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ABSTRACT

Viral deep-sequencing data play a crucial role toward understanding disease transmission network flows, providing higher resolution compared
to standard Sanger sequencing. To more fully utilize these rich data and account for the uncertainties in outcomes from phylogenetic analyses,
we propose a spatial Poisson process model to uncover human immunodeficiency virus (HIV) transmission flow patterns at the population
level. We represent pairings of individuals with viral sequence data as typed points, with coordinates representing covariates such as gender and
age and point types representing the unobserved transmission statuses (linkage and direction). Points are associated with observed scores on
the strength of evidence for each transmission status that are obtained through standard deep-sequence phylogenetic analysis. Our method is
able to jointly infer the latent transmission statuses for all pairings and the transmission flow surface on the source-recipient covariate space. In
contrast to existing methods, our framework does not require preclassification of the transmission statuses of data points, and instead learns them
probabilistically through a fully Bayesian inference scheme. By directly modeling continuous spatial processes with smooth densities, our method
enjoys significant computational advantages compared to previous methods that rely on discretization of the covariate space. We demonstrate
that our framework can capture age structures in HIV transmission at high resolution, bringing valuable insights in a case study on viral deep-
sequencing data from Southern Uganda.
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1 INTRODUCTION

As a decade-long global pandemic, the human immunodefi-
ciency virus (HIV) has most severely affected Africa with 1 in ev-
ery 25 adults living with the HIV virus, accounting for more than
two-thirds of infections worldwide (Eisinger and Fauci, 2018;
Fauci and Lane, 2020). International public health organizations
target intervention efforts at populations most at risk of HIV ac-
quisition and transmission (Glynn et al.,, 2001; Pettifor et al.,
2008; Karim et al., 2010; Jewkes et al., 2010; Saul et al., 2018),
motivating a better understanding of transmission patterns be-
tween different population groups (Wilson and Halperin, 2008).

To this end, this article introduces novel methods to infer
transmission flows among different groups of individuals. We fo-
cus on modeling the age structure in heterosexual transmission
patterns, representing transmission flows as latent surfaces in a
plane with the source and recipient ages as the axes. Each trans-
mission pair then becomes a point on this plane, with all trans-
mission pairs corresponding to a realized point pattern. We ex-
pect that similar age groups exhibit similar behaviors, akin to
modeling continuous spatial surfaces on a compact domain (Ji
et al,, 2009; Kutoyants, 2012). The key scientific challenge lies
in the unobserved transmission pathways, where uncertainty ex-
ists regarding the occurrence and direction of transmissions be-

tween each pair. Answering the question “who infected whom?”
is thus fundamental for learning population-level transmission
flow.

To infer transmission pathways between individuals, we
leverage outputs from modern phylogenetic analyses. Recent
viral deep-sequencing pipelines have enabled estimation of
transmission linkage and direction by inferring evolutionary
relationships between individuals from multiple sampled viral
sequences (Romero-Severson et al., 2016; Leitner and Romero-
Severson, 2018; Wymant et al., 2018; Ratmann et al., 2019).
These pipelines typically yield 2 summary scores indicating
(1) the likelihood of shared transmission links among deep-
sequenced individuals and (2) the probability of transmission in
a specific direction (Wymant et al., 2018; Ratmann et al., 2019;
Bbosa et al., 2020; Hall et al., 2021). However, these summary
scores are imprecise and cannot definitively “prove” transmis-
sion between individuals (Zhang et al, 2021). Additionally,
they typically provide only “maximum likelihood” phylogenetic
structures without uncertainty quantification. Existing ap-
proaches for learning transmission flows usually apply heuristic
thresholds to these summary scores, which disregard the varying
strengths of phylogenetic evidence and also omit substantial
fractions of data prior to analysis due to the thresholding. In
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short, there is a substantial methodological gap for utilizing phy-
logenetic summaries in that (1) differential evidence confidence
is neglected and (2) a large amount of data is discarded.

To address these limitations, this article proposes a coherent
statistical model, which jointly learns from demographic infor-
mation (such as gender and age) and phylogenetic evidence.
We introduce a marked latent spatial process model on the age
space, where each transmission pair of individuals (represented
by their paired ages as coordinates on the space) is associated
with “marks” that contain the phylogenetic summary scores.
That is, each potential transmission pair is assigned a latent
“type” thatindicates the unknown transmission statuses (linkage
and direction) as a random variable. The distribution of trans-
mission flow between age groups and the distribution of the
“marks” (phylogenetic scores) both depend on the latent type.
We derive the likelihood of the complete model, so that bas-
ing inference in a data-augmented Bayesian framework then al-
lows us to probabilistically learn the latent type for each po-
tential transmission pair jointly with the parameters. In partic-
ular, the posterior formally quantifies the evidence strength for
each pair of infected individuals—for example, a pair assigned
an 85% posterior probability of linked transmission would con-
tribute more to the learning of the flow surfaces compared to
a pair with a 50% posterior linkage probability. Importantly,
this joint modeling approach enables us to make use of sub-
stantially more data, as “low-confidence” pairs with lower phy-
logenetic scores reflecting weaker evidence of linkage or di-
rection are downweighted in a data-driven manner rather than
discarded.

