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ABSTRACT

In this study, a machine learning based computational approach has been developed to investigate the cation distribution in spinel crystals.
The computational approach integrates the construction of datasets consisting of the energies calculated from density functional theory, the
training of machine learning models to derive the relationship between system energy and structural features, and atomistic Monte Carlo
simulations to sample the thermodynamic equilibrium structures of spinel crystals. It is found that the support vector machine model yields
excellent performance in energy predictions based on spinel crystal structures. Furthermore, the developed computational approach has
been applied to predict the cation distribution in single spinel MgAl2O4 and MgFe2O4 and double spinel MgAl2-aFeaO4. Agreeing with the
available experimental data, the computational approach correctly predicts that the equilibrium degree of inversion of MgAl2O4 increases
with temperature, whereas the degree of inversion of MgFe2O4 decreases with temperature. Additionally, it is predicted that the equilibrium
occupancy of Mg cations at the tetrahedral and octahedral sites in MgAl2-aFeaO4 could be tuned as a function of chemical composition.
Therefore, this study presents a reliable computational approach that can be extended to study the variation of cation distribution with
processing temperature and chemical composition in a wide range of complex multi-cation spinel oxides with numerous applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146056

I. INTRODUCTION

Metal oxides with spinel crystal structures have excellent
and highly tunable mechanical, optical, magnetic, and electrical
properties1,2 and, hence, broad applications, such as ferrofluids,3

wastewater treatment,4 biomedical devices,5 catalysts,6 gas sensors,7

electrodes,8 and inductive applications for electric power conversion
and microwave technologies.9 A single spinel oxide has the formula
of AB2O4, with A and B denoting metal cations and O denoting
oxygen ions. The structure of a single spinel oxide can be viewed
in a superlattice containing eight face-centered cubic unit cells and
thirty-two O ions at the lattice points.1 In addition, eight tetrahe-
dral sites and sixteen octahedral sites of the lattice are occupied by A
and B cations. Figure 1(a) shows a normal spinel structure in which
eight A cations occupy the tetrahedral sites and sixteen B cations
occupy the octahedral sites. By contrast, Fig. 1(b) shows an inverse
spinel structure in which eight B cations occupy the tetrahedral sites,

whereas the other eight B cations and eight A cations occupy the
octahedral sites, respectively. The degree of inversion of an AB2O4

spinel crystal is, thus, defined as the fraction of the tetrahedral sites
occupied by B cations and varies from a value of 0.0 in a normal
structure to 1.0 in an inverse structure.

A solid solution of two single spinel oxides (especially a hybrid
of the normal and inverse single spinels) forms a double spinel,10

which has three different types of cations distributed at the tetrahe-
dral and octahedral sites. Figure 1(c) shows a possible configuration
of a double spinel. It has been found that the double spinel could
exhibit superior performance as compared to the constituent sin-
gle spinel in some applications, such as high-performance catalysts
and coating materials against corrosion.11–13 Zhou et al. synthe-
sized double spinel ZnFe0.4Co1.6O4, which shows a higher catalytic
activity for the oxygen evolution reaction than its constituent single
spinels ZnFe2O4 and ZnCo2O4.11 Joshi and Petric showed that dou-
ble spinel Cu0.6Ni0.4Mn2O4 maintained an isothermal conductivity
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FIG. 1. Atomistic structure of (a) a nor-
mal structure of single spinel AB2O4,
(b) an inverse structure of single spinel
AB2O4, and (c) a double spinel crys-
tal with composition A(BC)O4. The red,
gray, blue, and brown balls represent
O ions, A cations, B cations, and C
cations, respectively. The tetrahedrons
and octahedrons enclose the tetrahedral
and octahedral sites occupied by metal
cations, respectively.

of ∼70 S/cm at 600 ○C, which is greater than that of CuMn2O4 and
NiMn2O4.12 Moreover, Yadav et al. found that increasing the Nd
content in double spinel CoFe2-aNdaO4 could enhance the total mag-
netization of the crystal.13 It is widely believed that the modification
of cation distribution in these double spinels as compared to those in
the constituent single spinels is responsible for the observed property
improvement.11–13

