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Throughout the course of an epidemic, the rate at which disease spreads
varies with behavioral changes, the emergence of new disease variants, and
the introduction of mitigation policies. Estimating such changes in transmis-
sion rates can help us better model and predict the dynamics of an epidemic,
and provide insight into the efficacy of control and intervention strategies. We
present a method for likelihood-based estimation of parameters in the stochastic
susceptible-infected-removed model under a time-inhomogeneous transmis-
sion rate comprised of piecewise constant components. In doing so, our method
simultaneously learns change points in the transmission rate via a Markov chain
Monte Carlo algorithm. The method targets the exact model posterior in a dif-
ficult missing data setting given only partially observed case counts over time.
We validate performance on simulated data before applying our approach to
data from an Ebola outbreak in Western Africa and COVID-19 outbreak on a
university campus.
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1 INTRODUCTION

This article considers the statistical task of estimating epidemic parameters from observational data when the
rate of disease transmission varies over time. In particular, we seek to model the transmission rate under an
susceptible-infected-removed (SIR) model so that it can flexibly capture changes over time, yet remain parsimonious
enough to retain tractable inference and to avoid overfitting the available data.

Recent outbreaks have been characterized by changes in social distancing behaviors and economic policies, control
or mitigation measures, the emergence of new disease variants, and many other factors which may lead to changes in
the disease transmission rate.1,2 The common assumption that the transmission rate is fixed over time may no longer be
appropriate in such cases, and classical SIR models with a constant transmission parameter, denoted 𝛽, often struggle to
fit observed trends in data from recent epidemics such as COVID-19 and Ebola. As a result, several studies have posited
time-varying rates, relaxing the assumption of a constant rate of transmission made in classical SIR models. Many of
these approaches operate within deterministic models3,4 and their variants. However, deterministic models do not lend
themselves to natural probabilistic interpretations so that resulting estimates do not come equipped with measures of
uncertainty. When a sampling model, such as Gaussian or binomial emissions, is employed on top of a deterministic mean
model, the uncertainty quantification should only be interpreted as a reflection of the measurement error rather than the
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underlying stochasticity of the model. In order to account for uncertainty from the process itself more interpretably, we
focus on the stochastic version of the SIR model.

In the stochastic epidemic model, the spread of disease is described according to a probability law rather than a system
of differential equations.5 The canonical formulation specifies that the disease moves through the population as a Markov
jump process (MJP), which agrees with the deterministic formulation in the large-population limit.6 Unlike diffusion
approximations for large populations,7,8 the Markov jump process formulation is defined on a discrete state space and
is appropriate in early as well as later stages of an outbreak. These stochastic epidemic models (SEM) form a class of
compartmental models of disease that replace deterministic transition rates by instantaneous jump probabilities, as a
result evolving as continuous-time stochastic processes. When it comes to learning how the rate of transmission in such
models changes over time, a much smaller literature has explored inference under the general stochastic epidemic model.

One reason this space is relatively underexplored stems from computational difficulties that arise when the data are
only partially informative. Epidemic data are commonly reported as incomplete summaries of a process that evolves
continuously through time. For instance, a common setting in observational studies provides incidence data, comprised
of new infection counts given on some fixed schedule (eg, weekly, monthly). With incidence data, however, quantities
such as the infection and removal times defining the likelihood are unknown. In this article, we will focus on this miss-
ing data setting, where only the number of new infections at a discrete set of times is observed. Here, evaluating the
marginal likelihood of the partially observed data directly requires access to the finite-time transition probabilities of the
process.9 These quantities are difficult to compute in our model, requiring integration over the high-dimensional space
of all configurations of the trajectories between observed times consistent with our observed data.10 Although integrat-
ing over this space is possible in principle,11,12 available methods are computationally intensive and often impractical
beyond the most simple cases.13 Our data-augmented methodology performs straightforward, efficient MCMC directly
on the model parameters, providing a complementary approach to the flexible but quite computationally intensive class
of simulation-based methods.8,14-17

To further introduce change points in the transmission rate under these models, some studies have taken a fairly rigid
approach by fixing change point locations based on knowledge of the exact dates on which policy changes occurred.18,19

Unfortunately, this rigid approach can lead to biased results, failing to account for lag times and ruling out the possibility
of change points that are unaccounted for. Here, we stress the importance of learning change points flexibly from data.
While we place this task in the framework of estimating change points, classical change point detection algorithms are
poorly suited when the goal is to detect changes in the transmission rate under a model-based approach. The transmission
rate is related to the observed time series data through the mechanistic model. In particular, the overall infection rate
is already varying over time, given by 𝛽S(t)I(t). In replacing the constant transmission rate 𝛽 by a function 𝛽(t), one
should seek formulations that balance flexibility with enough parsimony so that it does not overwhelm the model-based
dynamics defined via interactions between S(t) and I(t).

To this end, our article seeks to capture changes in the transmission rate by replacing the constant force with a piece-
wise constant function 𝛽(t), learning where to best allow change points in its segments from the data. There is a mature
body of literature focused on multiple change point detection.20-23 Frequentist methods commonly rely on a test statistic,
such as the likelihood ratio or CUSUM statistic, to test for changes in the distribution of the data, followed by a model
selection step, typically using a Lasso-type penalty, to determine the number of parameters defining the signal.24-26 In
contrast, Bayesian approaches formulate the multiple change point problem in terms of a sequence of hidden discrete
state variables that evolve as a Markov process, and use methods such as MCMC or dynamic programming to estimate
the posterior distribution of change points.21,23 The majority of these existing methods concern independent and iden-
tically distributed random variables, and early works have explored Bayesian approaches to the change point problem
within the context of sequential data.27 This is not the case under the SIR model, however, where the number of new
infections depends on both the transmission rate and the sizes of the disease compartments: event times follow a Pois-
son process with intensity function 𝛽S(t)I(t). For these reasons, general-purpose change point detection algorithms are
ill-equipped for our task within this mechanistic model. Again, we seek to model heterogeneity in the transmission rate
through change points, rather than to detect change points in the sequence of observed counts directly.

