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 Steady-State Social Distancing and Vaccination†

By Christopher Avery, Frederick Chen, and David McAdams*

This paper analyzes an  economic-epidemiological model of infec-
tious disease where it is possible to become infected more than once 
and individual agents make endogenous choices of social distancing 
and vaccine adoption. Protective actions adopted by any one per-
son reduce future risks to other people. The positive externalities 
associated with these behaviors provide motivation for vaccine and 
 social-distancing subsidies, but subsidizing one protective action 
reduces incentives for other protective actions. A vaccine subsidy 
increases vaccine adoption and reduces  steady-state infection prev-
alence; a  social distancing subsidy can either increase or reduce 
 steady-state infection prevalence. (JEL D62, D91, I12, I18)

The  COVID-19 pandemic sparked renewed interest in the economics of infec-
tious disease.1 Given the prevailing initial view that prior infection provided lasting 
immunity against future infection, most  COVID-related papers have focused on the 
“ Susceptible-Infected-Recovered” (SIR) model. During the course of the pandemic, 
however, it has become apparent that it is possible to contract COVID more than 
once, both because of waning immunity and the development of new pathogen vari-
ants (Giannitsarou, Kissler, and  Toxvaerd 2021). In a recent editorial, Columbia 
professor Jeffrey Shaman discussed the possible transition of  COVID-19 from pan-
demic to endemic phase.2

Motivated by this background, we consider a “ Susceptible-Infected-Recovered- 
Susceptible” (SIRS) epidemiological model in which recovered agents eventually 
become susceptible to  reinfection. As suggested by Peltzman (1975), a central chal-
lenge for disease control is that incentivizing one protective action decreases incen-
tives for other protective actions. We therefore augment the SIRS epidemiological 
model with a  game theoretic model in which each individual has the  opportunity to 

1 Recent surveys include Avery et al. (2020); McAdams (2021); and Bloom, Kuhn, and Prettner (2022). See also 
Philipson (2000); Gersovitz and Hammer (2003); and Fenichel et al. (2011). 

2 Jeffrey Shaman, “What Will Our Covid Future Be Like? Here Are Two Signs to Look Out For,” New York 
Times, March 4, 2022, https://www.nytimes.com/2022/03/04/opinion/endemic-covid-future.html.
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mitigate risk through social distancing or vaccination. Our theoretical framework 
yields a unique  steady-state Nash equilibrium, which facilitates analysis of policy 
interventions such as vaccine subsidies or mandates and highlights the simple eco-
nomics underlying the dynamics of infectious disease. In particular, individuals 
make  cost-benefit trade-offs for risk mitigation, the equilibrium level of vaccine 
adoption is determined by familiar supply and demand dynamics, and some compar-
ative static results turn on the elasticity of demand for vaccination.

The paper is most closely related to several previous studies: Chen et al. (2011); 
Chen (2012); and Toxvaerd (2019) conduct equilibrium analysis in a “Susceptible-
Infected-Susceptible” (SIS) model with endogenous social distancing; Reluga and 
Galvani (2011) study equilibrium adoption of vaccination in an SIS model; Chen 
(2006) and Chen and Cottrell (2009) study incentives for vaccination and abstinence 
to reduce the risk of contracting HIV; Rowthorn and Toxvaerd (2020) study the opti-
mal timing and trade-offs between treatment and vaccination in an SIS model.

The paper proceeds as follows. Section II describes the model. Section III provides 
 steady-state equilibrium analysis with endogenous social distancing and exogenous 
vaccination, including the case when no vaccine is available. Section IV expands the 
equilibrium analysis to allow for both endogenous vaccination and social distancing 
and also considers the effects of policy applications such as subsidies and vaccine 
mandates. Section V concludes.

I. The Model

We consider an  economic-epidemiological model of an endemic infectious dis-
ease, combining an  SIRS model of epidemiological dynamics with an economic 
model in which agents make  individually optimal decisions regarding personal 
social distancing and whether to get vaccinated.

A. Epidemiological Framework 

An endemic infectious disease circulates among a fixed population of agents 
having unit mass. At each point in time  t ∈ ℝ , each agent is either susceptible 
( S ), infected ( I ),  recovered and immune ( R ), or vaccinated ( V ) and knows their 
health status. Let  S (t)  ,  I (t)  ,  R (t)  , and  V (t)  , respectively, be the mass of susceptible, 
infected,  recovered and immune, and vaccinated agents at time  t . We refer to  I (t)   as 
the “infection prevalence” at time  t . Each susceptible agent  i  becomes infected once 
exposed to an infected agent, which occurs at rate  β I (t)  [1 −  x i   (t) ]  , where  β > 0  
is the transmission rate and   x i   (t)  ∈  [0, 1]   is agent  i ’s chosen level of social distanc-
ing. Infected agents recover at rate  γ > 0  and then enjoy immunity from infection 
for known length of time   t R   ≥ 0 , after which they return to the susceptible state. 
Similarly, a  newly vaccinated agent is immune for a known length of time   t V   > 0 , 
at which point they may choose to renew their vaccination.

For analytical simplicity, we focus on settings where the mass of vaccinated 
agents is constant over time; that is,  V (t)  = V  for all  t . In Section II,  V  is treated 
as an exogenous parameter. In Section  III,  V  emerges endogenously as the mass 
of agents who choose to become and remain vaccinated in  steady-state Nash  
equilibrium.
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At each point in time, there is a flow of agents into the infected state as suscep-
tible people are exposed and become infected, a flow into the  temporarily immune 
state as infected people recover, and a flow into the susceptible state as recovered 
people lose their temporary immunity. Epidemiological dynamics for the system as 
a whole are governed by two differential equations:

(1)  I′ (t)  = β I (t)  [1 − x (t) ] S (t)  − γ I (t)  ,
(2)  R′ (t)  = γ I (t)  − γ I (t −  t R  )  ,
plus the  adding-up condition that  S (t)  + I (t)  + R (t)  = 1 − V , where  x (t)   is aver-
age social distancing of susceptible agents at time  t . (In equation (2),  γ I (t −  t R  )   is 
the flow of agents returning to susceptibility at time  t  after having been immune for 
length of time   t R   .)