Many efforts have been devoted to the development of com-
putational methods to accurately predict the cation distribution in
single and double spinel oxides.14–16 In this aspect, O’Neill et al.
proposed a regular solution based thermodynamic model with con-
sideration of electronic exchange reactions and size mismatch effects
to predict the cation distribution and thermodynamic properties of
double spinels.14 Most predictions from this model were found to
agree with the experimental observation. However, the input para-
meters of this model were largely extracted from empirical data and,
hence, subject to experimental uncertainties due to factors such as
rates of cation distribution reactions, rates of electron exchange, and
non-stoichiometry.14 Applying atomistic Monte Carlo simulations
to sample the equilibrium cation distribution, Palin and Harrison
developed a pairwise Buckingham-form interatomic potential to cal-
culate the system energy of double spinel MgAl2O4–FeAl2O4.15 The
predicted site occupancies of Mg, Al, and Fe cations on the tetra-
hedral and octahedral sites were found to agree with the available
experimental measurement results. It should be pointed out that the
employed interatomic potentials were not uniquely defined even for
the same material system and they had to develop and compare the
results of three different sets of parameters for MgAl2O4–FeAl2O4.
Moreover, Pilania et al. employed a cluster expansion based effec-
tive Hamiltonian approach combined with canonical Monte Carlo
simulations to predict the cation distribution in the normal–inverse
double spinel MgAlGaO4 as a function of temperature.16 To find
the optimal effective cluster interactions for the spinel system,
they used a genetic algorithm to minimize the error between the
cluster expansion-predicted and density functional theory (DFT)-
computed configuration energies of spinel with different cation
distributions. The computational approach was demonstrated to be
capable of predicting ordered ground state, finite temperature cation
ordering, and temperature-dependent cation distribution in double
spinel MgAlGaO4.

Recently, it has been demonstrated that integration of machine
learning techniques with atomistic simulations could accelerate the
computational modeling of material properties and behaviors.17,18

For example, Yin et al. developed a machine-learning interatomic

potential for the refractory high entropy alloy MoNbTaW and, thus,
enabled extensive molecular dynamics simulation of the motion of
both edge and screw dislocations in the alloy over a wide range of
temperatures.17 Yang et al. trained a neural network model over a
DFT calculated dataset to evaluate the potential energy of CuPdAu
surface slabs and further combined it with the Monte Carlo simu-
lations to successfully predict the segregation profiles of the ternary
alloys with varying overall compositions.18

Herein, we developed a DFT data-informed, machine-learning
approach to evaluate the configurational energy of spinel and fur-
ther employed atomistic Monte Carlo simulations to sample the
thermodynamically equilibrium structures and cation distribution
of spinel crystals at a given temperature. In order to validate the
machine learning enabled atomistic simulation method, we applied
it to predict the equilibrium temperature-dependent degree of inver-
sion of single spinel MgAl2O4 and MgFe2O4, as well as the variation
of cation distribution with chemical composition in double spinel
MgAl2-aFeaO4. The computational predictions are found to agree
quite well with the experimental data from the literature. Con-
sequently, machine learning techniques are demonstrated to be
effective in accurately predicting the cation distribution in complex
spinel oxides.

II. COMPUTATIONAL METHODS

A. Density functional theory (DFT) calculations

The first-principles spin-polarized calculations were performed
using the Vienna Ab initio Simulation Package (VASP).19 A
plane wave basis associated with the projector-augmented wave
approach was employed.20 An exchange correlation was treated
with generalized gradient approximation (GGA) in the form of
the Perdew–Burke–Ernzerhof (PBE) functional.21 In all calculations,
the plane-wave cutoff energy was set at 500 eV and the total energy
of the system was converged within 10−6 eV. As in GGA+U calcula-
tions, the effective on-site Coulomb interaction parameter Ueff was
chosen to be 4.0 eV on Fe ions. The structural optimization calcula-
tions used a 4 × 4 × 4 Monkhorst–Pack k-point mesh.22 Each struc-
ture was relaxed until the force on each atom was below 0.01 eV/Å.
The special quasi-random structure (SQS) method implemented in
Alloy Theoretic Automated Toolkit (ATAT) was used to construct
the crystal structures that mimic the cation distribution in a random
oxide.23 In accordance with prior experimental results,24 the ground
state magnetic ordering in MgFe2O4 and MgAl2-aFeaO4 was set to
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be that all the cations at the octahedral sites are of majority spin,
whereas all the cations at the tetrahedral sites are of minority spin.

B. Monte Carlo simulation

The Monte Carlo (MC) simulation method based on the
Metropolis algorithm was implemented to predict the cation dis-
tribution in spinel MgAl2O4, MgFe2O4, and MgAl2-aFeaO4 under
thermodynamic equilibrium conditions. Starting from a given ini-
tial structure, we attempted to swap the positions of two randomly
selected cations at eachMC iteration. The energy associated with the
structural change was calculated with the machine learning mod-
els. A Boltzmann distribution-based probability (p) was used to
determine the acceptance or rejection of the attempted structural

change. Specifically, probability p = min [1, exp (− �E
kBT
)], where �E

is the energy caused by the structural change, kB is the Boltzmann
constant, and T is the system temperature. The equilibrium degree
of inversion of spinel MgAl2O4 and MgFe2O4 and site occupan-
cies of Mg, Al, and Fe cations in MgAl2-aFeaO4 were evaluated
as the value averaged over 500 equilibrium structures sampled
every 100 MC iterations during the last 50 000 iterations of the
MC simulations.

