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A B S T R A C T  

Viral de ep-se quencing data play a crucial role towa rd unde rs ta nding dis eas e tran smis sion ne twork flows, pro vidin g hi ghe r res o lution c ompare d 
to s ta nda rd Sa nge r seque ncing. To more ful ly uti lize these rich data and ac c ount for the uncert aintie s in outcome s from p hylo gene tic analys es, 
we propose a spatial Poisson process model to unc ov e r h uma n imm unodeficie nc y v irus ( HIV ) tran smis sion flow pa t terns a t the popula tion 
leve l. We re pre se n t pairings of individuals with viral se quenc e data as typed points, with coor dina tes r epr ese n tin g co variates such as ge nde r a nd 
age a nd poin t type s re pre se n ting the unobse rv e d tra nsmission s t atuse s ( l inkage and d ir ection ) . Points ar e as s oci ated with o bs erv e d sc ores on 
the s tre ngth of evide nce for each tran smis sion sta tus tha t ar e obtained thr ough s ta nda rd de ep-se quenc e phyloge netic a n alysis . Our method is 
ab le to j oin tly infe r the late n t tra n smis sion status es for all pairings and the tran smis sion flow s urfac e on the sour ce-r ecipie n t cova riate space. In 
con tras t to exi sting method s, our frame work doe s not r equir e pr ecl as sification of the tran smis sion status es of data poin ts, a nd ins te ad le a rns the m 
probabi listical ly through a fully Bayesian inference scheme. By directly modeling con tin uous spa tial pr oce sse s with smooth densities, our method 
e njo ys si gnifica n t c omputation al adva n tages compa red to previous methods tha t r ely on dis cre t izat ion of the cov ari ate space. We demon strate 
that our fra mework ca n ca pture age s tructures in HIV tra n smis sion at high res o lution, brin gin g v aluab le in si gh ts in a case s tudy on viral deep- 
s equencing d a ta fr om Southe rn Uga nda. 
KEY WOR DS : Bayesian data augme n tation; l ikel ihood -based infe re nce; ma rked spatial point proces s es; p hylodyn amics; Sub-Sah a ra n Africa. 

1 I N T R O D U C T I O N 
As a deca de-lon g glob al p a nde mic, the h uma n imm unodefi- 
cienc y v irus ( HIV ) h as most sev ere ly a ffe cte d Africa with 1 in ev- 
ery 25 adults liv ing w ith the HIV virus, ac c ounting for more than 
two-thirds of infections worldwide ( Eisinger and Fauci, 2018 ; 
Fauci and Lane, 2020 ) . Intern ation al public health organizations 
ta rget in te rve n tion efforts a t popula tions most at risk of HIV ac- 
quisition a nd tra n smis sion ( Glynn e t al., 2001 ; Pe ttifor e t al., 
2008 ; Karim et al., 2010 ; Je wke s e t al., 2010 ; Saul e t al., 2018 ) , 
mot ivat ing a better under stand ing of tran smis sion pa t terns be- 
tw e e n diffe re n t population groups ( W ils on and Halperin, 2008 ) . 

To this end, this a rticle in troduc es nov el methods to infer 
tran smis sion flows among different groups of individuals. We fo- 
cus on modeling the age structure in he teros exual tran smis sion 
pa t terns, r epr ese n ting tra nsmi ssion flow s as late n t s urfac es in a 
p l ane with the source and recipient ages as the axes. Each trans- 
mission pair then be c omes a point on this p l a ne, with all tra ns- 
mission pairs corresponding to a realized point pa t tern. We ex- 
pe ct th a t similar age gr ou ps exhibit similar behavior s, akin to 
modeling con tin uous spatial s urfac es on a c ompact dom ain ( Ji 
et al., 2009 ; Kuto ya n ts, 2012 ) . The key scie n tific challe nge lies 
in the uno bs erv e d tran smis sion pa th ways, wher e uncertainty ex- 
is ts rega rd ing the occ urre nce a nd direction of tra n smis sion s be- 

tw e en each pair. Answ ering the question “who infe cte d whom?”
is th us funda me n tal for lea rning population-level tra n smis sion 
flow. 

To infe r tra n smis sion pa th w ays be tw e en individuals, w e 
leverage outputs from modern p hylo gene tic analys es. Rece n t 
viral de ep-se quencing pipelines h av e en able d estim ation of 
tran smis sion linkage and direction by inferring ev olution ary 
r ela tionships betw e en individuals from multip le s amp led viral 
se quenc es ( Romero-S e vers on e t al., 2016 ; Leitne r a nd Rome ro- 
S e v erson, 2018 ; Wym ant et al., 2018 ; Ratm ann et al., 2019 ) . 
The se pipe line s typically yie ld 2 s umm ary sc or es indica ting 
( 1 ) the l ikel ihood of sh are d tran smis sion links among deep- 
se quenc e d individuals and ( 2 ) the probability of tran smis sion in 
a spec i fic direction ( Wyma n t et al., 2018 ; Ratma nn et al., 2019 ; 
Bbos a e t al., 2020 ; Hall e t al., 2021 ) . How ev er, these s umm ary 
scor es ar e impr ecise and cannot definitively “pr ove” transmis- 
sion betw e en individuals ( Zh ang et al ., 2021 ) . Addit ionally, 
they typically provide only “maximum l ikel ihood” p hylo gene tic 
s tructures without unce rtain ty qua n t ificat ion. Exist ing ap- 
proa ches for learnin g tran smis sion flows usually a pply heuris tic 
thre sholds to the se s umm ary sc ore s, which dis r egar d the varying 
s tre ngth s of p hylo gene tic evide nce a nd also omit subs ta n tial 
fractions of data prior to analysis due to the thresholding. In 
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short, there is a substantial methodological gap for ut iliz ing phy- 
lo gene tic s umm aries in tha t ( 1 ) differ ential evidence confidence 
is ne gle cte d and ( 2 ) a la rge a moun t of data i s di scarded. 

To addre ss the se limit at ions, this art icle propos es a co he re n t 
s tatis tical model, which jointly learns from demo grap hic infor- 
m ation ( s uch as ge nde r a nd age ) a nd p hylo gene tic evidence. 
We introduce a marked late n t spati al proces s model on the age 
spa ce, where ea ch tran smis sion pair of individuals ( r epr ese n ted 
by their paired ages as coor dina tes on the space ) is as s oci ated 
with “m arks” th at c ontain the p hylo gene tic s umm ary sc ores . 
That is, each pote n tial tra nsmi ssion pair i s as signed a l ate n t 
“type” that indicates the unknown tran smis sion status es ( linkage 
and direction ) as a random v ari ab le. The distribution of trans- 
mission flow betw e en age groups and the distribution of the 
“marks” ( p hylo gene tic s core s ) both de pend on the late n t type. 
We derive the l ikel ihood of the comp le te model, s o that bas- 
ing infe re nce in a dat a -au gme n ted Bayesia n fra mework the n al - 
lows us to probabi listical ly learn the latent type for each po- 
te n tial tra nsmission pair join tly with the pa ra mete rs. In pa rtic- 
ula r, the pos te rior formally qua n tifies the evide nce s tre ngth for 
each pair of infe cte d individuals—for example, a pair assigned 
an 85% posterior probability of linked tran smis sion w ould c on- 
tribute more to the learning of the flow s urfac es c ompare d to 
a pair with a 50% pos te rior linkage probability. Importa n tly, 
this joint modeling approach enables us to make use of sub- 
s ta n ti ally more d ata, as “lo w -c onfidenc e” pairs with lower phy- 
lo gene tic s cor es r efle cting w eake r evide nce of l inkage or d i- 
r ection ar e down wei gh ted in a dat a -drive n ma nne r rathe r tha n 
discarded. 