To jointly address these considerations, we propose a fully Bayesian inferential framework for learning changes in
the transmission rate of the general stochastic epidemic model. In related work on time-varying parameters in epidemic
models, Reference 13 fit the force of infection with second-order B-splines using data with exact recovery times and
unknown infection times. However, they do so in a non-parametric model that ignores the mass action assumption of
the SIR, effectively replacing the intensity 𝛽S(t)I(t) entirely by a quite flexible function 𝛽(t). In contrast, we preserve
the interaction term between susceptible and infectious individuals that undergirds the SIR dynamics, learning a rate
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function 𝛽(t)S(t)I(t) where 𝛽(t) is a step function that only features change points when there is sufficient evidence from
the data. This leads to a more parsimonious model, while facilitating samplers targeting the posterior distribution of the
transmission rate parameters. Interpretable outputs can then be used to assess the efficacy of proposed public health
interventions such as travel restrictions, school closures, and lockdowns.

In terms of Bayesian computation, References 10 and 13 employ reversible jump (RJ) MCMC for posterior compu-
tation of time-varying epidemic parameters. The dimension varies under this approach when proposing to increase or
decrease the number of steps, necessitating a RJ-MCMC sampler. Efficient dimension changing moves can be notoriously
difficult to design, however, and RJ-MCMC algorithms often exhibit slow mixing.13 Here we present an alternate approach
more similar in spirit to the hidden Markov multiple change point model,21 bypassing the need for the reversible jump
step. That is, rather than estimating the sequence of change points directly, we introduce a latent sequence of indicators,
{Δt}, that take the value 1 at change point locations and 0 otherwise. When the length of the observed time series is T,
the method we propose simply samples a fixed-dimensional sequence of indicators of length T − 1. To account for the
temporal dependence between change point locations, we infer the hidden states of the Markov process {Δt}. Further
leveraging on recent developments in data augmentation (DA) MCMC for stochastic SIR models,28 we propose a simple
Metropolis-within-Gibbs sampling scheme.

The remainder of the article is structured as follows: Section 2 provides a description of the data, an introduction to the
stochastic SIR model, and a detailed description of our change point model and computational algorithm. In Section 3,
the model is applied to simulated data followed by applications to Ebola and COVID-19 outbreaks with suspected change
points. Section 4 closes with a discussion and highlights avenues for future work.

2 METHODS

2.1 Data setting and the stochastic SIR model

In this article, we focus on the incidence data setting in which new infection counts are collected at discrete reporting
times. This is typical of observational studies of epidemic data, but presents a challenge for exact model-based infer-
ence due to the missing information between observation times.8 In particular, given a set of observation times t0∶K ,
the observed incidence consists of a K-dimensional vector I1∶k = (I1, … , IK), where Ik denotes the number of new cases
reported during the interval (tk−1, tk].

We are interested in learning the parameters of a stochastic SIR model to these data. This widely used compartmental
model describes the spread of an epidemic through a population divided into three compartments based on disease status:
susceptible (S), infectious (I), and removed (R) individuals. Individuals transition from S to I when they become infected
and from I to R when they recover or are removed (eg, death). While the deterministic version is defined through a system
of differential equations, the stochastic SIR model evolves as a continuous-time Markov chain (CTMC) X = {X(t); t > 0}
where the components X(t) = {S(t), I(t),R(t)} track the respective compartments S(t), I(t), and R(t) denoting the number
of susceptible, infected and removed individuals in the population at time t5 (figure shown below).

The population is assumed to be closed and homogeneously mixing, ignoring demographic dynamics such as births
and deaths.29 This implies that contacts between individuals follow independent Poisson processes with rate 𝛽, which
can be interpreted as the infection rate of the contagious disease. We further assume that the infectious periods follow
independent exponential distributions with rate 𝛾 for exposition. As a result, the stochastic SIR model is a bivariate Markov
process that is characterized by the transition probabilities below:

P(S(t + h), I(t + h)) = (k, j) | (S(t), I(t)) = (s, i)) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝛽S(t)I(t)h + o(h) (k, j) = (s − 1, i + 1)
𝛾I(t)h + o(h) (k, j) = (s, i − 1)
1 − (𝛽S(t)I(t)h + 𝛾I(t)h) + o(h) (k, j) = (s, i)
o(h) otherwise.

The transition probabilities above describe how the process whose current state at time t is denoted (s, i) evolves. Over
a small time interval h, the expressions give the probabilities of infection, recovery, and no event occurring, the only
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1870 HUANG et al.

possibilities up to o(h). In particular, we see that the instantaneous rates of the process can be understood as limits of
these probabilities divided by h as the time interval decreases to zero: for instance, doing so for the probability of infection
formalizes what it means to call 𝛽S(t)I(t) = limh↓0

𝛽S(t)I(t)h
h as the infection rate.

