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Abstract

Federated learning (FL) suffers from data heterogeneity, where the diverse data
distributions across clients make it challenging to train a single global model effec-
tively. Existing personalization approaches aim to address the data heterogeneity
issue by creating a personalized model for each client from the global model that
fits their local data distribution. However, these personalized models may achieve
lower accuracy than the global model in some clients, resulting in limited perfor-
mance improvement compared to that without personalization. To overcome this
limitation, we propose a per-instance personalization FL algorithm Flow. Flow
creates dynamic personalized models that are adaptive not only to each client’s data
distributions but also to each client’s data instances. The personalized model allows
each instance to dynamically determine whether it prefers the local parameters
or its global counterpart to make correct predictions, thereby improving clients’
accuracy. We provide theoretical analysis on the convergence of Flow and empiri-
cally demonstrate the superiority of Flow in improving clients’ accuracy compared
to state-of-the-art personalization approaches on both vision and language-based
tasks. The source code is available on GitHub '.

1 Introduction

Federated Learning (FL) is a distributed machine learning paradigm that enables edge devices, known
as “clients”, which collaboratively train a machine learning model called a “global model” [1].
However, because the server, which is the FL training orchestrator, does not have access to or
knowledge of client data distributions, it poses a challenge of statistical heterogeneity [2, 3]. This
heterogeneity hinders the server’s ability to train an ML model on a large quantity and variety of
data and also impacts the client’s ability to benefit from a generalizable model without sharing
any information about its data. To address this challenge, personalization has been studied [4, 5]
to improve prediction performance. Recent literature consistently demonstrates that personalized
models achieve higher prediction performance than the global model aggregated over clients [5-10].
These approaches typically create a personalized model specific to each client’s data distribution, and
thus we refer to them as “per-client personalization”.
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However, we have identified two factors that limit the performance improvement of existing per-client
personalization approaches in terms of clients’ accuracy. First, as reported in the evaluation in
Sec. 5, we found that personalized models can achieve lower accuracy than the global model on
up to 31% clients, causing limited improvement in accuracy averaged across all clients. Second,
even if personalized models achieve higher accuracy on a client compared to the global model,
they can still produce incorrect predictions on up to 11% of data instances on clients that could be
correctly handled by the global model, causing limited accuracy improvement from personalization
on that client. These observations reveal a significant drawback of existing per-client personalization
approaches: each client’s personalized model is a static network that cannot accommodate the
heterogeneity of the local client’s data instances. As a result, every data instance on a client is
constrained to use its personalized model for prediction, even though some instances could benefit
from the better generalizability of the global model.

To overcome the above limitation, this paper proposes a per-instance and per-client personalized FL.
algorithm Flow via dynamic routing to improve clients’ accuracy. Flow creates dynamic personalized
models that are adaptive to each client’s individual data instances (per-instance) as well as their data
distribution (per-client). In a FL round of Flow, each client has both the global model parameters that
are shared across clients and the local model parameters that are adapted to the local data distribution
of the client by fine-tuning the global model parameters. Flow creates a dynamic personalized model
per client that consists of local and global model components and a dynamic routing module. The
dynamic routing module allows each data instance on a client to determine whether it prefers the local
model parameters or their global model counterparts to make correct predictions, thereby improving
the personalized model’s accuracy on the client compared to that of a local model or a global model.
At the same time, through dynamic routing, Flow could identify instances in each client that agree
with the global data distribution to further improve the performance of the global model, offering a
good starting point for any new client to personalize from. Since Flow is a client-side personalization
approach, it can work with server-side optimization methods like FEDYOGI [11].

We theoretically analyze how dynamic routing affects the convergence of the global model and person-
alized model in Flow and also empirically demonstrate the effectiveness of Flow in improving clients’
accuracy compared to state-of-the-art personalization approaches on cross-device language and vision
tasks. For the newly joined clients, the global model from Flow achieves 2.81% (Stackoverflow),
3.46% (Shakespeare), and 0.95%-1.41% (CIFAR10) better accuracy on the global model against
its best performing baselines respectively. After personalization, the dynamic personalized model
from Flow sees improvements of 3.79% (Stackoverflow), 2.25% (Shakespeare), and 3.28%-4.58%
(CIFAR10) against the best performing baselines. Our in-depth analysis shows that Flow achieves the
highest percentage of clients who benefit from personalization compared to all baselines and reduces
the number of instances that are misclassified by the personalized model but correctly classified by
the global model, contributing to the better personalized accuracy from Flow.

‘We summarize the contributions as follows:

* We propose a per-instance and per-client personalization approach Flow that creates person-
alized models via dynamic routing, which improves both the performance of the personalized
model and the generalizability of the global model.

* We derive convergence analysis for both global and personalized models, showing how
the routing policy influences convergence rates based on the across- and within- client
heterogeneity.

* We empirically evaluate the superiority of Flow in both generalization and personalized
accuracy on various vision and language tasks in cross-device FL settings.

2 Related Work

Personalized Federated Learning. Personalization in FL has been explored primarily on client-level
granularity. APFL [6] interpolates client-specific local model weights with the global model weights
which are sent by the server. Meanwhile, Flow is an intermediate-output interpolation method and
also includes a dynamic policy to interpolate at instance-level granularity. We note that DAPPER
[12] interpolates the client dataset with a global dataset, which is impractical for the cross-device use
cases FL focused on in this paper. Regularization is another popular way of creating a personalized
model. It encourages a personalized model of each client to be close to the global model as explored



in DITTO [13] and PFEDME [14]. Finetuning partial or entire global model to get the personalized
model has been studied in LGFEDAVG [7], which finetunes and personalizes the feature extractor and
globally shares the classifier head, FEDBABU [15] which freezes the classifier head and only updates
and aggregates the feature extractor, and FEDREP [8] which finetunes and personalizes the classifier
head and globally shares the feature extractor. Learning personalized representations of the global
model has been explored in FEDHN [16] where a central hypernetwork model is trained to generate a
personalized model for each client. PARTIALFED [17] makes a layer-wise choice between global and
local models to create a personalized model, but it sends the personalized models back to the server
in lieu of a separate global model. This method has limitations in terms of training the base global
model (on which the personalized model would be based) with FEDAVG, which has been observed to
be insufficient against non-iid data [18]. Besides, the strategy does not create a dynamic personalized
model during inference. None of the above work has explored instance-level personalization.

Personalized models from previous work KNNPER [19] exhibits per-instance personalization behavior.
The personalized model of a client makes a prediction based on features extracted from the global
model from an instance as well as features from the instance’s nearest neighbors. However, KNNPER
trains the global model parameters in the same way as FEDAVG, which has been shown to perform
poorly in heterogeneous data settings [18]. In contrast, Flow’s dynamic routing mechanism results in
a global model with better-generalized performance amidst heterogeneous instances, which ultimately
leads to a higher boost in the performance of personalized models as well.

Dynamic Routing. Motivated by saving compute effort for “easy to predict” instances, instance-level
dynamic routing has been a matter of discussion in works related to early exiting [20-22], layer
skipping [23], and multi-branching [24, 25]. SKIMRNN [26] explored temporal dynamic routing
where depending on the input instance, a trained policy can determine whether to skim through the
instance with a smaller RNN layer (which just updates the hidden states partially), or read the instance
with a standard (bigger) RNN layer (updating the entire hidden state). Our work is motivated by the
question of Depending on the models’ utility and instances’ heterogeneity, which route to pick?. This
can be achieved by using a routing policy to dynamically pick from two versions of a model, which
are equivalent in terms of computational cost but different in terms of the data they are trained on.

3  Our Approach

We introduce Flow, a per-instance and per-client personalization method that dynamically determines
when to use a client’s local parameters and when to use the global parameters based on the input
instance. Table 1 summarizes the notation used in this paper.

Algorithm 1 describes the workflow of Flow. During

each FL round, the server samples M participating Table 1: Notations
clients with a sampling rate of p. Upon receiving the
global model w, and policy parameters 1), (Line 3),
each participating client personalizes and trains w, in
five major stages: (1) Split the training dataset into two
halves: (p,.¢ and (,, 4 (Line 6). (,, ¢ will be used to { :
update the parameters in the local model parameters Client sampling rate

while (;,, ;4 will be used to train the parameters in the Zf Ié(l)gs;lle;gg:fg rate

global model and a routing module. (2) Derive the local qu Policy module

parameters wy by fmetunmg the global parameters w, wf;  Local version of the global model
for Ky epochs with (, ¢ (Line 7). (3) Construct a wy ’m Local model of mt" client
dynamic personalized model wy, ,, by integrating the w ’m Personalized model of m" client
local versions of the global parameters wy, ,,, and policy Di; Data distribution of mt" client
parameters 4 ,, and the local parameters w,. Here,
the routing policy v, determines whether the execution
path of an instance should use w; or wy. (4) Train the routing policy 94 ., and the local version of
the global parameters wy ,, alternatively for Ky epochs (Lines 9-10) with ¢, 4. Although K and
K, can be different, we later use K to denote both K; and K, for ease of theoretical analysis. (5)
Send the local version of the global model parameters wy ., and the policy parameters 1), ,,, back to
the server for aggregation (Line 14). Aggregation strategies are orthogonal to this work and we adopt
FEDAVG [1].

#Epochs for training

Total number of sampled clients
Client index € [M]

Set of available clients

T3z




Next, we discuss the design of the dynamic personalized model w,, in detail. Figure 1 illustrates the
design of w,,. In Flow, w,, is made of three components, the local model w, and global model w,
and the routing module 1), that selects the execution of local or global model layers for each data
instance.

Local Parameters. We use finetuning to get the local parameters wé% in the r-th round since

finetuning has proven to be a less complex yet very effective method of personalization [27, 28].
Given a global model of the previous round, wérr)n we finetune it for K epochs to get wyr)n. This
local model would be reflective of the client’s data distribution D,,,. Note that we use one half of the

dataset to get w!") " and reserve the other half of the training dataset for updating the global model

L,m
and the policy (i.e., the routing module) parameters. This is to make sure that the policy parameters,
which would decide between local and global layers based on each input instance, are not overfitted
in favor of the local parameters. In Figure 1, the local parameters are shaded green, denoted by wy.

The update rule for wé?n is:

K
wéTmK) — w,f,’"nf — Z V fm wé’;s ;Cm.t), Where w(r 0~ =w(". )
k=1

Algorithm 1: Pseudocode of Flow

1 Server randomly initializes the global model wy personalized model global model
and the policy module v ¥ _*-_, 0
2 for each round do inputs outputs | Poliey
3 Send wg, ¥4 to sampled M clients ocal rf] el
4 for m € [M] in parallel do
5 Wy,m 4= Wg’ Yg,m < Pg; We,m = Wg,m
6 Creating two mutually exclusive datasets towards next
policy layer
Gm,t, Gm,g <= Dim X-le
7 Train wy,,, for K epochs from
previous
8 for k € [K3] epochs do layer
Update 14, according to Equation 4 | to next g
10 Update wy,,, according to Equation 5 Y =2 I el
11 end L from wy
12 Send back Wy, m, Vg,m, Nm = |Cm,g]
13 end . . )
14 Update w, and 1), with weighted average of Figure 1: Illustration of the dynamic
each client’s wg,m, and Pg m personalized model design proposed by Flow.
15 end

Routing Module. The routing module is a model with fully connected layers, shown as 1,5 in
Figure 1. After each layer ¥y, the model has early exits denoted as ¥exj; Which outputs a probability
of choosing the layer in the global model w, or the local model wy. This probability at layer j € [L]
is computed as,

: e : By ifj=0;
q¥) = [q¥”,q7] = softmax () () (2))) € [0, 1] where {:@<— 152;” () otherwise, )

where q(J ) and q(J ) are the probability of picking the global parameter w(] ). and the local parameter

éjzn respectively.

In order to train the routing parameters, we compute the training loss based on the output of the
personalized model w;(,z)n, which averages the global model’s output and local model’s output
weighted by q'7), for each layer j € [L]:

iz ifj=0;

wi) (&) + qf - wi), (&) + i) - wl), (&) where { G 3)
€Tr <

Wpm )() otherwise.
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Let f,,,(-) denote the loss function on client m. Using the above personalized model w,(f:zn, Flow

updates the policy parameters as follows,
T ke /7/
VgD = 50 =V o | (W3 0 G g) Z log(ag) | , )

where —1 3 elL] log(q(()j )) is a regularization term that encourages the global model to learn on
heterogeneous instances to improve the global model’s generalizability.

Global Parameters. Global parameters w, are trained alternatively with the routing parameters 1),.
Flow updates the global parameters as follows,

ws(;;ntl) — w‘((]fq)n - n@vw((fzn fm( 1()T7)na ¢(r+1) CnL,g) (5)
The goal of the alternative training is for the instances that are characterized better by the global data
distribution to get diverted to the global model and the rest of the instances that are captured better by
the local data distribution routed to the local model. This improves the stability of the global model
compared to approaches like APFL or KNNPER which still use the global model trained on all the
instances, regardless of the level of heterogeneity. The effectiveness of the alternative training is
validated empirically and discussed in Appendix D.2.

