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Steady-State Social Distancing and Vaccination®

By CHRISTOPHER AVERY, FREDERICK CHEN, AND DAVID MCADAMS*

This paper analyzes an economic-epidemiological model of infec-
tious disease where it is possible to become infected more than once
and individual agents make endogenous choices of social distancing
and vaccine adoption. Protective actions adopted by any one per-
son reduce future risks to other people. The positive externalities
associated with these behaviors provide motivation for vaccine and
social-distancing subsidies, but subsidizing one protective action
reduces incentives for other protective actions. A vaccine subsidy
increases vaccine adoption and reduces steady-state infection prev-
alence; a social distancing subsidy can either increase or reduce
steady-state infection prevalence. (JEL D62, D91, 112, 118)

The COVID-19 pandemic sparked renewed interest in the economics of infec-
tious disease.! Given the prevailing initial view that prior infection provided lasting
immunity against future infection, most COVID-related papers have focused on the
“Susceptible-Infected-Recovered” (SIR) model. During the course of the pandemic,
however, it has become apparent that it is possible to contract COVID more than
once, both because of waning immunity and the development of new pathogen vari-
ants (Giannitsarou, Kissler, and Toxvaerd 2021). In a recent editorial, Columbia
professor Jeffrey Shaman discussed the possible transition of COVID-19 from pan-
demic to endemic phase.?

Motivated by this background, we consider a “Susceptible-Infected-Recovered-
Susceptible” (SIRS) epidemiological model in which recovered agents eventually
become susceptible to reinfection. As suggested by Peltzman (1975), a central chal-
lenge for disease control is that incentivizing one protective action decreases incen-
tives for other protective actions. We therefore augment the SIRS epidemiological
model with a game theoretic model in which each individual has the opportunity to
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mitigate risk through social distancing or vaccination. Our theoretical framework
yields a unique steady-state Nash equilibrium, which facilitates analysis of policy
interventions such as vaccine subsidies or mandates and highlights the simple eco-
nomics underlying the dynamics of infectious disease. In particular, individuals
make cost-benefit trade-offs for risk mitigation, the equilibrium level of vaccine
adoption is determined by familiar supply and demand dynamics, and some compar-
ative static results turn on the elasticity of demand for vaccination.

The paper is most closely related to several previous studies: Chen et al. (2011);
Chen (2012); and Toxvaerd (2019) conduct equilibrium analysis in a “Susceptible-
Infected-Susceptible” (SIS) model with endogenous social distancing; Reluga and
Galvani (2011) study equilibrium adoption of vaccination in an SIS model; Chen
(2006) and Chen and Cottrell (2009) study incentives for vaccination and abstinence
to reduce the risk of contracting HIV; Rowthorn and Toxvaerd (2020) study the opti-
mal timing and trade-offs between treatment and vaccination in an SIS model.

The paper proceeds as follows. Section II describes the model. Section III provides
steady-state equilibrium analysis with endogenous social distancing and exogenous
vaccination, including the case when no vaccine is available. Section IV expands the
equilibrium analysis to allow for both endogenous vaccination and social distancing
and also considers the effects of policy applications such as subsidies and vaccine
mandates. Section V concludes.

I. The Model

We consider an economic-epidemiological model of an endemic infectious dis-
ease, combining an SIRS model of epidemiological dynamics with an economic
model in which agents make individually optimal decisions regarding personal
social distancing and whether to get vaccinated.

A. Epidemiological Framework

An endemic infectious disease circulates among a fixed population of agents
having unit mass. At each point in time ¢t € R, each agent is either susceptible
(S), infected (I), recovered and immune (R), or vaccinated (V) and knows their
health status. Let S(z), (1), R(z), and V(z), respectively, be the mass of susceptible,
infected, recovered and immune, and vaccinated agents at time . We refer to / (t) as
the “infection prevalence” at time ¢. Each susceptible agent i becomes infected once
exposed to an infected agent, which occurs at rate ﬂl(t) [1 — xi(t)], where 3 > 0
is the transmission rate and x,(z) € [0,1] is agent i’s chosen level of social distanc-
ing. Infected agents recover at rate v > 0 and then enjoy immunity from infection
for known length of time 7, > 0, after which they return to the susceptible state.
Similarly, a newly vaccinated agent is immune for a known length of time #, > 0,
at which point they may choose to renew their vaccination.

For analytical simplicity, we focus on settings where the mass of vaccinated
agents is constant over time; that is, V(t) = Vfor all . In Section II, V is treated
as an exogenous parameter. In Section III, V emerges endogenously as the mass
of agents who choose to become and remain vaccinated in steady-state Nash
equilibrium.
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At each point in time, there is a flow of agents into the infected state as suscep-
tible people are exposed and become infected, a flow into the temporarily immune
state as infected people recover, and a flow into the susceptible state as recovered
people lose their temporary immunity. Epidemiological dynamics for the system as
a whole are governed by two differential equations:

(1) I(1) = BIn[1 — x(1)]S(t) — ~I(),
(2) R(t) = ~I(t) — ~I(t — tg),

plus the adding-up condition that S(t) + I(t) =+ R(t) = 1 — V, where x(t) is aver-
age social distancing of susceptible agents at time 7. (In equation (2), vI(r — tg) is
the flow of agents returning to susceptibility at time ¢ after having been immune for
length of time #.)