2.2 Time-varying infection rate

The model as specified above posits that the transmission rate 𝛽 per contact between susceptible and infectious person is
constant over time. Here, we relax this standard assumption to allow this rate 𝛽(t) to vary over time, and choose to model
it as a piecewise constant function, without specifying in advance the points at which its constant values change. This
choice keeps the original mass action dynamics of SIR, while allowing for jumps in the per-contact transmission rate.
That is, given some J change point locations (c1, … , cJ) ⊂ (t1, … , tK),

𝛽(t) = 𝛽k∀t ∈ [ck ≤ t ≤ ck+1]. (1)

Under this piecewise constant formulation, the points {ck} are naturally interpreted as change point locations. To
learn their locations jointly with parameter inference, we introduce a sequence of latent binary variables which denote
the presence of such change points. At each observation time tk, the latent indicator variable Δt takes on the value of 1 to
indicate the existence of a change in transmission rate and 0 if there is no change.

Δt =
{

1 if t = ck for some k
0 otherwise.

(2)

In particular, the locations of the 1’s in the sequence {Δt} encode the locations of change points {ck} where 𝛽(t) takes on
a new value. Hence, our formulation will reduce the task of inferring a time-varying infection rate 𝛽(t) to estimating the
change point sequence {Δt}, and performing efficient parameter updates jointly on the locally constant segments.

2.3 The complete data likelihood

As a CTMC, the time until the next infection event follows an exponential distribution with rate 𝛽(t)S(t)I(t), and the
time until next removal event follows an exponential distribution with rate 𝛾I(t). Considering the epidemic on one of the
intervals (ck, ck+1], we obtain the following likelihood of the SIR model with a piecewise infection rate

(𝛉;X) =
∏

k

(∏
j∈k

𝛽kI(𝜏I
j )
∏
l∈k

𝛾 exp
{
−∫

ck+1

ck

𝛽kI(t)S(t) + 𝛾I(t)dt
})

= 𝛾nR
∏

k

(
𝛽

nIk
k

∏
j∈k

I(𝜏I
j ) exp

{
−𝛽k∫

ck+1

ck

I(t)S(t)dt + 𝛾∫
ck+1

ck

I(t)dt
})

.

(3)

Here, X denotes an epidemic trajectory consisting of all infection and removal times, k is the index on the step of the
piecewise transmission rate, and {ck} are the sequence of change point times. The index sets k = {j ∶ 𝜏I

j ∈ (ck, ck+1]} and
k = {j ∶ 𝜏R

j ∈ (ck, ck+1]} correspond to the individuals that are infected and removed during the interval (ck, ck+1]. The
quantity nIk = |k| denotes the number of infection and removal events over this same time interval, and nR = ∑

k |k|
denotes the total number of removal events. Note that due to the Markov property, the likelihood over an interval where
the transmission rate is locally constant, (ck, ck+1], takes on the same form as the usual stochastic SIR likelihood with
constant parameter 𝛽k for an outbreak restricted to that interval, and the likelihood of the process on the entire observation
period is a product over these intervals.

2.4 Model parsimony and promoting sparsity in change points

To control model complexity and avoid overfitting, we next seek to impose parsimony on the rate function given by
Equation (1). It is undesirable to assign each kth observation interval its unique 𝛽k value; the number of model parameters
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HUANG et al. 1871

increases with the number of times we observe incidence, and we may expect non-identifiability when 𝛽(t) is too flexible
since I(t) is unknown and the overall infection rate to be learned takes the form 𝛽(t)S(t)I(t).

An intuitive way to avoid this is by promoting local constancy: that is, we would like to encourage runs of constant
values of 𝛽k for multiple observation intervals, (tk−1, tk], in a row a priori. Then, the rate function only changes when
sufficiently supported by the data. We may naturally encode this through prior probability distributions on the vector of
changes Δ. We employ a simple Markov process for how Δ changes, governed by the transition matrix

Π =
[
𝜋00 𝜋01

𝜋10 𝜋11

]
. (4)

Here 𝜋ij denotes the probability of transitioning from state i to j from one time point to the next.
Note if there is a change point between the previous and current time step (ie, Δt = 1) the probability of another

change point occurring at the next time step is 𝜋11, while the probability of the rate remaining constant is represented by
the transition into a non-change point state 𝜋10. Likewise, if there was no change point between the previous and current
time step (ie, Δt = 0), the probability of a change point at the next time is 𝜋01 while that of remaining in a constant state
is 𝜋00. We see that this prior promotes local constancy as long as 𝜋⋅1 is small—that is, it encourages sequences Δ to have
runs of zeros a priori. This effect is akin to first-order methods to promote local constancy such as the intuition behind
the fused Lasso30 when 𝜋11 = 𝜋01, but allows the user to additionally penalize back-to-back change points by setting
𝜋11 < 𝜋01. Doing so is desirable in settings when rapid changes in policy, behavior, or the emergence of new variants may
be unrealistic. The prior forΔ induces a hidden Markov model that captures the temporal dependence of the infection rate
between a two-state latent variable over time.31,32 An analysis of the impact of hyperparameter choices for 𝜋 on change
point recovery is included in the Supplemental Material (Figure S2).

While we design priors on Π to promote sparsity in change points, note that the Bayesian view of Occam’s razor33

automatically protects against over-fitting to an extent. In particular, as the number of change points increases, the size of
the effective model increases in turn as it entails more segment-specific parameters 𝛽k to estimate. Viewed as a Bayesian
model selection problem, the posterior probability on the model corresponding to a particular number of change points
is proportional to the prior probability multiplied by a marginal likelihood obtained by integrating out the 𝛽k parameters.
This marginal likelihood is formed as a product of likelihoods conditional on the 𝛽k by their prior, followed by integrating
out the 𝛽k’s. In this sense, the marginal likelihood automatically tends to decrease as the number of effective parameters
grow. Hence, the posterior will favor parsimonious models with relatively few change points, only adding change points
if they are clearly supported by the data.