If  β (1 − V)  ≤ γ , then each infected person exposes less than one unvaccinated 
person on average even without social distancing and  I (t)   necessarily falls toward 
zero over time. We focus on the case when  V < 1 − γ/β , creating the potential for 
persistent disease transmission.

B. Economic Model

Each agent seeks to minimize the expected present value of lifetime costs of 
sickness, social distancing, and vaccination. All agents discount future payoffs at 
discount rate  r > 0 . Infected agents incur flow cost  d > 0  due to the disease. 
Susceptible agents who choose social distancing  x  incur flow cost  c (x)   from fore-
gone activity. We identify several properties of  c (x)   that arise from principles of 
 time-use optimization:

•  c (0)  = c′ (0)  = 0 . Absent any fear of infection, people engage in ordinary 
activity ( x = 0 ) and are indifferent at the margin whether to increase or 
decrease activity.

•  c′ (x)  > 0  and  c″ (x)  > 0 . Since people can prioritize activities according to 
benefit per unit time, optimal social distancing forgoes the least valuable activ-
ities first.3

Let   C h   (t)   be the expected lifetime cost for unvaccinated agents upon entering 
health status  h ∈  {S, I, R}  .4 Upon recovery from infection, an agent enjoys immu-
nity and incurs no costs for length of time   t R   ≥ 0  before returning to the susceptible 
state. Thus,

(3)   C R   (t)  =  e   −r t R     C S   (t +  t R  ) . 
3 Toxvaerd (2019) analyzes a related model and produces results similar to Proposition 1 and Corollary 2 with 

linear rather than  strictly convex costs of social distancing.
4 Agents’ expected lifetime costs at time  t  depend on the subsequent epidemic trajectory. Our analysis is sim-

plified by the fact that we focus on steady states where infection prevalence and  susceptible-agent social distancing 
are constant.
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While infected, agents incur flow cost  d  from the disease and recover at rate  γ , at 
which point their subsequent expected lifetime cost changes from   C I   (t)   to   C R   (t)  . 
Thus,

(4)   C  I  ′  (t)  = −d + γ [ C I   (t)  −  C R   (t) ]  + r  C I   (t) . 
Voluntary Social Distancing.—A susceptible agent  i  who chooses social dis-

tancing   x i   (t)   incurs flow cost  c ( x i   (t) )   and transitions to the infected state at rate  
 β I (t)  [1 −  x i   (t) ]  . Given   C S   (t)   and   C I   (t)  , such an agent chooses   x i   (t)   to minimize  
 c ( x i   (t) )  + β I (t)  [1 −  x i   (t) ]  [ C I   (t)  −  C S   (t) ]  , trading off the current cost of social dis-
tancing versus the benefit of avoiding infection. A susceptible agent’s dynamic pro-
gramming problem is given by ( 3–4) and

(5)   C  S  ′   (t)  = −  min  
x∈ [0,1]    {c (x)  + β I (t)  (1 − x)  [ C I   (t)  −  C S   (t) ] }  + r  C S   (t) . 

(A detailed derivation of susceptible agents’ optimization problem is given in online 
Appendix C.)

Voluntary Vaccination.—In Section III with endogenous vaccination, each agent  i  
is modeled as having a random cost of vaccination   c iV   , drawn iid across agents from 
a distribution with support   [0,   c –  V  ]  ,5continuous pdf  f  ( · )  , and cdf  F ( · )  . Vaccination 
provides full protection from infection for period of time   t V   , after which agent  i  
becomes susceptible and may be vaccinated again at additional cost   c iV   .

II.  Steady-State Equilibrium with Exogenous Vaccination

In this section, we characterize the set of  steady-state equilibria, taking the mass  
V  of vaccinated agents as exogenous and small enough to allow for persistent dis-
ease transmission; that is,  0 ≤ V < 1 − γ/β . We have three main findings. First, 
a  steady-state equilibrium exists and is unique. Second, any policy that reduces the 
cost of social distancing or that increases the fraction of the population that is vac-
cinated will result in strictly fewer infections in the new  steady-state equilibrium. 
Third, an increase in social distancing from the  steady-state equilibrium level unam-
biguously increases social welfare in the special case without temporary immunity 
(  t R   = 0 ) but need not do so if   t R   > 0 .

In a  steady-state equilibrium, the percentages of people in each state   {S, I, R, V}   
and the  individually optimal  social distancing level for susceptible agents are con-
stant over time.

5 Our analysis with endogenous vaccination is easily extended to a richer setting in which some agents have 
negative vaccination cost.
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DEFINITION 1: A  steady-state equilibrium with exogenous vaccination level  
0 ≤ V < 1 − γ/β  is characterized by infection prevalence   I   ∗  ,  temporary immu-
nity level   R   ∗  , and  susceptible-agent social distancing   x   ∗   such that

 (i)   ( I   ∗ ,  R   ∗ ,  x   ∗ , V)   satisfies the  steady-state conditions  I′ (t)  = 0  and  R′ (t)  = 0 , 
which require that   R   ∗  = γ  t R    I   ∗   and

(6)  β (1 −  x   ∗ )  (1 −  I   ∗  − γ  t R    I   ∗  − V)  = γ. 
 (ii)   x   ∗   is individually optimal for susceptible agents in this steady state.