If ﬁ(l — V) < 7, then each infected person exposes less than one unvaccinated
person on average even without social distancing and /(r) necessarily falls toward
zero over time. We focus on the case when V < 1 — ~/[3, creating the potential for
persistent disease transmission.

B. Economic Model

Each agent seeks to minimize the expected present value of lifetime costs of
sickness, social distancing, and vaccination. All agents discount future payoffs at
discount rate r > 0. Infected agents incur flow cost d > 0 due to the disease.
Susceptible agents who choose social distancing x incur flow cost c(x) from fore-
gone activity. We identify several properties of c(x) that arise from principles of
time-use optimization:

. c(O) = c’(O) = 0. Absent any fear of infection, people engage in ordinary
activity (x = 0) and are indifferent at the margin whether to increase or
decrease activity.

* ¢/(x) > 0and ¢"(x) > 0. Since people can prioritize activities according to
benefit per unit time, optimal social distancing forgoes the least valuable activ-
ities first.?

Let Ch(t) be the expected lifetime cost for unvaccinated agents upon entering
health status & € {S, 1, R}.4 Upon recovery from infection, an agent enjoys immu-
nity and incurs no costs for length of time 7, > 0 before returning to the susceptible
state. Thus,

(3) Cr(t) = e "™ Cy(t + 1g).

3Toxvaerd (2019) analyzes a related model and produces results similar to Proposition 1 and Corollary 2 with
linear rather than strictly convex costs of social distancing.

4 Agents’ expected lifetime costs at time ¢ depend on the subsequent epidemic trajectory. Our analysis is sim-
plified by the fact that we focus on steady states where infection prevalence and susceptible-agent social distancing
are constant.
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While infected, agents incur flow cost d from the disease and recover at rate -, at
which point their subsequent expected lifetime cost changes from C;(f) to Cg(1).
Thus,

(4) C(t) = —d + ~[C/(t) — Ck(t)] + rCi(t).

Voluntary Social Distancing.—A susceptible agent i who chooses social dis-
tancing xi(t) incurs flow cost c(x,(t)) and transitions to the infected state at rate
BI(1)[1 — x(1)]. Given Cy(f) and C((t), such an agent chooses x;(f) to minimize
c(x,-(t)) + B1(1) [1 - x,-(t)] [C,(t) — Cs(t)], trading off the current cost of social dis-
tancing versus the benefit of avoiding infection. A susceptible agent’s dynamic pro-
gramming problem is given by (3—4) and

©) 60 = —min{el) + B0 = D]ci) - Co]} + res)
(A detailed derivation of susceptible agents’ optimization problem is given in online
Appendix C.)

Voluntary Vaccination.—In Section III with endogenous vaccination, each agent i
is modeled as having a random cost of vaccination c;y, drawn iid across agents from
a distribution with support [0,¢y] Jcontinuous pdf f( - ), and cdf F( - ). Vaccination
provides full protection from infection for period of time ¢y, after which agent i
becomes susceptible and may be vaccinated again at additional cost c;y.

II. Steady-State Equilibrium with Exogenous Vaccination

In this section, we characterize the set of steady-state equilibria, taking the mass
V of vaccinated agents as exogenous and small enough to allow for persistent dis-
ease transmission; thatis, 0 < V < 1 — ~//3. We have three main findings. First,
a steady-state equilibrium exists and is unique. Second, any policy that reduces the
cost of social distancing or that increases the fraction of the population that is vac-
cinated will result in strictly fewer infections in the new steady-state equilibrium.
Third, an increase in social distancing from the steady-state equilibrium level unam-
biguously increases social welfare in the special case without temporary immunity
(tz = 0) but need not do so if 7 > 0.

In a steady-state equilibrium, the percentages of people in each state {S, LR, V}
and the individually optimal social distancing level for susceptible agents are con-
stant over time.

3 Our analysis with endogenous vaccination is easily extended to a richer setting in which some agents have
negative vaccination cost.
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DEFINITION 1: A steady-state equilibrium with exogenous vaccination level
0 < V < 1 — ~/Bis characterized by infection prevalence I*, temporary immu-
nity level R*, and susceptible-agent social distancing x* such that

(i) (I*,R*,x*,V) satisfies the steady-state conditions I’(t) = 0 and R’(t) =0,
which require that R* = ~txI" and

(6) Bl —x*)(1 = I" — ytgI" — V) = 7.
(ii) x* is individually optimal for susceptible agents in this steady state.