This observation is well supported empirically, detailed later in our simulation studies. On each constant segment
of the transmission rate 𝛽k, we place a gamma prior with weakly informative hyperparameters, 𝛽k ∼ Gamma(1, 1). Even
under these weakly informative priors, we will find that the posterior distribution is able to concentrate successfully
around the true value (Figure S5), indicating that the data are quite informative of transmission rate within each segment.

2.5 Posterior computation via Metropolis-within-Gibbs

The model development in the previous sections is designed to admit efficient posterior sampling schemes. Here, we
derive a data-augmented Markov chain Monte Carlo (DA-MCMC) sampler targeting the posterior distribution of the
parameters of interest. Recall the observed incidence data consist of counts of new infections at discrete time points,
providing an incomplete view of the continuous-time epidemic process. In particular, the times at which an individual
in the population either becomes infected or removed are unavailable. The complete-data likelihood in Equation (3) is
therefore out of reach, and strictly speaking, is related to the likelihood of the observed incidence via marginalizing over
all possible sets of missing event times compatible with the observations. This entails an unwieldy integration step over
the space of latent complete-data trajectories, for which no closed form expression is available.

Instead, we model the unobserved event times as latent variables, tackling the challenging marginalization step by
using a data augmentation approach.34 This allows us to conduct inference targeting the exact model posterior distribution
over the parameters and latent variables. Though the MCMC algorithm must explore an expanded space, parameter
updates now take advantage of the complete-data likelihood given a configuration of the latent variables that “complete”
the observed data.
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1872 HUANG et al.

Specifically, we alternate between three types of updates: (i) updates of the transition rate parameters Π, (ii) joint
updates of the change point locations Δ and steps of the transmission rate 𝛽, and (iii) updates of the latent infection and
removal times X .

First, we update 𝜋01 and 𝜋11; these parameters are assigned independent beta priors. Because the total number of
change points follows a binomial distribution, it follows that the full conditional distribution remains beta distributed.
This allows us to update Π using a Gibbs sampler (Equation (5)). Specifically, we use the prior 𝜋ij ∼ Beta(aij, bij), with
expectation aij∕(aij + bij) and variance (aijbij)∕[(aij + bij)2(aij + bij + 1)]. The conditional distribution for the transition
probabilities is then

𝜋01|Δ ∼ Beta(a01 + n01, b01 + n00) (5)

where n01 is the number of transitions in Δ from state 0 to 1 and and n00 is the number of transitions from state 0 to 0.
Similarly, 𝜋11|Δ ∼ Beta(a11 + n11, b11 + n10).

Next, the parameters {Δt} and 𝛽(t) are proposed jointly in a Metropolis-Hastings step. Specifically, we propose {Δt}
as a realization of a Markov chain with transition matrix Π. The likelihood for the hidden state sequence is

P(Δ|𝜈1,Π) = 𝜈1
∏T

i=2 𝜋Δi−1Δi = 𝜋n00
00 ⋅ 𝜋n01

01 ⋅ 𝜋n10
10 ⋅ 𝜋n11

11 (6)

where nij is the number of transitions in {Δt} from state i to j and 𝜈1 = Pr(Δ1 = 1) is the initial probability, which follows
the same distribution as 𝜋01. Within this joint Metropolis-Hastings update, we may now propose 𝛽(t) segment-by-segment
conditional on {Δt}. Each constant segment of 𝛽(t) is assigned a gamma prior; the full conditional distribution remains
gamma-distributed by conjugacy. Hence, for each of these segments, we place the prior 𝛽k ∼ Ga(a0, b0), denoting the
parametrization with expectation a0∕b0 and variance a0∕b2

0. The conditional distribution of each segment (𝛽k|Δ,X) then
follows

𝛽k|Δ,X ∼ Gamma
(

a0 + nT , b0 + ∫ ck+1
ck

I(t)S(t)dt
)
. (7)

One can choose how many components of Δ to propose per iteration of this joint update; in our applications, proposing
one new component per iteration tends to admit a healthy acceptance probability between 0.3 and 0.6.

Finally, we update the latent data X using a Metropolis-Hastings step28 conditional on 𝛽 and 𝛾 . Since the number of
latent infection and recovery times can be quite large, the success of DA-MCMC hinges on the construction of an efficient
proposal for the latent data. The model specification in the previous section was carefully designed to remain tractable
with these considerations in mind: in particular, it allows us to make use of efficient proposals from the piecewise decoupled
SIR (PD-SIR) process. Briefly, the PD-SIR closely resembles the SIR, with the only difference being that the infection times
follow a linear death process within each time interval (ct−1, ct].28 The proposal process is rate-linear, leading to closed
form expressions for conditionally generating latent data that match the observed infection counts. Denoting the density
of the PD-SIR by q(⋅), We accept X∗ with probability

𝛼2 = min
{

1, L(Δj, 𝛽 j;X∗)q(X (j−1)|Δj, 𝛽 j)
L(Δj, 𝛽 j;X (j−1))q(X∗|(Δ, 𝛽)j)

}
.

That is, though the latent data are proposed using a recent technique from an approximating process, the
Metropolis-Hastings correction ensures that the accepted draws correspond to the exact model posterior under the
time-inhomogeneous SIR model. Below, we provide a pseudocode summary of the overall sampler in Algorithm 1.