Soft versus Hard Policy. During training, we use soft policy where the probability in Equation 2
ranges over [0, 1] to update the parameters in the global model and the routing module. But during
inference, we use a discrete version of the policy round(q)) € {0,1}? for q') in Eq. 3. The
rationale behind this is twofold: (a) Using hard policy saves compute resources during inference
by executing either the global or the local layer for an instance instead of both. (b) Our empirical
evaluation shows negligible difference in performance of personalized models with soft and hard
policies during the inference.

The dynamic nature of the personalized model in Flow introduces additional storage and computa-
tional overhead compared to the canonical method FEDAVG with Fine Tuning (called FEDAVGFT).
However, compared to other state-of-the-art personalization methods such as D1TTO and APFL, Flow
requires similar or even less storage and computational overhead. Detailed analysis and comparison
with baselines is in Appendix C.

4 Theoretical Analysis

In this section, we give convergence bounds for the global model w, and the personalized model w,,
of an arbitrary client m in smooth non-convex cases. The bounds for strong and general convex cases
are available in Appendix E, Sections E.3 and E.5. To derive the bounds, we adopt two commonly
used assumptions in FL convergence analysis from AFO (Assumption 2, [11]) and SCAFFOLD
(Assumption 1, [18]): (1) We assume local variance between a client’s expected and true gradient is
o¢-bounded. (2) We also assume that the dissimilarity between aggregated gradients of local expected
risk and the true global gradient is (G, B)-bounded, where both G and B are constants capturing the
extent of gradient dissimilarities. A detailed description is in Appendix Section E.2.

Now we present the bounds on the norm of expected global (and local) risks on global (and per-
sonalized) models respectively, at R-th (last) round. The proofs are in Appendix Sections E.3 and
E.S.

Theorem 4.1 (Convergence of the Global Model). If each client’s objective function f,, (and
hence the global objective function F') satisfies 3-smoothness, og-bounded local gradient variance,
(G, B)-dissimilarity assumptions, using the learning rate % <n < m [for non-convex

case] in Flow, then the following convergence holds:

R vre] < oo [ [rwe)] - [rug)

o? 2q3G? n o}
szMq KvR a3B?R B?KR
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Discussion. Here, q3 (and q?) are the probability of picking the global (and local) weights averaged
over all instances sampled from the global data distribution. Given a fixed g2 and q?, a larger G
increases the bound, indicating slower convergence of the global model due to higher heterogeneity.
We made two additional observations on the convergence of Flow depending on q3 in the bound.

One the one hand, when g2 — 1, Flow matches the linear (strong convex) and sub-linear (general
convex and non-convex) convergence rates of FEDAVG [18]. Specifically, q3 = 1 results in conver-
gence rate of O(1/R?) (strong convex), O(1/R?/3) (general convex), and O(1/R) (non-convex).
When g2 = 1, which also indicates q7 = 0, the local parameters do not influence global model
updates since all instances on a client will be routed to the global model and their gradients solely
depend on the global model parameters. Flow degrades to FEDAVG in this case in terms of the
convergence of the global model.

On the other hand, when q3 — 0 indicating all instances are likely to be routed to the local model,
the bound goes to infinity. It is because the global model parameters won’t get updated and thus
won’t be able to converge. This observation validates the necessity of the regularization term in Eq. 4
to encourage instances to pick global model parameters.

Now we present the convergence bounds of the personalized model for the m-th client. The bound
uses a definition of gradient diversity (noted as ¢,,) to quantify the diversity of a client’s gradient
with respect to the global aggregated gradient, following the prior work [29]. Higher diversity implies
higher heterogeneity of the client.

Theorem 4.2 (Convergence of the Personalized Model). If each client’s objective function f,,
satisfies B-smoothness, og-bounded local gradient variance, (G, B)-dissimilarity assumptions, and
using the learning rate ny < ﬁm [for non-convex case] in Flow, then the following convergence
holds:

;iEIIme(wéf;P)llz < 2 (B[ fm i) ~ B[]

52 2 Py & 2 q%,mGQ
+O(R2K2 of (0 57 ) K\ gtk

Discussion. The theorem implies two main properties of the personalized models in Flow. First, for
all convex and non-convex cases, the convergence rate of the personalized model in Flow is affected
by the routing policy through the ratio q7 ,,,G?/q3 ,,,. We know that a higher value of the gradient
dissimilarity constant G, indicates higher heterogeneity between the aggregated and expected global
model. The ratio of q%m / q%,m would be higher for a heterogeneous client, since the client would get
a higher probability of picking the local route (qim — 1). The higher GG and qim results in slower
convergence. On the contrary, a homogeneous client would benefit from a low value of g7 ,,, /a2 ...
which would offset the high value of G. Hence a homogeneous client’s personalized model would
converge faster than the one of a heterogeneous client. Second, we observe that gradient diversity of

the policy model, 6:1;19, linearly affects the personalized model’s convergence. Since the policy model

is also globally aggregated, a heterogeneous client would have a high 5% and need more epochs per
round to converge.

5 Experiments and Results

We empirically evaluate the performance of Flow against various personalization approaches for five
non-iid vision and language tasks in terms of clients’ accuracy.

Datasets, Tasks, and Models. We have experiments on two language and three vision tasks. The
first three datasets which are described below represent real-world heterogeneous data where each
author or user is one client. (a) Stackoverflow [30] dataset is used for the next word prediction
task, using a model with 1 LSTM and 2 subsequent fully connected layers. (b) Shakespeare [31]
dataset is for the next character prediction task, using a 2 layer LSTM + 1 layer fully connected
model. (c) EMNIST [32] dataset is for 62-class image classification, which uses 2 CNN layers
followed by 2 fully-connected layers. The models for the above three datasets have been described in
[11]. The next two datasets are federated and artificially heterogeneous versions of CIFAR10/100



datasets. (d-e) CIFAR10/100 [33] datasets are for 10- and 100-class image classification tasks with
ResNet18 [34] model. Both CIFAR10/100 have two heterogeneous versions each: 0.1-Dirichlet
is more heterogeneous, and 0.6-Dirichlet is /ess heterogeneous. Details about the datasets and the
hyperparameters are in Appendix B.

Baselines and Metrics. We compare Flow with the following baselines: the classic FL algorithms
FEDAVG [35], state-of-the-art personalized FL approaches including FEDAVGFT (FedAvg + Finetun-
ing) [36], PARTIALFED [17], APFL [6], FEDREP [8], LGFEDAVG [7], DiTTO [13], HYPCLUSTER
[12], and KNNPER [19], and the LOCAL baseline which trains a local model on each client’s dataset
without any collaboration. We use the adaptive version of PARTIALFED as it shows better per-
formance compared to the alternatives in [17]. We evaluate Flow and these baselines in terms of
generalized accuracy and personalized accuracy, which correspond to the accuracy of the global
model and the personalized model on clients’ test data split.

We use Flower [37] library to implement Flow and all its baselines. We use an NVidia 2080ti GPU to
run all the experiments with 3 runs for each. The random seeds used are 0, 44, and 56. We do not
observe significant difference in results using other random seeds (see results in Appendix D.4).

5.1 Performance Comparison

Generalized and Personalized Accuracy. The performance of Flow and its baselines are reported in
Table 2 for four datasets. Note that the LOCAL baseline has only personalized accuracy as it doesn’t
create a global model collaboratively. The FEDAVG has only generalized accuracy as it doesn’t
personalize the global model for each client. Since PARTIALFED is a stateful approach, we are unable
to run it on the cross-device datasets (Stackoverflow, Shakespeare, EMNIST). Results for the rest of
the datasets and their variance across 3 different runs are reported in Appendix D.

Overall, Flow achieves 1.11-
3.46% higher generalized accu-
racy and 1.33-4.58% higher per-

Table 2: Generalized (Acc,) and Personalized (Accy,) accuracy
(the higher, the better) for Flow and baselines.

Datasets [ Stackoverflow | Shakespeare [ CIFARIO (0.1) | CIFARIO0 (0.6) sonalized accuracy over the best
Baselines [ Accyg  Accy [ Accy  Accy [ Accy  Accy [ Accy  Accy performing baseline. In par-
LOCAL - I593%| - I80%| - 4978%] - 6274% ticular, Flow outperforms KN-
FEDAVG 23.15% - |52.00% - |60.98% - |67.50% - P ’ h :

FEDAVGFT  |23.83% 24.41%|52.12% 53.68% |61.23% 73.03% |68.19% 72.21% ~ NPER, another per-instance per-
KNNPER 23.16% 24.49% |51.87% 53.10%|59.62% 75.14%|69.22% 70.14%  client personalization approach,
PARTIALFED - - - - 62.57% 73.20% | 66.93% 70.38% 1 -6.64 nd1 _ in
APFL 22.96% 25.70% |52.38% 53.64% |62.87% 72.86% |69.53% 72.53% by '66.6'6 % and 1.33 6197%
DITTO 22.59% 24.36% | 52.44% 53.95% | 62.06% 72.06% | 68.12% 7031%  generalized and personalized ac-
FEDREP 18.92% 21.04% |46.71% 50.09% | 64.85% 68.62% [69.77% 63.61%  curacy metrics respectively. KN-
LGFEDAVG |22.61% 24.03% |51.08% 51.43% |56.63% 73.19% |67.48% 68.94% -
HYPCLUSTER | 23.75% 22.43% | 51.92% 52.74% |63 64% 71.55% |65.44% 712400 ~NPER allows each instance to
Flow (Ours)  |26.64% 29.49% |55.90% 56.20% |66.26% 76.47% |70.88% 77.11%  personalize the prediction of the

global model based on its k-
nearest neighbors at inference time. However, the global model is trained through the classic
FL method FEDAVG, which is agnostic to the heterogeneity of data instances. In contrast, Flow
trains the global model differently via a parameterized dynamic routing module, which learns to put
emphasis on data instances that are more aligned with the global data distribution to improve the
performance of the global model.

Flow also outperforms the per-client personalization approaches including APFL, D1TTO, HYPCLUS-
TER, and FEDAVGFT by 1.35-3.46 % (generalized accuracy) and 2.25-4.58% (personalized accuracy).
Table 3: % of clients for which Acc), > Acc, (the We see improvements in generalized accu-
higher, the better). racy of Flow !Jecause pf the; fact that the

global model in Flow is trained based on
the instances which align more with the

[ Stackoverflow [ Shakespeare [ CIFARI10 (0.1) [ CIFARI10 (0.6)

FEDAVGFT 79.26% 79.00% 97.18% 99.33% R :

KNNPER 2.73% 68.87% 90.00% 90.00% global d1str.1but10n. We see improvements
PARTIALFED - - 88.30% 84.80% in personalized accuracy due to the limita-
APFL 69.66% 79.22% 87.48% 90.63%  tion of the per-client approaches where some
DITTO 74.59% 73.74% 90.52% 89.61% . . .

FEDREP 91.53% 79.78% 92.30% gaea  1nstances being correctly classified by the
LGFEDAVG 83.47% 88.43% 88.41% 89.59%  global model are incorrect on the personal-
HYPCLUSTER|  80.46% 74.84% 95.11% 98.18% Ve ing

Flow (Ours) 92.74% 89.77% 98.33% 9929,  ized model. We next give insights on why

Flow achieves better performance in person-
alized and generalized accuracy compared to these personalized baselines.
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Figure 2: w4 and w,, accuracies Figure 3: Behavior of the routing policy from 1), for all instances
for Stackoverflow. at each layer for Stackoverflow.

Percentage of Clients Benefiting from Personalization. The goal of personalization is to achieve
higher prediction accuracy in each client by creating a per-client personalized model from the global
model. We can thus measure the effectiveness of personalization by computing the percentage of
clients for which the personalized model achieves higher task accuracy than the global model. The
higher the percentage is, the better (or more effective) the personalization approach is.

Table 3 reports the results. We observed that Flow achieves the highest percentage of clients who
benefit from personalization compared to all personalization baselines, echoing the better personalized
accuracy from Flow. The percentage of clients who prefer personalized models can be as low as
68.87% (KNNPER on Shakespeare), which means personalization hurts up to 31% of clients’ accuracy,
as mentioned in the introduction. As a contrast, Flow improves the percentage of clients benefiting
from personalization to 89.77%-99.62% because each instance, in a client, has a choice between
the global model parameters and the local model parameters and can choose the one that better fits
it. Note that the comparison is in favor of the baselines since Flow also achieves better generalized
accuracy, which makes it even harder for personalized models to further improve prediction accuracy.

Breakdown of Correctly Classified Instances. Figure 2 further shows the breakdown of the
percentage of instances that are (a) correctly classified by the global model but not the personalized
model (noted as global-only, colored in yellow O), (b) correctly classified by the personalized model
but not the local model (noted as personalized-only, colored in blue @), and (c) correctly classified
by both models (noted as both-correct, colored in green @ in Flow and baselines on Stackoverflow.
The percentage of instances in y-axis is averaged over the test splits of all clients.

Overall, Flow increases the both-correct bars compared to all the baselines, which are the instances
that contribute to the generalized performance of the global model. This explains the better generalized
accuracy of Flow. Flow also increases the personalized-only bars and decreases the global-only bars,
which correspond to the heterogeneous instances that prefer personalized models instead of the global
model. This further explains the better personalized accuracy of Flow. Notably, for Stackoverflow
dataset, existing personalization approaches still result in up to 4.74-7.93% of instances incorrectly
classified by the personalized model but correctly by the global model. Flow reduces it to 1.12-2.42%.
Similarly for the CIFAR10 (0.6) dataset, as mentioned in the introduction, we notice up to 11.4%
of instances falling under the global-only category, which Flow reduces to 2.55%. It echoes the
aforementioned effectiveness of personalization in Flow. The instance-wise accuracy breakdown for
the rest of the datasets is detailed in Appendix D, Figure 10.