Let x*(l) be the individually optimal social distancing level for susceptible agents
in the steady state with infection prevalence /. Let C§(I) and C?(I), respectively,
denote the steady-state values of Cs(¢) and C)(¢) for an agent who chooses the
individually optimal social distancing level x*(l) whenever susceptible in the steady
state with infection prevalence I. By (3-5),

. d+ ve "RCY(I
(7) ) = )

cx(n) + BI[1 — x (] Ci(1)
ﬂl[l — x*(l)] +r .

(8) Cy(l) =

Combining (7) and (8) gives

(el @) + pift - X (1)]d
BI[L — X' (D] (v + r = ve™™) + ry + 1)

©) Cs(1)

The first-order condition for individually optimal social distancing x*() in a
steady state with infection prevalence I is

(10) c(x*(1)) = pi[c;(1) — cx(1)].

where Cj(I) — C§(I) can be interpreted as the “harm of becoming infected”
for a susceptible agent. Replacing x*(I) with x = 0 in (8) gives the bound
Cs(1) < BICI(I)/(BI + r), so Cs(I) < Cj(I), which implies that x*(I) > 0 for
each I by properties of c( : )

With no social distancing (x* = 0), steady-state infection prevalence would
be (1 —V—~/8)/(1 + ~vtg) > 0 by (6) and because c'(0) = 0, susceptible
agents would not choose x = 0, a contradiction. Similarly, complete social distanc-
ing x* = 1 would eliminate the disease and induce susceptible agents to choose
full activity, another contradiction. Thus, there is partial social distancing (0 <
x* < 1) and the first-order condition (10) holds with equality in any steady-state
equilibrium.

An increase in infection prevalence directly increases the marginal benefit of dis-
tancing for susceptible agents. Yet, a susceptible agent who avoids being infected at
any given instant (“now”) faces a higher risk of being infected later, so an increase
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in infection prevalence indirectly reduces the marginal benefit of distancing. If this
indirect effect were stronger than the direct effect, an increase in infection prevalence
would reduce the incentive of susceptible agents and create the potential for multi-
ple equilibria. Proposition 1 rules out this possibility.®

PROPOSITION 1: For each’ V- < 1 — ~/[3, there is a unique steady-state equilib-
rium with exogenous vaccination and associated infection rate | *( V) > 0.

PROOF:
For convenience, define
(v + r)ex) + BI(1 — x)d
BI(1 —x)0 +r(y+7r)

(11) Cs(l,x) =

where = ~ + r — ye "k CS(I,x) is the expected lifetime cost incurred by a sus-
ceptible agent in the steady state with infection prevalence / who chooses social
distancing level x whenever susceptible. First, we show that there is a unique x that
minimizes C S(I, x) for any given /. Using the quotient rule,

(12) W = {[(7 + r)c'(x) — ﬁld] [ﬁl(l —x)0 + r(y + r)]

+ BIO|(v + r)e(x) + BI(1 — x)d] }/[BI(1 — x)0

2
+r(y+ 1)
Using (11) to substitute for the last term in the numerator,

ICs(1,x) B (v + r)c'(x) — BId + BIOC(1,x)

(13) o T B —n0+ =

If OCy(1,x)/0x = 0, the numerator of (13) is zero and so, by the quotient rule,
9?Cs(1,x)/Ox* takes the same sign as (v + r)c”(x), which is positive since c is
strictly convex. Thus, OCs(I,x)/0x = 0implies that 9*Cs(1,x)/9x* > 0and hence
Cs(1,x) has a unique minimum in x for each 1. Moreover, the properties of ¢(x) and
Cs(Z,x) imply that this solution x*(I) is continuous and positive for all I > 0.

Next, we show that x*(I) is strictly increasing in / so long as x*(l) < 1. The
first-order condition OCs(1,x)/0x = 0 can be rewritten as

» ol = O EGE)

SMultiple steady-state equilibria can exist in richer models with economic complementarities of activity
(McAdams, Song, and Zou 2023) or with transmission crowding effects (Chen 2012).
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From (11),
_ (v +r)elx) + BI(1 — x)d
(15) 0Cy(1.x) = (e e e
Thus,
r rd _ clx
(16) d - 6Cy(L.x) = O+ — <o)

©OBI(1 —x) + g(’y—i- r)

Multiplying both sides by (1,

(17) Blld — 0Cy(1.x)| =

By (12), 0Cy(1,x)/0x < 0 at x = 0; so, x*(I) > 0 and (14) implies that
d — GCS(I,x*(I)) > Oforany/ > 0. Thus, foreach/and x = x*([), the left-hand
side of (17) is positive and hence the right-hand side of (17) must also be positive.
The only term on the right-hand side of (17) that varies with I is (y + r)/I. Holding
x fixed at x*(l), a slight increase in / yields an increase in the marginal value of social
distancing; that is, the marginal benefit of social distancing is now greater than its
marginal cost atx = x*(I). Since Cg(Z,x) has a unique minimum in x for each 7 and
c( ) is strictly convex, we conclude that x*(l) is strictly increasing in / so long as
x*(l) < 1. (Depending on disease severity d, there may be an infection level I such
that x*(I) = 1 forall I > I.But such high infection levels cannot be sustained in
any steady-state equilibrium since then susceptible agents would isolate themselves
completely and there would be no new infections, a contradiction.)

