AdapMTL: Adaptive Pruning Framework for Multitask Learning
Model

Mingcan Xiang
mingcanxiang@umass.edu

University of Massachusetts Amherst
Ambherst, MA, USA

Hui Guan
huiguan@umass.edu
University of Massachusetts Amherst
Ambherst, MA, USA

Abstract

In the domain of multimedia and multimodal processing, the effi-
cient handling of diverse data streams such as images, video, and
sensor data is paramount. Model compression and multitask learn-
ing (MTL) are crucial in this field, offering the potential to address
the resource-intensive demands of processing and interpreting mul-
tiple forms of media simultaneously. However, effectively com-
pressing a multitask model presents significant challenges due
to the complexities of balancing sparsity allocation and accuracy
performance across multiple tasks. To tackle the challenges, we
propose AdapMTL, an adaptive pruning framework for MTL mod-
els. AdapMTL leverages multiple learnable soft thresholds inde-
pendently assigned to the shared backbone and the task-specific
heads to capture the nuances in different components’ sensitivity
to pruning. During training, it co-optimizes the soft thresholds
and MTL model weights to automatically determine the suitable
sparsity level at each component to achieve both high task accu-
racy and high overall sparsity. It further incorporates an adaptive
weighting mechanism that dynamically adjusts the importance of
task-specific losses based on each task’s robustness to pruning. We
demonstrate the effectiveness of AdapMTL through comprehensive
experiments on popular multitask datasets, namely NYU-v2 and
Tiny-Taskonomy, with different architectures, showcasing superior
performance compared to state-of-the-art pruning methods.

CCS Concepts

« Computing methodologies — Multi-task learning.

Keywords
Pruning, Multitask Learning
ACM Reference Format:

Mingcan Xiang, Jiaxun Tang, Qizheng Yang, Hui Guan, and Tongping
Liu. 2024. AdapMTL: Adaptive Pruning Framework for Multitask Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0686-8/24/10

https://doi.org/10.1145/3664647.3681426

Jiaxun Tang
jtang@umass.edu
University of Massachusetts Amherst
Ambherst, MA, USA

Qizheng Yang
qizhengyang@umass.edu
University of Massachusetts Amherst
Ambherst, MA, USA

Tongping Liu
tongping@umass.edu
University of Massachusetts Amherst
Ambherst, MA, USA

Model. In Proceedings of the 32nd ACM International Conference on Multime-
dia (MM °24), October 28-November 1, 2024, Melbourne, VIC, Australia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3664647.3681426

1 Introduction

In the landscape of multimedia and multimodal processing [2, 40],
Deep Neural Networks (DNNs) [46] have emerged as a pivotal tech-
nology, powering advancements across a spectrum of applications
from image and video analysis to natural language understanding
and beyond. Their profound ability to learn and abstract complex
features from a range of media forms underpins their utility in di-
verse domains, including content categorization, recommendation
systems, and interactive interfaces. However, as the complexity
of tasks grows, so does the demand for larger and more powerful
models, which in turn require substantial computational resources,
memory usage, and longer training times. This trade-off between
performance and model complexity has led to a continuous pursuit
of more efficient and compact CNN [24] architectures, as well as
innovations in pruning techniques that can maintain high perfor-
mance without compromising the benefits of the model’s scale.
Pruning techniques [13, 19, 23, 25-27, 36, 48] have emerged as a
promising approach to compress large models without significant
loss of performance. These techniques aim to reduce the size of
a model by eliminating redundant or less important parameters,
such as neurons, connections, or even entire layers, depending on
the method employed [9, 28, 61]. Parameter-efficient pruned mod-
els can provide significant inference time speedups by exploiting
the sparsity pattern [14, 31, 56, 60]. These models are designed
to have fewer parameters, which translates into reduced memory
footprint and lower computational complexity (FLOPs) [31]. By
leveraging specialized hardware and software solutions that can
efficiently handle sparse matrix operations, such as sparse matrix-
vector multiplication (SpMV), these models can achieve faster infer-
ence times [14, 39, 55]. Additionally, sparse models can benefit from
better cache utilization, as they require less memory bandwidth,
thereby reducing the overall latency of the computation [41, 60].
Although many techniques have been proposed in the past for
pruning a single-task model, there is much less work in pruning a
multitask model. Multitask models, which are designed to simul-
taneously handle multiple tasks, have become increasingly pop-
ular due to their ability to share representations and learn more
effectively from diverse data sources [16, 64, 67]. These models
have found wide-ranging applications where tasks are often related

https://orcid.org/0009-0009-7833-6755
https://doi.org/10.1145/3664647.3681426
https://doi.org/10.1145/3664647.3681426

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Input Input

Shared Shared
Backbone Backbone

Enforce
1 —

sparsity

Task-specific Task-specific
Head Head

Task1 Task2 Task3 Taskl Task2 Task3
(a) Dense (b) Sparse

Figure 1: Overview of pruning a dense multitask model. The

red parts represent the shared backbone, and the leaf boxes

represent the task-specific heads. In the sparse model, the

blank spaces indicate the pruned parameters.

and can benefit from shared knowledge [65]. A compact multitask
model, which is shown in Figure 1, has the potential to deliver
high performance across various tasks while minimizing resource
requirements, making it well-suited for deployment on resource-
constrained devices or in real-time scenarios.

Traditional pruning techniques, which are primarily focused
on single-task models, may not be directly applicable or sufficient
for multitasking settings. Recent work has started to explore the
intersection of multitask learning and pruning. Disparse [51] con-
sidered each task independently by disentangling the importance
measurement and taking the unanimous decisions among all tasks
when performing parameter pruning and selection. A parameter
is removed if and only if it’s shown to be not critical for any task.
However, as the number of tasks increases, it becomes challenging
to achieve unanimous selection agreement among all tasks, which
could negatively affect the average performance across tasks. Thus,
there is a need for novel compression approaches that cater to the
complexities of multitask models, taking into account the inter-
dependencies between tasks, the sharing of representations, and
the different sensitivity of task heads.

To tackle the challenges, we conduct extensive experiments that
reveal two valuable insights on designing an effective multitask
model pruning strategy. First, the shared backbone and the task-
specific heads have different sensitivity to pruning and thus should be
treated differently. However, current state-of-the-art approaches do
not adequately recognize this aspect, leading to equal treatment of
each component during pruning, rather than accounting for their
varying sensitivities. Second, the change in training loss could serve
as a useful guide for allocating sparsity among different components.
If the training loss of a specific task tends to be stable, we can prune
more aggressively on that component, as the task head is robust
to pruning. On the contrary, if the loss of a specific task fluctuates
significantly, we should consider pruning less on that component
since the training is less likely to converge at higher sparsity levels.