Let   x   ∗  (I)   be the  individually optimal  social distancing level for susceptible agents 
in the steady state with infection prevalence  I . Let   C  S  ∗  (I)   and   C  I  ∗  (I)  , respectively, 
denote the  steady-state values of   C S   (t)   and   C I   (t)   for an agent who chooses the 
 individually optimal  social distancing level   x   ∗  (I)   whenever susceptible in the steady 
state with infection prevalence  I . By ( 3–5),

(7)   C  I  ∗  (I)  =   d + γ  e   −r t R     C  S  ∗  (I)   ____________ γ + r  , 

(8)   C  S  ∗  (I)  =   c ( x   ∗  (I) )  + β I [1 −  x   ∗  (I) ]  C  I  ∗  (I)    _____________________   β I [1 −  x   ∗  (I) ]  + r  . 

Combining (7) and (8) gives

(9)   C  S  ∗  (I)  =    (γ + r) c ( x   ∗  (I) )  + β I [1 −  x   ∗  (I) ] d
   ______________________________    β I [1 −  x   ∗  (I) ]  (γ + r − γ  e   −r t R   )  + r (γ + r)   . 

The  first-order condition for  individually optimal social distancing   x   ∗  (I)   in a 
steady state with infection prevalence  I  is

(10)  c′ ( x   ∗  (I) )  = β I [ C  I  ∗  (I)  −  C  S  ∗  (I) ] , 
where   C  I  ∗  (I)  −  C  S  ∗  (I)   can be interpreted as the “harm of becoming infected” 
for a susceptible agent. Replacing   x   ∗  (I)   with  x = 0  in (8) gives the bound  
  C  S  ∗  (I)  ≤ β I   C  I  ∗  (I) / (β I + r)  , so   C  S  ∗  (I)  <  C  I  ∗  (I)  , which implies that   x   ∗  (I)  > 0  for 
each  I  by properties of  c ( · )  .

With no social distancing (  x   ∗  = 0 ),  steady-state infection prevalence would 
be   (1 − V − γ/β) / (1 + γ  t R  )  > 0  by (6) and because  c′ (0)  = 0 , susceptible 
agents would not choose  x = 0 , a contradiction. Similarly, complete social distanc-
ing   x   ∗  = 1  would eliminate the disease and induce susceptible agents to choose 
full activity, another contradiction. Thus, there is partial social distancing ( 0 <  
x   ∗  < 1 ) and the  first-order condition (10) holds with equality in any  steady-state 
equilibrium.

An increase in infection prevalence directly increases the marginal benefit of dis-
tancing for susceptible agents. Yet, a susceptible agent who avoids being infected at 
any given instant (“now”) faces a higher risk of being infected later, so an increase 
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in infection prevalence indirectly reduces the marginal benefit of distancing. If this 
indirect effect were stronger than the direct effect, an increase in infection  prevalence 
would reduce the incentive of susceptible agents and create the potential for multi-
ple equilibria. Proposition 1 rules out this possibility.6

PROPOSITION 1: For each  V < 1 − γ/β , there is a unique  steady-state equilib-
rium with exogenous vaccination and associated infection rate   I   ∗  (V)  > 0 .

PROOF:
For convenience, define

(11)   C S   (I, x)  ≡    (γ + r) c (x)  + β I (1 − x) d
   __________________   β I (1 − x) θ + r (γ + r)   , 

where  θ = γ + r − γ  e   −r t R    .   C S   (I, x)   is the expected lifetime cost incurred by a sus-
ceptible agent in the steady state with infection prevalence  I  who chooses  social 
distancing level  x  whenever susceptible. First, we show that there is a unique  x  that 
minimizes   C S   (I, x)   for any given  I . Using the quotient rule,

(12)    ∂  C S   (I, x)  _ ∂ x   =  { [ (γ + r) c′ (x)  − β I d]  [β I (1 − x) θ + r (γ + r) ]  
 + β I  θ [ (γ + r) c (x)  + β I (1 − x) d] } /  [β I (1 − x) θ
 + r (γ + r) ]    2 . 
Using (11) to substitute for the last term in the numerator,

(13)    ∂  C S   (I, x)  _ ∂ x   =    (γ + r) c′ (x)  − β I d + β I  θ   C S   (I, x)    ______________________   β I (1 − x) θ + r (γ + r)   . 
If  ∂  C S   (I, x) /∂ x = 0 , the numerator of (13) is zero and so, by the quotient rule,  
  ∂    2   C S   (I, x) /∂  x   2   takes the same sign as   (γ + r) c″ (x)  , which is positive since  c  is 
strictly convex. Thus,  ∂  C S   (I, x) /∂ x = 0  implies that   ∂    2   C S   (I, x) /∂  x   2  > 0  and hence  
  C S   (I, x)   has a unique minimum in  x  for each  I . Moreover, the properties of  c (x)   and   
C S   (I, x)   imply that this solution   x   ∗  (I)   is continuous and positive for all  I > 0 .

Next, we show that   x   ∗  (I)   is strictly increasing in  I  so long as   x   ∗  (I)  < 1 . The 
 first-order condition  ∂  C S   (I, x) /∂ x = 0  can be rewritten as

(14)  c′ (x)  =   β I [d − θ   C S   (I, x) ]   _____________  γ + r  . 

6 Multiple  steady-state equilibria can exist in richer models with economic complementarities of activity (McAdams, Song, and Zou 2023) or with transmission crowding effects (Chen 2012). 
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From (11),

(15)  θ   C S   (I, x)  =    (γ + r) c (x)  + β I (1 − x) d
   __________________   β I (1 − x)  +   r _ θ    (γ + r)   . 

Thus,

(16)  d − θ   C S   (I, x)  =    (γ + r)  [  r d _ θ   − c (x) ]   _______________  β I (1 − x)  +   r _ θ    (γ + r)   . 
Multiplying both sides by  β I ,

(17)  β I [d − θ  C S   (I, x) ]  =    (γ + r)  [  r d _ θ   − c (x) ]   _____________   (1 − x)  +   r _ β θ     γ + r
 _ I    . 