To complete the proof of Proposition 1, we show that there is a unique / that
supports a steady-state equilibrium. Let g(I) denote the net expected flow into the
infected state per infected agent in the steady state with infection prevalence 1.
By (1), g(I) = B[l — x*(I)]S — 7, where S = 1 — I — R — V and R = ~igl.
In any steady-state equilibrium, g(/) = 0 by (6). Given that x*(0) = 0 and our
maintained assumption that V < 1 — ~/f3, we have g(0) > 0. On the other hand,
g((l — V)/(l + ’th)> = —v < 0. Since x*([) is continuous and strictly increas-
ing in I, g(I) is continuous and strictly decreasing in /. Thus, there is a unique
I e (0,(1 - V)/(1 + 'th)) that solves g(I") = 0.®

Example 1: Suppose thatV = 0,6 = 3,d = 1,7 = 1,1 = 20,c(x) = 0.05
x*,andr = —In(0.95).”

7 These parameter values have been chosen to be roughly in line with SARS-CoV-2 in 2020. Liu et al. (2020)
estimate a basic reproduction number R, = 3/~ of around 3. Cevik et al. (2021) estimate length of contagiousness
as about ten days, normalized to 1/y = 1. Our choice of zz = 20 means that adaptive immunity lasts 20 times
longer than contagiousness—that is, a bit more than six months—consistent with the low end of the estimate range
in Milne et al. (2021). Of course, given the complexity of SARS-CoV-2’s biology and the emergence of numer-
ous variants (Liu and Rockldv 2022), one should not interpret any of the numerical exercises here as being about
SARS-CoV-2 specifically.



8 AER: INSIGHTS MARCH 2024

Panel A. New infections versus new recoveries given any stationary infection

prevalence
4 —_
=
[0]
o
(]
e
() 3 Expected flow
.g of recoveries
= Expected flow
S of new infections A
@ e -
o ”/ N\\\
5 2 pad S<o
— rd \\
E ,’, \\\
> 4 SN
o s SN
o / SN
o 7 ~
“— / \\
o 14 / AN
S /
5 /!
Q //
o /
o /
/
0 T T T T
0 1 2 3 4
Stationary infection prevalence (percent)
Panel B. Infection-prevalence trajectory leading to the steady-state equilibrium
4 —_
3.5
T 3
[0
o
(0]
£ 25+
[0]
[&]
[
s
>
o
o
c 154
Q
©
0]
E 1
0.5
0 T T T T T
0 30 60 90 120 150

Time (each unit equals ten days)

FIGURE 1. STEADY-STATE EQUILIBRIUM

In a steady-state equilibrium, the flow of new infections (dashed line in Figure 1,
panel A) must equal the flow of recoveries (solid line in Figure 1, panel A). Figure 1,
panel A compares these flows in Example 1 for any given steady-state infection
prevalence /I, accounting for how susceptible agents’ optimal social distancing
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intensity x*(I) varies with 1.2 The unique steady-state equilibrium corresponds to
Point A, with stationary infection prevalence approximately equal to 2.226 percent.’

Figure 1, panel B illustrates an equilibrium epidemic trajectory in Example 1,
starting from low infection prevalence 0.01 percent and eventually converging to the
steady-state level. After an initial increase of infection prevalence to the steady-state
level, there are fewer immune agents and more susceptible agents than in the steady
state, so the infection trajectory “overshoots” the steady-state level and then gradu-
ally converges, as shown in Figure 1, panel B.

Figure 1, panel A suggests two corollaries that follow almost immediately from
the proof of Proposition 1.

COROLLARY 1: Any exogenous increase in (perfect) vaccination strictly reduces
the infection prevalence in the unique steady-state equilibrium.

PROOF:

Vaccination reduces the size of the susceptible population but has no effect on
x*(I), the individually optimal level of social distancing given stationary infec-
tion prevalence /. An exogenous increase in vaccine adoption therefore shifts the
new-infection curve down, while having no effect on the new-recovery curve. Thus,
g(I) strictly declines for each [ as a result of an exogenous increase in vaccination,
which in turn causes a reduction in the value of /, satisfying the steady-state equilib-
rium condition g(/) = 0.m

COROLLARY 2: A reduction in the cost of social distancing from c(x) to ¢, (x) where
61(0) = c{(O) = 0 and cl’(x) < c’(x) for each x > 0 reduces the steady-state
equilibrium infection prevalence.