In addition to making better use of the data and uncertainty,
our latent spatial point process approach admits a more compu-
tationally efficient solution, owing to a continuous formulation
of the transmission flow space. A common approach in past stud-
ies entails discrete grids based on prespecified age groups, such
as 1 or 5-year age bands. These heuristic groupings can lead to
computationally intensive analysis (Hyman et al., 1994; Heuve-
line, 2004; Sharrow et al., 2014). For instance, Xi et al. (2022 ) in-
troduces a semiparametric Poisson model for flow counts on dis-
crete age strata and other demographic attributes. The number
of observed points is often considerably smaller than the num-
ber of cells in the discretized age space, leading to many struc-
tural zeros in the grid that demand considerable book-keeping
and heavy computation for model smoothing downstream. In-
stead, our point pattern approach with a continuous underlying
surface is at once more general and more computationally effi-
cient, despite including latent variables. We will also show that
the point process model borrows information in a two-way man-
ner, leveraging the additional data to learn the transmission flows
while using the learned flows to infer the point types.

Methodologically, we contribute a novel extension to existing
statistical methodologies of spatial point processes. Spatial Pois-
son process (PP) models have been widely applied to the study
of point-referenced 2D data (Banerjee et al., 2003; Huber, 2011;
Cressie, 2015). These models have recently been extended to
study point patterns that are latent or partially observed, where
additionally observed “marks” associated with point patterns
can be utilized to facilitate inferences (Vedel Jesen and Tho-
rarinsdottir, 2007; Ji et al., 2009). To our knowledge, much of

this existing work focuses on one set or type of spatial points,
rather than a combination of multiple “types” of latent point
patterns where the unobserved “type” is interpretable and of
practical importance. Our framework bridges this methodologi-
cal gap, leveraging additional information to infer latent “types”
and extract meaningful structures under a marked-point process
model. We provide a brief review of related prior works in Web
Appendix A2, and note that the statistical framework readily
transfers to studying transmission dynamics for other infectious
diseases (Paterson et al., 2015).

This paper is structured as follows: we provide an overview of
the motivating data and develop the model framework in Sec-
tion 2. A likelihood-based inference scheme is presented in Sec-
tion 3. We then investigate inference accuracy under the pro-
posed model and its ability to differentiate between competing
transmission flow hypotheses on simulated data in Section 4.
Next, we illustrate the efficacy of the proposed approach on de-
mographic and HIV deep-sequence data from the Rakai Com-
munity Cohort Study (RCCS) in Southern Uganda in Section S.
Finally, we discuss the merits and future directions of our frame-
work in Section 6.

2 DATA AND MODEL

2.1 Demographic and viral phylogenetic data of HIV
infected individuals

Human immunodeficiency virus deep-sequence data were col-
lected from blood samples of participants living with HIV in the
RCCS, alongitudinal, population-based census and cohort study
in Southern Uganda (Grabowski et al., 2017). Samples were ob-
tained between August 2011 and January 2018 from 2652 indi-
viduals having an HIV viral load of >1000 copies/mL plasma
and sufficient viral sequence read depth and length for deep
sequence data analysis (Ratmann et al., 2019; Wymant et al,,
2018). Detailed demographic, behavioral, and healthcare data
were collected for all participants, including gender and age de-
termined from self-reported birth dates and/or official personal
documents (Grabowski et al., 2017).

Our model is motivated by a dataset consisting of 539 hetero-
sexual pairs of HIV-infected RCCS participants, who are con-
sidered as phylogenetically possible transmission pairs. They
were identified among all 3 515 226 pairwise combinations in all
2652 deep-sequence participants. We only considered pairs in
446 distinct subgraphs of viral deep-sequence phylogenies, in-
terpreted as separate potential transmission networks with dis-
tinct viral introductions (Ratmann et al., 2019). We further in-
vestigated these transmission networks using the phyloscanner
deep-sequence analysis pipeline (Wymant et al., 2018), which
included transmission direction information, unlike typical phy-
logenetic cluster analyses (De Oliveiraetal.,2017). This allowed
us to eliminate heterosexual pairs that could not have occurred
in acyclic transmission chains, resulting in 539 pairs for analysis.
Figure 1 provides an illustration of this data set.

