play between capillary growth and vascular flow in some
scenarios. However, previous modeling efforts resorted to

t1 ~ 5 hrs

ty ~ 11.5 hrs

0 Hypoxic Cell
[l Capillary
— 1700
— 150
100
50 o
00
<)

times 7, ~ Oh (a), #; & S5h (b) and #, & 11.5h (¢). The hypoxic cells
are marked with a blue outline in a (color figure online)

ng ml~?

simplified flow models to reproduce intra- and extravascular
flow on changing capillary geometries [11-13, 58]. In this
work, we develop a computational model of flow-mediated
angiogenesis which accurately predicts flow on temporally
evolving vascular networks. Our model couples the angio-
genesis model proposed in [15] with the Stokes—Darcy flow
equations and uses the phase-field method to capture the
time-evolving geometry of the vessels. Built on the phase-
field method, we derive a diffuse-interface formulation for
both the angiogenesis and the Stokes—Darcy equations which
avoids the computational cost of re-meshing, as opposed to
other sharp-interface methods. We demonstrate the validity
of the flow model by comparing the numerical solution to a
manufactured test case. We find that the convergence rate of
the weighted error norm of the solution is in good agreement
with theoretical results.

Our modeling framework successfully reproduces intra-
and extravascular flow on growing vascular networks. Our
simulation results show that the convective transport of TAF
has a significant impact on the shape of the vasculature.
Thus, our model offers a fluid-dynamics explanation for the
prominent growth of vasculature against the flow direction
observed in experiments in [4]. Further, our model predicts
enhanced vasculature growth with increasing interstitial
flow magnitude, which was observed experimentally in [3].
Our results suggest that the dominant mechanism behind
the observed trend is the dependence of TEC velocity mag-
nitude on the TAF gradient. The simulations indicate that
higher interstitial flow leads to an increased TAF gradient
at the TEC, which causes the observed trend.

In future work, we plan to integrate various flow-based
biophysical cues into our modeling framework and investi-
gate their effect on angiogenesis [3—10]. We are particularly
interested in the effect of shear stress on the capillary sprout-
ing location [6, 8, 10]. We believe that the coupling between
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the sprouting mechanism, the fluid flow, and the vasculature
growth will yield interesting insights into the biophysics of
tumor angiogenesis. Our model can be further improved in
several ways. For instance, the model can be extended with
the evolution equations for the nutrients and oxygen that
control the irrigation of the hypoxic cells, as shown in [59].
This would lead to a more accurate representation of the
TAF-production decay of the hypoxic cells. Another pos-
sible improvement to the intravascular model is to include
the shear thinning behavior of blood.
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