PROOF:
By (16), the first-order condition ¢'(x) = {ﬁ][d — 9C5<I,x>] }/("y + r) for
individually optimal social distancing can be written as

Bl — )]
BI(1 — x) + §(7 +r)

(18) c(x) =

Note that the marginal value of social distancing declines with c(x) for each
(x,I). Since the marginal cost of social distancing is lower and the marginal
value of social distancing is greater with ¢;(x) than with c(x), xj(/) > x*(J)
for each I. This shifts the new-infection curve down and to the left, yield-
ing a reduction in equilibrium steady-state infection prevalence as in
Corollary 1. &

8 When social distancing costs are quadratic as in Example 1, equations (7)—(10) imply that in any steady-state
equilibrium, (i) C7(I) and x* are each linear functions of C§(/) and (ii) C§(I) is the solution to a quadratic equation.
See online Appendix A for details.

°Online Appendix B provides all numerical details for Example 1, including how we approximated the equi-
librium trajectory in Figure 1, panel B (using a backward-shooting algorithm as in Farboodi, Jarosch, and Shimer
(2021)) and the steady-state equilibria in Figure 1, panel A; Figure 2; and Figure 3, panels A and B.
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Infection Prevalence and Social Welfare—lLet B(I) denote the “burden of
the disease,” the aggregate lifetime costs of the entire population, in the steady
state with infection prevalence 1.'° Expected lifetime costs are C,(I) for mass
I of infected agents; Cg(I) for mass S = 1 — V — (1 + vig)l of suscepti-
ble agents; ¢ " Cy(I) for temporarily immune agents who have s ~ U|0, ]
time remaining until they return to being susceptible again;''and zero for mass V of
vaccinated agents. Overall,

(19)  B(I) = IC(I) + [1 — V — (1 + ytx)l| Cs(I) + fylf " dsCy(I)

Given that there are positive externalities for social distancing (because avoiding
infection indirectly protects others), one might expect underprovision of social dis-
tancing in equilibrium so that the steady-state infection prevalence is higher than
the social optimum. We show that this is indeed true (i.e., B’(I *) > 0) if recovered
agents are immediately susceptible to reinfection (Proposition 2) but not in general
with temporary immunity (Example 2).

PROPOSITION 2: Suppose that t, = 0 so that recovered agents are not temporar-
ily immune. Then B'(I*) > 0.

PROOF:

Define I(x) to be the prevalence I that satisfies the steady-state condition
B(1 — x)[l -1+ ’th)I] = 7. Note that I = I(x*), where x* is susceptible
agents’ social distancing in the unique steady-state equilibrium. We can express the
burden of the disease in (19) equivalently as a function of social distancing x:

) = 1|2 A

infected agents

1=V (14 ()] Clix).x) + 1) ([ e s ) eli(x). ).

susceptible agents currently immune agents

Since I'(x) < 0, we need to show that B'(x*) < 0 in the case when 7z = 0. The
derivative B'(x) can be usefully decomposed into four terms:

) B - 2S00

oC S(I (x) , x)

oI
(22) + 1) [V i Pt 71 e CS<I(X)’X) - CS(I(X)’X)]

21 +1(3)(4)

1%n this steady state, susceptible agents choose social distancing xg5(1) = 1 — (7/8)/ [l -V-(1+ 'th)I]
by (6) and hence incur flow cost ¢(xgs(7)) while susceptible.

" Because there is a constant flow of agents into the recovered state, the amount of time since recovery for a
randomly selected agent still in that state is uniformly distributed on [O, tR]A



VOL. 6 NO. 1 AVERY ET AL.: STEADY-STATE SOCIAL DISTANCING AND VACCINATION 11

(23) +1'(x) [st(I(x)’x)UotRewds - ’R>]’
where

A

10 =T e 4 [U= V= (1 ()] + 410 ( [ eas) > 0.

The term in (20) is zero at x = x* because ICs(I*,x*)/0x = 0 due to suscep-
tible agents’ individual optimization in the steady-state equilibrium. The term in
(21) is negative at x = x* because I'(x) < 0 for all x and OCs(I(x),x)/0I > 0 at
x = x* (see online Appendix E for a proof of the latter inequality). The term in
(22) is negative at x = x* because d/(y + r) + vye "™ CS<I(x),x)/(’y + r) is the
expected lifetime cost of an infected agent, which is greater than C S(I (x),x). Finally,
the term in (23) is zero if #z = O (but positive if 7z > 0 because [jFe "ds < 1g).
We conclude as desired that B'(x*) < 0.1

When #; > 0 so that recovered agents enjoy temporary immunity, susceptible
agents discount the future benefit that they will get due to immunity (after even-
tually recovering from infection) when deciding how much to socially distance.
Consequently, depending on the duration of temporary immunity and other model
parameters, susceptible agents may choose a level of social distancing greater than
the level that minimizes the steady-state burden of the disease.

Example 2: Suppose that V = 0,5 = 3,d = 1,7 = Ltz = 100,c(x) =
0.05x% and r = —In(0.95).

Example 2 is a variation of our COVID-inspired Example 1, with duration of
temporary immunity increased to t = 100—that is, about 1,000 days. The unique
steady-state equilibrium in Example 2 has social distancing x* = 0.131 and infec-
tion prevalence I* = 0.00610. The level of social distancing that minimizes the
steady-state burden of the disease is 0.104 < x*, resulting in a higher steady-state
infection prevalence 0.00622 > [*.!? Details for these computations are provided
in online Appendix D.