By (12),  ∂  C S   (I, x) /∂ x < 0  at  x = 0 ; so,   x   ∗  (I)  > 0  and (14) implies that  
 d − θ   C S   (I,  x   ∗  (I) )  > 0  for any  I > 0 . Thus, for each  I  and  x =  x   ∗  (I)  , the  left-hand 
side of (17) is positive and hence the  right-hand side of (17) must also be positive. 
The only term on the  right-hand side of (17) that varies with  I  is   (γ + r) /I . Holding  
x  fixed at   x   ∗  (I)  , a slight increase in  I  yields an increase in the marginal value of social 
distancing; that is, the marginal benefit of social distancing is now greater than its 
marginal cost at  x =  x   ∗  (I)  . Since   C S   (I, x)   has a unique minimum in  x  for each  I  and  
 c ( · )   is strictly convex, we conclude that   x   ∗  (I)   is strictly increasing in  I  so long as  
  x   ∗  (I)  < 1 . (Depending on disease severity  d , there may be an infection level   I 

–
   such 

that   x   ∗  (I)  = 1  for all  I ≥  I –  . But such high infection levels cannot be sustained in 
any  steady-state equilibrium since then susceptible agents would isolate themselves 
completely and there would be no new infections, a contradiction.)

To complete the proof of Proposition 1, we show that there is a unique  I  that 
supports a  steady-state equilibrium. Let  g (I)   denote the net expected flow into the 
infected state per infected agent in the steady state with infection prevalence  I . 
By (1),  g (I)  = β [1 −  x   ∗  (I) ] S − γ , where  S = 1 − I − R − V  and  R = γ  t R   I . 
In any  steady-state equilibrium,  g (I)  = 0  by (6). Given that   x   ∗  (0)  = 0  and our 
maintained assumption that  V < 1 − γ/β , we have  g (0)  > 0 . On the other hand,  
 g ( (1 − V) / (1 + γ  t R  ) )  = −γ < 0 . Since   x   ∗  (I)   is continuous and strictly increas-
ing in  I ,  g (I)   is continuous and strictly decreasing in  I . Thus, there is a unique  
  I   ∗  ∈  (0,  (1 − V) / (1 + γ  t R  ) )   that solves  g ( I   ∗ )  = 0 . ∎
 Example 1: Suppose that  V = 0, β = 3, d = 1, γ = 1,  t R   = 20, c (x)  = 0.05  
x   2   , and  r = −ln (0.95)  .7

7 These parameter values have been chosen to be roughly in line with  SARS-CoV-2 in 2020. Liu et al. (2020) 
estimate a basic reproduction number   R 0   = β/γ  of around 3. Cevik et al. (2021) estimate length of contagiousness 
as about ten days, normalized to  1/γ = 1 . Our choice of   t R   = 20  means that adaptive immunity lasts 20 times 
longer than contagiousness—that is, a bit more than six months—consistent with the low end of the estimate range 
in Milne et al. (2021). Of course, given the complexity of  SARS-CoV-2’s biology and the emergence of numer-
ous variants (Liu and Rocklöv 2022), one should not interpret any of the numerical exercises here as being about 
 SARS-CoV-2 specifically. 
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In a  steady-state equilibrium, the flow of new infections (dashed line in Figure 1, 
panel A) must equal the flow of recoveries (solid line in Figure 1, panel A). Figure 1, 
panel A compares these flows in Example 1 for any given  steady-state infection 
prevalence  I , accounting for how susceptible agents’ optimal  social distancing 

Figure 1. Steady-State Equilibrium

0

1

2

3

4

0 1 2 3 4

P
ro

po
rt

io
n 

of
 p

op
ul

at
io

n 
pe

r 
un

it 
tim

e 
(pe

rc
en

t)

Stationary infection prevalence (percent)

Expected flow
of new infections 

Expected flow
of recoveries

0

0.5

1

1.5

2

2.5

3

3.5

4

0 30 60 90 120 150

In
fe

ct
io

n 
pr

ev
al

en
ce

 (p
er

ce
nt

)

Time (each unit equals ten days)

A

Panel A. New infections versus new recoveries given any stationary infection 
prevalence

Panel B. Infection-prevalence trajectory leading to the steady-state equilibrium



9AVERY ET AL.: STEADY-STATE SOCIAL DISTANCING AND VACCINATIONVOL. 6 NO. 1

intensity   x   ∗  (I)   varies with  I .8 The unique  steady-state equilibrium corresponds to 
Point  A , with stationary infection prevalence approximately equal to 2.226 percent.9

Figure 1, panel B illustrates an equilibrium epidemic trajectory in Example 1, 
starting from low infection prevalence 0.01 percent and eventually converging to the 
 steady-state level. After an initial increase of infection prevalence to the  steady-state 
level, there are fewer immune agents and more susceptible agents than in the steady 
state, so the infection trajectory “overshoots” the  steady-state level and then gradu-
ally converges, as shown in Figure 1, panel B.

Figure 1, panel A suggests two corollaries that follow almost immediately from 
the proof of Proposition 1.

COROLLARY 1: Any exogenous increase in (perfect) vaccination strictly reduces 
the infection prevalence in the unique  steady-state equilibrium.

PROOF:
Vaccination reduces the size of the susceptible population but has no effect on   

x   ∗  (I)  , the  individually optimal level of social distancing given stationary infec-
tion prevalence  I . An exogenous increase in vaccine adoption therefore shifts the 
 new-infection curve down, while having no effect on the  new-recovery curve. Thus,  
g (I)   strictly declines for each  I  as a result of an exogenous increase in vaccination, 
which in turn causes a reduction in the value of  I , satisfying the  steady-state equilib-
rium condition  g (I)  = 0 . ∎
COROLLARY 2: A reduction in the cost of social distancing from  c (x)   to   c 1   (x)   where   
c 1   (0)  =  c  1  ′   (0)  = 0  and   c  1  ′   (x)  <  c ′   (x)   for each  x > 0  reduces the  steady-state 
equilibrium infection prevalence.