III. RESULTS AND DISCUSSION

A. Single spinel MgAl2O4 and MgFe2O4

1. Datasets

In this study, we first constructed datasets consisting of the
energies and structures of single spinel crystals for training machine
learning models. Included as the targeted property in the datasets,
the system energies of single spinel MgAl2O4 and MgFe2O4 with
various degrees of inversion have been calculated using the DFT
method. The lattice parameter of MgAl2O4 in a normal spinel struc-
ture was predicted to be 8.17 Å, agreeing well with the previous
computational value of 8.18 Å.25 The lattice parameter of MgFe2O4

with a degree of inversion of 0.75 was predicted to be 8.47 Å, con-
sistent with the previous computational value of 8.52 Å and the
experimental result of 8.40 Å.26,27 Figure 2 plots the DFT calculated
formation enthalpy (relative to the value of normal spinel structure)
of single spinel MgAl2O4 and MgFe2O4 as a function of degree of
inversion. The DFT results indicate that MgAl2O4 would prefer to
have a normal spinel structure, whereas MgFe2O4 tends to have an
inverse spinel structure at low temperatures. Moreover, noticeable
deviations from the linear extrapolation (shown with the dashed
lines) are indicative of interactions between cations on the allowed
sublattices as mediated by the differences in various chemical bonds
that arise as a result of the specific cation site occupation.28

Included as a structural feature in the datasets, the num-
bers of different types of cation–oxygen–cation bonds (denoted as
M1–O–M2), connecting twometal cations by an oxygen ion in single
spinel MgAl2O4 and MgFe2O4, have been determined from crystal
structure analysis. In our previous study,28 we identified that the
angles of the M1–O–M2 bonds in a single spinel crystal had five
possible values, namely 79○, 90○, 125○, 154○, and 180○, and there
were two distinct types of M1–O–M2 bonds with an angle of 125○

owing to different bond lengths. Taking the permutation of distinct
A and B cations into account, there should be 24 types of M1–O–M2

FIG. 2. Variation of the DFT calculated formation enthalpy of single spinel MgAl2O4

and MgFe2O4 crystals as a function of degree of inversion. The error bars repre-
sent the standard deviation. The dashed lines show a linear extrapolation of the
formation enthalpies of the normal and inverse spinel, analogous to an “ideal solid
solution model” for chemical ordering on allowed sublattices.

bonds in a single spinel crystal. However, the length of M1–O is
found to be equal to that of O–M2 only in the M1–O–M2 bond
with an angle of 90○, causing bond A–O–B–90○ to be the same
as bond B–O–A–90○. Consequently, a single spinel crystal has a
total of 23 distinct types of M1–O–M2 bonds. Thus, a twenty-three-
dimensional vector was used to describe each structure of single
spinel MgAl2O4 and MgFe2O4 in our datasets. The values of the
vector are the numbers of the represented type of the M1–O–M2

bonds in the crystal. It is worth pointing out that in the case of mag-
netic properties and magnetic spinel ferrites, the angle and distance
of various M1–O–M2 bonds play an important role in determin-
ing the strength and sign of the super-exchange interaction between
cations, thereby dictating properties such as magnetic ordering tem-
peratures.9 Consequently, the present study paves the way for future
studies to establish the relationship betweenmagnetic properties and
the structure of complex spinel oxides.

In Table I, we present the number of distinct spinel struc-
tures in the datasets for single spinel MgAl2O4 and MgFe2O4. Since
MgAl2O4 is a prototypical normal spinel, more structures with a
degree of inversion in the range from 0.25 to 0.75 are included.
Because MgFe2O4 is predominantly an inverse spinel, more struc-

TABLE I. Numbers of distinct atomic structures of single spinel MgAl2O4 and
MgFe2O4 with various degrees of inversion in the datasets for machine learning.

Degree of inversion (x) MgAl2O4 MgFe2O4

0.00 1 1
0.25 20 1
0.50 20 15
0.75 20 15
1.00 1 15

Total number 62 47
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tures with a degree of inversion in the range from 0.50 to 1.00 are
included in the datasets.

2. Machine learning

Four different machine learning models, namely linear regres-
sion, gradient booster machine, neural network, and support vector
machine as implemented in scikit learn,29,30 have been employed to
find the relation between the system energy and structural features of
single spinel MgAl2O4 and MgFe2O4. The linear regression by ordi-
nary least squares assumes linearity between the structural features
and the target property, whereas the other three machine learning
models perform non-linear regression analysis. The gradient booster
machine is a method to find a nonlinear relationship in the form
of an ensemble of weak learners and further boost weak learners
into a strong predictive model. The gradient booster machine has
tunable hyperparameters, such as the maximum depth of individ-
ual regression estimators (max_depth), loss function, learning rate,
and the number of boosting stages to perform (n_estimator).29 The
neural network consists of the input layer, hidden layers, and output
layer, with a series of neurons in each layer. During the training pro-
cess, each neuron in the hidden layers transforms the values from
the previous layer by a weighted linear summation followed by a
non-linear activation function. In the neural network model, the
hyperparameters tuned include activation functions, hidden layer
sizes, and the solver for weight optimization.29 The support vector
machine deals with non-linearity by transforming the input data into
higher dimensions using kernel functions such as linear, polynomial
(poly), and radial basis function (RBF). During the training of the
support vectormachinemodel, the types of kernel functions, the reg-
ularization parameter (C) associated with the training loss function,
and the kernel coefficient (gamma) are tuned.29