III. Equilibrium with Endogenous Vaccination

This section extends the model to incorporate interactions between social distanc-
ing and vaccination decisions. We begin by extending the definition of steady-state
equilibrium to require individually optimal vaccination decisions. In a stationary
setting, incentives for a susceptible agent do not change with time; so, each agent
either never chooses to be vaccinated or gets vaccinated and revaccinated at the first
moment that they become susceptible.

12 Steady-state equilibrium overdistancing occurs here so long as f exceeds a threshold of about 60—that is,
600 days.
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DEFINITION 2: A steady-state equilibrium with endogenous vaccination is charac-
terized by infection level I', temporary immunity level R*, susceptible-agent social
distancing x*, and vaccination level V* such that

(i) (I',R*,x*,V*) satisfies the steady-state conditions R* = ~itxI" and

(24) Bl = x) 1 = I" — yigI* — V) = 7.
(ii) x* is individually optimal for susceptible agents in this steady state; that is,

(25) x* € argminCy(I*,x).
x€[0,1]
(iii) Fraction V* of newly susceptible agents find it individually optimal to become
vaccinated; that is,

(26) F(Cy(r)(1 —e ™) = V7,
where C5(I") = Cs(I*,x*) and F( ) is the cdf for vaccination cost.

Vaccination allows agents to avoid infection for # units of time without social
distancing. In a steady state with infection prevalence I, a susceptible agent with
vaccination cost ¢,y benefits from adopting the vaccine if ¢;;y + e " C5(I) < Cy(1),
or ciy < Cj‘g(l)(l — efrtv).13 The fraction of newborn agents who find it optimal to
vaccinate (“vaccine demand”) is Dy(I) = F (C;(I)(l —e " ’V)), which is continu-
ous and strictly increasing in /.

PROPOSITION 3: There is a unique steady-state equilibrium with endogenous
vaccination.

PROOF:

For any fixed V < 1 — ~/f, let I( V) > 0 be the infection level in the unique
steady-state equilibrium with exogenous vaccination level V, and let I = I(O). For
alll € (0,1],1let SSV(I) be the vaccination level that induces equilibrium steady-state
infection prevalence I; that is, [ SSSV(I)) = 1. Because I(V) is continuous and strictly
decreasing (Corollary 1), SSy(1) is also continuous and strictly decreasing.

A steady-state equilibrium with endogenous vaccination exists with infection
prevalence / and vaccination level V if and only if SSV(I) = DV(I) = V. For all
[ =~ 0, we have SSy(I) = 1 — /B > Dy(I) = 0. On the other hand, SSy(I)
= 0 < Dy(I). Since SSy(I) — Dy(I) is continuous and strictly decreasing, there is
a unique /* such that SSy(I*) = Dy(I*) = V*, as desired. m

13With vaccination cost c;y, the expected lifetime cost of adopting the vaccine and renewing it whenever
immunity runs out is ¢;y + e ey + e ey + .. = /(1 — e ™).



VOL. 6 NO. 1 AVERY ET AL.: STEADY-STATE SOCIAL DISTANCING AND VACCINATION 13

A. Subsidizing Vaccination versus Subsidizing Social Distancing

The externalities associated with vaccination and social distancing provide
motivation for policy interventions.'* There may also be societal benefits beyond
our model from reductions in steady-state infection prevalence (e.g., workplace
productivity gains and less-burdened health systems) and/or from increasing the
steady-state vaccination level (e.g., blunting the severity of any new-variant out-
break). However, interventions that promote social distancing or vaccination can
have quite different effects on steady-state infection prevalence, after accounting
for individuals’ simultaneous social distancing and vaccination choices. Most strik-
ingly, we show that a social distancing subsidy can sometimes have the ironic effect
of increasing steady-state infection prevalence. In particular, consider a lump-sum
subsidy Sy for susceptible agents who get vaccinated (“vaccine subsidy”) and
flow subsidy S(x) that reduces social distancing cost to ¢;(x) = c(x) — S(x) as in
Corollary 2 (“social distancing subsidy”).

PROPOSITION 4: A subsidy for vaccination increases vaccine adoption and
reduces infection prevalence in the steady-state equilibrium. A subsidy for social
distancing reduces vaccine adoption and could either increase or reduce infection
prevalence in the steady-state equilibrium.

PROOF:

Let I}, denote the infection prevalence in the steady-state equilibrium with endog-
enous vaccination and no subsidy. A vaccine subsidy increases the demand for vac-
cination but has no effect on the level of vaccination required for a steady-state
equilibrium at infection prevalence /. Define the demand for vaccination with the
subsidy as Dy (). Since Dy (1) > Dy(I) for each I and Dy(Iy) = SSy(Iy), we
know that Dy(Iy) > SSy(Iy). Therefore, Dy (1) and SSy(/) intersect at some I <
Iy, proving the desired result.