In addition to making better use of the data and uncertainty, 
our late n t spatial poin t process a pproa ch a dmits a more compu- 
tationally efficie n t s o lut ion, owing to a cont inuous formulat ion 
of the tran smis sion flow spac e. A c ommon appro ach in p as t s tud - 
ies e n tail s di s cre te grids based on prespec i fied age groups, such 
as 1 or 5-ye ar ag e bands. These heuristic groupings can lead to 
c omputation ally in te nsive a n alysis ( Hym an et al., 1994 ; Heuv e- 
line, 2004 ; Sharrow et al., 2014 ) . For ins ta nce, Xi et al. ( 2022 ) in- 
troduces a se mipa ra metric Poisson model for flow counts on dis- 
crete age strata and other demo grap hic a t tributes. The n umbe r 
of o bs erv e d poin ts is ofte n conside rably smalle r tha n the n um- 
ber of cells in the dis cre tize d age spac e, leading to m a ny s truc- 
tur al z eros in the grid th at dem and c on siderab le boo k-keeping 
and heavy computation for model smoothing do wnstre am. In- 
s tead, our poin t pa t te rn a pproach with a con tin uous unde rlying 
s urfac e is at once more ge ne ral a nd more c omputation ally effi- 
cie n t, despite including late n t va riables. We wi l l also show that 
the point process model borrows information in a two-way man- 
ne r, leve raging the additional data to learn the tran smis sion flows 
while using the learned flows to infer the point types. 

Me thodo lo gically, w e c ontribute a nov el ext ension t o existing 
s tatis tical me thodo lo gies of spati al point proces s es. Spati al Pois- 
s on proces s ( PP ) models h av e be e n widely a pplied to the s tudy 
of poin t-refe re nc e d 2D data ( Ba ne rj ee e t al., 2003 ; Huber, 2011 ; 
Cre ssie, 2015 ) . The se mode ls h av e re c e n tly bee n exte nded to 
s tudy poin t pa t terns tha t ar e la te n t or pa rti ally o bs erv e d, where 
additionally o bs e rved “ma rks” as s oci ated with point pa t terns 
can be utilized to facilita te infer enc es ( Ve del Jesen and Tho- 
rarin s dottir, 2007 ; Ji e t al., 2009 ) . To our kno wledg e, much of 

thi s exi sting work focus es on on e s e t or type of spati al points, 
rathe r tha n a c ombin at ion of mult ip le “types” of l ate n t poin t 
pa t te rns whe re the uno bs erv e d “type” is in te rpre tab le and of 
practical importance. Our framework bridges this me thodo lo gi- 
cal ga p, leve ragin g a ddition al inform ation to infe r late n t “types”
a nd extract mea ningful s tructures unde r a ma rked -poin t process 
model. We provide a brief review of r ela ted prior works in Web 
Appe ndix A.2, a nd note that the s tatis tical fra mework readily 
tra nsfe rs to studying tran smis sion dynamics for other infectious 
dis eas es ( Paters on e t al., 2015 ) . 

This pa pe r is s tructure d as follows: w e pro vide an o verview of 
the mot ivat ing data and develop the model framework in Sec- 
tion 2 . A l ikel ihood -based infe re nce sche me is prese n te d in Se c- 
tion 3 . We the n inves ti gate infe re nc e ac curacy under the pro- 
posed model and its ability to diffe re n ti ate be tw e en c ompeting 
tran smis sion flow hypothes es on simul ated d ata in Section 4 . 
Next, we i l lustrate the efficacy of the pr oposed appr oach on de- 
mo grap hic and HIV deep-s equence d a ta fr om the Rakai Com- 
munity Cohort Study ( RCCS ) in Southern Uganda in Section 5 . 
Fin ally, w e d isc uss the merits and futur e dir ections of our frame- 
work in Section 6 . 

2 DATA  A N D  M O D E L  
2.1 D em ographic an d viral phylogen et ic data of HIV 

infected individuals 
Huma n imm unodeficie nc y v irus de ep-se quenc e data w ere c ol- 
le cte d from blood samples of p articip ants liv ing w ith HIV in the 
RCCS, a longitudinal , populat ion-base d c ens us and c ohort study 
in Southern Uganda ( Grabow sk i et al., 2017 ) . Samples were ob- 
taine d betw e e n Augus t 2011 a nd Ja n ua ry 2015 from 2652 indi - 
v iduals hav ing an HIV v iral load of > 1000 copies/mL p l asma 
and su ffic ient viral se quenc e read depth and length for deep 
se quenc e data an alysis ( Ratm ann et al., 2019 ; Wymant et al., 
2018 ) . D etaile d de mogra phic, behavioral, a nd healthca r e da ta 
w ere c olle cte d for all p articip ants, including gender and age de- 
termined from se lf- re por ted bir th dates and/or official personal 
docume n ts ( Grabow sk i et al., 2017 ) . 

Our model is motivated by a dataset consisting of 539 hetero- 
sexual pairs of HIV-infe cte d RCCS p articip ants, who are con- 
sidered as p hylo gene tically pos sib le tran smis sion pairs. They 
we re ide n tified a mong all 3 515 226 pairwise c ombin ations in all 
2652 de ep-se quenc e p articip ants. We only considered pairs in 
446 distinct sub grap h s of viral de ep-se quenc e p hylo genies, in- 
t erpret ed as separate pote n tial tra nsmission networks with dis- 
t inct viral introduct ion s ( Ratmann e t al., 2019 ) . We further in- 
ves ti gated these transmission networks using the phy losc anner 
de ep-se quenc e an alysis pipeline ( Wymant et al., 2018 ) , which 
included tran smis sion dire ction inform ation, unlike typical phy- 
lo gene tic cluster analys es ( De Oliveira et al., 2017 ) . This allowed 
us to eliminate he teros exual pairs that could not have occurred 
in acyclic tran smis sion chain s, resulting in 539 pairs for analysis. 
Figure 1 provides an i l lustration of this data s e t. 