PROOF:
By (16), the  first-order condition  c′ (x)  =  {β I [d − θ   C S   (I, x) ] } / (γ + r)   for 

 individually optimal social distancing can be written as

(18)  c′ (x)  =   β I [  r d _ θ   − c (x) ]   _______________  β I (1 − x)  +   r _ θ    (γ + r)   . 

Note that the marginal value of social distancing declines with  c (x)   for each   (x, I)  . Since the marginal cost of social distancing is lower and the marginal 
value of social distancing is greater with   c 1   (x)   than with  c (x)  ,   x  1  ∗  (I)  >  x   ∗  (I)   
for each  I . This shifts the  new-infection curve down and to the left, yield-
ing a reduction in equilibrium  steady-state infection prevalence as in 
Corollary 1. ∎

8 When  social distancing costs are quadratic as in Example 1, equations ( 7)–(10) imply that in any  steady-state 
equilibrium, (i)   C  I  ∗  (I)   and   x   ∗   are each linear functions of   C  S  ∗  (I)   and (ii)   C  S  ∗  (I)   is the solution to a quadratic equation. 
See online Appendix A for details.

9 Online Appendix B provides all numerical details for Example 1, including how we approximated the equi-
librium trajectory in Figure 1, panel B (using a  backward-shooting algorithm as in Farboodi, Jarosch, and Shimer (2021)) and the  steady-state equilibria in Figure 1, panel A; Figure 2; and Figure 3, panels A and B.
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Infection Prevalence and Social Welfare.— Let  B (I)   denote the “burden of 
the disease,” the aggregate lifetime costs of the entire population, in the steady 
state with infection prevalence  I .10 Expected lifetime costs are   C I   (I)   for mass  
I  of infected agents;   C S   (I)   for mass  S = 1 − V −  (1 + γ  t R  ) I  of suscepti-
ble agents;   e   −rs   C S   (I)   for  temporarily immune agents who have  s ∼ U [0,  t R  ]   
time remaining until they return to being susceptible again;11and zero for mass  V  of 
vaccinated agents. Overall,

(19)  B (I)  ≡ I   C I   (I)  +  [1 − V −  (1 + γ t R  ) I]  C S   (I)  + γ I  ∫ 
0
   t R      e   −rs  ds   C S   (I) . 

Given that there are positive externalities for social distancing (because avoiding 
infection indirectly protects others), one might expect underprovision of social dis-
tancing in equilibrium so that the  steady-state infection prevalence is higher than 
the social optimum. We show that this is indeed true (i.e.,  B′ ( I   ∗ )  > 0 ) if recovered 
agents are immediately susceptible to reinfection (Proposition 2) but not in general 
with temporary immunity (Example 2).
PROPOSITION 2: Suppose that   t R   = 0  so that recovered agents are not temporar-
ily immune. Then  B′ ( I   ∗ )  > 0 .

PROOF:
Define  I (x)   to be the prevalence  I  that satisfies the  steady-state condition  

 β (1 − x)  [1 −  (1 + γ  t R  ) I]  = γ . Note that   I   ∗  = I ( x   ∗ )  , where   x   ∗   is susceptible 
agents’ social distancing in the unique  steady-state equilibrium. We can express the 
burden of the disease in (19) equivalently as a function of social distancing  x :

  B (x)  ≡    I (x)  [  d + γ  e   −r t R     C S   (I (x) , x)   _______________  γ + r  ]    


     
infected agents

   

 +    [1 − V −  (1 + γ  t R  ) I (x) ]  C S   (I (x) , x)          
susceptible agents

    +   γ I (x)  ( ∫ 
0
   t R      e   −rs  ds)  C S   (I (x) , x)    


    

currently immune agents

   . 

Since  I′ (x)  < 0 , we need to show that  B′ ( x   ∗ )  < 0  in the case when   t R   = 0 . The 
derivative  B′ (x)   can be usefully decomposed into four terms:

(20)   B′ (x)  =  (A)    ∂  C S   (I (x) , x)   _ ∂ x   

(21)  + I′ (x)  (A)    ∂  C S   (I (x) , x)   _ ∂ I   
(22)  + I′ (x)  [  d _ γ + r   +   γ _ γ + r    e   −r t R     C S   (I (x) , x)  −  C S   (I (x) , x) ]  

10 In this steady state, susceptible agents choose social distancing   x SS   (I)  ≡ 1 −  (γ/β) / [1 − V −  (1 + γ  t R  ) I]   
by (6) and hence incur flow cost  c ( x SS   (I) )   while susceptible.

11 Because there is a constant flow of agents into the recovered state, the amount of time since recovery for a 
 randomly selected agent still in that state is uniformly distributed on   [0,  t R  ]  . 
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(23)  + I′ (x)  [γ  C S   (I (x) , x)  ( ∫ 
0
   t R      e   −rs  ds −  t R  ) ] , 

where

  A ≡ I (x)    γ _ γ + r    e   −r t R    +  [1 − V −  (1 + γ  t R  ) I (x) ]  + γ I (x)  ( ∫ 
0
   t R      e   −rs  ds)  > 0. 

The term in (20) is zero at  x =  x   ∗   because  ∂  C S   ( I   ∗ ,  x   ∗ ) /∂ x = 0  due to suscep-
tible agents’ individual optimization in the  steady-state equilibrium. The term in 
(21) is negative at  x =  x   ∗   because  I′ (x)  < 0  for all  x  and  ∂  C S   (I (x) , x) /∂ I > 0  at  
 x =  x   ∗   (see online Appendix E for a proof of the latter inequality). The term in 
(22) is negative at  x =  x   ∗   because  d/ (γ + r)  + γ  e   −r t R     C S   (I (x) , x) / (γ + r)   is the 
expected lifetime cost of an infected agent, which is greater than   C S   (I (x) , x)  . Finally, 
the term in (23) is zero if   t R   = 0  (but positive if   t R   > 0  because   ∫ 0   t R      e   −rs  ds <  t R   ). 
We conclude as desired that  B′ ( x   ∗ )  < 0 . ∎

When   t R   > 0  so that recovered agents enjoy temporary immunity, susceptible 
agents discount the future benefit that they will get due to immunity (after even-
tually recovering from infection) when deciding how much to socially distance. 
Consequently, depending on the duration of temporary immunity and other model 
parameters, susceptible agents may choose a level of social distancing greater than 
the level that minimizes the  steady-state burden of the disease.