By contrast, a subsidy for social distancing has two effects. First, following the
logic of Corollary 2, the subsidy reduces the marginal cost of social distancing
and therefore reduces the number of new infections for any stationary infection
prevalence / without vaccination. Because of this shift in the new-infection curve,
the subsidy reduces SSy(1), the vaccination rate required to produce a steady-state
equilibrium with infection prevalence /. Second, the subsidy reduces the expected
future cost C§(I) for a susceptible person and thus reduces DV<I), the demand for
vaccination given any stationary infection prevalence /. These changes each cause
the steady-state vaccination level to fall but have opposite effects on the steady-state
infection prevalence. Figure 3 provides examples of both possibilities, that
steady-state infection prevalence may rise or fall. B

14 As observed by Brito, Sheshinski, and Intriligator (1991), a universal vaccination requirement can reduce the
equilibrium utility of susceptible agents who are affected by that rule. Geoffard and Philipson (1997) suggest that
infectious diseases tend to remain endemic because reductions in prevalence erode individual incentives for pre-
cautionary behavior.
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FIGURE 2. THE UNAMBIGUOUS EFFECT OF A VACCINE SUBSIDY

Figure 2 depicts the effect of a vaccine subsidy on steady-state vaccine adoption
and infection prevalence in Example 1, with agents’ cost of vaccination c¢;; uni-
formly distributed on (0,0.6468) and a subsidy of 0.1917 for susceptible agents for
each vaccination. Under the original conditions with no subsidy, the level of vacci-
nation required for a steady-state equilibrium is decreasing while demand for vacci-
nation is increasing in infection prevalence. The intersection of these two curves at
point A represents the baseline equilibrium with a stationary infection prevalence of
2.226 percent and approximately 37 percent of the population adopting the vaccine.
For reasons explained in the proof of Proposition 4, the subsidy shifts the vaccine
demand curve DV(I) up and to the left, which increases vaccination and reduces
infection prevalence at the new steady-state equilibrium point SV.

Figure 3 illustrates the possible equilibrium impacts of a subsidy that reduces the
cost of social distancing, in the context of Example 1 with distancing costs 0.025x>
after the subsidy, but with different vaccination-cost distributions.!>

The social distancing subsidy shifts the vaccine demand curve Dy(/) down and
to the right and shifts the level of vaccination required for equilibrium SSV(I) down
and to the left. The steady-state equilibrium shifts from point A to point SD on both
panels. As described in Proposition 4, a social distancing subsidy unambiguously
reduces steady-state vaccination but may decrease (Figure 3, panel A) or increase
(Figure 3, panel B) steady-state infection prevalence. When demand for vaccination
is relatively inelastic, as in Figure 3, panel A, the effect of the shift in SSy(I) predom-
inates and so a social distancing subsidy reduces steady-state infection prevalence.

By contrast, when demand for vaccination is relatively elastic, as in Figure 3,
panel B, the primary effect of a social distancing subsidy is to reduce demand for

!51n Figure 2 and Figure 3, panel A, ¢;yy ~ U(0,0.6468). For Figure 3, panel B, we use a much tighter distribution
ciy ~ U(0.22411,0.26).
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Panel A. An example with falling infection prevalence
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Panel B. An example with rising infection prevalence
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FIGURE 3. THE AMBIGUOUS EFFECT OF A SOCIAL DISTANCING SUBSIDY

vaccination. In this case, the subsidy leads to increased infection prevalence at the
new steady-state equilibrium point SD2.

The difference between the effects of vaccine and social distancing subsidies arises
because reducing the cost of vaccination only indirectly affects incentives for social
distancing (by causing steady-state infection prevalence [ to fall), while changes in
the marginal cost of social distancing directly affect incentives for vaccination (by
reducing C§(/) and hence the marginal value of vaccination). Thus, as suggested by
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Corollary 1, a vaccine subsidy has an unambiguous effect on steady-state infection
prevalence, whereas a social distancing subsidy has an ambiguous effect in the fash-
ion described by Peltzman (1975).

B. Vaccine Mandates

In November 2021, Austria announced a nationwide lockdown focused only on
the unvaccinated, who were driving an upsurge of infection at the time (Horowitz
and Eddy 2021). Many governments, colleges, and employers imposed simi-
lar “vaccine mandates,” restricting unvaccinated people’s ability to participate in
socioeconomic activity. Formally, we model a vaccine mandate as imposing a min-
imum level of social distancing on all unvaccinated agents. Many vaccine man-
dates imposed during the COVID pandemic were temporary measures, such as New
York City’s vaccination requirement for indoor restaurant dining from August 2021
until March 2022. But such mandates could also be maintained in perpetuity. What
impact would that have on the steady-state equilibrium?

PROPOSITION 5: A vaccine mandate reduces infection prevalence and could either
increase or reduce vaccination in the steady-state equilibrium.