There are 2 main facets of the data. The first comprises the age
of the 2 individuals in a pair at the midpoint of the observation
period, denoted by S = {s; = (a;1, ai) T}, (sample size N =
539), where the 2D vector (a;1, a;;) records the male’s age a;;
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FIGURE 1 Point data and marks representing the output of HIV phylogenetic deep-sequence analysis on the sequence sample from Rakai,
Uganda, from 2010 to 2015. (A) Paired ages of 539 heterosexual individuals who were inferred to be phylogenetically closely related with the
HIV phylogenetic deep-sequence analysis using the phyloscanner software on HIV deep-sequence data from 2652 study participants of the
Rakai Community Cohort Study in Southern Uganda, 2010-2013. The age of the individuals in the closely related pairs was calculated at the
midpoint of the observation period, and the age of the men and of the women are shown on the x-axis and y-axis, respectively. Each data point
is associated with two phylogenetic deep-sequence summary statistics in (0,1), the linkage score (¢;), and the direction score (d;) (see text).
Points associated with high linkage and direction scores (¢; > 0.6 and d; > 0.67) are shown in dark grey, and all other points are shown in light
grey. Marginal histograms on the age of men and women are shown for all points. The typed point process model that we develop here aims to
infer transmission flows using all data points rather than the highly likely “source-recipient” pairs shown in dark grey. (B) Histogram of the
linkage scores across all data points. (C) Histogram of the direction scores across all data points. Direction scores d; < 1/3 indicate high
confidence in female-to-male transmission (shown in red), and direction scores d; > 2/3 indicate high confidence in male-to-female

transmission (shown in blue).

and female’s age a;, in the ith pair. Our model envisions these
paired ages as observations from a spatial process describing the
transmission structure. The second facet consists of 2 scores in
the range of (0-1) that are outputs from phylogenetic analyses
of HIV deep-sequencing data with phyloscanner. For each pair i,
phyloscanner produces 2 scores—a linkage score and a direction
score—by assessing the viral phylogenetic relationship of indi-
viduals in terms of the patristic distances and topological con-
figurations of the viral reads in deep-sequence phylogenies, and
then counting the observed patterns over sliding, overlapping
genomic windows across the HIV genome (Wymant et al., 2018;
Ratmann et al,, 2019). The linkage score ¢; represents the pos-
terior probability of the pair sharing a transmission link in the
transmission process under a Binomial count model of window-
specific linkage classifications (Ratmann et al., 2019). The direc-
tion score d;, on the other hand, measures the posterior proba-
bility of transmission taking place from the male to the female
in this pair under a similar count model. We collectively denote
the phylogenetic scores for the ith pair by x; = (¢;, d;)T, and for
brevity refer to the phylogenetic data as the “marks” associated
with each of the points s; fori=1, ..., N.

The key data challenge is the unobserved transmission rela-
tionship between pairs of HIV-infected individuals. Even for a
pair with phylogenetic evidence suggesting high probability to
be linked through disease transmission (with a high ¢; score),
we do not have direct knowledge about the transmission linkage

and direction. Our model (described later) will, therefore, prob-
abilistically characterize the likelihoods of pairwise transmission
linkage and direction in a data-driven manner.

2.2 Substantial information loss in existing modeling
approaches

Existing analyses attempt to address the unobserved pairwise
transmission relationships by preclassifying the data points us-
ing heuristic thresholds on the phylogenetic summary scores (Xi
et al., 2022; Ratmann et al., 2020; Hall et al., 2021). For exam-
ple, a potential transmission pair i would be classified as a male-
to-female transmission event if £; > 0.6 and d; > 0.67; simi-
larly, another pair j would be taken as a female-to-male trans-
mission if £; > 0.6 and d; < 0.33 (Xi et al., 2022). Such thresh-
olding a priori, albeit procedurally simple, excludes a substantial
proportion of data from the analysis, as “low-confidence” pairs
are completely discarded. Graphically, Figure 1 shows that all
data points with linkage scores falling to the left of the vertical
line in panel B and all data with direction scores in the gray re-
gion of panel C would be discarded, resulting in only 242 out
of 539 total data points (see panel A) retained for analysis. Fur-
ther, such preclassification neglects differential strengths of phy-
logenetic evidence from data points classified as transmission
events. Intuitively, we should have higher confidence about a
likely transmission pair i with £; = 0.98 to represent a trans-
mission event, compared to another pair j with only ¢; = 0.61.
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However, this differential strength of evidence is not reflected
in the existing methodology. Instead, all data points that are be-
lieved to be “high-confidence” pairs are treated as equal and ex-
changeable, which fails to fully exploit the rich information sum-
marized by the phylogenetic scores. In the next section, we intro-
duce our modeling framework that makes better use of the data
by jointly leveraging phylogenetic evidence and demographic
information.