Grid search and four-fold. cross-validation were used to find
the optimal hyperparameters of the four machine learning models.
During the fourfold cross-validation, 75% of the total data was
used to train the machine learning models and the remaining 25%
of the total data was used to test the performance of the pre-
dictions. In Table II, we give the hyperparameters of the three
non-linear machine learning models optimized from the training
set. The performance of the machine learning models was evaluated
using metrics including mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), and the coefficient
of determination (R2) between the predicted and DFT calculated
data in the test set. The higher value of R2 suggests a better fit
of the model. With R2 values ranging from 0.8331 to 0.9569 for

MgAl2O4 and 0.7971–0.9635 for MgFe2O4, all four models exhibit
good performance in the prediction of the energies of the single
spinel crystals.

Among the four machine learning models, the support vector
machine was found to have the best performance in predicting the
system energies of single spinel MgAl2O4 and MgFe2O4, as exhib-
ited by the performance metrics in Table III. The support vector
machine model for MgAl2O4, with a regularization parameter of
6.2 and a polynomial function as the kernel function, has an R2

value of 0.9569 and an RMSE of 0.0121. For MgFe2O4, the sup-
port vector machine model uses the radial basis function as the
kernel function and the regularization parameter of 2.3, produc-
ing energy predictions with an R2 value of 0.9635 and an RMSE
value of 0.0058. The success of the support vector machine model
lies in its robustness in predicting nonlinear relationships and offer-
ing flexible hyperparameter tuning. In contrast, the linear regression
was found to have the least predictive performance, with R2 of
0.8331 and RMSE of 0.0171 for MgAl2O4 and R2 of 0.7971 and
RMSE of 0.0073 for MgFe2O4. Therefore, as compared to the linear
regression, the support vector machine reduces the test set RMSE
by 29.24% for MgAl2O4 and 20.55% for MgFe2O4, respectively.
Such an improvement in predictive performance indicates that the
nonlinearity between the system energy and the selected structural
feature (i.e., the number of distinct types of M1–O–M2 bonds) of
spinel crystal should be properly treated during machine learning.
Figures 3(a) and 3(b) show the comparison between the best per-
forming support vector machine model and DFT predicted energies
for single spinel MgAl2O4 and MgFe2O4, respectively. It is notice-
able that the data exhibit very slight scattering around the reference
line, indicating the good predictive performance of the support
vector machine model.

As plotted in Fig. 3(c), we have further examined the conver-
gence of energy predictions from the support vector machine model
with an increasing number of distinct structures in the datasets. At
each given size, the specified numbers of data points were randomly
selected from the whole dataset. For our analysis, such a random
selection process of data had been repeated 100 times, and the four-
fold cross-validation was performed each time. Hence, the value of
RMSE at each given size of the dataset in Fig. 3(c) is the average
value of 100 tests. The results in Fig. 3(c) show that RMSE con-
verges well to the value for the whole dataset if the sub-datasets
contain more than 50 distinct structures of MgAl2O4 and more than
30 distinct structures of MgFe2O4, respectively. Consequently, our
whole datasets, as given in Table I, having 62 structures of MgAl2O4

TABLE II. Hyperparameters of machine learning models for single spinel MgAl2O4 and MgFe2O4.

Model name Selected parameters

MgAl2O4

Gradient booster regression max_depth = 5, loss function = square error, learning rate = 0.1, n_estimator = 4000
Neural network Activation function = logistic, hidden_layer_sizes = (20, 40), solver = lbfgs

Support vector machine Kernel function = poly, C = 6.2, gamma = scale

MgFe2O4

Gradient booster regression max_depth = 7, loss function = square error, learning rate = 0.01, n_estimator = 7000
Neural network Activation function = logistic, hidden_layer_sizes = (120, 160), solver = lbfgs

Support vector machine Kernel function = rbf, C = 2.3, gamma = scale
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TABLE III. Performance metrics of machine learning models for single spinel MgAl2O4 and MgFe2O4.

Model name MAE MSE RMSE R2 value

MgAl2O4

Linear regression 0.0137 0.0003 0.0171 0.8331
Gradient booster machine 0.0106 0.0003 0.0152 0.9342

Neural network 0.0093 0.0002 0.0124 0.9525
Support vector machine 0.0090 0.0002 0.0121 0.9569

MgFe2O4

Linear regression 0.0050 0.00008 0.0073 0.7971
Gradient booster machine 0.0051 0.00005 0.0067 0.9429

Neural network 0.0042 0.00005 0.0064 0.9440
Support vector machine 0.0040 0.00004 0.0058 0.9635

and 47 structures of MgFe2O4, are sufficiently large and inclusive
for the machine learning models to achieve acceptable accuracy of
predictions.