Motivated by these observations, we propose AdapMTL, an adap-
tive pruning framework for MTL models. AdapMTL dynamically ad-
justs sparsity across different components, such as the shared back-
bone and task-specific heads based on their sensitivity to pruning,

Mingcan Xiang, Jiaxun Tang, Qizheng Yang, Hui Guan & Tongping Liu

while preserving accuracy for each task. This is achieved through
a set of learnable soft thresholds [10, 23] that are independently
assigned to different components and co-optimized with model
weights to automatically determine the suitable sparsity level for
each component during training. Specifically, we maintain a set of
soft thresholds « = {ap, a1, a2, ..., a7} in each component, where
ap represents the threshold for the shared backbone and «; repre-
sents the threshold for the ¢-th task-specific head. In the forward
pass, only the weights larger than the threshold a will be counted
in the model, while others are set to zero. In the backward pass, we
automatically update all the component-wise thresholds , which
will smoothly introduce sparsity. Additionally, AdapMTL employs
an adaptive weighting mechanism that dynamically adjusts the im-
portance of task-specific losses based on each task’s robustness to
pruning. AdapMTL does not require any pre-training or pre-pruned
models and can be trained from scratch.

We conduct extensive experiments on two popular multitask
datasets: NYU-v2 [47] and Tiny-Taskonomy [62], using different
architectures such as Deeplab-ResNet34 and MobileNetV2. When
compared with state-of-the-art pruning and MTL pruning methods,
AdapMTL demonstrates superior performance in both the training
and testing phases. It achieves lower training loss and better nor-
malized evaluation metrics on the test set across different sparsity
levels. The contributions of this paper are summarized as follows:

(1) We conduct extensive experiments that reveal valuable in-
sights in designing effective MTL model pruning strategies.
These findings motivate the development of novel pruning
strategies specifically tailored for multitasking scenarios.

(2) We propose AdapMTL, an adaptive pruning framework for
MTL models that dynamically adjusts sparsity levels across
different components to achieve high sparsity and task ac-
curacy. AdapMTL features component-wise learnable soft
thresholds that automatically determine the suitable sparsity
for each component during training and an adaptive weight-
ing mechanism that dynamically adjusts task importance
based on their sensitivity to pruning.

(3) We demonstrate the effectiveness of AdapMTL through ex-
tensive experiments on multitask datasets with different
architectures, showcasing superior performance compared
to SOTA pruning and MTL pruning methods. Our method
does not require any pre-training or pre-pruned models.

2 Related Work

Multitask Learning. Multitask learning (MTL)[1, 4, 12, 64] aims
to learn a single model to solve multiple tasks simultaneously by
sharing information and computation among them, which is es-
sential for practical deployment. Over the years, various MTL ap-
proaches have been proposed, including hard parameter sharing[3],
soft parameter sharing [58], and task clustering [22]. In hard pa-
rameter sharing, a set of parameters in the backbone model are
shared among tasks while in soft parameter sharing, each task
has its own set of parameters, but the difference between the pa-
rameters of different tasks is regularized to encourage them to
be similar. MTL has been successfully applied to a wide range of
applications, such as natural language processing [8, 18, 29], com-
puter vision [17, 30, 44, 57], and reinforcement learning [42, 53].

AdapMTL: Adaptive Pruning Framework for Multitask Learning Model

Subsequently, the integration of neural architecture search (NAS)
with MTL has emerged as a promising direction. NAS for MTL,
exemplified by works like MTL-NAS [15], Learning Sparse Sharing
Architectures for Multiple Tasks [50], and Controllable Dynamic
Multi-Task Architectures [43], focuses on discovering optimal archi-
tectures that can efficiently learn shared and task-specific features.
These approaches, including Adashare [52] and AutoMTL [63],
demonstrate the potential of dynamically adjusting architectures
to the requirements of multiple tasks, optimizing both performance
and computational efficiency.

Pruning. Pruning techniques have been widely studied to re-
duce the computational complexity of deep neural networks while
maintaining their performance. Early works on pruning focused on
unstructured weight pruning [20, 25], where unimportant weights
were removed based on a given criterion, and the remaining weights
were fine-tuned. There are different kinds of criterion metrics,
such as magnitude-based [20, 27], gradient-based [36, 37], Hessian-
based [21], connection sensitivity-based [26, 33, 48], and so on.
Other works explored structured pruning [56, 66], which removes
entire filters or channels, leading to more efficient implementations
on hardware platforms. Recently, the lottery ticket hypothesis [13]
has attracted considerable attention, suggesting that dense, ran-
domly initialized neural networks contain subnetworks (winning
tickets) that can be trained to achieve comparable accuracy with
fewer parameters. This has led to follow-up works [13, 32, 38] that
provide a better understanding of the properties and initialization
of winning tickets. Single-Shot Network Pruning (SNIP) [26] is
a data-driven method for pruning neural networks in a one-shot
manner. By identifying an initial mask to guide parameter selection,
it maintains a static network architecture during training. Some
other work, like the layer-wise pruning method [23], inspiringly
attempts to learn a layer-wise sparsity for individual layers rather
than considering the network as a whole. This approach allows for
fine-grained sparsity allocation across layers. To reduce the total
time involved in pruning and training, pruning during training
techniques [11, 35, 39] have been proposed to directly learn sparse
networks without the need for an iterative pruning and finetuning
process. These methods involve training networks with sparse con-
nectivity from scratch, updating both the weights and the sparsity
structure during the training process.

Pruning for Multitask Learning. Recently, attention has shifted
to the intersection of MTL and pruning techniques. A compact mul-
titask model has the potential to deliver high performance across
various tasks while minimizing resource requirements, making
it well-suited for deployment on resource-constrained devices or
in real-time scenarios. For example, MTP [6] focuses on efficient
semantic segmentation networks, demonstrating the potential of
multitask pruning to enhance performance in specialized domains.
Similarly, the work by Cheng et al.[7] introduces a novel approach
to multi-task pruning through filter index sharing, optimizing
model efficiency through a many-objective optimization frame-
work. Additionally, Ye et al.[59] propose a global channel pruning
method tailored for multitask CNNs, highlighting the importance
of performance-aware approaches in maintaining accuracy while
reducing model size. Disparse [51] proposes joint learning and prun-
ing methods to achieve efficient multitask models. However, these

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

methods often neglect the importance of the shared backbone, lead-
ing to equal treatment of each component during pruning, rather
than accounting for their varying importance. Our work aims to
address this limitation by adaptively allocating sparsity across the
shared backbone and task-specific heads based on their importance
and sensitivity.