The re a re 2 main facets of the data. The first comprises the age 
of the 2 individuals in a pair at the midpoint of the o bs erv ation 
pe riod, de noted b y S = { s i = (a i 1 , a i 2 ) T } N 

i =1 ( s amp le size N = 
539 ) , where the 2D v e ctor ( a i 1 , a i 2 ) re c ords the male’s age a i 1 
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FIGURE 1 Point data and marks r epr ese n ting the output of HIV p hylo gene tic deep-s eque nce a nalysis on the sequence s amp le from Rakai, 
Uganda, from 2010 to 2015. ( A ) Paired ages of 539 he teros exual individuals who were inferred to be p hylo gene tically clos e ly re lated with the 
HIV p hylo gene tic deep-s eque nce a nalysis using the phy losc ann er s oftw are on HIV de ep-se quenc e data from 2652 study p articip ants of the 
Rakai Community Cohort Study in Southern Uganda, 2010–2015. The age of the individuals in the closely r ela ted pairs was calculated at the 
midpoint of the o bs erv at ion period , and the age of the men and of the women are shown on the x-axis and y-axis, respe ctiv ely. Each data point 
is as s oci ate d with tw o p hylo gene tic deep-s eque nce summa ry s tatis tics in ( 0,1 ) , the linkage score ( ℓ i ) , and the direction score ( d i ) ( see text ) . 
Points as s oci ated with hi gh linkage a nd dire ction sc ores ( ℓ i ≥ 0.6 and d i ≥ 0.67 ) a re shown in da rk grey, a nd all othe r poin ts a re shown in li gh t 
grey. Marginal his togra ms on the age of men and women are shown for all points. The typed point process model that we develop here aims to 
infe r tra n smis sion flows using all d a ta points ra the r tha n the hi ghly like ly “source- recipie n t” pairs shown in dark grey. ( B ) H ist ogram of the 
linkage scores across all data points. ( C ) H ist ogram of the direction scores across all data points. Direction scores d i ≤ 1/3 indicate high 
c onfidenc e in fem ale-to-m ale tran smis sion ( shown in red ) , and direction scores d i ≥ 2/3 indicate high c onfidenc e in m ale-to-fem ale 
tran smis sion ( shown in blue ) . 
a nd fe male’s age a i 2 in the i th pair. Our model e nvision s thes e 
paired ages as o bs erv ation s from a spati al proces s des cribing the 
tran smis sion structure. The se c ond fac et c onsists of 2 scores in 
the range of ( 0–1 ) that are outputs from p hylo gene tic analys es 
of HIV de ep-se quencing data with p hy losc anner . For each pair i , 
phy losc anner produces 2 scores—a linkage score and a direction 
s core—by as s es sing the viral p hylo gene tic rel ation ship of indi- 
viduals in terms of the patristic dis ta nces a nd topo lo gical con- 
figurations of the viral reads in de ep-se quenc e phyloge nies, a nd 
the n coun ting the o bs erv e d pa t te rns ove r sl id in g, o ve rla pping 
g enomic windo ws across the HIV g e nome ( Wyma n t et al., 2018 ; 
Ratmann et al., 2019 ) . The linkage scor e ℓ i r epr ese n ts the pos- 
terior probability of the pair sharing a tran smis sion link in the 
tran smis sion proces s under a Binomial count model of windo w - 
spec i fic linkage cl as sification s ( Ratmann e t al., 2019 ) . The direc- 
tion score d i , on the othe r ha nd, measures the pos te rior proba- 
bility of tran smis sion taking p l ac e from the m ale to the fem ale 
in this pair under a similar count model. We c olle ctiv ely denote 
the p hylo gene tic s cores for the i th pair by x i = ( ℓ i , d i ) T , and for 
br evity r efer to the p hylo gene tic d ata as the “marks” as s oci ated 
with each of the points s i for i = 1 , . . . , N . 

The key data challenge is the uno bs erv e d tran smis sion rel a- 
tion ship be tw e en pairs of HIV-infe cte d individuals . Ev en for a 
pair with p hylo gene tic evidenc e s u gge sting high probability to 
be linked through dis eas e tran smis sion ( with a high ℓ i score ) , 
we do not have direct kno wledg e about the tran smis sion linkage 

and direction. Our model ( described later ) wi l l, ther efor e, pr ob- 
abi listical ly char acteriz e the lik elihood s of pairwi s e tran smis sion 
linkage and direction in a dat a -driv en m anner. 

2.2 Subs tan t ial informat ion loss in existing modeling 
a pproa c h es 

Exis ting a nalyses a t t empt t o address the uno bs erv e d pairwise 
tran smis sion rel ation ships by precl as sifying the data points us- 
ing he uristic thre sholds on the p hylo gene tic s umm ary sc ores ( Xi 
et al., 2022 ; Ratmann et al., 2020 ; Hall et al., 2021 ) . For exam- 
ple, a pote n tial tra nsmission pair i would be classified as a male- 
to-fe male tra n smis sion eve n t if ℓ i > 0.6 and d i > 0.67; simi- 
la rly, a nothe r pair j would be taken as a fem ale-to-m ale trans- 
mission if ℓ j > 0.6 and d j < 0.33 ( Xi et al., 2022 ) . Such thresh- 
old ing a pr ior i , albeit proc e durally simple, excludes a subs ta n tial 
pr oportion of da ta fr om the analysis, as “lo w -confidence” pairs 
are comp le tely dis ca rded. Gra phically, Fi gure 1 shows that all 
data points with linkage scores falling to the left of the vertical 
line in pa nel B a nd all data with direction scores in the gray re- 
gion of panel C would be discar ded, r esulting in only 242 out 
of 539 total data points ( see pane l A ) ret aine d for an alysis . Fur- 
ther, s uch pre cl as sification ne gle cts diffe re n tial s tre ngth s of p hy- 
lo gene tic evidence from data points cl as sified as tran smis sion 
eve n ts. In tuitively, we should have hi ghe r confide nce about a 
lik ely tr an smis sion pair i with ℓ i = 0.98 to r epr ese n t a tra ns- 
mission eve n t, compa red to a nothe r pair j with only ℓ j = 0.61. 
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How ev e r, this diffe re n tial s tre ngth of evide nc e is not refle cte d 
in the existing me thodo lo gy. In stead, all d ata points tha t ar e be- 
liev e d to be “hi gh-confide nce” pairs a r e tr ea te d as e qual and ex- 
chang e able, which fails to fully exploit the rich information sum- 
m arize d by the p hylo gene tic s c ores . In the next se ction, w e intro- 
duce our modeling framew ork th at m akes be tter us e of the d ata 
b y join tly leve raging p hylo gene tic evidence and demo grap hic 
information. 

2.3 The typed point process model 
We now spec i fy a ge ne r al fr a mework for infe rring population- 
leve l trans mi ssion flow s from the point pa t tern S = { s i = 
(a i 1 , a i 2 ) T } N 

i =1 with as s oci ate d m arks x i = ( ℓ i , d i ) T , that is, the 
p hylo gene tic tran smis sion and dire ction sc ores . The m arks re- 
flect the s tre ngth of p hylo gene tic evidenc e re garding the un- 
known ground truth tran smis sion rel ation ship in each hetero- 
sexual pair. We introduce for each point a ca tegorical la te n t ra n- 
dom v ari ab le c i th at enc odes 3 pos sib le eve n ts: ( i ) tra nsmis- 
sion did not oc cur betw e en the 2 individuals that define the 
poin t ( de noted b y c i = 0 ) , ( ii ) tra n smis sion oc curre d from the 
male to the female individual ( c i = 1 ) , or ( iii ) tran smis sion oc- 
curr ed fr om the female to the male individual ( c i = −1 ) . For 
br evity, we r efer to c i as the la te n t “type” as s oci ated with each 
o bs erv e d point s i with m ark x i . Intuitiv e ly, the mode lling frame- 
work can be thought of as a typed spatial PP in that the in te n- 
sity function of the process and the distribution of the marks 
both depend on the event type. This typed process then pro- 
vides a ge ne rativ e model for m arke d point pa t terns. Though mo- 
tivated by our particular application, the framework can be ap- 
plied to ma ny simila r data sets of spatial point pa t terns of un- 
known types that are informed b y ma rks as s oci ated with each 
point. 