2.3 The typed point process model

‘We now specify a general framework for inferring population-
level transmission flows from the point pattern S = {s; =
(ai, aiz)T}fil with associated marks x; = (¢;, d;)7, that is, the
phylogenetic transmission and direction scores. The marks re-
flect the strength of phylogenetic evidence regarding the un-
known ground truth transmission relationship in each hetero-
sexual pair. We introduce for each point a categorical latent ran-
dom variable ¢; that encodes 3 possible events: (i) transmis-
sion did not occur between the 2 individuals that define the
point (denoted by ¢; = 0), (ii) transmission occurred from the
male to the female individual (¢; = 1), or (iii) transmission oc-
curred from the female to the male individual (¢; = —1). For
brevity, we refer to ¢; as the latent “type” associated with each
observed point s; with mark x;. Intuitively, the modelling frame-
work can be thought of as a typed spatial PP in that the inten-
sity function of the process and the distribution of the marks
both depend on the event type. This typed process then pro-
vides a generative model for marked point patterns. Though mo-
tivated by our particular application, the framework can be ap-
plied to many similar data sets of spatial point patterns of un-
known types that are informed by marks associated with each
point.

With this context in place, we begin by considering a spatial
point pattern defined on a 2D space S x S, where S = {s;}}
is the set of all points, and each point s; = (s;1, 52 Tis represented
as a point in this plane. We model the observed points in S as a
realization ofa2D PP, S ~ PP(1),onS X S.Following Kottas
and Sansé (2007) we decompose the intensity function A into a
scale component y and a density function f (), A(-) = y f(+),
so that f (-) satisfies foS f(s1, s2)ds1ds, = 1. This decomposi-
tion separates the intensity function into 2 terms, which are sim-
pler to write out in the likelihood function and make inference
computationally tractable.

We next model the density component f(-) as a mixture
F() = X1k pefi(+), where py is the probability of points be-
longing to type k, and f; (-) is the spatial density function for
type k. In the context of our application, S is the continuous
age of individuals under study, S = [185, 50). Each point s; =
(ai1, i) corresponds to the ages of the 2 individuals forming a
pair, ordered by gender and the latent types are £ = {—1, 0, 1},
corresponding to female-to-male transmission, no transmission
and male-to-female transmission. For instance p; corresponds to
the proportion of male-to-female transmission events among all
pairs of individuals being considered, and f; (-) corresponds to
the 2D function that captures the across-age transmission pat-
tern with male sources and female recipients.

2.4 Infinite Gaussian mixture models for the typed intensity
functions

There are various choices to model the structure of the density
functions fi.(-). To balance simplicity and flexibility, we choose
a Dirichlet process (DP) Gaussian mixture model (DPGMM)
consisting of infinitely many bivariate Gaussian components
fi (). Specifically, for each point s;, if its type label ¢; = k, then we
have s;|c; =k ~ N(0y;, Zi:), (O, ki) ~ G, and Gy ~ DP(«g,
Go). Here Gy, represents the (infinite) mixture of bivariate nor-
mal models for type k, and 0; and Xj; are the mean vector and
covariance matrix for the bivariate Gaussian component that s;
belongs to.

In practice, Dirichlet process mixtures are often treated as a fi-
nite mixture but with a flexible number of components. Indeed,
the above defined model may be expressed equivalently in terms
of each density function f; (+),

H

fie() = wu - dBYN(:; O, T (1)

h=1

where H; denotes the number of “active” components, or total
number of unique components generated by the DP, and each
(O, ) is a unique Gaussian component for the type-k den-
sity. Here, dBVN(- ; 0, ) denotes the probability density func-
tion of a bivariate normal distribution with mean 6 and covari-
ance X. Practically, we handle the Hy’s by specifying a suffi-
cientlylarge “maximum number of components”, Hp,,x , and treat
the DPGMM as a finite mixture model with Hy,,, components
(in our analysis Hy,, = 10 seems to be sufficient); this tech-
nique has been discussed in (Ji et al., 2009). We present a sen-
sitivity analysis on the choice of Hy,x in Web Appendix C.3.

2.5 Model for type-dependent marks

We next describe how the observed point patterns and their as-
sociated marks are connected through the typed point process
model. Assuming that marks x; associated with each point s; can
provide information on the true event type ¢; of each point, we
model the distribution of marks x; conditional on type c;. In our
application, the marks x; = (¢;, d;)T are 2D vectors with en-
tries taking values in (0,1), and we assume the following type-
dependent distribution for x; conditional on the type value ¢; =

k(ke{—1,01}):

p(xi | ci=k) = ¢u((£i, d)") = dN(logit(£,); fiei(k). 0f)
x dN (logit(d;); f4,(k), Udz). (2)

Here, dN(- ; i1, %) denotes a univariate normal density func-

tion with mean p and variance 02, and logit(x) denotes the logit

transformation on x € (0, 1). We further specify type-dependent
normal means /iy ;(k) and i4,;(k) as

frei(k) = el [k # 0];
fai(k) = pt [k=1]+p-at [k=—-1].  (3)

Intuitively, a larger linkage score ¢; indicates stronger evidence
for a transmission link, and a larger direction d; indicates higher
confidence for a male-to-female transmission. Thus, with pty >
0, the first part in (3) implies that ; likely exceeds 0.5 for a real
transmission event (¢; # 0); similarly, with u_45 < 0 < g, the
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second part in (3) implies that d; is probably larger than 0.5 for a
male-to-female event (¢; = 1) but smaller than 0.5 for a female-
to-male event (¢; = —1). Note this design uses the property
logit(0.5) = 0.