Analysis of Routing Decisions. We further analyze the behavior of routing decisions for instances of
a client that fall in the above three cases, global-only, personalized-only, and both-correct. Figure 3
shows the per-layer routing policies of the dynamic personalized model from Flow on Stackoverflow.
For instances that fall into each category, we average the policy value from Eq. 2 and report the
statistics on the probability of picking the global parameters for each layer. The statistics for the rest
of the datasets are detailed in Appendix D.

For instances that are correctly classified by wg but not by w,, (global-only), we see a clear trend of
the routing parameters getting more confident about picking the global parameters. As a contrast,
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Figure 4: Ablation studies on Stackoverflow dataset.

for instances that are correctly classified by w, but not by w, (personalized-only), we see the
trend of routing policy being more confident in picking the local parameters. For instances that
can be correctly classified by both models (both-correct), the routing policy still prefers the global
parameters over local parameters. This is due to the regularization term in Eq. 4, which encourages
instances to pick the global model over the local model in order to improve the generalizability of the
global model. Our ablation study in the next section demonstrates the importance of regularization.

5.2 Ablation Studies

Here we highlight some results of three ablation studies on regularization, per-instance personalization,
dynamic routing, and hard policies during inference. More results are in Appendix D.

Regularization. The regularization term in Eq. 4 promotes the global model layers whenever possible.
It helps boost the generalized performance of the global model, which in turn also produces better
personalized models. We use the results on the Stackoverflow dataset in Figure 4a to illustrate the
importance of regularization. At the end of the training, we get 26.64% = 0.23% generalized accuracy
with regularization, compared to 24.16% =+ 0.34% without regularization, and 29.49% + 0.28%
personalized accuracy with regularization, compared to 27.59% + 0.36% without regularization. The
importance of regularization in the policy update rule is also highlighted in Theorem 4.1, which states
that only picking local route does not lead to global model convergence; the regularization term can
encourage the global model to converge faster.

Per-instance Personalization. The dynamic personalized model in Flow allows each instance to
choose between the local model and global model layers. To verify this per-instance personaliza-
tion design, we create two variants of Flow, named “Per-Instance” Flow (PI-FLOW) where both
paths of a dynamic model are global models, and “Per-Client” Flow (PC-FLOW) which is simply
FEDAVGFT. Compared to the personalized accuracy of per instance and per client Flow (29.49%
+ 0.28%), PI-FLOW and PC-FLOW achieve 26.31% + 0.19% and 24.41% + 0.26% respectively
on Stackoverflow dataset, as shown in Figure 4b. The results demonstrate the effectiveness of the
per-instance personalization design in Flow.

Dynamic Routing. This ablation study aims to learn whether dynamically interpolating global and
local routes has any advantages over fixing the routing policy throughout the training. In Figure
4c, we compare the validation accuracy curves of dynamic routing in Flow and dynamic routing
with instance-agnostic static routing during the training phase. We observe that (a) For the case of
fixed policy of qy = 0.25, the validation accuracy has bad performance due to the fixed policy only
choosing the local route. This is due to using hard policy during inference, and (b) The cases of
fixed policy qo € [0.50,0.75,1.00] will only pick the global route during inference, which are also
outperformed by the dynamic routing variant. With dynamic routing, the choice between local and
global parameters depends on each instance during inference.

Soft versus Hard Decisions during Inference. We did not use soft decisions during inference since
it only negligibly improves the accuracy of Flow. The test accuracies after personalization for Flow
on Stackoverflow with hard decisions are 29.49% =+ 0.28%, while with soft decisions, we observed
29.57% + 0.22%. The rest of the datasets show a similar trend (see Appendix D, Table 8).



6 Conclusion

This paper proposed Flow, a per-instance and per-client personalization method to address the
statistical heterogeneity issue in Federated Learning. Flow is motivated by the observation that the
personalized models from existing personalized approaches achieve lower accuracy in a significant
portion of clients compared to the global model. To overcome this limitation, Flow creates dynamic
personalized models with a routing policy that allow instances on each client to choose between
global and local parameters to improve clients’ accuracy. We derived error bounds for global and
personalized models of Flow, showing how the routing policy affects the rate of convergence. The
theoretical analysis validates our empirical observations related to clients preferring either a global or
a local route based on the heterogeneity of individual instances. Extensive evaluation on both vision
and language-based prediction tasks demonstrates the effectiveness of Flow in improving both the
generalized and personalized accuracy.
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A Limitations, Future Work, and Broader Impact

Learning on naturally heterogeneous datasets can be challenging, as the true data distributions of individual
clients are unknown, making it difficult to correlate the divergence between client data distribution and the
global data distribution with routing policy decisions. In our approach, we estimate the distribution divergence
by measuring the difference between inference losses on global and local models, which helps us reason about
routing probabilities for global and local routes. To further improve our understanding of the model performance,
we plan to propose a metric that quantifies the difference in performance when a particular dataset is included
versus excluded.

Flow has shown the promise of per-instance personalization in improving clients’ accuracy. This approach also
holds the potential of preserving privacy by protecting against gradient leakage [38—40] and membership infer-
ence [41, 42] attacks that are easier to carry out in vanilla FL. Studying the relationship between personalization
and privacy, and comparing our approach to traditional methods like Differential Privacy (DP) [43, 44] can
reveal properties of personalization that go beyond improved accuracy.

B Datasets and Hyperparameters

Stackoverflow The Stackoverflow dataset [30] is comprised of separate clients designated for training,
validation, and testing. The dataset contains a total of 342,477 train clients, whose combined sample count equals
135,818,730. Similarly, the dataset contains 38,758 validation and 204,088 test clients, whose combined sample
counts equal 16,491,230 and 16,586,035, respectively. This dataset is naturally heterogeneous [45] since each
user of Stackoverflow represents a client, with their posts forming the dataset for that client. The heterogeneity
of the dataset arises from the fact that users have different writing styles, meaning the clients’ datasets are not
i.i.d., and the total number of posts from each user varies, leading to different dataset sizes per client.

We have trained Flow and its baselines on the Stackoverflow dataset for 2000 rounds. The one layer LSTM we
have used has 96 as embedding dimension, 670 as hidden state size, and 20 as the maximum sequence length
[11]. The batch size used for each client on each baseline is 16. The vocabulary of this language task is limited
to 10k most frequent tokens. The default learning rate used is 0.1. The number of clients per round is set to 10,
as is the common practice in [13, 46, 12, 10, 47]. For client-side training, the default epoch count is 3 for all the
algorithms.

For KNNPER, we used 5 nearby neighbors, and the mixture parameter is A = 0.5. For APFL, mixture
hyperparameter « is set to 0.25. DITTO has regularization hyperparameter A = 0.1. There are 2 clusters
by default for HYPCLUSTER. Flow and its variants were tested on the following choices of regularizing
hyperparameters v € {le-1, le-2, le-3, le-4}, where le-3 gave the best personalized accuracy.

Shakespeare The Shakespeare dataset [31] consists of 715 distinct clients, each of which has its own training,
validation, and test datasets. The combined training datasets of all clients contain a total of 12,854 instances,
while the combined validation and test datasets contain 3,214 and 2,356 instances, respectively. The Shakespeare
dataset is considered heterogeneous due to the fact that each client is a play written by William Shakespeare, and
these plays have varying settings and characters.

All the baselines and Flow variants have been run for 1500 rounds, with 10 clients per round. The 2 layer LSTM
used [11] has 8 as embedding size, vocabulary size of 90 most frequently used characters, and 256 as hidden
size. The default epoch count is 5 for each client, for each algorithm. The batch size is 4 since bigger batch sizes
resulted in the divergence of the global model across all the different runs. The default learning rate is 0.1.

Since each client has a sample count under 20, we have used 3 as the nearest neighbor sample count for KNNPER.
A and «, the mixture parameters, for KNNPER and APFL respectively, are set to 0.45 and 0.3. The regularization
parameter A for DITTO is set to 0.1. For Flow, the learning rate is set to 0.11 and the regularization parameter is
picked from € {le-1, le-2, 1e-3, le-4} similar to Stackoverflow.

EMNIST The EMNIST dataset [32] comprises 3400 distinct clients, each of which has its own training,
validation, and test datasets. The combined total number of instances in the train datasets of all clients is 671,585,
whereas the validation and test datasets of all clients combined contain 77,483 instances each. The heterogeneity
of EMNIST clients is due to the individual writing styles of each client, with each client representing a single
person. This is discussed in Appendix C.2 of [11].

The default round count for all the baselines and Flow variants is 1500, with 10 clients participating per round.
Similar to AFO [11], we have used a shallow convolution neural network with 2 convolution layers. Each client
uses 3 local epochs for on-device training. The default batch size is 20, and the default learning rate is 0.01.

For LOCAL only training, we have used 10 epochs per client with a learning rate of 0.05. The nearest sample
count for KNNPER is 10 and the mixture parameter is A = 0.4. For APFL, we have the default mixture parameter
as a = 0.25. DITTO has regularization hyperparameter as A = 0.1. There are 2 clusters for the clustering
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algorithm HYPCLUSTER. And for Flow, along with its variants, we have picked v € {le-1, 1e-2, le-3, le-4} as
the regularizing hyperparameter.

CIFAR10 The CIFARI10 dataset is derived from the centralized version of the CIFAR10 dataset [33],
which comprises 50,000 images. The federated CIFAR10 dataset consists of 500 unique clients, each of
which has 100 training samples and 20 testing samples. The training and testing samples for each client are
determined according to the Dirichlet distribution [11]. The heterogeneity of a client is determined by the
Dirichlet distribution parameter o € [0, 1], where a client is more heterogeneous than o — 0. In this context,
heterogeneity refers to the dissimilarity of the dataset instances sampled from a distribution. We conducted
experiments on clients with « values of 0.1 and 0.6.

We ran all the experiments for 4000 rounds for the CIFAR10 dataset. ResNet18 [34] is used for all the algorithms.
The default batch size is 20 and the default learning rate is 0.05. Each client individually trains their local
versions of the global model for 3 epochs.

For LOCAL only training, 20 epochs per client were used. The learning rate was 0.1 for the same. The nearest
sample count and the mixture hyperparameter for KNNPER are set to 5 and 0.5. PARTIALFED learning rate is set
to 0.11, with the local epoch count is 5. APFL has mixture hyperparameter set as « = 0.2. And DITTO has a
regularization hyperparameter set as A = 0.01. Flow and its variants have their regularization hyperparameter as
v € {le-1, le-2, 1e-3, le-4}.

CIFAR100 Like CIFAR10, the CIFAR100 dataset [48] is derived from the CIFAR100 dataset [33] consisting
of 50,000 images. The number of clients and the count of training and testing images are identical to those of
CIFARI10. Similarly, we also conducted experiments with the Dirichlet parameter set to « = 0.1 and a = 0.6.

Similar to CIFAR10, we have a 4000 round count for all the algorithms ran on the CIFAR100 dataset. We have
again used ResNet18 [34]. The default local epoch count is 3, and the default learning rate is 0.05. We have
used 20 batch size for all the algorithms. For each round, 10 clients participate as is the norm stated in the
Stackoverflow dataset description.

LoCAL only training has 20 epochs per client, and 0.1 learning rate. 5 nearest samples are used for KNNPER,
while the mixture parameter A is set to 0.4. PARTIALFED, just like in CIFAR10, has 0.11 learning rate and 5
local epochs per client. APFL has 0.25 as mixture parameter . DITTO has le-2 as regularization parameter
A. For both CIFAR10 and CIFAR100, we have 2 as the default cluster count for HYPCLUSTER. Flow and its
variants get {le-1, le-2, 1e-3, le-4} as the regularization hyperparameter .

C Computation, Communication, and Storage

While Flow introduces additional storage and computational overhead compared to the canonical method
FEDAVG with Fine Tuning (called FEDAVGFT), compared to other state-of-the-art personalization methods
such as DITTO and APFL, Flow requires similar or even less storage and computational overhead.

To illustrate, Table 4 compares the storage, computational overhead, and communication cost for personalized
models from Flow and baselines using the CNN for EMNIST, and RNN for Stackoverflow.

Referring to Table 4, for Flow, 14 is the policy module. For our experiments on Flow, the policy module
has 1.23% for Stackoverflow RNN, 8.39% for Shakespeare RNN, 27.86% for EMNIST CNN, 35.51% for
CIFAR10/100 parameters of wy. For EMNIST CNN, for one epoch, the dynamic routing takes 0.3M FLOPs,
while the rest of the model computations take 2.9M FLOPs. Hence the overhead is 10.34%. For Stackoverflow
RNN one epoch, the dynamic routing takes 0.89M FLOPs, while the rest of the model computations take
12.34 M FLOPs, making the overhead 7.21%.