With this context in plac e, w e be gin by c on sidering a spati al 
point pa t tern defined on a 2D space S × S , where S = { s i } N 

i =1 
is the s e t of all poin ts, a nd each poin t s i = ( s i 1 , s i 2 ) T is r epr ese n ted 
as a point in this p l ane. We model the o bs erv e d points in S as a 
r ealiza tion of a 2D PP, S ∼ P P ( λ) , on S × S . Following Kottas 
a nd Sa nsó ( 2007 ) w e de c ompose the in te nsity function λ in to a 
scale compone n t γ a nd a de nsity function f ( ·) , λ(·) = γ f (·) , 
so that f ( ·) satisfies ∫ S×S f (s 1 , s 2 ) ds 1 ds 2 = 1 . This de c omposi- 
tion se parate s the in te nsity function in t o 2 t e rms, which a re sim- 
pler to write out in the l ikel ihood function and make inference 
c omputation ally tractable. 

We next model the de nsity compone n t f ( ·) as a mixture 
f (·) = ∑ 

k∈K p k f k (·) , where p k is the probability of points be- 
lon gin g to type k , and f k ( ·) is the spatial density function for 
type k . In the context of our application, S is the con tin uous 
age of individuals under study, S = [15 , 50) . Each point s i = 
( a i 1 , a i 2 ) T corresponds to the ages of the 2 individuals forming a 
pair, or der ed by gender and the latent types are K = {−1 , 0 , 1 } , 
c orresponding to fem ale-to-m ale tran smis sion, no tran smis sion 
a nd male-to-fe male tra n smis sion . For in s ta nc e p 1 c orresponds to 
the proportion of m ale-to-fem ale tran smis sion events among all 
pair s of ind ividuals being c onsidere d, and f 1 ( ·) c orresponds to 
the 2D function that captures the across-age transmission p at - 
tern with male sources and female recipie n ts. 

2.4 Infinite G auss ian mixtu re m ode ls fo r the typed inte n s ity 
fu n ct ion s 

The re a re va rious choice s to mode l the s tructure of the de nsity 
functions f k ( ·) . To balance simplicity and flexibility, we choose 
a Dirichlet process ( DP ) Gaussian mixture model ( DPGMM ) 
consisting of infinitely many biv ari ate Gaus si an components 
f k ( ·) . Spec i fically, for each point s i , if its type label c i = k , then we 
h av e s i | c i = k ∼ N ( θ ki , $ki ) , ( θ ki , $ki ) ∼ G k , and G k ∼ DP ( αk , 
G 0 ) . Her e G k r epr ese n ts the ( infinite ) mixture of bivariate nor- 
mal models for type k , and θ ki and $ki are the mean v e ctor and 
cov ari anc e m atr ix for the bivar iate Gaussia n compone n t that s i 
belongs to. 

In practice, Dirichlet process mixtur es ar e often tr ea ted as a fi- 
nite mixture but with a flexible n umbe r of compone n ts. Indeed, 
the abov e define d model m ay be expres s e d e quivale n tly in te rms 
of each density function f k ( ·) , 

f k (·) = H k ∑ 
h =1 w kh · dBVN (·; θkh , $kh ) , ( 1 ) 

whe re H k de notes the n umbe r of “activ e” c ompone n ts, or total 
n umbe r of unique compone n ts ge ne rated b y the DP, a nd each 
( θ kh , $kh ) is a unique Gaus si a n compone n t for the type- k den- 
sity. Here , dB VN ( · ; θ , $) denotes the probability density func- 
tion of a biv ari ate normal distribution with mean θ and covari- 
anc e $. Practically, w e h a ndle the H k ’s b y spec i fying a su ffi- 
cie n tly la rge “maxim um n umbe r of compone n ts”, H max , a nd tr ea t 
the DPGMM as a finite mixture model with H max compone n ts 
( in our analysis H max = 10 s eem s to be su ffic ie n t ) ; this tech- 
nique h as be en d isc ussed in ( Ji et al., 2009 ) . We prese n t a se n- 
sitivity analysis on the choice of H max in Web Appendix C.3. 

2.5 Mode l fo r typ e-dep e nde nt ma rks 
We next describe how the observ e d point pa t terns and their as- 
s oci ate d m a rks a re c onne cte d through the type d point proc ess 
model. Ass uming th at m arks x i as s oci ated with each poin t s i ca n 
pr ovide informa tion on the true eve n t type c i of each poin t, we 
model the distribution of marks x i conditional on type c i . In our 
a pplication, the ma rks x i = ( ℓ i , d i ) T are 2D v e ctors with en- 
trie s t aking value s in ( 0,1 ) , and w e ass ume the following type- 
depe nde n t dis tribut ion for x i condit ional on the type value c i = 
k ( k ∈ { − 1, 0, 1} ) : 
p(x i | c i = k) = φk ( ( ℓ i , d i ) T ) = dN( logit ( ℓ i ) ; ˜ µℓ,i ( k) , σ 2 

ℓ ) 
× dN( logit (d i ) ; ˜ µd,i (k) , σ 2 

d ) . ( 2 ) 
Here, dN ( · ; µ, σ 2 ) denotes a univ ari ate normal den sity func- 
tion with mean µ and v ari ance σ 2 , and logit ( x ) denotes the logit 
transformation on x ∈ ( 0, 1 ) . We further spec i fy type-dependent 
normal means ˜ µℓ,i (k) and ˜ µd,i (k) as 

˜ µℓ,i (k) = µℓ ! [ k ̸ = 0 ] ;
˜ µd,i (k) = µd ! [ k = 1 ] + µ−d ! [ k = −1 ] . ( 3 ) 

In tuitively, a la rge r l inkage score ℓ i ind ica tes str onger evidence 
for a tran smis sion link, and a larger direction d i indicates hi ghe r 
c onfidenc e for a m ale-to-fem ale tran smis sion . Thus, with µℓ > 
0, the first part in ( 3 ) implies that ℓ i likely exc e e ds 0.5 for a real 
tran smis sion event ( c i ̸ = 0 ) ; simil arly, with µ−d < 0 < µd , the 
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se c ond part in ( 3 ) implies that d i is pro bab ly l a rge r tha n 0.5 for a 
m ale-to-fem ale ev ent ( c i = 1 ) but sm aller th an 0.5 for a female- 
to-m ale ev e n t ( c i = −1 ) . Note this desi gn uses the property 
logit ( 0.5 ) = 0. 