3. Monte Carlo simulations

The well-trained linear regression model and support vector
machine model were further applied in atomistic Monte Carlo sim-
ulations to predict the equilibrium cation distribution (i.e., degree
of inversion) in single spinel MgAl2O4 and MgFe2O4. The simu-
lation cells contain eight formula units of the spinel crystal and,
thus, 56 atoms in total. For both spinel crystals, the initial structure
was chosen to have a degree of inversion of 0.5 and the degree of
inversion was allowed to evolve with the progression of the Monte
Carlo simulations, which run in a total of 100 000 iterations at each
given temperature. The temperature of the Monte Carlo simulations
ranges from 473 to 1573 K. The equilibrium degree of inversion of
MgAl2O4 and MgFe2O4 at a given temperature was thus evaluated
by averaging the degree of inversion of 500 structures selected with
a 100-step interval from the last 50 000 iterations of the Monte Carlo
simulations.

Figure 4 shows the predicted degree of inversion of single spinel
MgAl2O4 and MgFe2O4 as a function of temperature. Starting from

a value of 0.5, the degree of inversion of MgAl2O4 decreases toward
that of a normal spinel, whereas the degree of inversion of MgFe2O4

increases toward that of an inverse spinel in the Monte Carlo sim-
ulations. Applying the support vector machine model in the Monte
Carlo simulations, we predict quantitatively that the degree of inver-
sion of MgAl2O4 gradually increases with temperature from 0.009
at 676 K to 0.313 at 1573 K, whereas the degree of inversion of
MgFe2O4 decreases with temperature from 0.901 at 473 K to 0.736
at 1573 K. It is notable that our results agree well with previous
experimental measurement results.31–36

Furthermore, we conducted an analysis to quantify the errors
in the DFT calculations and machine learning based computa-
tional approach as compared to experimental results in the lit-
erature. Table IV gives the formation energies of MgAl2O4 and
MgFe2O4, both calculated from the DFT method37 and measured
experimentally,38,39 showing an error of less than 1.4% in the DFT
energy calculations. Using the machine learning based computa-
tional approach, the degree of inversion of MgAl2O4 at high tem-
perature (1173 K) was predicted to be 0.191, very close to the value
experimentally determined by Redfern et al. (x = 0.194 ± 0.01)31

and Maekawa et al. (x = 0.211 ± 0.015).32 At 1273 K, the degree
of inversion of MgFe2O4 was predicted to be 0.740, which is also

FIG. 3. DFT calculated energies as compared to the energies predicted from support vector machines for single spinel (a) MgAl2O4 and (b) MgFe2O4. In (a) and (b), the
black and red dots show the data in the train dataset and test dataset, respectively. (c) Variation in the test set RMSE of the support vector machine model as a function of
the number of different structures in the datasets for single spinel MgAl2O4 and MgFe2O4.
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FIG. 4. Variation of degree of inversion of single spinel (a) MgAl2O4 and (b) MgFe2O4 as a function of temperature. Experimental data from Redfern et al.,31 Maekawa
et al.,32 and Andreozzi et al.35 for MgAl2O4 and from O’Neill et al.,34 Antao et al.,36 and Levy et al.33 for MgFe2O4 are included for comparison with the machine learning
model predictions.

TABLE IV. DFT predicted formation energies of single spinel MgAl2O4 (x = 0.00) and
MgFe2O4 (x = 1.00) as compared to experimental values.

DFT-PBE (eV/f.u.) Experimental (eV/f.u.) Error (%)

MgAl2O4 −23.59 −23.8038 0.9
MgFe2O4 −14.70 −14.9139 1.4

very close to the values of 0.720 ± 0.011 measured by Levy et al.33

and 0.734 ± 0.01 by O’Neill et al.34 Consequently, the difference
in the degree of inversion of a single spinel at a high temperature
between the machine learning model predictions and experimen-
tal data was found to range from 0.003 to 0.02, which is in the
same order of magnitude as the systematic error of experimental
measurements.31–34 However, Fig. 4(a) shows a much more pro-
nounced discrepancy for the degree of inversion of MgAl2O4 at low
temperatures between the machine learning model predictions and
experimental data. This discrepancy might be attributed to the dif-
ficulty reaching thermal equilibrium states in experimental samples
at low temperatures. Redfern et al. reported that the experimentally
measured values of the degree of inversion could vary apprecia-
bly with different heat treatment processes at temperatures below
800 ○C.31

Although the linear regression has an inferior predictive per-
formance than the support vector machine, as shown in Table III,
it is quite interesting to show in Fig. 4 that the two machine learn-
ing models give a pretty consistent prediction of the temperature-
dependent degree of inversion of single spinel MgAl2O4 and
MgFe2O4. It is noticeable that, for MgFe2O4, the predicted degree of
inversion with the linear regressionmodel is slightly higher than that
with the support vector machine model in the temperature range
studied. Therefore, our results demonstrate that the Monte Carlo
simulations enabled by the support vector machine model can accu-
rately predict the cation distribution (i.e., degree of inversion) in

single spinel MgAl2O4 and MgFe2O4, as validated by the available
experimental results in Fig. 4.