3 Methodology
3.1 Preliminary

We formulate multitask model pruning as an optimization prob-
lem. Given a dataset D = {(xi; yi, yé, e y;'), i€[1L,N]},asetof T
tasks 7 = {t1 t2 ..., tT}, and a desired sparsity level s (i.e. the per-
centage of zero weights), the multitask model pruning aims to find
a sparse weight W that minimizes the sum of task-specific losses.
Mathematically, it is formulated as:

. .1 R iy, i
mmllnl:(W;D) =min ;;Lt(f(W,x)syp))

s.t. WeRY |[W]o<(1-5s)-P,
where the £(-) is the total loss function, L (-) is the task-specific
loss for each individual task ¢, W are the parameters of neural
network to be learned, P is the total number of parameters and
[l - llo denotes the £-norm, i.e. the number of non-zero weights.
The key challenge here is how to enforce sparsity on weight W
while minimizing the loss. This involves finding an optimal balance
between maintaining the performance of each task and pruning the
model to achieve the desired sparsity level. We next describe our
proposed adaptive pruning algorithm that can effectively handle the
unique characteristics of multitask models and efficiently allocate
sparsity across different components to preserve the overall model
performance.

3.2 Adaptive Multitask Model Pruning

Multitask models typically have a backbone shared across tasks
and task-specific heads. We observe that these different model com-
ponents have different sensitivities to pruning and thus should
be treated differently. The challenge lies in how to automatically
capture the sensitivity of each model component to pruning and
leverage the signal to automatically allocate sparsity across com-
ponents. To address the challenge, we propose a component-wise
pruning framework that assigns different learnable soft thresh-
olds to each component to capture its sensitivity to pruning. The
framework then co-optimizes the thresholds with model weights
to automatically determine the suitable sparsity level for each com-
ponent during training.

Specifically, we introduce a set of learnable soft thresholds a =
{ag, a1, aa, ..., ar} for each component, where ap represents the
threshold for the shared backbone and a; represents the threshold
for the t-th task-specific head. The thresholds « are determined
based on the significance and sensitivity of the respective compo-
nents and are adaptively updated using gradient descent during the
backpropagation process. The soft threshold a; and sparse weight
W; for each component can be computed as follows:

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

(W] W] >a [Wl-a #W]>a
H(W],a) 7{[, e sowl,a) A = {1 wize
AW = 00 o
Jaw|~ |2
. .
| > | —>
o W] o W]

Figure 2: Difference between hard and soft thresholding.
Hard thresholding causes abrupt weight discontinuities dur-
ing training, while soft thresholding ensures a smooth rela-
tionship for consistent learning,.

S(Wy, ar) = sign(Wy) - ReLU (|Wr|—a;)

ay = sigmoid(Onit), @
where Ojyjt is a learnable parameter that controls the initial pruning
threshold a;. We will discuss the choice of i, in the supplemen-
tary material. The ReLU (-) function here is used to set zero weights.
In other words, if some weights |W;| are less than the threshold a;,
then the sparse version of this weight S(wy, ;) is set to 0. Other-
wise, we obtain the soft-thresholding version of this weight.

The reason why we choose soft thresholding [54] rather than
hard thresholding is illustrated in Figure 2. Soft parameter sharing is
the best fit for our approach as it allows us to calculate the gradient
and perform the backpropagation process more effectively.

AdapMTL reformulates the pruning problem in Equation 1 to find
a set of optimal thresholds « = {ap, a1, a2, ..., ar} across different
components as follows:

- 1y iy. i
%TSL(W’ ;D) = min ; ;ﬁt L (f(S(Wr, ar), x")5 yy)
s.t. a= sigmoid(Binir), W eR%L |[W]o<(1-5s)-P,
®)
where the f; represents the adaptive weighting factor for ¢-th task,
which will be elaborated in Section 3.3.

We next describe how AdapMTL optimizes the problem in Equan-
tion 3. Considering a multitask model with T tasks, we divide the
weight parameters into W = {Wg, Wi, Wy, ..., Wr}, where Wp rep-
resents the weight parameters for the shared backbone and W;
represents the weight parameters for the ¢-th task-specific head.
We derive the gradient descent update equation at the n-th epoch
for W; as follows:

Wn+1 —wn— ’7n 8.£(W, (X;D)
t t awtn
OLW,a; D) oS(W/', af
=w'-y" o 4
E s (Wi af W)
dL(W, ;D)
—wn =52 o Bn’
ETT s (Wi aly T

where 1" is the learning rate at the n-th epoch. We use the partial
derivative to calculate the gradients. As mentioned earlier, different
task heads may have varying sensitivities to pruning and, conse-
quently, may require different levels of sparsity to achieve the best
accuracy. By setting a set of learnable parameters for each com-
ponent and treating them separately during the backpropagation

Mingcan Xiang, Jiaxun Tang, Qizheng Yang, Hui Guan & Tongping Liu

% PR e

Sparsity (%)
9
S

—=— sparsity/Backbone
—— sparsity/Semantic Seg.
—e— sparsity/S.N. Pred.
—+— sparsity/Depth Est.

—a— sparsity/overall_sparsity

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

Figure 3: Breakdown of component-wise sparsity allocation
during training. We use the ResNet34 backbone and achieve
90% overall sparsity in the end.

process, our component-wise pruning framework can effectively
account for these differences in sensitivity and adaptively adjust
the sparsity allocation for each component.

Although %
the gradients usiné the sub-gradient method. In this case, we in-
troduce Bt", an indicator function that acts like a binary mask.
The value of 8} should be 0 if the sparse version of the weight
S(W], a}) is equal to 0. This indicator function facilitates the ap-
proximation of gradients and the update of the sparse weights and
soft thresholds during the backpropagation process. Mathemati-

cally, the indicator function is:

is non-differentiable, we can approximate

0, if S(W™ a™) =0,
Bl = WY, af) (5)
1, otherwise.

By updating the sparse weights W;, and similarly the soft thresh-
olds a;, for each component in this manner (the derivation process
is provided in the supplementary material), the framework can ef-
fectively and discriminatively allocate sparsity across the multitask
model. By taking into account the significance and sensitivity of
each component, this approach ultimately leads to more efficient
and accurate multitask learning.

3.3 Adaptive Weighting Mechanism

This subsection introduces the adaptive weighting mechanism that
dynamically adjusts the weight of each task loss based on each
task’s robustness to pruning. The adaptive weighting mechanism
determines the A for the ¢-th task in Equation 3 during training.
The rationales behind the proposed adaptive weighting mech-
anism are two folds. First, if the training loss of a specific task ¢
tends to be stable, then we can assign a higher weighting factor f;
and subsequently prune more aggressively on that component, as
the task head is robust to pruning. On the contrary, if the loss of a
specific task fluctuates significantly, we should consider pruning
less on that component by lowering the weighting factor since
the training is less likely to converge at higher sparsity levels. The
weighting factor is learned in an adaptive way, eliminating the need
for manual effort to fine-tune the hyper-parameters elaborately.