3 RESULTS

3.1 Simulation study

To validate the performance of our MCMC, we begin with simulation studies on synthetic datasets. First, we simulate an
epidemic from a piecewise constant transmission rate. As a result, we produce a trajectory with clear deviations from a
homogeneous SIR trajectory, which reflects the nature of the observed data in both the Ebola and COVID-19 case studies.
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Algorithm 1. Data-Augmented MCMC for sampling from the posterior distribution

Require: observed data Y and initial parameters (Π(0), Δ(0), 𝛽(t)(0))
return

{
(Π(j),Δ(j), 𝛽(t)(j))

}N
j=0

X (0) ← draw(. ∣ (Δ, 𝛽)(0),Y ) (initial latent data using the PD-SIR process)
for j = 2, ..., N do

1. Gibbs Update on Π2x2:
𝜋(j)

01 ∣ Δ(j−1) ∼ Beta(a01 + n01, b01 + n00)
𝜋(j)

11 ∣ Δ(j−1) ∼ Beta(a11 + n11, b11 + n10)
2. Metropolis-Hastings Update on (Δ, 𝛽(t)):
Δ∗|Πj ∼ 𝜈1

∏n
i=1 𝜋Δi−1,Δi

for k = 1, ..., K do
𝛽∗k |Δ∗ ∼ Gamma

(
a0 + nTk , b0 + ∫ ck+1

ck
I(t)S(t)dt

)

end for
Accept (Δ∗, 𝛽∗) with probability min

{
1, L(Δ∗, 𝛽∗;X)P(𝛽∗ ∣ Δ∗)q(𝛽 j−1 ∣ Δj−1)q(Δj−1 ∣ Πj)

L(Δj−1, 𝛽 j−1;X)P(𝛽 j−1 ∣ Δj−1)q(𝛽∗ ∣ Δ∗)q(Δ∗ ∣ Πj)

}
.

3. Metropolis-Hastings Update on Latent Data X:
X∗ ← draw(. ∣ (Δ, 𝛽)j,Y ) (generated using the PD-SIR process)

Accept X∗ with probability min
{

1, L(Δj, 𝛽 j;X∗)q(X (j−1)|Δj, 𝛽 j)
L(Δj, 𝛽 j;X (j−1))q(X∗|(Δ, 𝛽)j)

}
.

end for

Next, we demonstrate that our model is still able to produce a close, yet interpretable, piecewise approximation of the
truth under a misspecified setting in which the transmission rate value varies smoothly over time.

The shape of the trajectory and placement of change points in the first simulation setting are designed to resem-
ble the Ebola outbreak data. In this setting, we take S0 = 10 000, I0 = 10, with change points located at observation
times times 3 and 10. The true parameter values are set at 𝛽 = (1.75e − 4, 1.25e − 4, 0.75e − 4), and 𝛾 = 1. We observe
the outbreak at twelve observation intervals, and in the realization we considered here, the observed incidence counts
are given by I = (32, 81, 170, 189, 201, 241, 243, 251, 257, 272, 120, 85). For reference, the maximum likelihood esti-
mate for the transmission rate, obtained under knowledge of the complete data and true change point locations, is
𝛽 = (1.92e − 4, 1.21e − 4, 0.75e − 4).

The observed incidence data are plotted in Figure 1. This trajectory displays clear deviations from the typical shape
of the SIR, indicating that the homogeneous model may be a poor choice, suggesting the presence of potential change
points. We chose hyperparameters to be uninformative; for each segment of 𝛽, we chose the weakly informative prior
Gamma(1,1). For the prior on Π, we used Jeffrey’s prior on both 𝜋01 and 𝜋11. We assume the recovery rate 𝛾 is known,
fixing it to the true value.

The algorithm generates samples efficiently, taking less than 10 min to run 50 000 iterations of the chain on a single
laptop machine, and achieves an effective sample size per second (ESS/s) of 2.39 in this setting. The results under this
simulation setting are displayed in column one of Figure 1. Notably, even with uninformative priors on the number
of change points, the algorithm is successful in assigning high probability only to the locations of true change points,
empirically validating the Bayesian Occam’s razor principle.33 Moreover, we observe very little bias in estimates for each
segment of the step-function, with the true transmission rate values well-contained within the 95% equal-tailed Bayesian
credible intervals. This is noteworthy, since only 12 observed time points in the epidemic trajectory were supplied to
the algorithm toward recovering such estimates. The posterior reflects less precision about the positioning of the second
change point.

Although the credible intervals are generally narrow, we note that the variance of the estimates were larger near
the front and end of the observed outbreak. This is evident in the posterior draws of 𝛽(t) shown in (Figure 1).
This can be understood both epidemiologically and statistically: it is more difficult to conduct inference on epi-
demic parameters observing only the tail or early stages of an epidemic. Indeed, note that the gamma distribution
describing the conditional for 𝛽k is (a0 + nT)∕(b0 + ∫ ck+1

ck
I(t)S(t)dt)2; the term I(t) appearing in the denominator tends

to be small at the beginning of an outbreak or at its end, resulting in wider credible intervals. This perspective is
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1874 HUANG et al.

F I G U R E 1 Simulation study results: Setting 1 is displayed in the left column and setting 2 in the right column. (A) Simulated
incidence data under setting 1. (B) Simulated incidence data under setting 2. (C) The marginal posterior probabilities of a change point
occurring at each week under setting 1. (D) The marginal posterior probabilities of a change point occurring at each week under setting 2. (E)
Plot of the posterior samples for 𝛽(t) under setting 1. (F) Plot of the posterior samples for 𝛽(t) under setting 2. (G) True piecewise transmission
rate value under setting 1. (H) True smoothly-varying transmission rate value under setting 2. (All transmission rate values are multiplied by
a factor of 10 000 for readability.)

unavailable in the time-homogeneous case when inference is based around one constant value 𝛽 that describes the entire
outbreak.