2.6 The complete data li keli ho o d 
From the des cription s abov e, the 2 key c ompone n ts in the 
model—the spa tial pr ocess and the marks distribution—are 
linked through the late n t types c i . Conditional on the late n t 
type c i = k , a point i contributes the term γ p k f k ( s i ) × φk ( x i ) 
to the data l ikel ihood, a nd the r efor e the l ikel ihood simply re- 
quire multiplying all such terms for i = 1, 2 , . . . , N . With 
co mplet e data, which include the coor dina tes of all N points in 
the s e t S , the o bs erv e d sign als x i as well as the type c i for all i 
= 1 , . . . , N , we can write down the comp le te d at a like lihood 
function L ( (; { x i }, { c i }, { s i } ) . Model pa ra mete rs include ( = 
{ γ , p , µ, σ 2 

ℓ , σ 2 
d , { (θkh , $kh ) } , { αk }} , where p = ( p −1 , p 0 , p 1 ) T , 

and µ = (µℓ , µd , µ−d ) T ) . 
L ((; { x i } , { c i } , { s i } ) 

= γ N e −γ

N! 
∏ 
k∈K 

∏ 
i : c i = k p k f k (s i ) φk (x i ) ( 4 ) 

= ∏ 
i =1: N dN( logit ( ℓ i ) ; ˜ µℓ,i ( c i ) , σ 2 

ℓ ) dN 
× ( logit (d i ) ; ˜ µd,i (c i ) , σ 2 

d ) 
×γ N e −γ

N! 
∏ 
k∈K 

∏ 
i : c i = k 

( 
p k H k ∑ 

h =1 w kh BVN 
× ( ( s i 1 , s i 2 ) ; θh , $h ) 

) 
. ( 5 ) 

3 B AY E S I A  N  I N F E R E N C E  W I T H  DATA  
A U G  M E N  TAT I O N  

We e mplo y a n efficie n t dat a -au gme n ted Bayesia n infe re nce 
sche me ( Ta nne r a nd Wong, 1987 ; Va n Dyk a nd Me ng, 2001 ) 
to learn the unknown pa ra mete rs ( in the proposed typed point 
proce ss mode l from o bs erv e d data. Infe re nc e w ould be s trai gh t- 
forward if all aspects of the model were o bs erv ab le, givin g a c- 
cess to the comp le te d at a like lihood spec i fied in ( 5 ) . That is, i f 
the c i ’s were known, the terms corresponding to the spatial point 
process and marks would comp le t ely fact oriz e in the lik elihood 
function, as shown in ( 5 ) . Pa ra mete r infe re nc e w ould re duc e 
to s ta nda r d pr oc e dures for Dirichlet Proces s Gaus si an mixture 
mode ls ( Ras mus s en, 1999 ) . 

How ev er, the type c i for each data point i is not observ e d 
in our data set ting. Infer ence thr ough the m argin al l ikel ihood 
based only on observ e d data w ould e n tail a n in tractable hi gh- 
dime nsional in tegration s tep. Ins tead, we propose a data aug- 
me n tation sche me that expa nds the ta rget pos te rior to include 
the uno bs erv e d c i ’s as unknow ns, w hich allows us to exploit the 
c onv e nie n t expression of the complete data l ikel ihood in ( 5 ) . 
That is, our algorithm s amp les from the joint posterior density of 
the model pa ra mete rs ( to ge ther with the uno bs erv e d types c i ’s: 

p ( (, { c i } | { x i }, { s i } ) ∝ L ( (; { x i }, { c i }, { s i } ) p 0 ( () . Here p 0 ( () 
de notes the join t prior dis tribution for pa ra mete rs (. The dat a - 
augme n ted infe re nce fra mework is e mplo yed through a Bayesian 
Markov chain Monte Carlo ( MCMC ) s amp ler. The algorithm 
can be roughly divided into 2 main compone n ts in each itera- 
tion: ( 1 ) s amp le or upd ate parame ters ( c onditione d on c on- 
figurations of the { c i }’s from the c ondition al pos te rior dis tribu- 
tion p ( (| { x i }, { c i }, { s i } ) and ( 2 ) s amp le c i for each i given v al- 
ues of ( from p ( c i | (, x i , s i ) , ut iliz ing the comp le te d at a like li- 
hood in ( 5 ) . To improve the efficiency of the MCMC s amp ler, 
w e prescribe c onjugate or semic onjugate priors whenev er pos- 
sib le, enab ling straightforw ard G ib bs s amp ling by exp loiting the 
full c ondition al pos te rior de n sities av ail ab le for almos t all pa ra m- 
e ters. We provide de tai ls on al l prior choices and s amp ling steps 
in Web A ppendix A .2. 

4 S I M U L AT I O N  ST U D I E S  
In this se ction, w e v alid a te our pr opose d framew ork through 
syn thetic expe rime n ts. As is releva n t to our a pplication, we as- 
s es s the a ccura cy of the type d point proc e ss mode l in re c ov- 
e ring sim ula ted pa t terns of HIV tran smis sion flows be tw e en 
me n a nd wome n across diffe re n t ages . Addition ally, w e explore 
the model’s capability to infer these flows with increasingly 
smalle r sa mple sizes. We be nchma rk its pe rforma nce with a sub- 
s e t model that precl as sifies pote n tial tra n smis sion pairs using an 
exis ting a pproach described in Section 2.2 , where spatial com- 
pone n ts a re s ti l l lea rned with the DPGMM fra mework. We wi l l 
focus on 2 con te mpora ry ques tions of of pa rticula r epide mio- 
logical in te res t, a nd inves ti gate the model’s ability to re c ov e r a nd 
diffe re n ti ate be tw e en 2 c ompe ting s c en arios . 

First, re c ent HIV tran smis sion flow studies h av e shown th at 
more infections tend to origina te fr om men than from women 
( Bbos a e t al., 2020 ; Ratmann e t al., 2020 ; Hall e t al., 2021 ) . This 
motivates us to inves ti gate the proposed framework’s ability to 
accura tely r ecove r pa ra mete rs a nd dis tinguish betw e en tw o sc e- 
na rios: one whe re me n drive 50% of infections ( “MF 50-50”) 
a nd a nothe r whe re me n drive 60% of infections ( “MF 60-40”) . 
We conduct expe rime n ts with five diffe re n t sa mple sizes: N = 
100, 200, 400, 600, and 800. For each sc en ario and s amp le size, 
we ge ne rate 100 indepe nde n t d atas e ts and fit the typed point 
proce ss mode l to each. 