Below, we highlight the computational and storage analysis on Stackoverflow dataset for the best performing
methods, APFL, and HYPCLUSTER. The computational overhead is calculated for one epoch of training, which is
then multiplied with however many epochs the baseline needs for convergence. APFL needs to train two separate
local models for more numbers of epochs than Flow, hence the higher computational overhead. In comparison
with HYPCLUSTER, Flow introduces 7.23% overhead. With respect to both APFL and HYPCLUSTER, Flow
introduces only 1.23% storage overhead.

Moreover, from Table 4, we can see that compared to some other state-of-the-art personalization techniques (e.g.,
FEDREP, APFL), Flow requires similar or even less computations, even with the dynamic routing operations.
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Table 4: Computational and Communication costs, and Storage of Flow and its baselines.
A = Local Storage of Personalized Model (unit: parameter count) for general case,

B = Local Storage of Personalized Model (unit: parameter count) for Stackoverflow RNN case,
C = Computational Overhead of Personalized Model of the RNN used for Stackoverflow (unit:
FLOPs for training),

D = Communication Cost (unit: parameter count) for general case, and
FE = Communication Cost (unit: parameter count) for Stackoverflow RNN case.

Baselines [ A B C D E
FEDAVGFT [wgl 72.380M Not Applicable  [wg] 72.380M
KNNPER |wg| + (#instances 72.42M 12.46 M Jwg| 72.38M
* |intermediate representation| )
PARTIALFED | |wg | + 2+# layers of w, 72.38M 36.9M lwg| 72.38M
APFL 3w, 217.14M  73.8M g 72.38M
DITTO 2|w,| 144.76M  36.9M [wg| 72.38M
FEDREP |wg | 72.38 M 51M |wgy (base)| 70.98 M
LGFEDAVG lwg| 72.38M 10.5M |wy(head)|  1.39M
HYPCLUSTER | 2|wg] 144.76 M 36.9M |wg| 72.38M
FLOW (ours) | 2|wg]| + |1 145.651M  39.57M lwyl + [g]  73.271M

D Additional Results

D.1 Generalized and Personalized Accuracy

Generalized (Personalized) accuracy is calculated based on the global (personalized) model, where each
participating client’s test dataset is used to compute accuracy of the global (personalized) model.

Generalized accuracy is formulated as

1 E(z,y)estﬁ;t H{y = wy(z)}
Accg = i Z S . (6)
me[M]

Personalized accuracy is formulated as

1 Z Z(z,y)estﬁil Hy = wpm(x)}

Acep = Vi S @)

me[M]

We have reported Generalized (Personalized) Accuracy Accgy (Accyp) of Flow, averaged across 1000 clients in
Table 5, for all the datasets. Similarly, variance of accuracies across 3 different runs (based on seeds 0, 44, 56) is
reported in Table 6. The learning curves for both Generalized and Personalized accuracies for all datasets for
Flow and its baselines are in Figures 5 and 6.

Table 5: Generalized (Acc,) and Personalized (Accy) accuracy (the higher, the better) for Flow and
baselines. Variance across different runs is reported in Appendix D, Table 6.

Datasets [ Stackoverflow | Shakespeare | EMNIST [ CIFARIO (0.1) [CIFAR100 (0.1)[ CIFARI0 (0.6) [CIFAR100 (0.6)
Baselines [ Accg  Accy [ Accy  Accyp [ Accy  Accy [ Accy  Accy [ Accy  Accy [ Accy  Accy [ Accy  Accy
LocaL - 15.93% - 18.70% - 28.18% - 49.78% - 36.19% - 62.74% - 21.31%
FEDAVG 23.15% - 52.00% - 85.10% - 60.98% - 28.11% - 67.50% - 30.33% -

FEDAVGFT (23.83% 24.41%|52.12% 53.68% [89.57% 90.14%|61.23% 73.03% |29.60% 31.02%|68.19% 72.21%|31.15% 37.24%
KNNPER 23.16% 24.49%|51.87% 53.10% |85.20% 88.28%59.62% 75.14% |28.08% 33.62%|69.22% 70.14% |30.66% 34.39%
PARTIALFED - - - - - - 62.57% 73.20%|34.79% 40.64% |66.93% 70.38% |37.72% 40.18%
APFL 22.96% 25.70%|52.38% 53.64% |88.40% 89.44% |62.87% 72.86%|31.05% 32.56% |69.53% 72.53% |36.37% 36.74%
DitTO 22.59% 24.36%|52.44% 53.95% (89.08% 91.30%|62.06% 72.06% |28.14% 35.45% |68.12% 70.31%|35.11% 36.07%
FEDREP 18.92% 21.04% |46.71% 50.09% |89.95% 89.77% |64.85% 68.62% |26.10% 33.72% |69.77% 63.61% |28.42% 31.02%
LGFEDAVG (22.61% 24.03%|51.08% 51.43% |87.43% 91.70%|56.63% 73.19% |31.65% 39.63%|67.48% 68.94% |35.01% 33.90%
HYPCLUSTER|23.75% 22.43%|51.92% 52.74% |89.47% 90.49% |63.64% 71.55%|31.57% 33.04% |65.44% 72.40% |34.76% 36.22%
Flow (Ours) |26.64% 29.49% |55.90% 56.20% [90.88% 94.18% |66.26% 76.47%|34.00% 42.42% |70.88% 77.11% |39.70% 40.08%

Flow sees an improvement of 1.11-3.46% in Accgy and 1.33-4.58% in Acc,, over the best performing baseline.
Besides the main observations listed in Section 5, we discuss results on the CIFAR100 dataset here. For
CIFAR100 (0.6), Flow (40.08% = 0.27%) matches the personalized accuracy of the highest performing baseline,
PARTIALFED (40.18% =+ 0.19%), while achieving 1.98% point increase in generalized accuracy. And for
CIFAR100 (0.1), Flow improves personalized accuracy by 1.78% points. For generalized accuracy, Flow
(34.00% == 0.32%) reaches close to the best performing baseline, PARTIALFED (34.79% == 0.29%). The reason
behind the on-par performance of Flow with PARTIALFED can be attributed to the statefulness of PARTIALFED.
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Table 6: Variance of generalized and personalized accuracies across 3 different runs (seeds = 0, 44,
56) for Flow and its baselines.

Datasets [ SONWP | Shakespeare [ EMNIST [ CIFARI0 (0.1) [ CIFAR100 (0.1) [ CIFARI0 (0.6) [ CIFAR100 (0.6)
Baselines | Accy Accp [Acey Accp [ Aceq Accy | Aceqg Accp [Aceg Acc, [Accg Accey, [Accy Accy
LocAL - 0.25% | - 0.46% | - 1.14% | - 1.56% | - 0.43% |- 0.89% | - 0.25%
FEDAVG 0.07% - 0.39% - 1,32% - 1.12% - 0.31% - 0.82% - 0.15% -
FEDAVGFT 0.09% 0.26% | 0.51% 0.59% | 1.16% 1.21% |0.99% 0.89% |0.46% 0.62% |1.10% 1.26% |0.33% 0.42%
KNNPER 0.16% 0.24% | 0.36% 0.41% |095% 1.02% |1.41% 1,57% |0.34% 0.57% |091% 1.06% |0.24% 0.29%
PARTIALFED |- - - - - - 1.36% 1.39% | 0.29% 0.46% |0.96% 1.97% |0.09% 0.19%
APFL 0.19% 0.20% | 0.41% 0.53% | 1.41% 1.50% | 1.24% 1.31% |0.36% 0.72% |0.70% 0.97% |0.42% 0.59%
DitTO 0.12% 0.15% | 0.49% 0.56% | 1.12% 1.22% | 1.35% 1.41% |0.43% 0.69% |0.84% 0.87% |0.28% 0.34%
FEDREP 0.15% 0.29% | 0.50% 0.65% | 0.89% 0.94% |0.95% 1.02% |0.59% 0.79% |0.96% 1.14% |0.14% 0.10%
LGFEDAVG 0.08% 0.16% | 0.32% 0.56% | 1.10% 1.17% | 1.21% 1.24% |047% 0.51% |0.82% 0.96% |0.23% 0.21%
HYPCLUSTER | 0.20% 0.19% | 0.56% 0.73% | 0.90% 1.13% | 1.43% 1.49% | 0.39% 0.47% |0.98% 0.76% |0.35% 0.46%
Flow 0.23% 0.28% | 0.40% 0.49% | 1.16% 1.21% | 1.23% 1.25% |0.32% 0.36% |0.78% 0.86% |0.21% 0.27%
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Figure 5: Learning curves on Generalized Accuracy Metric of Flow and its baselines.

With the assumption of full device participation, PARTIALFED makes use of each client’s previous state of
the personalized model to further train its layer-wise model building policy. With Flow, both the assumptions
of full device participation and statefulness of the personalized model are not necessary. Since the clients do
not necessarily have to carry their personalized model states to the upcoming rounds, the personalized model
recreated by Flow might be unable to compete against stateful approaches like PARTIALFED. Although because
of the per-instance routing, Flow still manages to outperform PARTIALFED for the CIFAR10 (0.1/0.6) datasets,
and gives comparable performance for the CIFAR100 (0.1/0.6) datasets.
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Figure 6: Learning curves on Personalized Accuracy Metric of Flow and its baselines.

D.2 Effectiveness of the Alternative Training of the Global Model

We experimented with three modes of training for the global model: (a) Global model trained first, then the
policy module, (b) Policy module trained first, then the global model, (c) Global model and Policy module
trained alternatively. The results are shown in Figure 7. We see that the alternate training results in a more
stable training compared to the other two modes of training. These results are in conformance with other works
[49, 50] which have also used alternative training for policy and model weights training.

D.3 Dataset Split

We experimented with the Stackoverflow Next Word Prediction task on initial rounds for the local and global
training dataset splits. The plot is shown in Figure 8. We observe that for the dataset split size of 0.75:0.25 for
local and global datasets respectively, the global model does not get sufficient samples to converge, resulting in
worse personalized model performance since the personalized model is based on the global model. While a split
of 0.25:0.75 for local and global datasets has closer performance to that of a 0.50:0.50 split, lesser data (and
hence fewer iterations) to the local model leads to local model weights being similar to that of global model,
diminishing the impact of personalization.

D.4 More Seeds

We have re-run Stackoverflow experiment with seeds in {1, 2,3, 4,5, 6, 7, 8, 9}, the results show no material
difference. See Figure 9.
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D.5 Percentage of Clients Benefiting from Personalization

In this section we discuss the effect of personalization, by comparing each client’s performance on their individual
personalized models with their performance on the global model. The evaluation, just as in section D.1, is
done on the test datasets of all the clients. The goal with any personalization method is to make each client’s
personalized model more beneficial (for us, in terms of accuracy) compared to the global model. Hence we
want Acc, > Accy, to incentivize personalization for each client. As shown in Table 7, compared to the best
performing baseline, Flow improves the utility of personalization by up to 3.31% points.

Table 7: % of clients for which Acc, > Acc, (the higher, the better).
[ Stackoverflow [ EMNIST [ Shakespeare [ CIFAR10 (0.1) [ CIFAR100 (0.1) | CIFAR10 (0.6) | CIFAR100 (0.6)

FEDAVGFT 79.26% 81.48% 79.00% 97.18% 91.74% 99.33% 88.54%
KNNPER 82.73% 89.97% 68.87% 90.00% 94.71% 90.00% 96.37%
PARTIALFED - - - 88.30% 90.32% 84.80% 98.64%
APFL 69.66% 93.39% 79.22% 87.48% 86.18% 90.63% 92.03%
DITTO 74.59% 79.26% 73.74% 90.52% 91.45% 89.61% 97.45%
FEDREP 91.53% 82.20% 79.78% 92.30% 78.81% 84.64% 99.54%
LGFEDAVG 83.47% 66.16% 88.43% 88.41% 86.39% 89.59% 91.73%
HYPCLUSTER 80.46% 80.70% 74.84% 95.11% 93.70% 98.18% 99.73%
Flow (Ours) 92.74% 96.70 % 89.77 % 98.33% 97.29% 99.62 % 99.75%

D.6 Breakdown of Correctly Classified Instances

Here we show a detailed view of how instances (across all the clients) get classified correctly between global
and personalized models for each of the baselines. For the plots in Figures 10, y-axis represent % of instances
correctly classified by (a) Both the global and the personalized models (both-correct), (b) Only the global
model (global-only), and (c) Only the personalized model (personalized-only). This % of instances metric is
averaged across all clients, and is based on their test datasets. The goal here is to increase the % of instances for
both-correct and personalized-only, and reduce the % of instances for global-only. We make the following
observations for each of the datasets: Since Flow improves both the generalized and personalized accuracies, we
see higher both-correct for Stackoverflow (by 2.75% points), Shakespeare (by 4.34% points), EMNIST (by
3.17% points), CIFAR10 (0.1) (by 5.24% points), CIFAR10 (0.6) (by 0.03% points), CIFAR100 (0.1) (by 0.63%
points) and CIFAR100 (0.6) (by 2.78% points).

Due per-instance personalization, we see improvements in personalized accuracy, but those improvements
are also included in the both-correct bars, so solely comparing personalized-only bar lengths is not a right
comparison. Similarly, we see fewer instances in global-only bars due to the increase in instances which fall
under both-correct.