To evaluate the convergence properties of the Markov chain, we run 3 separate chains with over-dispersed
starting values 𝛽0 = (0.1 ⋅ 𝛽, 𝛽, 10 ⋅ 𝛽). Despite being initialized in various low-density regions, each chain appears
to converge as evident from both the trace plots and a multivariate Gelman-Rubin convergence diagnostic value
of less than 1.01 (Figure S5). The frequency of flips between ones and zeros for each {Δk} is a good indi-
cation that the MCMC mixes well and explores with high frequency the space of candidate change point
configurations 11.
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HUANG et al. 1875

In reality, the drops in transmission rate following a policy intervention may not be abrupt. To test the performance of
our model in this setting, we next run our model on an epidemic that was generated by a smoothly-varying, rather than
piecewise, transmission rate. Specifically, this smoothly-varying rate was generated using a cubic B-spline with cut-points
at times 2, 2.5, 3, 3.5, 4, 9, 9.5, 10, 10.5, and 11. Keeping the same initial conditions, S0 = 10 000 and I0 = 10, this new
transmission rate resulted in a trajectory with observed counts I = (49, 85, 236, 228, 297, 311, 271, 279, 297, 227, 103, 67)
(Figure 1B). As in the first simulation setting, we keep hyperparameters uninformative, and assumed that the recovery
rate 𝛾 is known, fixing it at the true value.

In contrast to the piecewise setting, in which both change points produced visibly notable deviations from the
time-homogeneous SIR curve in the observed infection counts (Figure 1A), the continuous transmission rate presented
a visibly more challenging problem. Specifically, the observed case count data of Figure 1B, show a less visible devia-
tion from the typical time-homogeneous SIR, indicating that the homogeneous model may be a reasonable model under
this observed trajectory. In particular, the more gradual decline in transmission rate around weeks nine through eleven
(shown in Figure 1H) are less abrupt. However, the sampler still suggests with high posterior probability a drop in trans-
mission rate around weeks ten through eleven, show that our model is able to give an interpretable, yet close, piecewise
approximation of 𝛽(t) (Figure 1F).

3.2 Comparison to existing methods

We next compare the proposed model to the time-homogeneous stochastic SIR model described in Reference 28, the fixed
change point models described in References 18 and 19, and popular general-purpose change point detection algorithms
which ignore SIR dynamics.35 We see that these previous approaches resulted in biased estimates for 𝛽(t) in at least one
segment (Figure 2). The time-homogeneous model’s estimate for 𝛽 fails to capture the presence of change points in the
data, resulting in a biased estimate that is the average of three notably disparate regimes (Figure 2). A fixed change point
model assumes the changes in transmission occur at known locations, frequently assumed to be the exact time of inter-
vention. This is frequently done in practice in the epidemic modeling literature18.19 Although these rigid change point

F I G U R E 2 (A) Samples from the posterior transmission rate over time, recovered from the time-homogeneous model. (B) Samples
from the posterior transmission rate over time, recovered from the fixed change point model. (C) Samples of the posterior transmission rate
over time, recovered using binary segmentation and PELT. (D) Samples from the posterior transmission rate over time, recovered using our
proposed model. Black lines indicate the true transmission rate values.
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1876 HUANG et al.

models allow for a piecewise transmission rate, they lead to biased estimates of the effects of control interventions by
assuming, rather than learning, the change point locations. Of course these models fail to account for additional change
points that are not known or specified by the user, resulting in biased estimates of the magnitudes of the drops. Specif-
ically, the first piecewise segment of the estimate for 𝛽(t) in Figure 2B has a bias of 0.103 while the second has a bias
of −0.183.

Finally, to show the inaccuracies that arise when we disregard the SIR dynamics altogether, we compare our method
to two classical change point detection algorithms, binary segmentation and PELT.35 Both algorithms were designed to
detect change points in the rate of a Poisson model. However, these two methods do not benefit from the additional
information given by SIR compartment sizes and dynamics toward detecting change points. As a consequence, it picks
up spurious change points at weeks 1 and 2 and misplaces the locations of the change points at weeks 3 and 9. This in
turn results in biased estimates of each piecewise segment of the transmission rate (Figure 2C).

This illustrates the advantage of learning change points of the transmission rate function, over casting it in a classical
setting operating on the count data themselves in a way that is model agnostic. Within these comparisons, we see that
our proposed method is advantageous for detecting change points in the context of epidemic count data.

3.3 Applications to outbreaks of Ebola and COVID-19

We next consider case studies on data collected from the Ebola outbreak in Guinea in 2014, and a COVID-19 outbreak on
a university campus in 2021.

The Ebola dataset we study consists of weekly infection counts from January 1 to December 31, 2014, collected in
Guéckédou, Guinea, a prefecture with 292 000 inhabitants. These data were collected over a time period in which control
measures where implemented at various times,36 making it a natural candidate for modeling the force of infection to vary
over time. Applying our model with piecewise components at a monthly resolution, we obtain results displayed in the left
column of Figure 3. Figure 3A shows the observed cases of Ebola reported over time on a weekly basis, with the red lines
marking places of the most likely change point occurrences, according to the model. The model suggests the most likely
change point locations to be in March and August. Figure 3C shows the marginal posterior probabilities of a change point
occurring at each month. Figure 3E shows a plot of the posterior samples of transmission rate.