AdapMTL: Adaptive Pruning Framework for Multitask Learning Model

Second, the adaptive weighting mechanism should automatically
consider different multitask model architectures as well. The ratio
of backbone to task head weights, W, matters because it may
be beneficial to focus more on pruning the task heads instead if the
backbone is already highly compact. For example, in MobileNet-V2,
the backbone has only 2.2M parameters, which is 25 times fewer
than the task head.

We define a set of adaptive weights f = {8, f1, f2, ... 1}, where
P represents the weighting factor for the shared backbone, f;
represents the weighting factor for the ¢-th task-specific head. The
weighting factor can be formulated as follows:

O_L;vindow/.gt

-1
_) |WB|backbone (6)
% ZzT=1 (U_E;deow/Lt)

B .
T
Zt:l |Wt|head

Here, O'.E?’indow is the average deviation of the loss within the
sliding window for the t-th task, which is then divided by £; to
normalize the scale. We divide it by the sum of all tasks to normalize
between different tasks. The () ™! is a multiplicative inverse. A is a
scaling factor, and we will discuss the choice of A for different ar-
chitectures in the supplementary material. |[Wg|packbones |Welhead
represent the weight parameters of shared backbone and ¢-th task-
specific head, separately. The right ratio in the equation reveals
the importance of each component by considering their relative
parameterizing contributions to the overall model structure. The
weighting factor f; is used to guide the pruning for the task-specific
head, depending on the stability of its loss and its contribution to
the model.

To make the multitask pruning more robust, we incorporate
a sliding window mechanism that tracks the past loss values to
calculate the average 0 Lyindow i Equation 6 instead of relying
solely on the variance between two adjacent epochs. This approach
provides a more stable and reliable estimation of the fluctuations in
the task losses, as it accounts for a larger number of samples and
reduces the impact of potential outliers or short-term variations.

4 Experiments
4.1 Experiment Settings

4.1.1 Datasets and tasks. We conduct the experiments on two pop-
ular multi-task datasets: NYU-v2 [47], and Tiny-Taskonomy [62].
The NYU-v2 dataset is composed of RGB-D indoor scene images
and covers three tasks: 13-class semantic segmentation, depth es-
timation, and surface normal prediction. The training set consists
of 795 images, while the testing set includes 654 images. For the
Tiny-Taskonomy dataset, the experiments involve joint training
on five tasks: Semantic Segmentation, Surface Normal Prediction,
Depth Prediction, Keypoint Detection, and Edge Detection. The
training set includes 1.6 million images, while the test set comprises
0.3 million images. The training set includes 1.6 million images from
25 different classes, while the test set comprises 0.3 million images
across 5 classes.

4.1.2 Evaluation Metrics and Loss Functions. We adopt a range of
evaluation metrics for different tasks, evaluating the model perfor-
mance at different sparsity levels to provide a comprehensive view
of the model’s effectiveness and robustness across tasks. On the

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

NYUv2 dataset, there are totally three tasks. For Semantic Segmen-
tation, we employ the mean Intersection over Union (mIoU) and
Pixel Accuracy (Pixel Acc) as our primary evaluation metrics and
use cross-entropy to calculate the loss. Surface normal prediction
uses the inverse of cosine similarity between the normalized pre-
diction and ground truth, and is performed using mean and median
angle distances between the prediction and the ground truth. We
also report the percentage of pixels whose prediction is within the
angles of 11.25°, 22.5°, and 30° to the ground truth. Depth estimation
utilizes the L1 loss, with the absolute and relative errors between
the prediction and ground truth being calculated. Again, We also
present the relative difference between the prediction and ground

truth by calculating the percentage of § = max(y’;—;’;d, %) within

the thresholds of 1.25, 1.252, and 1.25. On the Taskonomy dataset,
there are two more tasks. In the context of both the Keypoint and
Edge Detection tasks, the mean absolute error compared to the
provided ground-truth map serves as the main evaluation metric.

In multitask learning scenarios, tasks involve multiple evaluation
metrics with values potentially at different scales. To address this,
we compute a single relative performance metric following the
common practice [34] [49].

M|
1 .
AT, = M Z(—l)I’ - (Mg,,j — Mpm,j) /Mpm,j + 100% (7)
j=

where [; = 1if a lower value shows better performance for the
metric M; and 0 otherwise. My, j, Mpyy,; are the sparse and dense
model value of metric j, respectively. The A7, is defined to compare
results with their equivalent dense task values and the overall
performance is obtained by averaging the relative performance
across all tasks, denoted as AT = % ZiT:l A, This metric provides
a unified measure of relative performance across tasks. Eventually,
by employing these diverse evaluation metrics, we can effectively
assess the performance of our method as well as the counterparts
across various tasks and datasets.

4.1.3 Baselines for Comparison. We compare our work with LTH [13],
IMP [19], SNIP [26], and DiSparse [51]. For LTH, we first train a
dense model and subsequently prune it until the desired sparsity
level is reached, yielding the winning tickets (sparse network struc-
ture). We then reset the model to its initial weights to start the
sparse training process. For IMP, we iteratively remove the least
important weights, determined by their magnitudes. For SNIP and
IMP, we directly use the official implementation provided by the au-
thors from GitHub. For DiSparse, the latest multitask pruning work
and first-of-its-kind, we utilize the official PyTorch implementation
and configure the method to use the DiSparse dynamic mechanism,
which is claimed as the best-performing approach in the paper. We
also train a fully dense multitask model as our baseline, which will
be used to calculate a single relative performance metric Norm.
Score.

We use the same backbone model at the same sparsity level across
all methods for a fair comparison. In our work, we define overall
sparsity as the percentage of weights pruned from the entire MTL
model, which includes both the shared backbone and task-specific
heads. We utilize Deeplab-ResNet34 [5] and MobileNetV2 [45] as the

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Mingcan Xiang, Jiaxun Tang, Qizheng Yang, Hui Guan & Tongping Liu

Table 1: Comparison with state-of-the-art pruning methods on the NYU-V2 dataset using the Deeplab-ResNet34 backbone.
Each pruning method enforces a consistent overall sparsity of 90%, with the A7 indicating the normalized performance of all
three tasks to the baseline dense model’s performance. We also report the evaluation metrics for each task and the sparsity

allocation for each component.