PROOF:

By increasing susceptible-agent and infected-agent social distancing, a vaccine
mandate reduces the number of new infections corresponding to any stationary
infection prevalence / and vaccination level V. This results in a decline in SSV(I), the
required level of vaccination for a steady-state equilibrium with infection prevalence
1. Second, by imposing additional costs on all unvaccinated agents, the mandate
increases Cf&(l), the expected lifetime costs of (unvaccinated) susceptible agents
for any given 1.!® This increases Dy(I), the demand for vaccination. Since Dy is
increasing and SSy is decreasing in /, steady-state infection prevalence must fall, but
the impact on the steady-state vaccination level is ambiguous. (Numerical examples
similar to Figure 3 to demonstrate that the equilibrium steady-state vaccination level
may rise or fall are easily constructed but omitted to save space.) B

In January 2022, France barred unvaccinated people not just from enclosed
spaces such as long-distance trains but also open-air cafés and other public places
where the risk of transmission is relatively low. The goal of this policy, in the
words of President Emmanuel Macron, was to “annoy the unvaccinated.”!” Such
restrictions are effectively equivalent to a financial penalty on unvaccinated peo-
ple and, as such, have the same unambiguous effect as a vaccine subsidy—both
increasing steady-state vaccination and reducing steady-state infection prevalence

16 For any fixed stationary infection level I, a susceptible agent’s lifetime expected cost is minimized by choos-
ing their individually optimal social distancing level x*(I). So, a vaccine mandate that forces (unvaccinated) sus-
ceptible people to choose x > x*(l) necessarily increases lifetime expected costs. In addition, a vaccine mandate
imposes social distancing and thus additional costs on infected and temporarily immune people, further increasing
susceptible agents’ lifetime expected costs since they will now also be losing out on future economic benefits while
in those other disease states.

17 es non-vaccinés, j’ai trés envie de les emmerder. Et donc, on va continuer de le faire, jusqu’au bout.”
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(Proposition 4). On the other hand, a policy that more judiciously restricts activity,
only barring unvaccinated people from the highest-risk and lowest-value activities,
might ironically reduce the steady-state level of vaccination (Proposition 5).

IV. Discussion and Conclusion

We have presented an economic SIRS model in which agents can engage in social
distancing or choose to get vaccinated in order to reduce their chance of getting
infected. The model allows us to consider the effects of disease-control policies on
social distancing, infection prevalence, and the demand for vaccination during the
endemic phase of an infectious disease. It also provides insights about how social
distancing and vaccination interact as distinct behavioral responses to determine
the steady-state level of infection. In addition, we have shown how the pillars of
economic analysis—cost-benefit trade-offs, supply and demand, comparative stat-
ics—apply to the dynamics of infectious diseases.

Our basic model can be extended in several directions. One possibility is to
examine the effects on agents’ behavior and infection prevalence when vaccination
reduces but does not eliminate the risk of infection. Chen (2006) and Chen and
Cottrell (2009) show that multiple steady-state equilibria can arise when vaccines
are imperfect since the benefit of vaccination may not be monotonic in disease prev-
alence. Similarly in our model, demand for vaccination could be increasing over
low prevalences but decreasing over high prevalences if the efficacy of the vaccine
is low. This implies that the Dy curve could intersect the SSy curve at more than one
point, resulting in multiple steady-state equilibria.

Although we have modeled the vaccine as prophylactic, that assumption could be
adjusted so that vaccination reduces the severity of disease (as represented by cost
parameter d) but does not prevent infection. One possibility in this case is that when
the rate of vaccination is high in the population—which would be expected when
infection prevalence is high—the overall level of social distancing would be low,
resulting in more infections. Thus, high prevalence begets high prevalence, creating
a positive feedback loop with significant policy implications that could be explored
in future work.

It is also possible to use our framework to study other interventions, such as a rule
requiring a recent negative test to eat at a restaurant or fly on a commercial airline.
By blocking at least some infected people from these activities, such a requirement
effectively reduces the transmission rate associated with them. Moreover, the cost of
getting a test to comply with the requirement reduces the social distancing cost of for-
going these activities. The overall effect of a testing requirement therefore combines
the effects of a social distancing subsidy and a transmission-reducing intervention.

A final extension we will mention, motivated by “vaccine passports” (Hall and
Studdert 2021),'® is to consider the effects of making agents’ vaccination status
known to others. In our setting, there is random mixing in the population, meaning

18 Diagnostic tests that provide information on a consumer’s current health status appear to raise similar issues
but with additional nuances because people who test negative can subsequently become infected and because test
results serve as private information about health status. See Phelan and Toda (2022) and Deb et al. (2022) for
insightful analyses of the equilibrium impact of imperfect testing.
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that the types of agents that one encounters is independent of one’s vaccination
status. Making people’s vaccination status known to others could lead to assorta-
tive mixing whereby vaccinated and unvaccinated people are more likely to mix
amongst themselves.!® Making information about people’s vaccination status public
could also change their incentive to get vaccinated by creating social consequences
for vaccination. These issues and their implications merit consideration and thor-
ough examination in the future.
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