The change points in the data may give insights into the efficacy of the control measures implemented in Guinea in
2014. Interpreting these results, we note that March marked the closing of public schools in Guéckédou and the con-
firmation of Ebola as the infectious agent.36 August marked a closing of borders with Sierra Leone and Liberia and the
implementation of exit screening and flight cancellations. Our findings in terms of changes in 𝛽(t) coinciding with these
measures suggest they are associated in slowing the spread of the outbreak, as reflected in a lower inferred force of trans-
mission. An important quantity in the spread of an epidemic is the effective reproduction number R(t) = 𝛽(t)

𝛾
S(t) which

corresponds to the expected number of secondary infections arising from one infectious individual at time t. The posterior
trajectories of R(t) drop in value from 2.25 to 1.08, and then then to 0.74 following August. These results indicate that the
virus was initially spreading rapidly in the population, R(t) > 1, before being brought under control at the end of the year,
R(t) < 1. Our model did not, however, pick up a change in October when the government banned country-wide celebra-
tions of Eid,36 suggesting that this measure may have had a less significant effects on the transmission rate as reflected in
the data.

We next consider inference using data from Duke University’s COVID-19 Testing Tracker in the spring of 2021. The
data consist of weekly new positive case counts for students, faculty, and staff across campus from January 11 to April
25, 2021. During this time, Duke conducted sample testing without respect to reported symptoms. At the end of week
9, the university implemented a stay-in-place order (March 8-14), during which students were required to stay in their
residences at all times except for essential activities related to food, health, or safety. Figure 3 shows the results of our
model applied to these incidence data.

Figure 3B shows the observed cases of COVID-19 reported over time on a weekly basis, with the red lines marking all
places of likely change point occurrences, according to the model. Figure 3D shows the marginal posterior probabilities
of a change point occurring at each month. Figure 3F shows a plot of the posterior samples of transmission rate. Here,
our method picks up a pronounced change, where we observe a 4.5 fold decrease in 𝛽 from week 9 to week 10, suggesting
that the university-wide stay-in-place order was highly effective in reducing the spread of the virus (Figure 3). Moreover,
our model estimates that R(t) dropped below 1 following the stay-in-place order, suggesting that the spread of the virus
was at least temporarily under control following the mitigation policy. A reviewer remarks that changes in R(t) can also
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HUANG et al. 1877

F I G U R E 3 Application to two real outbreaks: Ebola and COVID-19. (A) Counts of weekly new infections of Ebola cases in Guéckédou,
Guinea from January to December, 2014. Red lines mark the positions with high posterior probability of being a change point. Black dotted
lines mark the locations of policy changes. (B) Counts of weekly new infections of COVID-19. Red lines indicate positions with high posterior
probability of being a change point. Black dotted lines mark the location of a policy change. (C) The marginal posterior probabilities of a
change point occurring at each month for the Ebola outbreak. (D) The marginal posterior probabilities of a change point occurring at each
week for the COVID-19 outbreak. (E) Plot of the posterior samples for the transmission rate for Ebola in Guéckédou, Guinea. (F) Plot of the
posterior samples for the transmission rate for COVID-19. (All transmission rate values are scaled by the population size for readability.)

be attributed to depletion of the S compartment, but because in both applications here the number of total cases is small
relative to the population, it is reasonable to interpret change points largely in terms of changes in transmission rate.

Following a reviewer’s suggestion, Figure 4 presents a side-by-side comparison of the recovered transmission rate
among the four methods in Section 3.2. The top row of Figure 4 compares the four methods run on the Ebola data and
the bottom row on the COVID-19 data.

Model diagnostics

To assess model fit for each of the four methods compared in Section 3.2, we perform posterior predictive checks
based on the number of new cases over time. For each data set, we simulate epidemic trajectories from the poste-
rior predictive distribution and then compute the trajectory of new cases over time in each simulation. This produces
a posterior predictive distribution of cases over time, as plotted in Figures 5 and 6. For our proposed model, the

 10970258, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10050 by D
uke U

niversity Libraries, W
iley O

nline Library on [18/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



1878 HUANG et al.

F I G U R E 4 Ebola (top row): (A) Samples from the posterior transmission rate over time, recovered from the time-homogeneous model.
(B) Samples from the posterior transmission rate over time, recovered from the fixed change point model. (C) Samples of the posterior
transmission rate over time, recovered using binary segmentation and PELT. (D) Samples from the posterior transmission rate over time,
recovered using our proposed model. COVID-19 (bottom row): (E) Samples from the posterior transmission rate over time, recovered from
the time-homogeneous model. (F) Samples from the posterior transmission rate over time, recovered from the fixed change point model. (G)
Samples of the posterior transmission rate over time, recovered using binary segmentation and PELT. (H) Samples from the posterior
transmission rate over time, recovered using our proposed model.

F I G U R E 5 Ebola: Posterior predictive distributions of new cases (top row) and peak number of infections (bottom row) for each of the
four methods. Observed data are (top row) plotted in black or (bottom row) marked with a dashed line. The proposed model performed best
at fitting the observed data.

observed data fall reasonably within the 95% posterior predictive interval for both the Ebola and COVID-19 case stud-
ies. We note that there is larger variation in the stochastic trajectories simulated by the COVID-19 model. This is
in line with what one would expect, given that the observed data consist of only 15 observation times in the latter
case study.

4 DISCUSSION

This article develops a novel framework for exact Bayesian inference in a stochastic SIR model with a piecewise constant
time-varying transmission rate 𝛽(t). The model is designed to be flexible enough to capture time-heterogeneity in the
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HUANG et al. 1879

F I G U R E 6 COVID-19: Posterior predictive distributions of new cases (top row) and peak number of infections (bottom row) for each
of the four methods. Observed data are (top row) plotted in black or (bottom row) marked with a dashed line. The proposed model and the
binary segmentation/PELT models performed the best at fitting the observed data.

infection rate while remaining amenable to sampling targeting the exact model posterior. The resulting method yields
interpretable parameter estimates favoring model parsimony and comes equipped with corresponding uncertainty esti-
mates. To fit the model to data, we propose a data-augmented MCMC algorithm that samples from the joint posterior
distribution of the model parameters and latent variables, performing change point estimation in the process. The frame-
work is user-friendly and allows for prior specification on how strongly one favors constant runs in the transmission
rate, leveraging recent developments in efficient proposals for the latent space of unobserved epidemic events when the
observed data consist of incidence counts.