Se c ond, the re is si gnifica n t in te res t in the age dis tribution 
of m ale sourc es of HIV infe ctions, espe cially to adolesc e n t 
a nd young wome n age d 15-24 giv e n their hi gh incide nce 
rates ( Risher et al., 2021 ) . We explore whether the model can dif- 
fe re n ti ate be tw e en 2 sc en arios: one where younger men ( around 
25 years old ) contribute 60% of infections in women aged 15–
24, while olde r me n ( a round 35 yea rs old ) con tribute 30% a nd 
othe r me n con tribute 10% ( “SAME AGE”) a nd a nothe r sce na rio 
whe re younge r me n con tribute 30%, olde r me n con tribute 60%, 
a nd othe r me n con tri bute 10% ( “DISCOR DANT AGE”) . We 
v ary s amp le siz es, gener ate 100 simulated datasets for each sce- 
na rio, a nd fit the model as previously described ( see Web Appen 
dix B for comp le te de tails ) . 

Figure 2 s umm arizes our findings from the two s e ts of 
sim ulation s tudies, whe re we use da rke r colors to r epr ese n t 
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FIGUR E 2 Per form anc e of the typed point process model in re c ov e ring sim ulated tra n smis sion flow pa t te rns. Key pa ra mete rs a re es tim ate d 
using the typed point process model ( “FULL”, da rke r colors ) a nd a subset model that uses an existing approach to pre-cl as sify point types 
( “SUBSET”, li gh te r colors ) on each of the 100 sim ul ated d ata s e ts under each s c en ario. ( A ) Boxplot of the posterior mean estimate of 
tran smis sion s from men in 100 r eplica te simula tions for the MF 50-50 ( left pa nel ) a nd MF 60-40 sc en ar ios ( r ight panel ) . Throughout, the 
dashed lines mark the true values that underpin the simulated data. The x -axis shows the s amp le size of simulated data points, which re pre se n t 
the n umbe r of p hylo gene tically clos e ly re lated pairs of individuals ide n tified through p hylo gene tic deep-s eque nce a nalyses. ( B ) Boxplot of the 
pos te rior mea n es timate of tra n smis sion s from men of simil ar ag e ( sho wn in red ) a nd olde r ag e ( sho wn in b lue ) to infection in ado les ce n t a nd 
young women aged 15–24 in 100 r eplica te simula tions for the “SAME AGE” and “DISCORDANT AGE” sc en arios . As before, the dashed lines 
mark the true values that underpin the simulated data and the x-axis shows results for diffe re n t sa mple sizes. 
r esults fr om our pr oposed model ( “FULL”) a nd li gh te r colors 
for the subs e t model with precl as sification ( “SUBSET”) . The 
top panel in Figure 2 shows results from the m ale-fem ale sim- 
ulation expe rime n ts ( MF 50-50 a nd MF 60-40 ) . We find that 
our proposed model is able to s uc c essfully di stingui sh betw e en 
the 2 competing epide miological sce na rios a nd produce es ti - 
mates for ge nde r-r ela ted pr oportions tha t ar e accura te within 
a ±5% e rror ma rgin for s amp le sizes N ≥ 200. The bottom 
panel in Figure 2 i l lustrates our findings on the age-spec i fic 
sources expe rime n ts ( SAME AGE a nd DISCORDANT AGE ) . 
Thi s i s a subs ta n tially more d iffic ult infe re nce pro b lem becaus e 
the ta rget qua n t it ies r ela t e t o a sm aller s ubgroup of the e n tire 
s ource popul ation . W ith a small s amp le ( N in the range 100–
200 ) , the r ela tive r ela tionship betw e en the 2 proportions is in- 
ferre d c orre ctly in all expe rime n ts . How ev e r, the actual qua n- 
t itat ive est imates and differences can deviate from the truth, 
in this case ove res t imated . For s amp le sizes of N ≥ 400, the 
qua n t itat ive est im ates be c ome satisfa ctorily a ccurate. The ob- 
serv e d ov erestim ation is likely due to the parsimony induc e d by 
the Dirichlet Process priors that are known to prefer assigning 
data points to the la rges t exis ting clus te rs whe n the re a re not 
enou gh dat a to admit a ne w mixture mode l compone n t. As a re- 

sult, more poin ts te nd to be a t tribut ed t o the compone n t with 
the hi ghes t wei gh t whe n N i s small; thi s effect i s mitigated as 
N increases. 

Betw e en the 2 sets of simulation expe rime n ts, the proposed 
model consis te n tly pr oduces mor e accura te estima tes for both 
ge nde r- re lated and age- re l ated proportion s c ompare d to the ex- 
isting pre-cl as sifying approach . We note that in the “MF 50-50”
sc en ario the 2 models are comparable, but thi s i s becaus e d a ta ar e 
simulated with symmetric distribution for the direction scores, 
and in this case the subset model benefits from precl as sification 
heuristics th at h appen to match the ground truth. Additional 
analyses on simulated experiments that include numerical con- 
ve rge nce a nd mixing a n alyses as w e ll as Baye sian c ov e rage a nal - 
yses, are provided in Web Appendix B. 

5 C A S E  ST U DY  
We next apply our point process model to de mogra phic 
and popul ation-bas e d HIV de ep-se quenc e da ta fr om the 
RCCS ( Ratmann et al., 2019 , 2020 ) . Our goal is to re c onstruct 
tran smis sion flows by gender and continuous age betw e en 15 
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TA BLE 1 Proport ions a nd n umbe rs of infe rre d ev e n t types. 
Type Full a na lysis with l ate n t 

eve n t types Subs e t a na lysis with 
fixed eve n t types 

p k N k p k N k 
Male-to-fe male tra n smis sion ( k = 1 ) 46.3% ( 39.4%, 53.1% ) 244 ( 207, 279 ) 35.7% 188 
Fem ale-to-m ale tran smis sion ( k = −1 ) 35.0% ( 28.5%, 42.0% ) 184 ( 150, 221 ) 29.5% 155 
No tran smis sion ( k = 0 ) 18.6% ( 9.4%, 29.2% ) 98 ( 49, 154 ) 34.8% 183 
Pos te rior mea n es timates with 95% credible in te rvals. 
a nd 50 yea rs. This case s tudy is challe n gin g as s ta nda rd phylody- 
na mic a nalys es using HIV con s en sus s eque nces s truggle to infe r 
flow pa t terns for mor e than a few age gr ou ps, typically l imited 
to 5-year or 10-year age bands ( Scire et al., 2020 ; Bbosa et al., 
2020 ; Xi et al., 2022 ) . We analyze all pairs of potential phyloge- 
ne tically rel ated indiv iduals w ithout heuristic precl as sification, 
resulting in a d atas e t of 526 pairs re pre se n ting pote n tial tra ns- 
mis sion s u pon exclud ing few pair s with v ery w eak evidenc e. 
For c omparison, w e als o imp le me n t a n a n alysis with addition al 
heuris tic filte ring as in ( Xi et al., 2022 ) , retaining only 367 “high- 
c onfidenc e” tran smis sion pairs. We refer to the former approach 
as “full a nalysis,” whe re we use late n t va riables to ac c ount for 
unce rtain ties in lowe r confide nce pairs, a nd the la t ter as “subs e t 
an alysis,” using fixe d types fr om the pr epr ocessing. Mor e details 
ar e pr ovided in Web Appendix C. 