T; : Semantic Seg. T; : Surface Normal Prediction T; : Depth Estimation Sparsity %
Model mloU 1 pixel Ant Error | Angle 0,within 1 Apt Error | A, within T Apt Back S.S. SN.P. D.E.| ar?T
Acct 111 |Mean Median 11.25° 22.5° 30° ~2'|Abs. Rel. 1.25 1.25"2 1.25"3 ~ ! |bone head head head
Dense Model (baseline) 25,54 5791 0.00 [17.11 14.95 36.35 72.25 85.44 0.00 [0.55 0.22 65.21 89.87 97.52 0.00 - 0.00
SNIP [26] 24.09 5532 -10.15/16.94 14.93 36.17 72.39 86.98 2.63 [0.61 0.23 60.61 87.88 96.77 -25.49(85.46 90.24 92.28 91.17(-11.00
LTH [13] 25.42 5798 -0.3516.73 15.08 3520 72.35 87.22 0.41 [0.57 0.22 60.93 88.64 96.20 -12.92|78.32 90.54 95.21 95.49| -4.29
IMP [19] 25.68 57.86 0.46 |16.86 15.18 3553 71.96 86.26 -1.77|0.56 0.22 65.23 89.29 97.53 -3.82 |74.98 92.34 97.23 95.15| -1.71
DiSparse [51] 25.71 58.08 096 |17.03 15.23 35.10 71.85 86.22 -4.48|0.57 0.22 64.93 88.64 97.20 -5.76 |75.07 90.41 98.51 94.86| -3.10
AdapMTL w/o adaptive thresholds| 25.59 57.53 -0.46 [17.26 15.75 36.21 71.53 85.91 -7.06|0.58 0.22 62.52 87.12 96.50 -13.68|79.12 89.37 96.85 95.74| -7.07
AdapMTL (ours) 26.28 58.29 3.55 |16.92 14.91 36.36 72.97 86.29 3.41|0.55 0.22 65.39 89.93 97.58 0.38 |71.74 93.18 99.26 96.22| 2.45
1.00 + === —--z-——mm o - oo 1.00 === A Do
0.98 1 ;
© 095 o]
5] 8 0.96 A
2 2
% 0.901 7 0941
2 2
= = 0.92
Q [
N 0.851 ---- Dense Model N 090{ ———- Dense Model
g —4— Ours % —f— Ours
2 0801 3 i 2 —3— LTH
075 {— Disparse 0.85 1 % Disparse
’ —§— SNIP —§— SNIP
—— IMP —4— IMP
0.70 1 0.80
50 60 70 80 90 95 99 ’ 50 60 70 80 90 95 99
Overall sparsity (%) Overall sparsity (%)

(a) ResNet34

(b) MobileNetV2

Figure 4: Comparison of state-of-the-art methods, including DiSparse [51], LTH [13], SNIP [26], and IMP [19], on the NYUv2
dataset, evaluated with different MTL backbones and under various sparsity settings.

backbone models, and the Atrous Spatial Pyramid Pooling (ASPP)
architecture [5] as the task-specific head. Both of them are popular
architectures for pixel-wise prediction tasks. We share a common
backbone for all tasks while each task has an independent task-
specific head branching out from the final layer of the backbone,
which is widely used in multitasking scenarios.

4.2 Experiment Results

4.2.1 Results on NYU-V2. We first present the comparison results
with state-of-the-art methods on the NYU-V2 dataset in table 1.
Overall, AdapMTL outperforms all other methods by a significant
margin across most metrics and achieves the highest Ar. Recall
that the major difference between our method and the baselines
lies in our ability to adaptively learn the sparsity allocation across
the components adaptively, maintaining a dense shared backbone
(71.74%) while keeping the task-specific heads relatively sparse.
Within the scope of our research, we characterize overall sparsity
as the percentage of weights pruned from the entire MTL model,
which includes both the shared backbone and task-specific heads.

SNIP [26] exhibits the lowest performance in the multi-task sce-
nario because its pruning mask is determined from a single batch of
data’s gradient, which treats all components, including the shared
backbone, equally. Since all input information passes through the
shared backbone, accuracy loss in the shallow layers is inevitable,
regardless of how well the task heads perform with relatively high
density. LTH’s [13] winning tickets do not sufficiently focus on
the backbone, as they intentionally create a dense surface normal
prediction task head. Although this approach performs well on this
specific task, the bias still causes an imbalance in the metrics across
all tasks, resulting in a lower A7 score. IMP [19] achieves a good
normalized score across all tasks. However, this method is trained in
an iterative manner and prunes the model step-by-step, resulting in
a significantly longer training time. DiSparse [51] learns an effective
dense backbone by adopting a unanimous decision across all tasks.
However, it falls short of differentiating the relative sensitivities
between specific task heads, leading to an imbalanced normalized
score among all tasks. Here, we add an additional row, AdapMTL
without adaptive thresholds, to demonstrate the effectiveness of
our approach. Rather than using multiple adaptive thresholds, this
version utilizes a single shared threshold for all components. As

AdapMTL: Adaptive Pruning Framework for Multitask Learning Model

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 2: Comparison with state-of-the-art pruning methods on the NYU-V2 dataset using the MobileNetV2 backbone. Each
pruning method enforces a consistent overall sparsity of 90%, with the Ar indicating the normalized performance of all three
tasks to the baseline dense model’s performance. We also report the evaluation metrics for each task and the sparsity allocation

for each component.

Ti: Semantic Seg. Ty: Surface Normal Prediction T3: Depth Estimation Sparsity %
Model ixel Error | Angle 0, within 1 Error | A, within T Back S.S. SN.P. D.E.|ArT
mloU iccr AT Mean Median 11.zg5° 225 300 BT |Abs Rel. 1.25 1.25°2 1253 “B|bone head head head
Dense Model [5] (baseline) 19.94 48.71 0.00|17.85 16.21 29.77 72.19 86.19 0.00 |0.64 0.24 58.93 86.27 96.16 0.00| - 0.00
SNIP [26] 18.96 46.93 -8.57|18.33 16.97 2893 71.21 85.78 -12.03|0.64 0.25 56.75 85.71 95.33 -9.38|78.46 88.19 92.08 90.25|-9.99
LTH [13] 19.14 47.25 -7.01(17.67 16.32 29.67 72.15 86.22 -0.03 |0.65 0.25 57.68 85.89 96.13 -8.32|71.32 88.34 92.19 90.52|-5.12
IMP [13] 18.76 48.12 -7.13(18.71 16.68 29.63 71.76 85.91 -9.11|0.64 0.23 59.75 86.52 96.31 6.00|68.49 88.07 95.13 87.74|-3.41
DiSparse [51] 19.87 48.83 -0.10(17.92 16.79 29.87 71.76 85.64 -4.87 |0.65 0.24 58.42 85.72 96.28 -2.94|65.22 87.21 93.55 90.53|-2.64
AdapMTL w/o adaptive thresholds| 18.93 47.51 -7.53|18.16 16.87 28.37 71.53 86.63 -10.91|0.65 0.24 58.26 85.82 95.92 -3.47|73.61 88.64 92.37 89.82|-7.30
AdapMTL (ours) 20.16 49.14 1.99|17.53 15.96 30.16 72.36 86.51 5.25 |0.64 0.24 59.03 86.57 96.38 0.75|52.74 86.18 94.72 90.76|2.66

expected, performance significantly deteriorates because a uniform
threshold makes it hard to capture the nuances in different compo-
nents’ sensitivity.