B. Double spinel MgAl2-aFeaO4

1. Datasets

Furthermore, we extended the developed machine learning
based computational approach to predict the cation distribution
in double spinel MgAl2-aFeaO4. To this end, we added the DFT
calculated system energies of the double spinel with various chem-
ical compositions and cation distributions into the dataset. Table V
presents the DFT predicted lattice parameters of the MgAl2-aFeaO4

crystal. The predicted lattice parameters agree well with the exper-
imental results.40 Moreover, our results show that the lattice para-
meter increases linearly with increasing content of Fe cations
(denoted by a), due to the replacement of small Al cations with large
Fe cations.41

TABLE V. Predicted lattice parameters of double spinel MgAl2-aFeaO4 with various
compositions and with a random cation distribution.

Composition (a) in MgAl2-aFeaO4
Lattice parameter (Å)

This work Experimental40

0.00 8.17 8.09
0.25 8.21 8.12
0.50 8.25 8.16
1.00 8.33 ⋅ ⋅ ⋅

1.25 8.36 8.28
1.50 8.39 8.33
1.75 8.43 8.34
2.00 8.47 8.36
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TABLE VI. Summary of distinct structures in our dataset for double spinel MgAl2-aFeaO4. The crystal structure of double
spinel consists of eight formula units and twenty-four metal cations.

Composition of Fe Tetrahedral site Octahedral site Number

in MgAl2-aFeaO4 Mg Al Fe Mg Al Fe of structures

a = 0.25

6 1 1 2 13 1 4
5 2 1 3 12 1 4
4 3 1 4 11 1 4
3 4 1 5 10 1 4

a = 0.50
6 1 1 2 11 3 4
5 1 2 3 11 2 4
4 2 2 4 10 2 4

a = 1.00
8 0 0 0 8 8 4
6 1 1 2 7 7 4
5 2 1 3 6 7 4

a = 1.25
3 1 4 5 5 12 4
2 2 4 6 4 11 4
2 1 5 6 5 11 4

a = 1.50
6 1 1 2 3 11 4
5 1 2 3 3 10 4
4 2 2 4 2 10 4

a = 1.75
2 0 6 6 2 8 4
1 0 7 7 2 7 4
1 1 6 7 1 8 4

As compared to single spinel, double spinel has the same con-
figurations of M1–O–M2 bonds but has one additional type of
cation. Based on the permutation of three distinct cations, there will
be 51 different types of M1–O–M2 bonds in a double spinel crystal.
Hence, a 51-dimensional vector was used to describe each structure
of double spinel MgAl2-aFeaO4 and the values in the vector quanti-
fied the numbers of the represented types of the M1–O–M2 bonds in
the crystal.

As shown in Table VI, we constructed a dataset specific for
double spinel MgAl2-aFeaO4 with Fe content (a) varying from
0.25 to 1.75 and with different occupancies of Mg, Al, and Fe
cations at the tetrahedral and octahedral sites. In total, our dataset
contains the energies and structures of 76 distinct double spinel
crystals.

2. Machine learning

For a comparative analysis, the four machine learning models
have also been examined to derive the relationship between struc-
tural features and system energies of double spinel MgAl2-aFeaO4

using the dataset given in Table VI. Using the optimized parameters
(Table VII), the four machine learning models consistently generate
excellent energy predictions with an R2 value above 0.99. As pre-
sented in Table VIII, the support vector machine model exhibits the
best performance with an RSME value of 0.0161 and an R2 value
of 0.99974 by choosing a polynomial function as the kernel func-
tion and a regularization parameter of 7.0. The comparison between
the DFT calculated energy and the predicted energy by the best per-
forming support vector machine model is presented in Fig. 5(a).

TABLE VII. Hyperparameters of machine learning models for double spinel MgAl2-aFeaO4.

Model name Selected parameters

Gradient booster machine max_depth = 100, loss function = square error, learning rate = 0.1, and n_estimator = 1500
Neural network Activation function = identity, hidden_layer_sizes = (100, 200), and solver = lbfgs
Support vector machine Kernel function = poly, C = 7.0, and gamma = scale
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TABLE VIII. Performance metrics of machine learning models for double spinel
MgAl2-aFeaO4.

Model name MAE MSE RMSE R2 value

Linear regression 0.0130 0.0003 0.0174 0.99971
Gradient booster machine 0.0315 0.0017 0.0403 0.99849
Neural network 0.0130 0.0003 0.0173 0.99971
Support vector machine 0.0123 0.0003 0.0161 0.99974

A remarkably small scattering of the energies predicted from the
support vector machine model with respect to those DFT-predicted
energies was observed.