2.6 The complete data likelihood

From the descriptions above, the 2 key components in the
model—the spatial process and the marks distribution—are
linked through the latent types ¢;. Conditional on the latent
type ¢; = k, a point i contributes the term ypifi(s;) X ¢r(x;)
to the data likelihood, and therefore the likelihood simply re-
quire multiplying all such terms for i = 1, 2,..., N. With
complete data, which include the coordinates of all N points in
the set S, the observed signals x; as well as the type c; for all i
=1,..., N, we can write down the complete data likelihood
function L(®; {x;}, {c;}, {si}). Model parameters include ® =
{V’ p, K, 0(23 0,123 {(Qkha Ekh)}v {“k}};WhefeP = (p—l;pO;pl)T)
and = (te, ftas po—a)").

L(®v {Xi}v {Ci}7 {si})
eV
= J/Nﬁ TTIT pefilseex) (4)

© kek ic=k
= 1_[ dN (logit(¢;); fue,i(ci), Uzz)dN

i=1:N

x (logit(d;); f4.i(c). o)

_ Hy
X)/Nel\]_)‘/ l_[ l_[ (pkhZ:wkhBVN
=1

T keK =k

X ((si1, s2); On, Eh))~ ()

3 BAYESIAN INFERENCE WITH DATA
AUGMENTATION

We employ an eflicient data-augmented Bayesian inference
scheme (Tanner and Wong, 1987; Van Dyk and Meng, 2001)
to learn the unknown parameters © in the proposed typed point
process model from observed data. Inference would be straight-
forward if all aspects of the model were observable, giving ac-
cess to the complete data likelihood specified in (S). That is, if
the ¢;s were known, the terms corresponding to the spatial point
process and marks would completely factorize in the likelihood
function, as shown in (S5). Parameter inference would reduce
to standard procedures for Dirichlet Process Gaussian mixture
models (Rasmussen, 1999).

However, the type ¢; for each data point i is not observed
in our data setting. Inference through the marginal likelihood
based only on observed data would entail an intractable high-
dimensional integration step. Instead, we propose a data aug-
mentation scheme that expands the target posterior to include
the unobserved ¢;’s as unknowns, which allows us to exploit the
convenient expression of the complete data likelihood in (S).
Thatis, our algorithm samples from the joint posterior density of
the model parameters © together with the unobserved types ¢;’s:

Biometrics, 2024, Vol. 80,No.1 e §

P(@); {eit{xi}, {Si})OCL(®5 {x:}, {ci}, {Si})P0(®)~ Here P0(®)
denotes the joint prior distribution for parameters ®. The data-
augmented inference framework is employed through a Bayesian
Markov chain Monte Carlo (MCMC) sampler. The algorithm
can be roughly divided into 2 main components in each itera-
tion: (1) sample or update parameters ® conditioned on con-
figurations of the {¢;}’s from the conditional posterior distribu-
tion p(O|{x;}, {c;}, {s;}) and (2) sample ¢; for each i given val-
ues of © from p(c;|®, x;, s;), utilizing the complete data likeli-
hood in (5). To improve the efficiency of the MCMC sampler,
we prescribe conjugate or semiconjugate priors whenever pos-
sible, enabling straightforward Gibbs sampling by exploiting the
full conditional posterior densities available for almost all param-
eters. We provide details on all prior choices and sampling steps
in Web Appendix A.2.

4 SIMULATION STUDIES

In this section, we validate our proposed framework through
synthetic experiments. As is relevant to our application, we as-
sess the accuracy of the typed point process model in recov-
ering simulated patterns of HIV transmission flows between
men and women across different ages. Additionally, we explore
the model’s capability to infer these flows with increasingly
smaller sample sizes. We benchmark its performance with a sub-
set model that preclassifies potential transmission pairs using an
existing approach described in Section 2.2, where spatial com-
ponents are still learned with the DPGMM framework. We will
focus on 2 contemporary questions of of particular epidemio-
logical interest, and investigate the model’s ability to recover and
differentiate between 2 competing scenarios.

First, recent HIV transmission flow studies have shown that
more infections tend to originate from men than from women
(Bbosa et al., 2020; Ratmann et al., 2020; Hall et al., 2021). This
motivates us to investigate the proposed framework’s ability to
accurately recover parameters and distinguish between two sce-
narios: one where men drive 50% of infections (“MF 50-50”)
and another where men drive 60% of infections (“MF 60-40”).
We conduct experiments with five different sample sizes: N =
100, 200, 400, 600, and 800. For each scenario and sample size,
we generate 100 independent datasets and fit the typed point
process model to each.