Detecting changes in disease spread allows us to gain valuable insight into the efficacy of mitigation policies that were
implemented, informing us on where and how quickly a specific policy begins to be effective. While we show that the
method is successful in assigning high probability to the true change points in simulations where the ground truth 𝛽(t)
is piecewise constant, our method provides interpretable and flexible approximate estimates even when the ground truth
transmission rate is continuously varying. From a practical perspective, the posterior plots of the learned transmission
rate are easy to interpret for non-statisticians; not only can one immediately see the uncertainty of each segment, but
the most pronounced change points as supported by the data are visually obvious. Finally, because we have a
continuous-time generative model, the sampler is ready to be used off-the-shelf for incidence data even when the
observation intervals are irregular.

It is important to keep in mind, however, that our method seeks only to describe a change in the transmission rate
parameter of the epidemic model. It is important not to over-interpret results of inference—for instance, we cannot make
causal claims or attribute changes as directly resulting from a given change in policy. Compared to some prior works that
assign a change point time coinciding with the time of a policy change occurring,18,19 which make a stronger implicit
claim, we improve by instead detecting changes only from incidence data. Moreover, we note that the current model does
not regard information on the contact network structure of the epidemic. Similarly, it is therefore possible that changes
in overall transmission rate may be attributed to local cluster outbreaks rather than changes in the rate of infectiousness
inherent to the disease.

The methodology proposed here leads naturally to several extensions. We have seen success with the piecewise model
in empirical studies in this article, and future work may analyze recovery guarantees from a theoretical perspective. The
focus of this article is on developing the model framework and enabling efficient Bayesian computation. Not only does
this change point model lend a natural interpretation for getting a direct quantity of the drop, or decline, in transmission
rate following a policy intervention, but it is also able to segment the epidemic into different stages based on transmission
rate. The experiments presented here are focused on a time-varying transmission rate 𝛽. However, the proposed change
methodology can easily be adapted to model other parameters, such as the recovery rate 𝛾 , to be time-heterogeneous as
well. We focused on a time-varying transmission rate here as the case studies presented here occurred during time peri-
ods in which policy changes were implemented, making it relevant to detect changes in transmission rates. In analyzing
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1880 HUANG et al.

settings where new strains are introduced into the population, for instance, it may be useful to introduce a time-varying 𝛾 .
Moreover, the method can extend to settings where the true transmission rate need not be piecewise constant. Along these
lines, future studies may aim to model a more flexible transmission rate, incorporating time trends such as seasonality
in terms beyond piecewise constant building blocks. Past work using more flexible functions such as Gaussian processes
have been successful, though they incur significantly higher computational cost and do not scale to large outbreaks due
to operations such as matrix inversions.13,37 In some cases, these samplers must run for hours for small outbreaks with
only a hundred infections.37 Our proposed framework can generate thousands of posterior samples for outbreaks with
hundreds of infections in just several minutes on a single machine, suggesting there is room for further model complex-
ity while retaining computational tractability. Additionally, in settings where more information about the outbreak is
available, one may consider defining a regression model for 𝛽(t) based on covariates related to control measures or mod-
els of human behavior.38 Levels of mobility, levels of vaccination, and other auxiliary indicators of transmission39 may
further be incorporated into the rate function. The broader inferential framework proposed here readily extends to such
settings.

The sampler scales efficiently in per iteration computational cost, allowing applications to much larger outbreaks
than those considered in our empirical studies. In the settings we considered, our DA-MCMC algorithm mixes ade-
quately as evident in the trace plots for Δ in Figure S5, which exhibit frequent jumps between 0 and 1. The space
of possible change points is already large here, and efficiently sampling over these spaces is a notoriously difficult
problem. As we discussed, it may be expected that our MCMC takes a longer time to mix for select parameters
that border a change point. For such 𝛽k values, we have observed the posterior distribution can appear bimodal,
with the two modes corresponding to two different piecewise regimes. This points to future work that may fur-
ther improve mixing for these parameters through designing informed proposals not only based on the structure
of the disease model, but also on the discrete space of change point configurations. One fruitful line of thought
along these lines for high-dimensional discrete problems is the locally balanced proposal described in Reference
40, which uses point-wise informed proposals and balancing functions to bias proposals toward high-probability
states.

Our data augmentation approach complements classical changepoint methodology, but open directions remain in
further integrating powerful ideas from the changepoint literature within stochastic epidemic models. For instance, Ref-
erences 23 and 35 proposed a set of dynamic programming algorithms to perform direct simulation from the posterior
distribution of change point positions. These dynamic programming approaches minimize the cost over all possible seg-
mentations of the data exactly under a given statistical criteria, sidestepping the need to design careful MCMC moves
when there is a large space of models to explore. However, to preserve the necessary Markov property that is required
for the forward-backward recursions required by these algorithms, these methods require that the observations are con-
ditionally independent on the change points and the parameter values—an assumption that does not hold for SIR case
counts explicitly depend on past values of S, I. Similarly, Reference 25 propose a Bayesian variable selection procedure
for multiple change point detection not requiring MCMC. Again, these methods are developed in the context of detecting
changes in the mean under Gaussian observations, for which they design a sequential procedure for deriving marginal
posterior probabilities of change points in closed form. Adapting these methodologies toward parametric change-point
detection within mechanistic models such as the SIR remains a promising future direction in a challenging dependent
data setting.
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