D.7 Analysis of Routing Decisions

Now we show probability value analysis of the routing policy for CIFAR10/100 datasets. Here we have fixed
the client as the client which had the highest loss difference between its global and personalized models for
Flow. This analysis was done during the inference stage, on the test dataset of the above-mentioned client.
The box plots show statistics on the probability of picking the global route for all the instances. Echoing the
observations made in Section 5, in Figure 11, we see a trend in increasing probability for the global parameters
for the instances which are correctly classified by only the global model. In the contrary, for the instances which
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Figure 10: Different combinations of w, and w,, accuracies.

can only be classified by the personalized model, the probability for taking the global route is lower as the input
passes through more layers.

D.8 Ablation Study: Regularization

Figures 12 and 13 show the validation curves for generalized and personalized accuracy with and without the
regularization term used in the policy learning objective as shown in Equation 4. With regularization, we see
an improvement of 2.18% (Stackoverflow), 1.86% (Shakespeare), 3.98% (EMNIST), 2.55% (CIFAR10 0.1),
4.36% (CIFAR10 0.6), 0.91% (CIFAR100 0.1), 3.46% (CIFAR100 0.6) for the generalized accuracy. And for
the personalized accuracy, we see an improvement of 1.92% (Stackoverflow), 2.02% (Shakespeare), 3.01%
(EMNIST), 0.65% (CIFAR10 0.1), 3.98% (CIFAR10 0.6), 2.42% (CIFAR100 0.1), 2.19% (CIFAR100 0.6).

D.9 Ablation Study: Per-instance Personalization

Figure 14 show the validation curves for 3 Flow variants: (a) Per-instance Per-client Flow, which is the primary
design proposed in this work, (b) Per-instance Flow, which makes choices between two global routes solely
based on each client’s instances, (c) Per-client Flow, which is simply FEDAVGFT where the personalization
only depends on a client, and not on any specific instances.

With all the datasets, we see a trend of Per-instance Flow outperforming Per-client Flow by 1.88% (Stack-
overflow), 0.82% (Shakespeare), 5.07% (EMNIST), 2.90% (CIFAR10 0.1), 2.41% (CIFARI10 0.6), 7.52%
(CIFAR100 0.1), 1.09% (CIFAR100 0.6). We also see the trend of Per-instance Flow outperforming Per-Instance
Per-Client Flow by 3.19% (Stackoverflow), 1.24% (Shakespeare), 0.94% (EMNIST), 0.55% (CIFAR10 0.1),
4.49% (CIFAR10 0.6), 3.88% (CIFAR100 0.1), 1.37% (CIFAR100 0.6).

D.10 Ablation Study: Soft versus Hard Policy

Table 8 shows the personalized accuracy of the test clients while using soft and hard policies during inference.
We see that the accuracy difference between the two designs are statistically insignificant. Hence, using a hard
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Figure 11: Behavior of 1,4 for all instances with respect to each layer of a client with highest loss
difference between personalized and global models.

policy for inference not only saves half the compute resources, but also doesn’t affect the personalized model’s
performance.

D.11 Ablation Study: Dynamic Routing

The accuracy curves are given in Figure 15. The curves show that the phenomena of “dynamic probabilities
based on each instance works consistently better than the fixed probabilities for all the clients throughout the
training” is indeed observable across all the datasets. The intuition behind that is discussed in Section 5.2, under
“Dynamic Routing”.

Table 8: Test (personalized) accuracy of two of the Flow variants: (a) Soft Policy variant where the
probability q is continuous in the range of [0, 1] during inference. (b) Hard Policy variant where the
probability q is discrete over the set {0,1} during inference.

Datasets | Stackoverflow  Shakespeare EMNIST

Soft Policy [29.57% + 0.22% 57.01% £+ 0.53% 94.97% + 1.06%
Hard Policy |29.49% + 0.28% 56.20% + 0.49% 94.18% £ 1.21%

Datasets  |CIFAR 10 (0.1) CIFAR 100 (0.1) CIFAR 10 (0.6) CIFAR 100 (0.6)

Soft Policy |77.24% + 1.30% 42.75% £ 0.30% 77.02% =+ 0.90% 39.74% + 0.13%
Hard Policy | 76.47% + 1.25% 42.42% £ 0.36% 77.11% + 0.86% 40.08% =+ 0.27%
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Figure 13: Personalized accuracy of the ablation study on the regularization term used in the policy

learning objective.
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E Proofs

E.1 Flow: Detailed

Here we give a detailed version of Flow (Algorithm 2) for proving its convergence properties. Here we are
assuming that the global and local model output interpolation is model-wise (after the final layer), not layer-wise.

Algorithm 2: Flow

Input: R: Total number of rounds, r € [R]: Round index, M: Total number of clients, m € [M]: Client
index, M: Set of available clients , p: Client sampling rate, K: Total local epoch count, k€ [K]:

Epoch index, ne: Local learning rate, wg "): Global model at 7" round, wérnli) m!™ client’s local

update of the global model for 7" round and k" epoch, w/"’f). " client’s local model for 7"
round and k** epoch, w,(fn]i) th client’s personahzed model for ** round and k** epoch, wér):
(r;k).

Global policy model at " round, Ygom M " client’s routing policy for r*" round and k" epoch,
D, Data distribution of m*” client, S,,,: Dataset of m'" client, ¢y, ¢: Dataset used to train wy,
Cm,g: Dataset used to train wy and g4

Output: ngH)' Global model at the end of the training

Server randomly initializes w(l)

for € [R] round do

Sample M clients from M with the rate of p
Send w$"”, 1$" to all the clients
for m € [M] in parallel do
Wi ;gD e gl e wld
Cm e, Cm.g eSm /* Creating two mutually exclusive datasets */
for k € [K1] epochs do
rk k—1 k—1
‘ wé,m) A wgm ) n[vfm(w((érm >’ C’m» )
end
for k € [K3] epochs do
Y (Tm, Ym) ~ Cm,g, define
~(r,k—1 rk—1 r,kfl rk—1 r K
B (@m) Uil @m) - wilin D @m) + (1= g @) - win (@)
(r k) < 1,[)(7" k- 1) - va(r k—1) |:fm( ~(T’rlrf 1)7Cm g)]
\V/ (xmvym) CnL,gs deﬁne
rk—1 rk rk—1 rk r K
wim ) @m) — O (@) - wilin " (@m) + (1= 95 (@m)) - wi (@m)
wé'}i) — wé’,‘;ﬁ‘” - nevwmk—l)fm(w;:k 1)7Cm 9)
gom
end
Send back wéf;f), wf(,rn{{), Nm = |Cm,g]|
end
+1 K
wff ) W me[M] ”mws(l )
r+1 r, K
¢!(7 ) W ZmE[ZVI] nm%(;,m )
end

E.2 Basics

We perform theoretic analysis of Flow based on the following setup: There are total M clients. A client is denoted

by a unique integer m associated with it where m € [M]. Each client m has a dataset S,, = {(xﬁ,tl yﬁﬁ)) i€

[nm]} where (mg,?, Y ) has been sampled from D, distribution of the m®” client. n,, = |Sn| is the total
sample count of the m*" client. Total sample count across all the participating client is n = Zme[M] . The

ratio of m*" client’s sample count to total sample count is o = m

The global distribution is defined as D = ),
and ZmE[M gm = L.

me[M] @m D Where g, is the weight associated with m*" client
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Note that wy,, is a combination of outputs of wg,,, (Global parameters) and wy, ., (Local parameters) on each
layer. For tractability of analysis, we will assume that the combination is only after the last layer. Hence,

Wp,m (Tm) <= Yg,m(Tm)wg,m(Tm) + (1 = g,m(2m))we,m (2m).

The local model update rule is,

(Tk) ew”k Y vam(wur]f 1)( m), Ym)

where w(7 0 — {9 = wl” . Indices r € [R] and k € [K] are the global round and the local epoch indices.

The policy update rule is,
k) e S — eV fn (WS (@), Y-
The global model update rule is,
wyw) w1V, fn (W (m), Ym)-
We list out all the optimization problems relevant to Flow:

¢ Local true risk of the personalized model
Fon(Wp,m) = Bz, g ~Dy) [frn (Wp.m (Tm), ym )]
where f, is a loss function associated with the m*" client.

¢ Local empirical risk of the personalized model

Fm(wpxm = o Z fm wpm(x£n>)7yr(n))
m i€[nm]

¢ Local true risk of the global model
Fon(wg,m) = Bayy sy~ D) [ (Wg,m (Tm) ym)]

¢ Local empirical risk of the global model

Fr(wg,m) := Z Jm(wg,m xm )7?/7(71))
™ i€[nm]
¢ Local minimizer of local empirical risk of the personalized model
W) € H such that Fr, (wp,m) > Fpn (w5 ); Ywp,m € H, Fe > 0, [[wpm — wh || < €

* Global true risk of the global model

1
F(wg) = 7 D B ym)nS [ (Wam (@m) s ym)] wheren = S| = | | ) Sm

me[M] me[M]

* Global empirical risk of the global model
~ 1 N 1 i i
F(wg) = WM Z Nn Fon (Wg,m (Tm), Ym) = WM Z Z fm(wg,M(mgn>)ay£n))
n n )
me[M] me[M]i€[nm]
¢ Local minimizer of global empirical risk
w; € H such that Fi(wg) > F(w})); Yw, € H, Je > 0, |Jwy —w)|| < e
We also use the following assumptions similar to [11, 18, 6]:

Assumption E.1 (Strong Convexity). f,, is u-convex for > 0. Hence,
(V (), 0 =) < fin(0) = fon(w) = Ellw o], ¥im € [M] and w, 0 € H.

We also generalize our convergence analysis for 4 = 0, general convex cases.

Assumption E.2 (Smoothness). The gradient of f, is S-Lipschitz,
|V fm(w) — Vm@)]] < Bllw —vl||, Ym € [M] and w,v € H.
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Assumption E.3 (Bounded Local Variance). hm(w) := V fr (w(2m ), Ym) is an unbiased stochastic gradient
of f,, with variance bounded by o73.

E ey gD | [ (W) = V frn (w(2m), ym)||* < 07, ¥Ym € [M] and w € H.
Assumption E.4 ((G, B)-Bounded Gradient Dissimilarity). There exists constants G > 0 and B > 1 such that
1 *
i > IVin)|* < G* +28B*(F(w) — F(w"))
me[M]
for a convex f,,. And for a non-convex f,,
1
i > IV Eaw)|* < G? + B?|VF(w)|?.

me[M)]

The derivation is given in Section D.1 of Scaffold [18].

We also use a definition to quantify the diversity of a client’s gradient with respect to the global gradient as
defined in [29]:

Definition E.5 (Gradient Diversity). The difference between gradients of the m*" client’s true risk and the
global true risk based on the global model w is,

6m = sup ||V fm(w) — VF(w)|?

weH

E.3 Convergence Proof for the Global Model: Convex (Strong and General) Cases

(TO) ()

A client’s local update for one local epoch on the global model, starting with wg ;" — wg ’, is
wiim ™ = i) — e (w)). ®)
And a client’s local update for K epochs on the global model, would be
wilin) = wy) — e Z B (w3 Y) ©

=wii) — mzh ) @) (@) + (1= 05 (@m)) 0 (@) ym). (10)

In both the above cases, the gradient is with respect to w, parameters.
The global model update is,

wir ) = Z nmwl (11

me[]\l]

(5

We first start with a lemma which binds the deviation between the local model w, and the global model

starting point ng) for it at round 7.

Lemma E.6 (Local model progress). If m* client’s objective function fn, satisfies Assumptions E.2, E.3, and

condition ny < ———=—— in Algorithm 2, the following is satisfied:
BA /2K(K 1)

Eljw{ — wP P < 6K nZE||V f (w1 + 3K 0707

,m

Proof.
]EHw('r,K) wé’rﬂ?)” —]EHU)(TK 1) névfm(wérmK 1)) (TO)H (12)

£,m

1 r r, r
< (14 g ) Bl = w1+ KB fn o) + o
(13)
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Here we have used triangle inequality and variance separation.

(” F) Ellw; K — w2 + KBV fun (w5 )2 + nio?

< (1 g ) Bl = w2+ ndo?

+ KnZEV fon (Wi ™) =V fin (w2 + ¥ frn (w2

< (14 g ) Bl — w2+ 2RIV ) = Ol
+ 2K 7B |V fon (w3 * + ni o}

< (14 o7 ) Bl w2 — ol

+ 2K BN fn(w{ )| + mi 07

= BW we get

K ,0) (12 K-1 ,0)(12
Bl w1 < (14 ) Bl ™ - w2

+ 2KnZE||V fin (w22 + nio?

Assuming 1y <

Unrolling the above recursion,
K 5 i
(r,K) _  (r,0))2 2 (r,0)y (12 2 2
Bl w2 < 3 (2 A ) wrtet) (1+ 257)

< 3K (2KnE|[V (w0 + 707

= 6K N7 E||V fm (wi2))I* + 3Knj o7

14

s)

(16)

a7

18

19)

(20)

@n
O

Now we move forward to a lemma which binds the deviation between the local version of the global model

(r,k)

wg,m and the global model starting point w( " for it round .