Second, there is significant interest in the age distribution
of male sources of HIV infections, especially to adolescent
and young women aged 15-24 given their high incidence
rates (Risheretal., 2021). We explore whether the model can dif-
ferentiate between 2 scenarios: one where younger men (around
2§ years old) contribute 60% of infections in women aged 15—
24, while older men (around 35 years old) contribute 30% and
other men contribute 10% (“SAME AGE”) and another scenario
where younger men contribute 30%, older men contribute 60%,
and other men contribute 10% (“DISCORDANT AGE”). We
vary sample sizes, generate 100 simulated datasets for each sce-
nario, and fit the model as previously described (see Web Appen
dix B for complete details).

Figure 2 summarizes our findings from the two sets of
simulation studies, where we use darker colors to represent
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FIGURE 2 Performance of the typed point process model in recovering simulated transmission flow patterns. Key parameters are estimated
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(“SUBSET”, lighter colors) on each of the 100 simulated data sets under each scenario. (A) Boxplot of the posterior mean estimate of
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dashed lines mark the true values that underpin the simulated data. The x-axis shows the sample size of simulated data points, which represent
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results from our proposed model (“FULL”) and lighter colors
for the subset model with preclassification (“SUBSET”). The
top panel in Figure 2 shows results from the male-female sim-
ulation experiments (MF 50-50 and MF 60-40). We find that
our proposed model is able to successfully distinguish between
the 2 competing epidemiological scenarios and produce esti-
mates for gender-related proportions that are accurate within
a £5% error margin for sample sizes N > 200. The bottom
panel in Figure 2 illustrates our findings on the age-specific
sources experiments (SAME AGE and DISCORDANT AGE).
This is a substantially more difficult inference problem because
the target quantities relate to a smaller subgroup of the entire
source population. With a small sample (N in the range 100~
200), the relative relationship between the 2 proportions is in-
ferred correctly in all experiments. However, the actual quan-
titative estimates and differences can deviate from the truth,
in this case overestimated. For sample sizes of N > 400, the
quantitative estimates become satisfactorily accurate. The ob-
served overestimation is likely due to the parsimony induced by
the Dirichlet Process priors that are known to prefer assigning
data points to the largest existing clusters when there are not
enough data to admit a new mixture model component. As a re-

sult, more points tend to be attributed to the component with
the highest weight when N is small; this effect is mitigated as
N increases.

Between the 2 sets of simulation experiments, the proposed
model consistently produces more accurate estimates for both
gender-related and age-related proportions compared to the ex-
isting pre-classifying approach. We note that in the “MF 50-50”
scenario the 2 models are comparable, but this is because data are
simulated with symmetric distribution for the direction scores,
and in this case the subset model benefits from preclassification
heuristics that happen to match the ground truth. Additional
analyses on simulated experiments that include numerical con-
vergence and mixing analyses as well as Bayesian coverage anal-
yses, are provided in Web Appendix B.

S CASE STUDY

We next apply our point process model to demographic
and population-based HIV deep-sequence data from the
RCCS (Ratmann et al., 2019, 2020). Our goal is to reconstruct
transmission flows by gender and continuous age between 15
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TABLE 1 Proportions and numbers of inferred event types.
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Full analysis with latent

Subset analysis with

Type event types fixed event types
P Ni Pk N
Male-to-female transmission (k = 1) 46.3% (39.4%, 53.1%) 244 (207,279) 35.7% 188
Female-to-male transmission (k= —1) 35.0% (28.5%, 42.0%) 184 (150,221) 29.5% 155
No transmission (k = 0) 18.6% (9.4%, 29.2%) 98 (49, 154) 34.8% 183

Posterior mean estimates with 95% credible intervals.

and 50 years. This case study is challenging as standard phylody-
namic analyses using HIV consensus sequences struggle to infer
flow patterns for more than a few age groups, typically limited
to S-year or 10-year age bands (Scire et al.,, 2020; Bbosa et al,,
2020; Xi et al., 2022). We analyze all pairs of potential phyloge-
netically related individuals without heuristic preclassification,
resulting in a dataset of 526 pairs representing potential trans-
missions upon excluding few pairs with very weak evidence.
For comparison, we also implement an analysis with additional
heuristic filtering as in (Xi et al.,, 2022), retaining only 367 “high-
confidence” transmission pairs. We refer to the former approach
as “full analysis,” where we use latent variables to account for
uncertainties in lower confidence pairs, and the latter as “subset
analysis,” using fixed types from the preprocessing. More details
are provided in Web Appendix C.