Co mpu ta t io nal advanta ges . We a re able to infer both the male- 
to-fe male a nd fe m ale-to-m ale tran smis sion flow s urfac es, f 1 and 
f −1 , and the unknown event types { c i ; i = 1 , . . . , N } without is- 
sues in n ume rical conve rge nce or mixing. We have performed di- 
agnostics to ensure MCMC conve rge nce, along with s en sitivity 
analysis on the choice of priors and hyper-parameters, with de- 
tail s di s cus s ed in Web Appendix C.3. On a laptop with an 8-core 
CPU, a 30-min ute run time allows us to obtain 4000 MCMC 
s amp le s a fter burn-in and thinning without parallelization. This 
is a con siderab le improve me n t in computational efficiency com- 
pared to using the s emiparame tric Pois s on count model on 1- 
ye ar ag e dis cre tized bands ( Xi e t al., 2022 ) , where 4000 total it- 
era tions r equir e about 30 hours. 
5.1 Le arning la ten t even t types results in more data used for 

infe re nce of t ra nsmissio n flows 
Compared to the subs e t analysis, the full analysis a t tributes mor e 
pairs of individuals to type 1 ( m ale-to-fem ale tran smis sion ) 
and to type −1 ( fem ale-to-m ale tran smis sion ) . We compare 
the pos te rior probability p k for each type k under each a nal - 
ysis in Table 1 , as well as the n umbe r of pairs N k a t tributed 
to each type upon multiplying p k by the s amp le size. Notab ly, 
the full a nalysis lea rns a si gnifica n tly lowe r p 0 ( proportion of 
“no tran smis sion”) . This su gge s ts that b y infe rring eve n t types 
instead of heuristically precl as sifying them, our proposed ap- 
proach is ut iliz ing more p hylo gene t ic informat ion from pote n tial 
pairs. 

5.2 Infe rred ag e of male a nd fe male s ources of HIV 
t ra n smiss ion 

The typed point process model allows us t o estimat e the sources 
of male a nd fe male H IV infect ions cont inuously in terms of age, 
as shown in Figure 3 A. This appr oach pr ovides mor e flexibility 

c ompare d to prior w ork, as w e can s umm arize res ults at any de- 
sir ed r es o lution in stea d of bein g restrict ed t o 5- year or 10- year 
age bands ( De Oliveira et al., 2017 ; Le Vu et al., 2019 ; Bbosa 
e t al., 2020 ; Scire e t al., 2020 ) . Coars e age dis cre t izat ion can ob- 
sc ure d iffe re nce s in import a n t tra n smis sion modes from a public 
health perspe ctiv e Xi et al. ( 2022 ) . Fi gure 3 A clea rly a nswe rs the 
question, “which age groups contribute most to HIV transmis- 
sion at the population le vel?” T he c olore d solid curves r epr ese n t 
the inferred age distributions of male and fem ale sourc es in the 
ful l analysis, whi le the d ark d ashed l ines d isp l ay thos e under the 
subs e t analysis. 

Male sources tend to be consis te n tly olde r tha n fe m ale sourc es . 
The estim ate d 50% hi ghes t pos te rior de nsity in te rvals ( HDIs ) 
under the full analysis are ages [25.4, 34.3] for male sources 
and [20.4, 29.0] for fem ale sourc es . In c omparison, the an al- 
ogous in te rvals unde r the subs e t a nalysis a re [26.9, 35.4] and 
[21.4, 29.3], respe ctiv ely. Notably, the full an alysis does not de- 
cr ease estima tion unce rtain ty in key epide mio lo gical qua n t it ies. 
In stead, it be t ter r efle cts the actual unc e rtain ty b y explicitly ac- 
counting for unce rtain ty in the eve n t types unde rlyin g ea ch data 
point. 

Both analyses reveal a cha racte ris tic peak in tran smis sion from 
me n a round age 30, with a long, pronounc e d t ail of trans mis- 
sions from men older than 40. In contrast, the age distribution 
of fem ale sourc es d iffer s qual it ative ly, as the probability of trans- 
mis sion s from women declines rapidly with age. These observa- 
tions ar e mor e str ongly s upporte d b y including late n t va riables 
in the full analysis—the entire age distribution of the female 
sources is sli gh tly shift ed t o ward young er ag es c ompare d to the 
infe rred dis tribution unde r fixe d types . 

To gain further insight into age-spec i fic tran smis sion dynam- 
ics, w e c onside r the age profile of the tra nsmitting pa rtne rs. In 
Figure 4 , the recipie n t ages are c olor-c ode d, and the wave on 
the y-axis shows the pos te rior media n con tribution of transmis- 
sions to recipie n ts of that age. Fi gure 4 A i l lustrates that the age 
pr ofile of sour c es h as a ch a racte ris tic sha pe for each recipie n t 
age gr oup—they ar e not simply shifte d v ersions of one age pro- 
file. Fi gure 4 B de mons trates how the superposition of the age- 
s tructured tra n smis sion dyn amics res ults in the ov erall sourc e 
pr ofile tha t m argin alizes out the age of the re cipie n ts. 
5.3 Tran smiss ion s to and from adolescent and young wo me n 
Next, we focus on ado les ce n t a nd young wome n betw e en age 
15 and 24. Spec i fically, we wish to unde rs ta nd the age distribu- 
tion of their male sources, and in turn, that of male recipie n ts 
for whom these wome n a re the sources of infection . In si gh ts ca n 
provide further evidence to HIV pro gram s that aim to re duc e in- 
fections in this critical age group ( Glynn et al., 2001 ; Karim et al., 
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A

B

FIGURE 3 ( A ) Age distributions of male and female sources of HIV infections in Rakai, Uganda during the 2011-2015 observation period. 
The left panel shows the estim ate d age of the male sources and the right panel shows the estim ate d age of the female sources. ( B ) Age 
distributions of male sources and recipie n ts of HIV infections in women aged 15-24. The left panel shows the age distribution of male sources 
and the right panel char acteriz es the age distribution of male recipie n ts, for women aged 15-24. In each panel, the colored lines r epr ese n t 
density curves of the age of sour ces/r ecipie n ts for 100 pos te rior sa mples from the inferred, smooth tran smis sion flow in te nsity s urfac e of the 
typed point process model in the full analysis with latent event types. The thicker curve indicates the pos te rior mea n de n sity curve. The b l ack 
dashe d curv e i l lus trates the pos te rior mea n de nsity curv e in the s ubs e t an alysis with fixe d ev e n t type s. A tot al of 50% highe st density intervals 
( HDI s ) ar e m arke d in text, with c olore d text indicating the HDIs inferred in the full analysis and b l ack text indicating the HDIs inferred in the 
subs e t analysis. 
2010 ; Je wke s et al., 2010 ) , such as the DREAMS program ( Saul 
et al., 2018 ) within the US Preside n t’s Eme rge ncy Pla n for AIDS 
Relief ( PEPFAR ) ( Oliver, 2012 ) . 