Lemma E.7 (Local version of the global model progress). If m'" client’s objective function fn, satisfies

Assumptions E. 1, E.2, E.3, and condition ny < \ﬁ in Algorithm 2, the following is satisfied:
Ellwgim’ — wiin |1 < 8K nZElwgim IPEIV fn (wl)||? + ki o
Proof. We start by expanding w(r’ in terms of its previous epoch iterate.
Ellwi) = wiiI* = Bllwfin™ = neV oamn fm(wfn) - wii|1?
Using triangle inequality and separation of variance, we get,
(1 ’ f) E||wgiin ™" — wiln [|* + EfEIV e fon (™I + i of
Using the convex property of f.,,, we get

1 T, r, T, T,
(1+f) EllwTm " = wi|[* + knfEl| 5 V fon (wiin = )| + o

< (1 g ) Bllult — ) +

+ R E| [0S (V fn (win ™) — me(w§T°)+Vf (w12

< (14 27 ) Bllufi™ - wfi P + ao? + 20 Bl PRI S (ST
+zkmE|\w$“n BT fn () = 7 fn (72

< (14 g2 + 2wt Euw“kwf)ﬁnw‘”“ D _ | 4 ofo?

+2kmE|\w§f DIPE||V fon (wl9)] 12

28

(22)

(23)

24

(25)

(26)
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Unrolling the recursion,

o

El|win) —wi|* < Z((an Bl IPENY (w1 + 1707 )

1
(1+ T 2k BRI | ) ) (28)

Assuming that n, < BF we get kn2 2 < 1,

k i
Ellwl — w2 < <2k7]§ZE|¢éM)| E||V fm (wl2)||2 + 07 g£> Z( +7+2) (29)

=1 1=1
< 4k (260 [ IPEI [V fun (i) + mio?) (30)
< SE N E|[ S0 |PEIY fn (wi™)|[P + 4kni o} 31
O

Lemma E.8 (Deviation of the personalized model from the global model). If m!" client’s objective function
. . . . 1 1 . .
fm satisfies Assumptions E.1, E.2, E.3, and condition e < min (76\/2K(T1)’ AR in Algorithm 2, the
following is satisfied:
Ellwiim — wiiw|1? < 16K 7El|1 — o5 PRIV f (wS™)]] + 8kni o7 Bl v i |
+ 12K 7B — Y50 PRIV f (w71 + 6K nZ o Bl [y ||

Proof.
Ellw%) — w0 |P = B[R wii + (1 — i wi"E — wliD)) (32)
= B[ (wim) — wie)) + (wi) — w1 (33)
= B[ (i) — wii0) + w() — wF) + (i —wlhE (34
< 2Bk (wiw) — wD)IP + 2B — 950w —w)P (35)
Using lemmas E.6 and E.7,

Ellwi — w1 < 2B 17 (SKnZEIWS IPEIV fm (w1 + 6K BNV fin () 1)

+ 2E||1 — {0 (4knio; + 3K a7) (36)

< 16K ZE|1 — O | PRIV fo (W) + 8EnZ o7 E| [0 {302
+ 12K El|L — Y PEY fon (7)1 + 6 K07 o7 E|[3500 || 37)
O

Theorem E.9 (Convergence of the Global Model for Convex Cases). If each client’s objective function f,
satisfies Assumptions E.1, E.2, E.3, E.4 using the learning rate »%R < n¢ < min (m, ﬁ) in

Algorithm 2, then the following convergence holds:
(Strong Convex Case)

E [Plwi™)] - Flw;) <

« K 2G?
M ]EHw(O) wi || exp <_WM R) G

2M QuR

40K25 52 (h 2 28K 3 QﬁQK 2
2 =a 1
+ 12 R? (uR+ Q2 W2R2 \ 2R? o

(General Convex Case)

1 262\ '/?
E|Fw)| - Flw) < ————E||w® —
[Fulf™)] = Pwp) < ey Bl w4 (T )+

2,41 2 e 2391 2 e 2 2)1/3 3 _2\1/5
+n; (40K ﬁq G +n; (40K*B " =G + 77 (28K B07)” +n; (56K 3°07)

where qg /1 are the probabilities of picking global/local routes averaged over all the instances sampled from the
global distribution.
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Proof. From the update rules stated in Equations 10 and 11:

wgﬂ)fw;: Z N wq’m mZh wl(fT’; D)y —w, (38)
M < [M]
K
= 7 D mww{l - Z (WD) — w (39)
M2 [M] me[M] k=
“uf i S S ) @

m€[M

Taking squared norm and expectation on both sides with respect to the choice of i,

E[llw§™ —wjl’] <E [kl - wjl?] -2 < - 3 Bl (W), §T>—w;>

me[M] k=1
2
B ||| 2 ”mZh (win ) (41
mE[M
Separating mean and variance according to Lemma 4 of Scaffold [18],
<E[llwf” - w)|l?] ~2m < 3 ZIE [V g fmn (w0l w0 — w;>
mE[M
T
X 2
2 1 (r,k—1) U?UL?K
B | |oag 2t 2 Vg (il )| 4 “2)
me[M] k=1
T2
Bounding T}
K
. :_2W< > o YOIV s fon(w ) ) —w5> @
me[M k=1
K
1 rk—1) * r
—277€<n]w Z anEV (Tk 1)_]('m(11)1<07 )], wé)> (44)
me[M] k=1
Using perturbed strong convexity lemma (Lemma 5) from [18], we get,
2
To< A7 D 5 (B9l - 95w — BBl — wj|l* + BE/wfn " — w1
mE [M] k=1 Lemma E.8
(45)

K *
*)) e EH (r) —w 2

all

< —2mek (B[P (ufl)] - F(w))) - %7
i DD 2(1%3 RENL — 0 IPENV fn () + 8k o B0 |
me[M)] k=1
+ 12K 0Bl = R IPENIV fun (w7 + 6K oF Il ) (46)
< ~2nK (BIF @) - Fw})) - ZERE |l - wj)

2 .
DS o (16K RNV fon o) PRI~ 04750 | 8 Ko E )|
me[M]

+
€

+ 2K 2BV f (w0 )IPENL = 90N + 6K 20707 El 0011,

30



Next, using Assumption E.4,

" K
T < —2nK (E[F ()] - F(w;)) - BEEE|wf) - w|

2M
+ 32 K BEI[L - w1 (67 +288” (B [F(w{™)| - F(w;))) + 160} K>Bo7El v |

+ 245t K BN — v |” (67 + 268 (E[F(wl?)] = F(w))) + 120 K Bo?El |||

48)
r * 775//*K r *12
< —2mok (BIF ()] - F(w))) = BEZElwf” - w|
+ 165K BB (4K + B)E||1 = v |” (E[F (w”)] - F(w}))
+ 80t K°BAK + 3)E[|1 — {7 ||°G* + 287 K> Bo7 B[y ||
49)
Bounding 75
1 al ’
1= ||| A S nn DV ) )
me[M] k=1
2
1 - k—1) ) ()
= |||=r D nm Y (Vo fm(wiln ™) = Vi (wg”) + Vi (wg”)) (51)
meM] k=1
r 2
1 K (rk—1) (r)
2 T, T
§27][]E nM Z nmz V (rk 1)fm wp, ) vfm(wq ))
L me[M)]
2
2 1 wi™))
me[M] k=1
1 at 2
2 52 (r,k—=1) (r)
Iy nsz[pr,m ~o|[]
me[M] k=1
Lemma E.8
1 K 2
2 (r)
+ 2K %4}%%1&“]%(% ))M (53)

< 160} K*8° B> (4K + 3)E||1 - v”|1” (BIF(w(”)] — F(w}))
+ 80y K62 (4K + 3)E||1 — ("G
+ 560¢ K807 Bl [ |1” + 207 K (G* + 2BBE[F(w()] - F(w}) ) (54)
Plugging in 7% and 75 bounds,
E [l — wjlP] < E [l — ] — 200K (BIF@)] ~ Flw)) — “ER Bl — w2

g

+ 160 K*8° B> (4K + 3)(nef + DEIL - 0| (E [ ( DI F(w;>)

+ 81 K BAK + 3) (ne8” + DEIL — g7 ||°G? + 280 K* B o7 |”

+ 560 K BBl |I” + 207 K (G + 28B°E[F (w()] ~ F(w})) (55)
Rearranging the terms, and replacing E| |¢ér) [|? and E||1 — wg(f) ||? with q3 (probability of picking global route
averaged over the instances sampled from the global distribution) and q7 respectively,

[ * UZHK r *
B [l - ] < (1- 2 ) B I - w31

— (20K — 800} K" BB (me + 1)a? — 4 KBB) (B [F(w)] - Fw}))

+40n; K°B(nef? + 1)aiG® + 20, KG? + 280, K*B(2n; B2 K + 1)ago;
(56)
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Assuming "6% > 8097 K'S* B (i + 1) = 10 < jomsipper and "6 > dnf KBB® = i < g5,
we get
T * WMK T * r *
E [llw§ ) = wylP] < (1 - ) (11§ = ws ] = ek (1= an)® (B [P(w)] = F(w)))
+ 400 K B(me” + 1)ai G? + 20 KG® + 287 K°B(2n; B°K + 1)qgo;
(57)
Moving E [F (wgr))] — F(wy) to the left-hand side, and rest of the terms on right-hand side,
T * WMK T * 7 ®
mKad (E |[Fw))] - Fw))) < (1 - W) B [llw§” —wjl*| = E [l = wj |’
+ 40 K*B(nef* + 1)ai G + 20] KG* + 280 K* (20 8° K + 1)qgo; (58)
. ] o 1 ~ mepK w2l 1 (r+1) %2
LE[F@)] - Fw;) < e (1 ) E [l = w?] ol (1§ — 1]
2,2 2 ai o 2771&0 2
+ 40m; K*B(nef° + 1)?6* g + 2807 KB(2n; B°K + 1)o7 (59)
0 0

Unrolling the recursion over R rounds and then using the linear convergence lemma (Lemma 1) for strong

convex case from Scaffold [18],
. KR 2G*
<0) wg||zexp <_77H >+

E [Fw{™)] - F(w)) <

2M QGpuR
40K25 B ai 2, 28KB (2B8°K 2
LB 1 60
TR (MRJr 2% e Gere T (00)

Unrolling the recursion over R rounds and then using the sublinear convergence lemma (Lemma 2) for general
convex case from Scaffold [18],

(R) © 2 267\"*
E[F(wg )]_F(wg)ﬁmﬂ‘:“w — wyl| +W<q8 > +

1/3 1/5

2 1/2 2 1/3
g (401(25%02) + (40}(2 8 %GQ) + 07 (28KB07)"” +nf (56K8°07)
0 0
(61)

O

E.4 Convergence Proof for the Global Model: Non-convex Case

We start with a non-convex version of Lemmas E.7 and E.8,

Lemma E.10 (Local version of the global model progress). If m'" client’s objective function fm satisfies
Assumptions E.2, E.3, in Algorithm 2, the following is satisfied:

El[w{3h — w2 |* < A°n7E||V fu (w1 + 2knio? + 4k™n 522E||w(“ Y—w{|?

Proof. We start by expanding w{’;) i

in terms of its previous epoch iterate.
Ellwgln’ — wil|I” = Ellwgin™ = neV g (g ™) = wiln | (62)

Using triangle inequality and separation of variance, we get,

(1+k )E”w(rk V= w1+ RnZEIY o fon )P+ wfof (63)

< (1 o) Bl — P e ndot
+ RnFE||Y fn (W) = Vo (w30)) 4V frn (w2 64)
(65)
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1 T T T
< (1+k—) Ellwgm ™" — w12+ niof + 2kng ||V fm (wi))|[?
+ 2kn? B[V fon (wi ™) = ¥ fon (w7 (66)
1 T, T T
(Hk—) Elfwiin ™" — w1 + niof + 2knfE||V f (wg”))]|”
+ 2k 7 Eljwglin ™ — wi || (67)
(68)
Unrolling the recursion,
k
Ellwi —wii I < Y (2kn? BNV f () + ndo? + 2knt BEl|wfih ™ — wf” 1)
i=1
(14 i (69)
k—1
Eljw{ik) — w(i|1? < 2k (zkn?mwm(wg”n +n2o? + 2kn B ZEW” Y w;”|2> (70)
i=1

k
= APN7E||V fin (wiD)||? + 2knio? + 4k*n7 82D Bllwin D —w(? (7))

O

Lemma E.11 (Deviation of the personalized model from the global model). If m'" client’s objective function
fm satisfies Assumptions E.2, E.3, and condition n; < 3 f AR in Algorithm 2, the following is satisfied:

Ellw{ —wii]? < 20K El[L — w0 PE(|Y f ()17 + 10K nF o B30 ||

Proof.
Eljw{R — w2 |P = Bl wlR + (1 — 5w — w0 ? (72)
= E|[p{w) (w{h) — wi?) + (wiil) —w{)))? (73)
= Ellw§m (wim) —wi) +win) —wii) + (i —wl)IE (74

< 2E|\wéf;,’1:)(w§f;5> — w2+ 2E](L — ) (w{E) —wPE (75)
Using lemmas E.6 and E. 10,

Ellwiin’ —wgi|I* < 2B||1 - ¢tV <4K277?]E|me(wé”)l2 + 6K2n?E|me(W§”)l2>

+ 2E| [ a2 <2Kn?af+3xnzaz+4z<2n2ﬂ ZEIIw(” Y wé">||2>

(76)
Assuming 8K%n2B2 <1 = n < 2fBK and unrolling the recursion over wi " — w{”,
k
<> (20K%?E|1 =g IPEIV fon (i) [* + 10K n7 oF Bl gl || ) (77
< 20K ZE|[1 — 450 PRIV fn (wi™)| P + 10K 07 o7 B [ 0|12 (78)
O

Theorem E.12 (Convergence of the Global Model for Non-convex Case). If each client’s objective function

1 1
2VBBBK?’ 3/40K433 B2

fm satisfies Assumptions E.2, E.3, E.4, using the learning rate 5 < 7e¢ < min (

Algorithm 2, then the following convergence holds:

xS elorei ] < o o] e [rogen]] - 22

2 9812 —
40 5 K eGP (75 e W) +20K° 8 mea? (Bmf - L)
0
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Proof. From the update rule stated in Equation 11, and S-smoothness of f,,, we have

F(warl)) < F(wy)) + <VF(wff)),wy+1) — w;r)> + §||w§r+l) - wg’")H2 (79)

Taking expectation on both sides,

E[Ff )] < B[R] + & [(TR@), of ) =) + Slef ™ - w1 @60

Using Equation 10 for second and third terms, and using the fact that the expectation is with respect to the choice
of A,

W)y 3 an 38 o))
me[]V[]
2

K
am > hm(wim 1)
k=1

where o, = ™=, which are the weights for weighted aggregation according to the sample count, as shown in
Equation 11.