Moreover, we extended our experiments to different model archi-
tectures to assess the model-agnostic nature of our method, using
MobileNetV2 as an alternative architecture. The results, detailed
in Table 2, show how AdapMTL adeptly manages the dense repre-
sentation of MobileNetV2’s compact backbone, ensuring it remains
sufficiently dense (52.74%) while enforcing higher sparsity in the
task-specific heads. This is very important, especially with such
backbone compact architectures where over-pruning the backbone
can easily lead to significant degradation in accuracy. Our approach
ensures that the backbone remains dense enough, thereby preserv-
ing overall performance.

4.2.2 Results under various sparsity settings. We show a compari-
son of results under different sparsity settings using different back-
bones, namely ResNet34 and MobileNetV2, as illustrated in Figure 4,
where AdapMTL consistently demonstrates superiority over other
methods. The normalized test score, following the common prac-
tice [34] [49], is obtained by averaging the relative performance
across all tasks with respect to the dense model. We observe a
slightly better performance for medium sparsity levels(from 50% to
80%), which even surpasses dedicated dense multitask learning ap-
proaches despite the high sparsity enforced. This observation aligns
with our assumptions and motivates the research community to
further explore and develop sparse models. The score of SNIP drops
significantly as higher sparsity levels (>90%) are enforced. This is
because it fails to maintain the density of the shared backbone
effectively.

4.2.3 Results on Tiny-Taskonomy. On the Tiny-Taskonomy dataset,
which encompasses five distinct tasks, AdapMTL exhibits a more
consistent performance across all tasks, as detailed in Table 3. Here,
we use the ResNet backbone at sparsity 90%. Our method consis-
tently achieved the highest scores in each task, unlike other methods
which exhibited noticeable biases. The DiSparse method struggles
to achieve unanimous decisions, particularly as the number of tasks
increases, highlighting a key limitation in its approach.

The consistent superiority of AdapMTL across both NYUv2 and
Tiny-Taskonomy datasets, and with different backbone architec-
tures, highlights the effectiveness of our approach in achieving

Table 3: Results on Tiny-Taskonomy dataset. T1: Semantic
Segmentation, T2: Surface Normal Prediction, T3: Depth Pre-
diction, T4: Keypoint Estimation, T5: Edge Estimation.

Model ATIT ATZT AT;;T AnT AT;,T ATT
SNIP -11.2 -157 -94 +1.2 -2.8 -7.58
LTH -9.9 -1.3 -10.7 +0.5 +3.1 | -3.66
IMP -6.3 9.7 +31 -11 +2.4 | -2.32
DiSparse -6 +1.2 -39 -1.5 +4.2 | -0.32
AdapMTL w/o adaptive thresholds | -8.7 -12.6 -4.7 +0.2 -1.4 | -5.44
AdapMTL (ours) +2.8 +4.7 +15 +0.5 +4.9 | +2.88

high sparsity with minimal performance degradation for multi-
task models. More results on the other datasets, using the different
architectures, can be found in the supplementary material.

1.00

AR)

AV
N/

0.95

score

090 g

o
o
[l

0.80

z: Normalize

<
~
I3

0.70

Figure 5: Visualization comparing the sensitivity of the back-
bone and task head in a MobileNetV2 backbone MTL model.
The y-axis represents the total sparsity of all task heads.

4.3 Analysis

4.3.1 Pruning sensitivity. AdapMTL results in different sparsity for
backbone parameters and task-specific parameters, indicating that
it captures their different sensitivity to pruning. To compare the
sensitivity to pruning between the shared backbone and task heads,

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 4: Computational cost of AdapMTL

Mingcan Xiang, Jiaxun Tang, Qizheng Yang, Hui Guan & Tongping Liu

Table 5: Ablation Study on NYU-V2. T1: Semantic Segmenta-
tion, T2: Surface Normal Prediction, T3: Depth Prediction.

Method Sparsity (%) Params Arp T FLOPs |
Deeplab-ResNet34 0 197.6M - 56.32G Model ARt ApT AT Art
AdapMTL 79.83 3952M 6.7 9.04G w/o A (=5) 126 174 -183 039
AdapMTL 85.01 29.64M 43 7.84G w/o sliding window 3.07 284 -049 181
AdapMTL 90.03 19.77M 245 5.32G w/o adaptive thresholds -0.46 -7.06 -13.68 -7.07
MobileNetV2 0 155.2M - 37.32G only 2 adaptive thresholds | -0.32 -3.28 -9.74 -4.45
AdapMTL 80.12 31.04M 7.8 5.79G AdapMTL 3.55 3.41 0.38 2.45
AdapMTL 85.03 23.28M 5.2 4.21G
AdapMTL 89.93 15.51M 2.66 2.98G

we create a 3D plot, as shown in Figure 5. The x-axis represents
the shared backbone sparsity from 50% to 99%, while the y-axis
represents the total head sparsity for all three tasks from 90% to
99%. The z-axis represents the normalized score.

From the xz-plane, we can observe that the normalized score
drops significantly when we prune the backbone at sparsity lev-
els of 90% and higher. In contrast, from the yz-plane, we can see
that the task heads are highly robust to pruning, as they maintain
a good normalized score even when extreme sparsity levels are
reached. This observation highlights the importance of preserving
the shared backbone’s density and suggests that pruning strategies
should prioritize maintaining the backbone’s performance while
aggressively pruning the task-specific heads.

4.3.2 Computational cost. The computational cost of the AdapMTL
under varying sparsity levels is detailed in Table 4, which illustrates
a significant reduction in both parameters and FLOPs as sparsity
increases. These reductions highlight not only the adaptability of
AdapMTL across different architectures but also its capability to
maintain a balance between performance, measured by Ar, and
efficiency, evidenced by the substantial decrease in FLOPs. This bal-
ance is crucial for deploying high-performance models in resource-
constrained environments. By leveraging specialized hardware and
software solutions that can efficiently handle sparse matrix oper-
ations, such as sparse matrix-vector multiplication (SpMV), these
models can achieve faster inference times [14, 39, 55].

4.4 Ablation Studies

We conducted ablation studies to validate the effectiveness of the
proposed adaptive multitask model pruning (Section 3.2), and the
adaptive weighting mechanism (Equation 6). We tested variations
including models without adaptive thresholds, where all compo-
nents share a single threshold, and models with only two adaptive
thresholds, where the backbone has a unique threshold while other
task heads share another. The results, presented in Table 5, highlight
the critical role of adaptive thresholding. Models without adaptive
thresholds showed significantly poorer performance, with a drastic
decrease in At, especially affecting tasks with higher sensitivity to
pruning, such as Depth Prediction. Conversely, the full AdapMTL
configuration, employing independent thresholds for each compo-
nent, achieved the best At score. These variations help illustrate
the impact and necessity of differentiated thresholding in multitask
environments. The results confirm that our full AdapMTL setup,
with all components active, performs superiorly across different

Datasets
2.8 —e— NYU-V2
—e— Tiny-Taskonomy

Ar 2.4

0 100 200 300 400 500 600 700 800
Sliding Window Size

Figure 6: Choice of sliding window size

settings, underscoring the indispensable nature of each proposed
component.