Figur e 3 B pr esents our findings on inferred age distributions 
of m ale sourc e s ( left pane l ) and m ale re cipients of transmis- 
sions from young wome n ( ri gh t pa nel ) . Colore d curv e s re pre- 
se n t results from the full analysis with late n t eve n t types, while 
b l ack curv es c orrespond to the subs e t analysis. The maj ority of 
m ale sourc es fall within the 24-30 y ear r ange, with a notable sub- 
group of older men over 35. Conv ersely, m ale re cipients of trans- 
mission from young women lie more strongly in the 24-30 year 
ra nge, with a smalle r subgr oup of r ecipie n ts ove r 35. This sug- 
ges ts a prima ry tra n smis sion pa th way s ta rting with tra n smis sion 
from men appr oxima tely 5-8 years older than the young women, 
who the n tra nsmit the virus to me n 5-8 yea rs olde r tha n the m- 
se lve s. Another pa th w ay invo lves tran smis sion from men 10- 
15 years older than young women, who then transmit the virus 
to men 5-8 years older than them s e lve s, rather than 10-15 years 
o lder. Thes e findings emp h asize the significanc e of HIV prev en- 
tion pro gram s in Sub-Saha ra n Africa that ta rge t ado les ce n t a nd 
young women, who are vulnerable to HIV from a broad age range 
of male sources ( UNAIDS, 2018 ) . 

5.4 Co mpa ring full a nal ysis with latent event types to subset 
a nal ys is us ing fixed types 

We close by examining the finer details of the inferred age- and 
ge nde r-spec i fic tran smis sion flows be tw e e n a n alyses . In the s ub- 
s e t analysis with fixed eve n t types ( Figure 5 A ) , only a fraction of 
all data points are utilized to learn the latent age structure as s o- 
ciated with each type. All data points carry the same weight. In 
the full analysis using latent types ( Figure 5 B ) , all potential pairs 
contribut e t o the learning of the late n t age s tructure as s oci ated 
with each eve n t type, a nd the con tribution of each data point is 
wei gh ted b y its as s oci at ed post erior type probability ( i l lustrated 
with the color shades of each point ) . 

Ov erall, the s urfac es of age-spe c i fic m ale-to-fem ale and 
fem ale-to-m ale tran smis sion flows a ppea r simila r unde r both 
approaches, as shown in Figure 5 . This similarity is unsurpris- 
ing given the age distributions depicted in Figure 3 A. Ho w - 
eve r, the re a re notable diffe re nces in the inferred late n t s urfac e 
corresponding to no tran smis sion be tw e e n the full a nd subs e t 
an alyses . Furthermore, in the full analysis, data points involving 
wome n a round age 20 a nd me n a round age 30 a r e mor e str ongly 
a t tribut ed t o male-t o-fe male tra n smis sion, while d ata points 
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FIGURE 4 ( A ) Age distributions of sources for recipie n ts in diffe re n t 3-yea r age grou ps. Each c urve r epr ese n ts the learned r ela tive fr equencies 
of sour ces r espon sib le for tran smis sion s within each recipie n t a ge group. ( B ) M arginal a ge distributions of sources shown as "’stacked” curves of 
age source distributions for each recipie n t age group ( in 3-year age bands ) . In subplot 4 ( b ) , the “m argin al” age distributions are shown by 
sta ckin g up the frequencies of sources for each recipie n t age group. Left column shows age distributions for male sources in male-to-female 
tran smis sion s for different female recipie n t age groups. Ri gh t column shows age distributions for female sources in female-to-male 
tran smis sion s for different male recipie n t age groups. 
inv olving w ome n a round age 45 a r e mor e str ongly a t tributed 
t o female-t o- male trans mission. The la t te r obse rvation implies a 
pote n tial exte nsion to our approach where we could incorporate 
findings from prior studies as informed priors: women in this age 
are found to h av e low er HIV viral loads at the population level 
tha n me n, making the m less infectious on aver age ( Gr abow sk i 
et al., 2017 ; Rod ge r et al., 2019 ) . 

6 D I S  C U S S  I O N 
We propose a hie ra rchical typed poin t proce ss mode l to learn 
dis eas e tran smis sion flows from p hylo gene tically re c onstructe d 
tran smis sion pair d a ta. Our novel appr oach includes a computa- 
tionally efficie n t Bayesia n infe re nce al gorithm tha t pr obabilis ti - 
cally learns the unobserv e d ev ent type s de spite the la rge n umbe r 
of late n t pa ra mete rs a nd pa rt ially informat ive data. As i l lustrated 
in simul ation s and the case study, our framework efficiently uti- 
lizes more data and quantifies evidence strength in a dat a -driven 
ma nne r, incorporating the unce rtain ties of p hylo gene tic sum- 
m ary outputs . 

Using a con tin uous spa tial pr ocess allows us to address 
epidemio lo gically importa n t ques tions with fine-grained age- 
spec i fic tran smis sion pa t terns, over coming the limita tions of 
exis ting coa rse age ba nd a nalyses due t o t e chnical or c ompu- 
tation al c ons train ts. Unl ike d is cre te spati al treatme n ts used in 
aggr ega ted count da t a analyse s, our typed point process ap- 
proach a voids hea vy c omputation al burden s as s oci ated with 
Gaus si a n Ma rk ov r andom fields or similar models requiring in- 
ten s e ma trix opera t ions ( Rue and Held , 2005 ) . Given point- 
leve l dat a, our con tin uous spati al model simp lifies computation 
si gnifica n tly. 

Our framework exhibits cert ain limit a tions tha t su gge st future 
r esear ch dir e ctions . First, w e c onsider only age and gender in 
mode ling trans mi ssion flow s, but w e c ould c onsider including 
other individual cov ari a tes tha t may impact tran smis sibility as 
cov ari ates in the Pois s on proces s es or marks distributions ( Hu 
and B radley, 2018 ) . Se c ond, the norm al mixture model ass umes 
spherical proximity, which could be relaxed by extending to 
mor e flexible, non-normal mixtur e compone n ts such as the 
biv ari ate Be t a kerne l ( Kott as a nd Sa nsó, 2007 ) . Las t but not 
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FIG URE 5 Comparis on of the infe rred age s tructure in tra n smis sion flow s in the full analysi s with late n t eve n t types ve rsus the subs e t analysis 
with fixed eve n t types. ( A ) Results in the subs e t analysis with fixed eve n t types. Sour ce-r ecipie n t pairs that were precl as sified by eve n t type 
( dots ) are shown along the posterior median estimate of 50%, 80%, and 90% highest probability regions of transmission flows ( contours ) . The 
n umbe r of data points attributed to each type is indicated in the top left corner. ( B ) Results in the full analysis with late n t eve n t types. 
Sour ce-r ecipie n t pairs ( dots ) are shown by posterior event type probabilities ( color in te nsity ) along the pos te rior media n es timate of 50%, 
80%, and 90% highest probability regions of transmission flows ( contours ) . The “effective” n umbe r ( “eff. N ”) of data points attributed to each 
type ( pos te rior mea n es tima te of N k as in Table 1 ) is indica t ed in the t op left corner. 
the least, we have assumed conditional indepe nde nce betwee n 
tran smis sion pairs, which could be gener aliz ed in order to 
le verage rele vant de pendency structure s by introducing clusters 
or subgroups among infected individuals. 
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