 Example 2: Suppose that  V = 0, β = 3, d = 1, γ = 1,  t R   = 100, c (x)  =  
0.05  x   2  , and  r = −ln (0.95)  .

Example 2 is a variation of our  COVID-inspired Example 1, with duration of 
temporary immunity increased to   t R   = 100 —that is, about 1,000 days. The unique 
 steady-state equilibrium in Example 2 has social distancing   x   ∗  = 0.131  and infec-
tion prevalence   I   ∗  = 0.00610 . The level of social distancing that minimizes the 
 steady-state burden of the disease is  0.104 <  x   ∗  , resulting in a higher  steady-state 
infection prevalence  0.00622 >  I   ∗  .12 Details for these computations are provided 
in online Appendix D.

III. Equilibrium with Endogenous Vaccination

This section extends the model to incorporate interactions between social distanc-
ing and vaccination decisions. We begin by extending the definition of  steady-state 
equilibrium to require  individually optimal vaccination decisions. In a stationary 
setting, incentives for a susceptible agent do not change with time; so, each agent 
either never chooses to be vaccinated or gets vaccinated and revaccinated at the first 
moment that they become susceptible.

12  Steady-state equilibrium  overdistancing occurs here so long as   t R    exceeds a threshold of about 60—that is, 
600 days.
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DEFINITION 2: A  steady-state equilibrium with endogenous vaccination is charac-
terized by infection level   I   ∗  ,  temporary immunity level   R   ∗  ,  susceptible-agent social 
distancing   x   ∗  , and vaccination level   V     ∗   such that

 (i)   ( I   ∗ ,  R   ∗ ,  x   ∗ ,  V     ∗ )   satisfies the  steady-state conditions   R   ∗  = γ  t R    I   ∗   and

(24)  β (1 −  x   ∗ )  (1 −  I   ∗  − γ  t R    I   ∗  −  V     ∗ )  = γ. 
 (ii)   x   ∗   is individually optimal for susceptible agents in this steady state; that is,

(25)   x   ∗  ∈  arg min  
x∈ [0,1] 

     C S   ( I   ∗ , x) . 
 (iii) Fraction   V     ∗   of  newly susceptible agents find it  individually optimal to become 

vaccinated; that is,

(26)  F ( C  S  ∗  ( I   ∗ )  (1 −  e   −r t V   ) )  =  V     ∗ , 
  where   C  S  ∗  ( I   ∗ )  ≡  C S   ( I   ∗ ,  x   ∗ )   and  F ( · )   is the cdf for vaccination cost.

Vaccination allows agents to avoid infection for   t V    units of time without social 
distancing. In a steady state with infection prevalence  I , a susceptible agent with 
vaccination cost   c iV    benefits from adopting the vaccine if   c iV   +  e   −r t V     C  S  ∗  (I)  <  C  S  ∗  (I)  ,  
or   c iV   <  C  S  ∗  (I)  (1 −  e   −r t V   )  .13 The fraction of newborn agents who find it optimal to 
vaccinate (“vaccine demand”) is   D V   (I)  = F ( C  S  ∗  (I)  (1 −  e   −r t V   ) )  , which is continu-
ous and strictly increasing in  I .

PROPOSITION 3: There is a unique  steady-state equilibrium with endogenous 
vaccination.

PROOF:
For any fixed  V < 1 − γ/β , let  I (V)  > 0  be the infection level in the unique 

 steady-state equilibrium with exogenous vaccination level  V , and let   I 
–
  ≡ I (0)  . For 

all  I ∈  (0,  I – ]  , let  S S V   (I)   be the vaccination level that induces equilibrium  steady-state 
infection prevalence  I ; that is,  I (S S V   (I) )  = I . Because  I (V)   is continuous and strictly 
decreasing (Corollary 1),  S S V   (I)   is also continuous and strictly decreasing.

A  steady-state equilibrium with endogenous vaccination exists with infection 
prevalence  I  and vaccination level  V  if and only if  S S V   (I)  =  D V   (I)  = V . For all  
I ≈ 0 , we have  S S V   (I)  ≈ 1 − γ/β >  D V   (I)  ≈ 0 . On the other hand,  S S V   ( I – )   
= 0 <  D V   ( I – )  . Since  S S V   (I)  −  D V   (I)   is continuous and strictly decreasing, there is 
a unique   I   ∗   such that  S S V   ( I   ∗ )  =  D V   ( I   ∗ )  ≡  V     ∗  , as desired. ∎

13 With vaccination cost   c iV   , the expected lifetime cost of adopting the vaccine and renewing it whenever  
immunity runs out is   c iV   +  e   −r t V     c iV   +  e   −2r t V     c iV   + … =  c iV  / (1 −  e   −r t V   ) . 
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A. Subsidizing Vaccination versus Subsidizing Social Distancing

The externalities associated with vaccination and social distancing provide 
motivation for policy interventions.14 There may also be societal benefits beyond 
our model from reductions in  steady-state infection prevalence (e.g., workplace 
productivity gains and  less-burdened health systems) and/or from increasing the 
 steady-state vaccination level (e.g., blunting the severity of any  new-variant out-
break). However, interventions that promote social distancing or vaccination can 
have quite  different effects on  steady-state infection prevalence, after accounting 
for individuals’ simultaneous  social distancing and vaccination choices. Most strik-
ingly, we show that a  social distancing subsidy can sometimes have the ironic effect 
of increasing  steady-state infection prevalence. In particular, consider a  lump-sum 
subsidy   S V    for susceptible agents who get vaccinated (“vaccine subsidy”) and 
flow subsidy  S (x)   that reduces  social distancing cost to   c 1   (x)  = c (x)  − S (x)   as in 
Corollary 2 (“ social distancing subsidy”).
PROPOSITION 4: A subsidy for vaccination increases vaccine adoption and 
reduces infection prevalence in the  steady-state equilibrium. A subsidy for social 
distancing reduces vaccine adoption and could either increase or reduce infection 
prevalence in the  steady-state equilibrium.