We have implemented a sliding window mechanism to enhance
the robustness and accuracy of our pruning strategy. This mecha-
nism is pivotal in tracking the loss values over a sequence of epochs
to compute the average change in loss, 0 Lyindow, as formalized in
Equation 6. By integrating this approach, we significantly mitigate
the influence of abrupt variations and potential outliers that may
occur in task-specific loss calculations. The sliding window, set at
a size of 400 as demonstrated in Figure 6, represents an optimal
balance between computational memory demands and the need
for a comprehensive data scope. This size ensures that the model
captures sufficient temporal loss information without excessive
memory consumption, thereby maintaining efficiency.

5 Conclusion

In this paper, we propose a novel adaptive pruning method designed
specifically for multitask learning (MTL) scenarios. Our approach
effectively addresses the challenges of balancing overall sparsity
and accuracy for all tasks in multitask models. AdapMTL introduces
multiple learnable soft thresholds, each independently assigned to
the shared backbone and task-specific heads to capture the nuances
in different components’ sensitivity to pruning. Our method co-
optimizes the soft thresholds and model weights during training,
enabling automatic determination of the ideal sparsity level for
each component to achieve high task accuracy and overall sparsity.
Furthermore, AdapMTL incorporates an adaptive weighting mecha-
nism that dynamically adjusts the importance of task-specific losses
based on each task’s robustness to pruning. The effectiveness of
AdapMTL has been extensively validated through comprehensive
experiments on the NYU-v2 and Tiny-Taskonomy datasets with
different architectures. The results demonstrate that our method
outperforms state-of-the-art pruning methods, thereby establishing
its suitability for efficient and effective multitask learning.

AdapMTL: Adaptive Pruning Framework for Multitask Learning Model

Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-2312396, CNS-2338512, CNS-
2224054, and DMS-2220211, DUE-2215193, CCF-2024253, and CNS-
1750760. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.
Part of the work is also supported by Adobe gift funding.

References
[1] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. 2006. Multi-

[2

=

[11

[12

[13

[14

[15

[16

[17

(18

[19

[20

[21

[22

=

]

]

]

]

]

]

task feature learning. Advances in neural information processing systems 19
(2006).

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. 2018. Multi-
modal machine learning: A survey and taxonomy. IEEE transactions on pattern
analysis and machine intelligence 41, 2 (2018), 423-443.

Rich Caruana. 1993. Multitask learning: A knowledge-based source of inductive
bias. In Machine Learning Proceedings 1993. Elsevier, 41-48.

Rich Caruana. 1997. Multitask learning. Machine learning 28 (1997), 41-75.
Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. 2017. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence 40, 4 (2017), 834-848.

Xinghao Chen, Yiman Zhang, and Yunhe Wang. 2022. MTP: multi-task prun-
ing for efficient semantic segmentation networks. In 2022 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 1-6.

Hanjing Cheng, Zidong Wang, Lifeng Ma, Xiaohui Liu, and Zhihui Wei. 2021.
Multi-task pruning via filter index sharing: A many-objective optimization ap-
proach. Cognitive Computation 13 (2021), 1070-1084.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning. In Proceedings
of the 25th international conference on Machine learning. ACM, 160-167.
Xiaohan Dong, Huizi Mao, Tianchen Liu, Yiming Yang, Ji Huang, Sen Chen,
Zhang Yang, Geng Yuan Tong, Zhen Lin, Song Tang, et al. 2021. HAWQ: Hessian
AWare Quantization of Neural Networks with Mixed-Precision. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 9234-9243.

David L Donoho. 1995. De-noising by soft-thresholding. IEEE transactions on
information theory 41, 3 (1995), 613-627.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, Erich Elsen, Jakob
Uszkoreit, and Avital Dubey. 2020. Rigging the lottery: Making all tickets winners.
In International Conference on Learning Representations.

Theodoros Evgeniou and Massimiliano Pontil. 2004. Regularized multi-task
learning. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. 109-117.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.
2020. The lottery ticket hypothesis at scale. International Conference on Learning
Representations (2020).

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The State of Sparsity in Deep
Neural Networks. In arXiv preprint arXiv:1902.09574.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. 2020. Mtl-nas:
Task-agnostic neural architecture search towards general-purpose multi-task
learning. In Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition. 11543-11552.

Siddhant Garg, Lijun Zhang, and Hui Guan. 2023. Structured Pruning for Multi-
Task Deep Neural Networks. arXiv preprint arXiv:2304.06840 (2023).

Ross Girshick. 2015. Fast R-CNN. In Proceedings of the IEEE international confer-
ence on computer vision. 1440-1448.

Hui Guan, Xipeng Shen, and Hamid Krim. 2017. Egeria: A framework for auto-
matic synthesis of HPC advising tools through multi-layered natural language
processing. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-14.

Song Han, Huizi Mao, and William] Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135-1143.

Babak Hassibi and David Stork. 1992. Second order derivatives for network
pruning: Optimal brain surgeon. Advances in neural information processing
systems 5 (1992).

Laurent Jacob, Francis R Bach, and Jean-Philippe Vert. 2009. Clustered multi-task
learning: A convex formulation. In Advances in neural information processing
systems. 745-752.

(23]

[24

[25

[26

[28

[29

[30

)
=

[32

(33]

[34

@
i

[36

[37

(38]

[39

[40

[41

[42

=
&

[44

[45

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek
Jain, Sham Kakade, and Ali Farhadi. 2020. Soft threshold weight reparameter-
ization for learnable sparsity. In International Conference on Machine Learning.
PMLR, 5544-5555.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278—
2324.

Yann LeCun, John S Denker, and Sara A Solla. 1990. Optimal brain damage.
Advances in neural information processing systems (1990), 598-605.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. 2018. Snip:
Single-shot network pruning based on connection sensitivity. arXiv preprint
arXiv:1810.02340 (2018).

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).
Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang
Zhang. 2020. HRank: Filter Pruning using High-Rank Feature Map. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1529
1538.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.
2015. Representation learning using multi-task deep neural networks for semantic
classification and information retrieval. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing. 912-921.

Yinglu Liu, Mingcan Xiang, Hailin Shi, and Tao Mei. 2021. One-stage Context
and Identity Hallucination Network. In Proceedings of the 29th ACM International
Conference on Multimedia. 835-843.