Computational advantages. We are able to infer both the male-
to-female and female-to-male transmission flow surfaces, f; and
f—1,and the unknown event types {c;; i =1, ..., N} without is-
sues in numerical convergence or mixing. We have performed di-
agnostics to ensure MCMC convergence, along with sensitivity
analysis on the choice of priors and hyper-parameters, with de-
tails discussed in Web Appendix C.3. On a laptop with an 8-core
CPU, a 30-minute runtime allows us to obtain 4000 MCMC
samples after burn-in and thinning without parallelization. This
is a considerable improvement in computational efficiency com-
pared to using the semiparametric Poisson count model on 1-
year age discretized bands (Xi et al., 2022), where 4000 total it-
erations require about 30 hours.

5.1 Learning latent event types results in more data used for
inference of transmission flows

Compared to the subset analysis, the full analysis attributes more
pairs of individuals to type 1 (male-to-female transmission)
and to type —1 (female-to-male transmission). We compare
the posterior probability p; for each type k under each anal-
ysis in Table 1, as well as the number of pairs N} attributed
to each type upon multiplying p; by the sample size. Notably,
the full analysis learns a significantly lower po (proportion of
“no transmission”). This suggests that by inferring event types
instead of heuristically preclassifying them, our proposed ap-
proachis utilizing more phylogenetic information from potential
pairs.

5.2 Inferred age of male and female sources of HIV
transmission

The typed point process model allows us to estimate the sources
of male and female HIV infections continuously in terms of age,
as shown in Figure 3A. This approach provides more flexibility

compared to prior work, as we can summarize results at any de-
sired resolution instead of being restricted to S-year or 10-year
age bands (De Oliveira et al., 2017; Le Vu et al., 2019; Bbosa
etal,, 2020; Scire et al., 2020). Coarse age discretization can ob-
scure differences in important transmission modes from a public
health perspective Xi et al. (2022). Figure 3A clearly answers the
question, “which age groups contribute most to HIV transmis-
sion at the population level?” The colored solid curves represent
the inferred age distributions of male and female sources in the
tull analysis, while the dark dashed lines display those under the
subset analysis.

Male sources tend to be consistently older than female sources.
The estimated 50% highest posterior density intervals (HDIs)
under the full analysis are ages [25.4, 34.3] for male sources
and [20.4, 29.0] for female sources. In comparison, the anal-
ogous intervals under the subset analysis are [26.9, 35.4] and
[21.4,29.3], respectively. Notably, the full analysis does not de-
crease estimation uncertainty in key epidemiological quantities.
Instead, it better reflects the actual uncertainty by explicitly ac-
counting for uncertainty in the event types underlying each data
point.

Both analyses reveal a characteristic peak in transmission from
men around age 30, with a long, pronounced tail of transmis-
sions from men older than 40. In contrast, the age distribution
of female sources differs qualitatively, as the probability of trans-
missions from women declines rapidly with age. These observa-
tions are more strongly supported by including latent variables
in the full analysis—the entire age distribution of the female
sources is slightly shifted toward younger ages compared to the
inferred distribution under fixed types.

To gain further insight into age-specific transmission dynam-
ics, we consider the age profile of the transmitting partners. In
Figure 4, the recipient ages are color-coded, and the wave on
the y-axis shows the posterior median contribution of transmis-
sions to recipients of that age. Figure 4A illustrates that the age
profile of sources has a characteristic shape for each recipient
age group—they are not simply shifted versions of one age pro-
file. Figure 4B demonstrates how the superposition of the age-
structured transmission dynamics results in the overall source
profile that marginalizes out the age of the recipients.

5.3 Transmissions to and from adolescent and young women

Next, we focus on adolescent and young women between age
15 and 24. Specifically, we wish to understand the age distribu-
tion of their male sources, and in turn, that of male recipients
for whom these women are the sources of infection. Insights can
provide further evidence to HIV programs that aim to reduce in-
fections in this critical age group (Glynn etal,, 2001; Karim et al,,
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FIGURE 3 (A) Age distributions of male and female sources of HIV infections in Rakai, Uganda during the 2011-2015 observation period.
The left panel shows the estimated age of the male sources and the right panel shows the estimated age of the female sources. (B) Age
distributions of male sources and recipients of HIV infections in women aged 15-24. The left panel shows the age distribution of male sources
and the right panel characterizes the age distribution of male recipients, for women aged 15-24. In each panel, the colored lines represent
density curves of the age of sources/recipients for 100 posterior samples from the inferred, smooth transmission flow intensity surface of the
typed point process model in the full analysis with latent event types. The thicker curve indicates the posterior mean density curve. The black
dashed curve illustrates the posterior mean density curve in the subset analysis with fixed event types. A total of 50% highest density intervals
(HDIs) are marked in text, with colored text indicating the HDIs inferred in the full analysis and black text indicating the HDIs inferred in the

subset analysis.