The convergence of energy predictions from the support vector
machine model with an increasing number of distinct structures in
the dataset of double spinel MgAl2-aFeaO4 is plotted in Fig. 5(b). Our
results show that the value of the test set RMSE is reduced by 85.63%
when the number of distinct structures in the dataset increases from
10 to 76. The value of the test set RMSE for the dataset with 65 struc-
tures has already been very close to the value for the whole dataset of
76 structures. Therefore, our dataset for double spinel MgAl2-aFeaO4

is sufficiently large and inclusive for the machine learning models to
achieve acceptable accuracy in their predictions.

3. Monte Carlo simulations

In this study, we have compiled a dataset for the
MgAl2O4–MgFe2O4 system, which includes 62 structures for
single spinel MgAl2O4, 47 structures for single spinel MgFe2O4,
and 76 structures for double spinel MgAl2-aFeaO4. The support
vector machine model was trained over this whole dataset. With
a regularization parameter of 4.0 and a polynomial function as the
kernel function, the support vector machine model could achieve
an impressive performance on the test set in the four-fold. cross-
validation with metrics of an R2 value of 0.9991, a MAE of 0.0122,
a MSE of 0.0011, and a RMSE of 0.0334. This well-trained support
vector machine model was further applied in the atomistic Monte
Carlo simulations to predict the equilibrium cation distribution in
double spinel MgAl2-aFeaO4 at 1473 K. For comparison, we also
used the same dataset to fit the interaction coefficients of a cluster
expansion method, which has a total of 11 interaction coefficients
and includes up to four-body interaction terms.42–45 The predictive

performance of the physics-based cluster expansion method on the
test set in the four-fold. cross-validation was determined to be an R2

value of 0.9996, a MAE of 0.0210, a MSE of 0.0010, and a RMSE of
0.0313, closely comparable with that of the support vector machine
model.

In the Monte Carlo simulations, the simulation cell consists of
eight formula units with 56 atoms, and each Monte Carlo simula-
tion runs 100 000 iterations. The initial structure was chosen to be
the one with the lowest energy and the same composition in the
dataset. Figure 6 shows the site occupancies of Mg, Al, or Fe cation
in MgAl2-aFeaO4 predicted from the Monte Carlo simulations. The
site occupancy was calculated as the average number of a specified
type of cation over the number of the same sites (tetrahedral or
octahedral) in the spinel crystal. As shown in Figs. 6(a)–6(c), con-
sistent with an increase in Fe content (i.e., a varies from 0.0 to 2.0)
in MgAl2-aFeaO4, the site occupancies of the Al cation decrease
monotonously at both the tetrahedral sites (from 0.23 to 0.00) and
octahedral sites (from 0.89 to 0.00), whereas those of the Fe cation
increase monotonously at the tetrahedral sites (from 0.00 to 0.73)
and octahedral sites (from 0.00 to 0.63). More interestingly, the site
occupancy of the Mg cation was found to decrease from 0.77 to 0.27
at the tetrahedral sites but increase from 0.11 to 0.37 at the octa-
hedral sites with increasing Fe content (i.e., decreasing Al content).
Our predictions are found to agree excellently with the experimental
results for the double spinel samples synthesized at 1473 K.40 More-
over, Figs. 6(a)–6(c) show that the predicted cation site occupancies
from themachine learning based support vector machine model and
material physics based cluster expansion method agree excellently,
indicating that the machine learning models based on a structure
feature described only byM1–O–M2 bonds have the same predictive
performance as the computational method considering many-body
interactions for spinel crystal.

In Fig. 6(d), we compare the fractions of Mg cation at the tetra-
hedral and octahedral sites. The fraction of Mg cations is calculated
as the average number of Mg cations at the sites (tetrahedral or octa-
hedral) over the total number of Mg cations. It was found that the
fraction of Mg cations at the tetrahedral sites would decrease almost
linearly from 0.77 to 0.27 (i.e., a linear increase in the fraction of Mg
cations at the octahedral sites from 0.23 to 0.73) with the increase
in the Fe content in double spinel MgAl2-aFeaO4. When the a of the
Fe content reaches a value of about 1.2, the Mg cations at the tetra-
hedral and octahedral sites have an equal fraction. Consequently,

FIG. 5. (a) DFT calculated energies as
compared to the energies predicted from
the support vector machine for double
spinel MgAl2-aFeaO4. In the figure, the
black and red dots show the data in
the train dataset and test dataset,
respectively. (b) Variation in the test set
RMSE of the support vector machine
model as a function of the number of dif-
ferent structures in the dataset for double
spinel MgAl2-aFeaO4.
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FIG. 6. Predicted site occupancy of
(a) Mg, (b) Al, and (c) Fe cations
as a function of Fe content in dou-
ble spinel MgAl2-aFeaO4. The circles
and diamonds show the experimentally
measured site occupancies of the three
cations at the tetrahedral and octahe-
dral sites, respectively.40 The dashed
lines show the predictions with a cluster
expansion method. (d) Predicted fraction
of Mg cations occupied the tetrahedral
and octahedral sites in double spinel
MgAl2-aFeaO4. The circles represent the
experimental results.40

our results suggest that the fraction of Mg cations at different sites
could be tuned by controlling the Fe and Al contents in double spinel
MgAl2-aFeaO4.