Zehao Liu, Haoliang Li, Shuicheng Shen, Junjie Yan, Xiaolin Zhang, and Nenghai
Wang. 2019. MetaPruning: Meta Learning for Automatic Neural Network Channel
Pruning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 3296-3305.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018.
Rethinking the value of network pruning. In Proceedings of the IEEE International
Conference on Computer Vision. 7002-7012.

Jian-Hao Luo and Jianxin Wu. 2020. Neural network pruning with residual-
connections and limited-data. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 1458-1467.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. 2019. Attentive
single-tasking of multiple tasks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 1851-1860.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen,
Madeleine Gibescu, and Antonio Liotta. 2018. Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by network science. In
Proceedings of the 35th International Conference on Machine Learning. 1125-1143.
Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. 2017. Variational
dropout sparsifies deep neural networks. In International Conference on Machine
Learning. PMLR, 2498-2507.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Turi Frosio, and Jan Kautz. 2019.
Importance estimation for neural network pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 11264-11272.

Ari S Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. 2019. One ticket
to win them all: generalizing lottery ticket initializations across datasets and
optimizers. In Advances in Neural Information Processing Systems. 11644-11655.
Hesham Mostafa, Xiaoxiao Wang, and Decebal Constantin Mocanu. 2019. Pa-
rameter efficient training of deep convolutional neural networks by dynamic
sparse reparameterization. In Proceedings of the 36th International Conference on
Machine Learning. 4648-4657.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-
drew Y Ng. 2011. Multimodal deep learning. In Proceedings of the 28th international
conference on machine learning (ICML-11). 689-696.

Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. 2020. Patdnn: Achieving real-time dnn execution on mobile
devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 907-922.

Emilio Parisotto, Jimmy Lei Ba, and Antoine Bordes. 2016. Actor-mimic: Deep
multitask and transfer reinforcement learning. In International Conference on
Learning Representations.

Dripta S Raychaudhuri, Yumin Suh, Samuel Schulter, Xiang Yu, Masoud Faraki,
Amit K Roy-Chowdhury, and Manmohan Chandraker. 2022. Controllable dy-
namic multi-task architectures. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 10955-10964.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91-99.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510-4520.

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

[46]

[47]

[48]

[49]

o
=

[51]

(52

[53]

[54]

[55]

[56]

Jirgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85-117.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012. Indoor
segmentation and support inference from rgbd images. ECCV (5) 7576 (2012),
746-760.

Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang,
and Jason D Lee. 2020. Sanity-checking pruning methods: Random tickets can
win the jackpot. Advances in Neural Information Processing Systems 33 (2020),
20390-20401.

Ruoyu Sun, Dawei Li, Shiyu Liang, Tian Ding, and Rayadurgam Srikant. 2020.
The global landscape of neural networks: An overview. IEEE Signal Processing
Magazine 37, 5 (2020), 95-108.

Tianxiang Sun, Yunfan Shao, Xiaonan Li, Pengfei Liu, Hang Yan, Xipeng Qiu, and
Xuanjing Huang. 2020. Learning sparse sharing architectures for multiple tasks.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 8936-8943.
Xinglong Sun, Ali Hassani, Zhangyang Wang, Gao Huang, and Humphrey Shi.
2022. DiSparse: Disentangled Sparsification for Multitask Model Compression. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12382-12392.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. 2020. Adashare:
Learning what to share for efficient deep multi-task learning. Advances in Neural
Information Processing Systems 33 (2020), 8728-8740.

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James
Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. 2017. Distral:
Robust multitask reinforcement learning. In Advances in Neural Information
Processing Systems. 4496—4506.

Antoine Vanderschueren and Christophe De Vleeschouwer. 2023. Are Straight-
Through gradients and Soft-Thresholding all you need for Sparse Training?. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
3808-3817.

Yulong Wang, Yifan Xu, Siyuan Qiao, Hanxiao Liu, Zhijian Yang, Chao Xu, Daiyi
Lin, Tong Wang, Xinyu Dai, Yichen Huang, et al. 2020. EagleEye: Fast Sub-
net Evaluation for Efficient Neural Network Pruning. In Proceedings of the 37th
International Conference on Machine Learning. 10016—-10026.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information

[57]

(58]

[59]

[61

(62]

[63

[65

[66

[67

Mingcan Xiang, Jiaxun Tang, Qizheng Yang, Hui Guan & Tongping Liu

processing systems. 2074-2082.

Mingcan Xiang, Yinglu Liu, Tingting Liao, Xiangyu Zhu, Can Yang, Wu Liu,
and Hailin Shi. 2021. The 3rd grand challenge of lightweight 106-point facial
landmark localization on masked faces. In 2021 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW). IEEE, 1-6.

Yu Yang and Timothy M Hospedales. 2016. Trace norm regularized deep multi-
task learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4333-4341.

Hancheng Ye, Bo Zhang, Tao Chen, Jiayuan Fan, and Bin Wang. 2023.
Performance-aware Approximation of Global Channel Pruning for Multitask
CNNs. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).
Ruichi Yu, Ang Li, Chun-Fu Chen, Jiwen Lai, Vlad I Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S Davis. 2018. NISP: Pruning Networks
using Neuron Importance Score Propagation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 9194-9203.

Yujia Yu, Shuaishuai Liu, Anfeng Zhang, and Chunhua Shen. 2019. Playing
Lottery Tickets with Vision and Language. In arXiv preprint arXiv:1912.04488.
Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik,
and Silvio Savarese. 2018. Taskonomy: Disentangling task transfer learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
3712-3722.

Lijun Zhang, Xiao Liu, and Hui Guan. 2022. Automtl: A programming framework
for automating efficient multi-task learning. Advances in Neural Information
Processing Systems 35 (2022), 34216-34228.

Lijun Zhang, Xiao Liu, and Hui Guan. 2022. A Tree-Structured Multi-Task Model
Recommender. In International Conference on Automated Machine Learning. PMLR,
10-1.

Lijun Zhang, Qizheng Yang, Xiao Liu, and Hui Guan. 2023. An Alternative Hard-
Parameter Sharing Paradigm for Multi-Domain Learning. IEEE Access 11 (2023),
10440-10452.

Shaokai Zhang, Shanhe Du, Wentai Wang, Yiran Chen, and Hai Li. 2018. A
systematic DNN weight pruning framework using alternating direction method
of multipliers. In Proceedings of the European Conference on Computer Vision
(ECCV). 184-199.

Yu Zhang and Qiang Yang. 2018. A Survey on Multi-Task Learning. arXiv preprint
arXiv:1707.08114 (2018).

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preliminary
	3.2 Adaptive Multitask Model Pruning
	3.3 Adaptive Weighting Mechanism

	4 Experiments
	4.1 Experiment Settings
	4.2 Experiment Results
	4.3 Analysis
	4.4 Ablation Studies

	5 Conclusion
	Acknowledgments
	References