2010; Jewkes et al., 2010), such as the DREAMS program (Saul
etal.,, 2018) within the US President’s Emergency Plan for AIDS
Relief (PEPFAR) (Oliver, 2012).

Figure 3B presents our findings on inferred age distributions
of male sources (left panel) and male recipients of transmis-
sions from young women (right panel). Colored curves repre-
sent results from the full analysis with latent event types, while
black curves correspond to the subset analysis. The majority of
male sources fall within the 24-30 year range, with a notable sub-
group of older men over 3S. Conversely, male recipients of trans-
mission from young women lie more strongly in the 24-30 year
range, with a smaller subgroup of recipients over 35. This sug-
gests a primary transmission pathway starting with transmission
from men approximately 5-8 years older than the young women,
who then transmit the virus to men 5-8 years older than them-
selves. Another pathway involves transmission from men 10-
1S years older than young women, who then transmit the virus
to men 5-8 years older than themselves, rather than 10-15 years
older. These findings emphasize the significance of HIV preven-
tion programs in Sub-Saharan Africa that target adolescent and
young women, who are vulnerable to HIV from a broad age range
of male sources (UNAIDS, 2018).

5.4 Comparing full analysis with latent event types to subset
analysis using fixed types

We close by examining the finer details of the inferred age- and
gender-specific transmission flows between analyses. In the sub-
set analysis with fixed event types (Figure SA), only a fraction of
all data points are utilized to learn the latent age structure asso-
ciated with each type. All data points carry the same weight. In
the full analysis using latent types (Figure SB), all potential pairs
contribute to the learning of the latent age structure associated
with each event type, and the contribution of each data point is
weighted by its associated posterior type probability (illustrated
with the color shades of each point).

Overall, the surfaces of age-specific male-to-female and
female-to-male transmission flows appear similar under both
approaches, as shown in Figure S. This similarity is unsurpris-
ing given the age distributions depicted in Figure 3A. How-
ever, there are notable differences in the inferred latent surface
corresponding to no transmission between the full and subset
analyses. Furthermore, in the full analysis, data points involving
women around age 20 and men around age 30 are more strongly
attributed to male-to-female transmission, while data points
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FIGURE 4 (A) Age distributions of sources for recipients in different 3-year age groups. Each curve represents the learned relative frequencies
of sources responsible for transmissions within each recipient age group. (B) Marginal age distributions of sources shown as "’stacked” curves of
age source distributions for each recipient age group (in 3-year age bands). In subplot 4(b), the “marginal” age distributions are shown by
stacking up the frequencies of sources for each recipient age group. Left column shows age distributions for male sources in male-to-female
transmissions for different female recipient age groups. Right column shows age distributions for female sources in female-to-male

transmissions for different male recipient age groups.

involving women around age 45 are more strongly attributed
to female-to-male transmission. The latter observation implies a
potential extension to our approach where we could incorporate
findings from prior studies as informed priors: women in this age
are found to have lower HIV viral loads at the population level
than men, making them less infectious on average (Grabowski
etal, 2017; Rodger et al., 2019).

6 DISCUSSION

We propose a hierarchical typed point process model to learn
disease transmission flows from phylogenetically reconstructed
transmission pair data. Our novel approach includes a computa-
tionally efficient Bayesian inference algorithm that probabilisti-
cally learns the unobserved event types despite the large number
of latent parameters and partially informative data. As illustrated
in simulations and the case study, our framework efficiently uti-
lizes more data and quantifies evidence strength in a data-driven
manner, incorporating the uncertainties of phylogenetic sum-
mary outputs.

Using a continuous spatial process allows us to address
epidemiologically important questions with fine-grained age-
specific transmission patterns, overcoming the limitations of
existing coarse age band analyses due to technical or compu-
tational constraints. Unlike discrete spatial treatments used in
aggregated count data analyses, our typed point process ap-
proach avoids heavy computational burdens associated with
Gaussian Markov random fields or similar models requiring in-
tense matrix operations (Rue and Held, 2005). Given point-
level data, our continuous spatial model simplifies computation
significantly.

Our framework exhibits certain limitations that suggest future
research directions. First, we consider only age and gender in
modeling transmission flows, but we could consider including
other individual covariates that may impact transmissibility as
covariates in the Poisson processes or marks distributions (Hu
and Bradley, 2018). Second, the normal mixture model assumes
spherical proximity, which could be relaxed by extending to
more flexible, non-normal mixture components such as the
bivariate Beta kernel (Kottas and Sansé, 2007). Last but not
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FIGURE S Comparison of the inferred age structure in transmission flows in the full analysis with latent event types versus the subset analysis
with fixed event types. (A) Results in the subset analysis with fixed event types. Source-recipient pairs that were preclassified by event type
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the least, we have assumed conditional independence between
transmission pairs, which could be generalized in order to
leverage relevant dependency structures by introducing clusters
or subgroups among infected individuals.
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