It is worth mentioning that site occupation plays an impor-
tant role in the overall magnetization of spinel crystal due to the
cancellation ofmoments between two antiferromagnetically coupled
sublattices.46 Conventional models apply relatively simple factors,
such as ionic valence, cation size, and crystal field as a function of
chemistry, to predict the site preference energies of different cations
in spinel crystals. Comparing these site preference energies,46 the
tendency to occupy an octahedral site by Mg2+ was believed to
be stronger than that of Fe3+ but less than that of Al3+. Hence,
the conventional models qualitatively explain the preference of Mg
cations at the octahedral sites in the inverse structure of MgFe2O4,
the preference of Mg at the tetrahedral sites in the normal struc-
ture of MgAl2O4, and the variation of Mg site occupancy from the
tetrahedral to octahedral sites with increasing Fe content in dou-
ble spinel MgAl2-aFeaO4. In contrast, the current computational
approach provides a much more quantitatively robust prediction of
the site occupancy of cations with consideration of the plethora of
bond types that occur, in practice, for complex multi-cation spinel
ferrite systems.

IV. CONCLUSION

In this study, we constructed datasets consisting of the sys-
tem energies and structural features of a wide variety of single

spinelMgAl2O4 andMgFe2O4 and double spinelMgAl2-aFeaO4 with
different cation distributions. The system energies of these spinel
oxides were computed using the DFT method. The structural fea-
tures of these spinel oxides were represented using high-dimensional
vectors containing the number of distinct types of M1–O–M2 bonds
in the crystal. Single spinel MgAl2O4 and MgFe2O4 have 23 distinct
types of M1–O–M2 bonds, whereas double spinel MgAl2-aFeaO4 has
51 distinct types of M1–O–M2 bonds.

Fourmachine learningmodels, including linear regression, gra-
dient booster machine, neural network, and support vectormachine,
have been examined to derive the relationship between the system
energy and structural features of these spinel oxides. The perfor-
mance of the machine learning models was evaluated using the
metrics including MAE, MSE, RMSE, and R2 on the test dataset.
Among the four models, it was found that the support vector
machine model led to the lowest RMSE and the highest R2 in pre-
dicting the energies of single spinel MgAl2O4 and MgFe2O4 and
double spinel MgAl2-aFeaO4. The values of R

2 of the support vector
machinemodel were calculated to be 0.9569 forMgAl2O4, 0.9635 for
MgFe2O4, and 0.99974 for MgAl2-aFeaO4, manifesting the high reli-
ability of the derived structure–energy relation from this machine
learning model.

Furthermore, the structure–energy relation derived from the
support vector machinemodel was applied in atomisticMonte Carlo
simulations to predict the equilibrium cation distribution in sin-
gle spinel MgAl2O4 and MgFe2O4 and double spinel MgAl2-aFeaO4.
Simulation results show that MgAl2O4 has an equilibrium crystal
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structure close to the normal spinel crystal, but MgFe2O4 has a
structure close to the inverse spinel crystal. Moreover, the degree of
inversion of MgAl2O4 was predicted to increase with temperature
from 0.009 at 676 K to 0.313 at 1573 K, whereas the degree of inver-
sion ofMgFe2O4 was found to decrease with temperature from 0.901
at 473 K to 0.736 at 1573 K. The predicted temperature-dependent
degree of inversion of the two single spinel oxides is found to agree
well with experimental data. For double spinel MgAl2-aFeaO4, the
Monte Carlo simulation method was employed to predict the varia-
tion in the site occupancies of Mg, Al, and Fe cations with increasing
Fe content. The simulation results indicated that the distribution of
Mg cations at the tetrahedral and octahedral sites in double spinel
MgAl2-aFeaO4 was tunable through the control of chemical compo-
sition. It was predicted that the fraction of Mg cations occupying
the tetrahedral sites would decrease from 0.77 to 0.27 (i.e., increase
from 0.23 to 0.73 at the octahedral sites) with a change of Fe con-
tent (i.e., a) from 0.0 to 2.0 in the double spinel. It should be noted
that our computational results for the cation distribution in complex
MgAl2-aFeaO4 agree quantitatively with experimental measurement
results and are consistent with the qualitative predictions based on
cation site preference energies.

Therefore, we have demonstrated that DFT data-informed,
machine learning enabled Monte Carlo simulations could be used
to predict the cation distribution in spinel crystals. The computa-
tional approach is well validated by the good agreement between
the predicted and experimentally measured temperature-dependent
degree of inversion of single spinel MgAl2O4 and MgFe2O4 and the
variation of cation distribution with chemical composition in dou-
ble spinel MgAl2-aFeaO4. The developed computational approach is
expected to be a vital computational tool for future studies that aim
to predict the cation distribution in complex spinel with multiple
(i.e., four or five) types of metal cations.
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