PROOF:
Let   I V    denote the infection prevalence in the  steady-state equilibrium with endog-

enous vaccination and no subsidy. A vaccine subsidy increases the demand for vac-
cination but has no effect on the level of vaccination required for a  steady-state 
equilibrium at infection prevalence  I . Define the demand for vaccination with the 
subsidy as   D V,S   (I)  . Since   D V,S   (I)  >  D V   (I)   for each  I  and   D V   ( I V  )  = S S V   ( I V  )  , we 
know that   D V,S   ( I V  )  > S S V   ( I V  )  . Therefore,   D V,S   (I)   and  S S V   (I)   intersect at some  I <  
I V   , proving the desired result.

By contrast, a subsidy for social distancing has two effects. First, following the 
logic of Corollary 2, the subsidy reduces the marginal cost of social distancing 
and therefore reduces the number of new infections for any stationary infection 
prevalence  I  without vaccination. Because of this shift in the  new-infection curve, 
the subsidy reduces  S S V   (I)  , the vaccination rate required to produce a  steady-state 
equilibrium with infection prevalence  I . Second, the subsidy reduces the expected 
future cost   C  S  ∗  (I)   for a susceptible person and thus reduces   D V   (I)  , the demand for 
vaccination given any stationary infection prevalence  I . These changes each cause 
the  steady-state vaccination level to fall but have opposite effects on the  steady-state 
infection prevalence. Figure   3 provides examples of both possibilities, that 
 steady-state infection prevalence may rise or fall. ∎

14 As observed by Brito, Sheshinski, and Intriligator (1991), a universal vaccination requirement can reduce the  
equilibrium utility of susceptible agents who are affected by that rule. Geoffard and Philipson (1997) suggest that 
infectious diseases tend to remain endemic because reductions in prevalence erode individual incentives for pre-
cautionary behavior.
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Figure 2 depicts the effect of a vaccine subsidy on  steady-state vaccine adoption 
and infection prevalence in Example 1, with agents’ cost of vaccination   c iV    uni-
formly distributed on   (0, 0.6468)   and a subsidy of 0.1917 for susceptible agents for 
each vaccination. Under the original conditions with no subsidy, the level of vacci-
nation required for a  steady-state equilibrium is decreasing while demand for vacci-
nation is increasing in infection prevalence. The intersection of these two curves at 
point  A  represents the baseline equilibrium with a stationary infection prevalence of 
2.226 percent and approximately 37 percent of the population adopting the vaccine. 
For reasons explained in the proof of Proposition 4, the subsidy shifts the vaccine 
demand curve   D V   (I)   up and to the left, which increases vaccination and reduces 
infection prevalence at the new  steady-state equilibrium point  SV .

Figure 3 illustrates the possible equilibrium impacts of a subsidy that reduces the 
cost of social distancing, in the context of Example 1 with distancing costs  0.025  x   2   
after the subsidy, but with different  vaccination-cost distributions.15

The  social distancing subsidy shifts the vaccine demand curve   D V   (I)   down and 
to the right and shifts the level of vaccination required for equilibrium  S S V   (I)   down 
and to the left. The  steady-state equilibrium shifts from point  A  to point  SD  on both 
panels. As described in Proposition 4, a  social distancing subsidy unambiguously 
reduces  steady-state vaccination but may decrease (Figure 3, panel A) or increase 
(Figure 3, panel B)  steady-state infection prevalence. When demand for vaccination 
is relatively inelastic, as in Figure 3, panel A, the effect of the shift in  S S V   (I)   predom-
inates and so a  social distancing subsidy reduces  steady-state infection prevalence.

By contrast, when demand for vaccination is relatively elastic, as in Figure 3, 
panel B, the primary effect of a  social distancing subsidy is to reduce demand for 

15 In Figure 2 and Figure 3, panel A,    c iV   ∼ U (0, 0.6468)  . For Figure 3, panel B, we use a much tighter distribution    
c iV   ∼ U (0.22411, 0.26)  .

Figure 2. The Unambiguous Effect of a Vaccine Subsidy
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vaccination. In this case, the subsidy leads to increased infection prevalence at the 
new  steady-state equilibrium point  SD2 .

The difference between the effects of vaccine and  social distancing subsidies arises 
because reducing the cost of vaccination only indirectly affects incentives for social 
distancing (by causing  steady-state infection prevalence  I  to fall), while changes in 
the marginal cost of social distancing directly affect incentives for vaccination (by 
reducing   C  S  ∗  (I)   and hence the marginal value of vaccination). Thus, as suggested by 

Figure 3. The Ambiguous Effect of a Social Distancing Subsidy
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Corollary 1, a vaccine subsidy has an unambiguous effect on  steady-state infection 
prevalence, whereas a  social distancing subsidy has an ambiguous effect in the fash-
ion described by Peltzman (1975).

B. Vaccine Mandates

In November 2021, Austria announced a nationwide lockdown focused only on 
the unvaccinated, who were driving an upsurge of infection at the time (Horowitz 
and Eddy 2021). Many governments, colleges, and employers imposed simi-
lar “vaccine mandates,” restricting unvaccinated people’s ability to participate in 
 socioeconomic activity. Formally, we model a vaccine mandate as imposing a min-
imum level of social distancing on all unvaccinated agents. Many vaccine man-
dates imposed during the COVID pandemic were temporary measures, such as New 
York City’s vaccination requirement for indoor restaurant dining from August 2021 
until March 2022. But such mandates could also be maintained in perpetuity. What 
impact would that have on the  steady-state equilibrium?