Separating mean and variance according to Assumption E.3,

E[Fw{ )] <E[F@§)] - <VF (), Z amZE[V (e o (i )}>
me[M

Bni rh—1 i Boi K
Rallay ) ez[;w amZV (rk 1 fm ’LUI(,, )) + % (82)

Using {a,b) = —5lla — bl[* + 3llal|* + 3[l1*.

2

K
. . 1 o1 .
E[F(wé +1>)] SE[F(UQ(;))] —ne | —5E VF(wg ))*M amszér;ﬁ’”fm(w‘(”k )
me[M] k=1 '
2
1|1 - K1
—Ne HVF (T))H +§E M amzv (7 kfl)fm(w;t(?fm ))
me[M)] k=1
2
Bni vk n; o K
]| R SR I

<] B eruin]

2

K
ne B 1 rk—1
(5-F)E i T an X Vg el ™)

me[M] k=1

i \

e () s (r,k—1) nfﬁUfK
+ E VF(w EZ ;V (e v fm(Wpm ) +W (84)
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K
Ne 5772 r 1 rk r
—(——%)E VF(w!) T > amE:V <,k1>fmw,<,m1>) VE(w!))

2
me[M]
. 2
2, 2
e (r) 1 (r,k—1) néﬁJZK
+ IE VF(w Z amsz!(]t‘;ﬁ*l)fm(wpﬂn ) +W (85)
me[M] k=1

<E [F(@”)] -

e ﬁne)IEHVF o) H + TEPoiK

( Bm) wl) - o Z amZv (et P () (86)
)

BQK — amZEHw wf[,fk 1)H2 87)

mG[JVI]

( — Bne

Using Lemma E.11,

s s (3o S5

2M
(% -ent) K5 2 oy <20K3 PRI — g7 [PV fm (057) |
me [M] k=1
+ 10K nt ot Ellflin || > 8)
Using Assumption E.4 for non-convex case, we get,
slrey ] <o )] - (F - force |+ T

— (% - 6nt) 208° K0} (@7 + BEIIVF(w)|)E|IL - w71

— (%~ put) (108 K*niotEl w1 (89)

2
Rearranging the terms to put E HVF(wér)) H on left-hand side,

" <E[F@)]

3 r
<’7" Bt — 20K 8°n? B} (% — m?)>EHVF(wé>)

B [Pl )] - 20qtictgtnic? (1 - i)

2
2 2
K
102K (ﬁ _ 2) 1, Bog 90
asK°B*nio; 5 ne )t o ©0)
Assuming 10K 3%0} B? < % = i < 5 and 0K 80} B2 < = e < e,

(3)steorei o <5 o] -5 ] B

26n; —
a0 tac? (PN s 0gb kot (o - ) o)

IEHVF ('r))H neiqo [IE [F(wé”)] —-E [F(wéuﬂ)ﬂ + %

2 2 2
+40%K462WG2 (W) +20K° 8o (B = %) 02)
0
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Taking average over all the R rounds,

Z]EHVF () H W;R []E [F(wél))] _E [F(w;R+l))H " 7741‘,34(;3%[(

26807 —
208 K, (L” W) +20K° 8 neof (B — L) ©93)
a5 2 2

O

E.5 Convergence Proof for the Personalized Model: Convex (Strong and General) Cases

Lemma E.13 (Local progress of the personalized model). If mt client’s objective function f, satisfies
Assumptions E.1, E.2, E.3, and E.4 and conditioning on ng < BF in Algorithm 2, the following are satisfied:

Ellw{h) — a0)? < 18K n7E||V fin (0530)||” + 108K GLE||V f (wi™)|[* + 126 K 0]
+ 9K ZE (|5 || + 144K Bl [0 5ind | PEN|V fin (w )|

Proof.
E|[w{) — a2 N1 < ElSE w4 (1 — it D)yw (0
i) — (1 — i yw O 94)

r, K r, K r,K— r,K—
:EH( : )—vao 1) fom (1B ))) (wé,m U-Wevwgr;f—l)fm(w;()m 1)))

2
r, K rK K T, T, T, K
(1= 00+ 9 g0 Fon (0507 ) il = 0w = (1= w70 |

95)
= Ellgn wiiin ™ = 0 meV e fn (i) = w00V o fon (077)
+77eV¢<rK>fm( Y (r,K—nfm(wz(f’f_l))Jr(l* ér;f)) wy' )
w00V s Fn (W) = O i) — (1= g | (96)
Using the convexity of f,,,
\% <rk>fm(wp, =V <rk>fm( w4+ (1 - éfh]i“))wéf";f)) )
< YD f(w0) 98)
and
V g o (B50)) = V oy fon (U570 o) — w2 0) = w2 0) ©9)
< () i)V I () (100)
we get,
Elfwil” — o] < Bl ol + (1= 95in) win® = fwl) — @ - 9wl
= e (4P fn (w il D) A me (w5 — w0 TPV fon (w1 (101)
< (1 g ) Bl = G I+ 3KV )
+ 3KIE|wi ) — win K V|* + 3KniE ||| (102)

(1+K—) Elfwym ™" = g |+ KRV f (i) = Vi (@50) + Vo ()|

+ 6K E[|wiil — w0 ||* + 6KngE||w) — wiim Y ||* + 3Kn7E||w {0 || (103)
Using Lemma E.6 and E.7, and smoothness property,

1 T, r, T,
< (1+ 1 +6Kn§52) El|w{m ™ — a0 + 6K2E||V f (@50 )
+6Kn7 (6K nZEIIY fon (w0 + 3K 707 ) + SKnFE 4|

+ 6K} (SKCHEE| IPEIV £ (wf) || + 4Kn}o? ) (104)
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Eljw{m) — a0 || < Z <6KmEHme (@S| + 36K NI E||V fn (w1 + 42K} o}

=1

Ty T, T 1 ‘
+ B[l |+ 48K nEE| 940 | PRI o (w0 ’>|2) (1 g o)
(105)
Assuming 6 K782 <1 = n < Bﬁ’

E|[wiii) — a0 < 3K (GK’“EHW DS D)||* + 36 K LE||V fu (w1 + 42K 21t 0}

+ 3Kn7E[|vg || +48K4n?E||w§Tf)|2E||me(w§’">)||2> (106)

= 18K N7E||V fr (@530 ||* + 108K 0/ E||V fir (w1 + 126K3n§a§
+ 9K 0P| || + 144K i[5 | BV fom (w)]] (107)
O

Lemma E.14 (Deviation of local parameters from the aggregated global parameters). If m*" client’s objective
function f,, satisfies Assumptions E.3, E.4, in Algorithm 2, the following is satisfied:

. (r, §v oY
El| p,;xlo) K>|| <18 (Ka[er(éw +M) KQW) (K03ﬁ3+ <5 Jrﬁ) KZW?)
5 r
(14w (Kot + (% + 57 ) K ) (624 BRIV Rl )

Proof. Stating the aggregate rule from Algorithm 2, Lines 12,19 and 20,

1
~(r+1,0 r, K r, K r, K r, K r+1,K
B[ — wfOl = Bl| 5 ST el ST w4 (1 o ST gl | wlr
c€[M] ce[M] CE[M
T R el (108)
1 T 1 T T, T,
SQEH DR i Z Wl — Il K>H
ce[M] ce[M]
+2EH 17— 3705 | w0 (1 - g0y wymmH (109)
ce[M
() _ oy (n ) L rx) _ oK) |||
<2EH Z Vg.o Vi Z Wyo ' — Wy m
c€ [M] c€[M]
2
o[ [0 — = 57 | (w0 w0 | (110)
CE [M]

Using Lemma 8 from [29] and Lemma E.17,

P w
B[yt — win|)? < 18 (Kafn% + (5:,% + %) K%ﬁ) <Kafn? + (5;:19 + %> KQn%)
271-2 4N\ 271-2 2 2 ) 61/) 2 2
+6(1+m KB )m K~ | Kogni + 6m+M K ne
(02 + BE||VF ()| ) (111

O

Lemma E.15 (One epoch progress of the personalized model). If m'" client’s objective function f., satisfies
Assumptions E.1, E.2, E.3, and E.4 in Algorithm 2, the following are satisfied:

E|[w{E D — w212 < 302E||V f (W) || + 302wk — w1 + 3uEl 0|12

Wy m
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and hence,
K .
Bl — w2\ < 6802 (Elfm (wli)] — Flun)) + 302K S B0l
i=k
+ 36 K i B[V frn (wy”)]|* + 40K njlo}

+ASK NYE||V frm (w2 ZEHW D17

Proof.
EH (r k+1) 1(71:1,5)” EHQ/)(T k:+1) (r k:+1)
+ (1 _ (t";ﬁ-&-l))w(,TmK) s(]t‘yk)ws(;:,k) _ (1 (T k)) (r, K)H (112)
_]EH( (k) = eV i, k>fm(w(r k))) (ws(fmk) vagrhg)fm(wz(fﬁ)))
( o LAY <rk>fm(wpfk))) wi
(PR (k) (1 — Ry TK)H (113)
:]E‘ P wiR — newl )un o) Fn (B5)) = e {0V e k)fm(w;:k))
T 02V o0 Fon (BT o Fon (w00 (1= 60050 >wé’"m’“
0OV oy Fm (@) — 0w — (1= o | g
= EHW (ngmK) w(r k)) Vw(r k) fm (W ;ﬁ?)
e (S5D) Vo Fn )| (115)
Using,
Vi fn (Wilin)) = Vo fon (o i)+ (U= Ty ) (116)
< Whim 'V fm (wn) (117)
and,
ngwfm(w}; Ky = Vo fn (0 T [wiiw) — w0 — w0 (118)
< (W) = w{ N o (5), (119)
we get,
< | = (w — w) T hm @) — (05 H0) V hmlli)| (120)
< m?]EHme wérys)) + (wé'r,K) wgﬁ)) +w(%€+1)Hz (121)
< 30PE(|V fn () |* + 307wl — wili || + 3nZE oV (122)
From Lemmas E.6 and E.7.
Summing over ¢ = k to K,
Eljwgi — wilm || Euzw ) w1 (123)

< 3n; ZEHme(w“ DI +3mKZ1EIIw§’" 2

i=k i=k

x

+ 602 > (6K 02BNV fon (wl”)|* + 3K 7707 )

i=k
K

+ 607 Y (SECHZEIW PRIV f (w1 + AK0Zo? ) (124)
i=k
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< 687 (Elfm(wi)] = F(w5m)) +3neKZEHw“ 217
+ 36K i BV f (wy”)|* + 18K i o}

K
+ 48K BV fon (w§)|P D B[ + 24K 0o (125)
i=k

K
Bl = w1 < 6807 (Bl (wi5)] = f(wpm)) + 307K Y Bl
i=k
+ 36K e E||V fu (w <’“>>||2+40K2nz*a?

+ 48K i E| |V fon (w2 ZEW”) (126)

i=k

O

Theorem E.16 (Convergence of the Personalized Model for Convex (Strong and General) Cases). If each
client’s objective function f., satisfies Assumptions E.2, E.3, E.4, using the learning rate H% <n <

Algorithm 2, then the following convergence holds:
(Strong Convex Case)

E [ £ (@§5?)] = fin(wy.m) <

1 .
KpT M

* 1
B[ — wr P exp (——wm)

RK3 K-1

+12K°n; 6,0 + 12K2W ZEHVF (W2 + 4Knio? + L + 16K 307 qpom?

r=1

K?n? (o} 5¥ o2 o
16K 22— S E|[VEF(w(+Y =T (% vyl 7e o
+16 WQO § [[VE( P+ =+ 5 K +(0m+ 37 x T S + i

r=1

14+ n2K284 §v 2 & . w
+ LREECE (ot + (o0 4+ 57 ) K ) (5 S BIVF @) +26%2)
r=1

(General Convex Case)
(R,0) _ * < 1 1 (1 K) * 2
B [£n(ulf5)] = f(win) < g (1 g ) Bl — vl

R
1 r w
(2K 5 S BV ) + (12600 4 (4K a?)

r=1

+ni (16K°q RZEHVF (wi )P + “;0 +nf (16K qtor)/?

r=1

e (B (o B)) (o (e 52)))

1/3
K? o p (T) Wg
+n? <3 (K (5 +—)> E E||[VF(wi™)]|? 4 20m7)

where % Z LE| |VF( )H2 is bounded as shown in Theorem E.12.

Proof. We restate the update rules of the personalized model in Algorithm 2,

1. For all samples z.,, define @."; k)(axm) — wéf;,]f)(m Ywg (r k)( m) + (1 - (T oK) (2 m))wéfr’n[{)(mm)

2. Train policy parameters 1k T < {72F) nngu 0 Fn (DS (@1 ), Ym)

3. For all samples x,,, define
r,k rk+1 r,k rk+1 r, K
wiin (@m) = B @m)w i) (@) + (1= 5 @) w0 (@m)

('r k) (r,k—1)

k
— Wym (rsk)

4. Train global parameters wyg =10V =1y frn(Wpon (Zm), Ym)
Wg . m
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]EH (7+1 K) w;,mH EH (7‘+1 K) ~(7‘+1,0) o ~(r+1,0) ('r K) +w('r LK) w;,mHQ (127)
< 2K Elwi ") — apt O)II +2K E|w, ”“ O —wy)|?
Lemma E.13 Lemma E.14
r, K * 2
+ (1 + K—) E|[wl 5 — w |l (128)
And using Assumption E.4,

< 36K 2?2 [fm(w;,m) _E [fm(wz(:,tl’o))“ + 216K LRV fon ()| + 126K 30} 07

+ 18K 0ZE|| O + 288K it B[S O | PV fin (w2

5 )
+18 (K03n3+<5fi M) K2774> (KU?UL?‘F((S +ﬁ> K*n >

§¥
o0 g i (satat + (05 + ) KO ) BV £l

1 (r,K) * 2
(1 g ) Bl = (129)

Rearranging the terms,
™ * 1 T,
00t [B [£uwlii )] = ftuin)] < (14 o = e ) Bl
+ 206K BV fon (g )P + 126K 0o} + 18K R [l
—wh ll? = Elfwlm T — w7+ 288Kt [ O PE |V fin (0|

P wg
+18 (Ka?m? + (5?” + 5—) KQU?) (Kaim? 4 (6 T %) K m)

0 r
ro+ st (Kot + (36 00 ) K BIVAL NP a30)

(r+1,0] sy 1 i (K)o 12
E[fmwpm )] = Fwin) < gz (1 gy — ) Bl = w

T * T 1 ™ 2
~ 3 2K2 Ellwgin " = w)ll® + 6K 0FEI|Y i (wf V)| + 4K nitof + SE[0f|

2 2 2 b 2 w
3 (r+1,K) (r+1) K*ni (o7 g, 0V [ wy | 0%
SR OB oy )+ 5 (T (st 57 ) ) (52 + (0 + 5
1+ n2K?p* 5%
+ DRI (ot (o0 4+ 57 ) K ) EIV S (wl) I (131)

For strong convex (x> 0) case, using the linear convergence rate lemma from [18] (Lemma 1) and Definition
E.5,

* 36 N 1
(5] ~ (1) < SO B — | exp (ﬁ—mum)

+ 12K2n2sms + 12K2m ZIEHVF (w{™)||? + 4Kn; o} + % + 16 K307 qaom?

r=1
+16K%2q *ZEHVF (7‘+1))|| +K ¢ Ue 5Y Jrﬁ Uj+ P §We
‘R & 2 \(x T\»" s K ™M
1+ n2K28 5% . w
+’7+5 Kotn? + (6% + 07 ) K ZIEHVF ()][2 4 26%7) (132)
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For general convex (1 = 0) case, usmg the sublinear convergence rate lemma from [18] (Lemma 2), and
conditioning on n7 K2

IS

- 1 1 .
E [ frm(wii)] = fn(whm) < G KR (1+ . )EII bin ) = Wyl |

R 2
1 . w
+ 77?(121(2? > "EVEw)})? + i (12K%00)* + 5 (4K o7)'/* + %

r=1

3 2¢wgy\1/3 3 (7‘+1) 1/3
+ 0 (16K a6, ) ® + i (16K q RZEIIVF )%

r=1

K2 v, 5Y O—l? wy 0V 1/3
*’”(7(K (5 W)(?*(‘*”*ﬁ))) tzo

1/3
1(2 ag
2 L ) (7“) wg
+ e ( 3 (K (5 + >> E E||VF(w || + 20m, )> (133)

E.6 Convergence Proof for the Personalized Model: Non-convex Case

Lemma E.17 (One round progress of the local model). If m'" client’s objective function f,, satisfies Assump-
tions E.3, E.4, in Algorithm 2, the following is satisfied:

Ellw{i ) = w01 < (1 - 20 K8 + 0t K26 K* (G + BPE|[ VP (w)]?)

£,m

Proof.

K K
Ellwf P —w O = Bllwf™ =00 > V(i) = wl e > V(i) (134)

k=1 k=1
K
= Bl w0 Y [Vl ) - V] 1P a35)
<Ellwf ™ = wi — kg (wf D = wi?) |2 (136)
= EIl(1 = nekB?) (w§ ™ — ) |1 (137)
242 1 r, K T 2
< (1=K B)E| 37 32wl — wf) (138)
ce[M]
212 1 T T r 2
= (1= neKBE|| 7= 3 () WZme ) — w? (139)
CE[M]
= (1 - nKFVE[ -2 3 Zme Sl (140)
ce[M | k=1
< (- nKBPRE| 2 S Vi) (141)
ce[M]
< (1= KB K* (G + B*E|[VF (w{)|?) (142)
= (1 -2 KB + i KBt K (G + BE|[VF(w(”) ) (143)
The last inequality follows from Assumption E.4. O

We proceed with a lemma which binds the deviation of the personalized model w,, of an arbitrary client m over

. 1
one round, i.e., wz(f?,: ) and wz(,fy)n, for non-convex case.
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Lemma E.18 (Local progress of personalized model). If mth client’s objective function f, satisfies Assumptions
1 . . . . . .
E3, E4, andn, < PNTICEng in Algorithm 2, the following is satisfied:

Elfw{h ™ — w1 < 18K nIE(|Y f(w()]|? + 9K niof + 36K 0 o El[1 — 38 ||
+ 24K ||V fon (wi) |PEL 001

Proof. We start with using the update rule stated for the personalized model at the beginning of Theorem E.16,

Bl — ol IP = Bl ™ol ™ + (- e — w7 add)

g,m

Expanding by one iterate,

= E|| ( (k) — nev,, o k)fm(wpt k))) ( (k) — nevV, o rc)fm(prnlf)))
+ (1= 050 + e o0 Fn () ) w0 — w2 P (145)

= E||¢g wim wg(fn’f)nzv (r,k>fm(w;(f£)) GV o, k)fm(wprwlf))

+mvw>fm<wp, DY om0 Fn (i) + (1= 5050 )wét“;:‘)

w0V e fn (wn)) — w7 (146)
= Ellwg) — ) + @i = win eV o fn (wp)

(—wiw + nev <rk>fm(w,€;n>)) NV g0 Fon ()P (147)
< 3Bl fwy) —wii P+ 3Bl — wlD|* + 30fEI|Y o S (I (148)

The inequality was derived from the fact that E|| — mvw(r,k)fm(wi: N2 = E|[pSm ™ — B2 < 1.
aom

Unrolling the recursion across r € [R], then using Lemmas E.6 and E.10 and Assumption E.4,
K
El i) —wiln | <D ((1 + —) El[wy, ) —wi|I* + KnfEl|Y o (0 <”“)>||2)
k=1
(149)

< <6K4n?1E||me(w§”)l2+3K3 nio7 + 12K n7 o7 Bl — g,
1 ,
i (1 * m) K|V £ (w0 >)|2E|wg,m||2)

K 1 k
2 2
E (1 + 71:,_1 + 12K ﬁgﬁ) (150)

k=1

1

K\/12(K-1)8"

Assuming = > 12K%n; 8 = ny <
Eljwiin? —wii||? < <6K4n§E|me<w§”)|2 +3K%no} + 12K 2E||1 — (00| 2

1 - r r
4 (1 + ﬁ) K2RV fn (1 >>||2E|wg,;f:)||%%>3z( (as1)

= 18K Wi B[V f (w§)| | + 9K 0707 + 36 K *ni o7 Bl[1 — w0 |?
+ 24K 7BV fon (w{) |PEL0 01 (152)

O
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Lemma E.19 (One round progress of personalized model). If m* client’s objective function fr, satisfies
Assumptions E.3, E.4, in Algorithm 2, the following is satisfied:

w05 — w2 < 721 + 52) K303 (5K(G2+B2IE||VF( <’">)||2)+1za§)
5v w, OV
+36 ( Koims + (6% + — | K*nZ ) [ KoonZ + (0m? + — ) K*ni
M M
2 2 n4d 2 2 2 2 ) 6w 2 2
+12(1+ K" 8" )i K° | Kogmg + 6m+M K nyp

(6> + BBV F(w)]1)

Proof.
EHw;(frtl’K) _ wz(;;f) H2 _ Esz(;:;LK) ('r+1 0 4 4 ('r+1 0) z(:;i()“2 (153)

OB — e - s

Using the Lemmas E.18 and E.14, we proceed as

<7201+ n})K*n? (5[(((;2 + B2E||VF(w()|]?) + 1203)

) wgy
+36 ( Koin? + 5;@+6— K*n ) ( Koing + ( omf 0y 0 K*n?
M M
P
+12(1 4+ i KB m; K* (Kafn% + (5;‘; + %) sz?) (02 + BZEHVF(wg”)H?) (155)

O

Theorem E.20 (Convergence of the Personalized Model for Non-convex Cases) If each client’s objective
function fp, satisfies Assumptions E.2, E.3, E.4 using the learning rate n¢ < + \/ﬁ in Algorithm 2, then the

following convergence holds:

DB < (&[] - 2 1t

:U

6(1+ ;) K (5 G?+ B2 S E[VEw)]] )+1za§)

5120 (5

R
st (o + (504 0 ) &) <G2+32 ! ZEHVF <T>)||2>

Proof. According to the update rule of Equation 10 and S-smoothness of f,, we have,

Fon (w0 (r+1 K))Sfm(w;(:}()) <me(w1(:1()) w(ry—;l,K)_w(rK)> || (7+1 K) w;(;’,anf)HQ (156)

P,

Taking expectation on both sides,

E [fm (0] < B [fn ()] + DRl — w0

+E(Vfm (w,ﬁfnf)) Wi — wi) (157)
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Using (a,b) = 3llall* + 3[[bl|* — 3lla — b]|*

r N T T ﬁ+1 T Ty
E [fn (w0 < B[ fm @20)] + SIS (ol +( ) Bl — w01

1 T, ™ r,
=SBV (wyin ) = (wy™ ) — i) 2 (158)

e

M

T, 1 T, +1 s
< [ wf)] + GBI AP + (250 ) Bl - ol
—E||V fn (wpim K’)H — El|(wiih™ = w1 (159)

)
< [ wlfi)] - SEIV IO + (250 ) Bl - wlilF

»m

(160)
Rearranging the terms to put 3 E||V f,, (wl(f,f))HQ at LHS,
SEIV O < B [ wf)] B [t 0] + (250 Bl — wfO)
Lemma E.19
(161)

BNV (i) < 2 (B [fon (win)] = B [fon (w22 )
+ 726801+ 02)K*n} (5K(G + B’E[|[VF(w)|] )+1za§)

¥ w, | OV
+ 3683 (Kagnf + (W + M) Kznf) (Ka,?n;f’ + (M + ﬁ> K2n§>
2 2 n4d 272 2 2 ) 61/} 2 2
+128(1 + g K6 ) K° | Kogmi + 6m+M K*ng
: (02 + BZIEHVF(wff))HQ) (162)

Taking an average over all the rounds r € [R],
R
1 r,
= S BV @l < 2 (E [fm(wf5)] ~ [ fm ()]
r=1

R
1
+ 728(1 +n7) K°n; <5K(G2 + BQE S EIVEw)?) + 1za§>

r=1

§Y 5
+ 368K n; (a}?’ + (6;@ + M) K) (a? + <5 + W) K)

P
#1250+t (f + (854 5 ) &) <02 + B L S EIVFW)I )
r=1
(163)
Assuming 12K?n73<1<1 = n < #,

ZEnwm @O < 5 (B [fn(oflsi)] = B [fnfs)])

r=1

i w o%e
+3Kn? (a§+ (5;€L+M> K) (oe + (5 v 4 M)K)

5v 1 &
2 -2 pdy 2 2 " 2 2 (r)y)12
+ (1 +n KB )mK(ae + (5m+ﬁ> K) (G +B 5 §:11E|\VF(wg | ) (164)

R
+6(1+n)K <5K(G2 + 32% S EIVE(w{7)?) + 12a§>

Plugging in Theorem E.I2 to get bounds on %  E|VF(w T>)||2 would get us bounds on
F 2 BV () O
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