PROPOSITION 5: A vaccine mandate reduces infection prevalence and could either 
increase or reduce vaccination in the  steady-state equilibrium.

PROOF:
By increasing  susceptible-agent and  infected-agent social distancing, a vaccine 

mandate reduces the number of new infections corresponding to any stationary 
infection prevalence  I  and vaccination level  V . This results in a decline in  S S V   (I)  , the 
required level of vaccination for a  steady-state equilibrium with infection prevalence  
I . Second, by imposing additional costs on all unvaccinated agents, the mandate 
increases   C  S  ∗  (I)  , the expected lifetime costs of (unvaccinated) susceptible agents 
for any given  I .16 This increases   D V   (I)  , the demand for vaccination. Since   D V    is 
increasing and  S S V    is decreasing in  I ,  steady-state infection prevalence must fall, but 
the impact on the  steady-state vaccination level is ambiguous. (Numerical examples 
similar to Figure  3 to demonstrate that the equilibrium  steady-state vaccination level 
may rise or fall are easily constructed but omitted to save space.) ∎

In January 2022, France barred unvaccinated people not just from enclosed 
spaces such as  long-distance trains but also  open-air cafés and other public places 
where the risk of transmission is relatively low. The goal of this policy, in the 
words of President Emmanuel Macron, was to “annoy the unvaccinated.”17 Such 
restrictions are effectively equivalent to a financial penalty on unvaccinated peo-
ple and, as such, have the same unambiguous effect as a vaccine subsidy—both 
increasing  steady-state vaccination and reducing  steady-state infection prevalence 

16 For any fixed stationary infection level  I , a susceptible agent’s lifetime expected cost is minimized by choos-
ing their  individually optimal  social distancing level   x   ∗  (I)  . So, a vaccine mandate that forces (unvaccinated) sus-
ceptible people to choose  x >  x   ∗  (I)   necessarily increases lifetime expected costs. In addition, a vaccine mandate 
imposes social distancing and thus additional costs on infected and  temporarily immune people, further increasing 
susceptible agents’ lifetime expected costs since they will now also be losing out on future economic benefits while 
in those other disease states.

17 “Les  non-vaccinés, j’ai très envie de les emmerder. Et donc, on va continuer de le faire, jusqu’au bout.”
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(Proposition 4). On the other hand, a policy that more judiciously restricts activity, 
only barring unvaccinated people from the  highest-risk and  lowest-value activities, 
might ironically reduce the  steady-state level of vaccination (Proposition 5).

IV. Discussion and Conclusion

We have presented an economic SIRS model in which agents can engage in social 
distancing or choose to get vaccinated in order to reduce their chance of getting 
infected. The model allows us to consider the effects of  disease-control policies on 
social distancing, infection prevalence, and the demand for vaccination during the 
endemic phase of an infectious disease. It also provides insights about how social 
distancing and vaccination interact as distinct behavioral responses to determine 
the  steady-state level of infection. In addition, we have shown how the pillars of 
economic analysis— cost-benefit trade-offs,  supply and demand, comparative stat-
ics—apply to the dynamics of infectious diseases.

Our basic model can be extended in several directions. One possibility is to 
examine the effects on agents’ behavior and infection prevalence when vaccination 
reduces but does not eliminate the risk of infection. Chen (2006) and Chen and 
Cottrell (2009) show that multiple  steady-state equilibria can arise when vaccines 
are imperfect since the benefit of vaccination may not be monotonic in disease prev-
alence. Similarly in our model, demand for vaccination could be increasing over 
low prevalences but decreasing over high prevalences if the efficacy of the vaccine 
is low. This implies that the   D V    curve could intersect the  S S V    curve at more than one 
point, resulting in multiple  steady-state equilibria.

Although we have modeled the vaccine as prophylactic, that assumption could be 
adjusted so that vaccination reduces the severity of disease (as represented by cost 
parameter  d ) but does not prevent infection. One possibility in this case is that when 
the rate of vaccination is high in the population—which would be expected when 
infection prevalence is high—the overall level of social distancing would be low, 
resulting in more infections. Thus, high prevalence begets high prevalence, creating 
a positive feedback loop with significant policy implications that could be explored 
in future work.

It is also possible to use our framework to study other interventions, such as a rule 
requiring a recent negative test to eat at a restaurant or fly on a commercial airline. 
By blocking at least some infected people from these activities, such a requirement 
effectively reduces the transmission rate associated with them. Moreover, the cost of 
getting a test to comply with the requirement reduces the  social distancing cost of for-
going these activities. The overall effect of a testing requirement therefore combines 
the effects of a  social distancing subsidy and a  transmission-reducing intervention.

A final extension we will mention, motivated by “vaccine passports” (Hall and 
Studdert 2021),18 is to consider the effects of making agents’ vaccination status 
known to others. In our setting, there is random mixing in the population, meaning 

18 Diagnostic tests that provide information on a consumer’s current health status appear to raise similar issues 
but with additional nuances because people who test negative can subsequently become infected and because test 
results serve as private information about health status. See Phelan and Toda (2022) and Deb et al. (2022) for 
insightful analyses of the equilibrium impact of imperfect testing.
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that the types of agents that one encounters is independent of one’s vaccination 
status. Making people’s vaccination status known to others could lead to assorta-
tive mixing whereby vaccinated and unvaccinated people are more likely to mix 
amongst themselves.19 Making information about people’s vaccination status public 
could also change their incentive to get vaccinated by creating social consequences 
for vaccination. These issues and their implications merit consideration and thor-
ough examination in the future.
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