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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Catalytic torrefaction of wood block re-
duces up to 67% of torrefaction 
duration. 

• The scale-up of the wood block with K- 
impregnation and torrefaction was 
successful. 

• Potassium improved the torrefaction 
severity index by up to 10%. 

• Wood’s thermal properties after torre-
faction and K-impregnation were com-
parable to coal. 

• Artificial neural network predicted the 
SY, EY, and EF with R2 > 0.99.  
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A B S T R A C T   

Catalytic torrefaction using potassium carbonate (K2CO3) impregnation is a pretreatment method demonstrated 
to catalyze wood powder’s thermal degradation for energy use. In this study, beech wood boards were 
impregnated with K2CO3, with the aim to scale up from the studies on wood powder found in the literature. The 
beech boards were impregnated with five different concentrations and torrefied at 300◦C for four durations 
(5–60 min). The impregnation procedure was successful with a linear increase of K content in wood from 0.103 
wt% for raw to 0.207 wt% for the 0.012 M sample. The weight loss during torrefaction increased with the 
increasing potassium (K) content in wood, reaching a maximum increase of 27.17% between 0.012 M and 
washed (no K2CO3) after 30 min. For the longest duration, the extent of the catalytic action of K decreased, 
similar to what is observed in wood powder. After 60 min torrefaction, potassium increased the torrefaction 
severity index by up to 10% and the higher heating value (HHV) by up to 55%. Potassium efficiently increased 
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the fixed carbon and decreased the volatile matter to values comparable to coal by catalyzing the devolatilization 
during torrefaction. The atomic H/C and O/C ratios shifted to similar ratios as coal. The energy yield (EY) was 
above 80% for the shorter durations but dropped drastically at 30 and 60 min torrefaction. The prediction of the 
solid yield (SY), energy yield (EY), and enhancement factor of the HHV (EF) through an artificial neural network 
was robust with a fit quality R2≥0.999. The proposed method for catalytic torrefaction on wood boards was 
efficient and could be used prior to grinding and transportation for bioenergy production. This process could 
decrease the production costs of biomass fuel to compete with fossil fuels.   

1. Introduction 

Establishing renewable energy sources is critical with the rising 
concern of the global energy crisis. The energy demand is surging, and 
fossil-fuel extraction costs are increasing, leading to a peak in fuel costs 
[1]. Therefore, renewable energy, including biomass energy, is an 
effective substitute for depleting conventional fuel sources [2]. Using 
biomass fuel such as wood is considered clean energy due to its low 
greenhouse gases (GHG) emissions [3]. However, biomass energy needs 
to be affordable to compete with conventional fuel and, therefore, re-
quires process optimization. Thermochemical conversion methods are 
developed to upgrade the biomass’ properties according to the desired 
product characteristics. These methods include but are not limited to 
pyrolysis [4] and hydrothermal carbonization [5,6]. Torrefaction is 
proposed as wood pretreatment to withstand environmental conditions 
and to increase the solid biofuel’s quality [7]. During torrefaction, the 
biomass is heated in an inert atmosphere (vacuum, nitrogen, flue gas, 
etc.) at a temperature range of 200–300◦C [8]. This method induces 
thermochemical reactions that increase wood’s homogeneity, higher 
heating value (HHV), and hydrophobicity. Meanwhile, torrefaction re-
duces wood’s density and moisture content [7,9]. It impacts the me-
chanical properties of biomass by facilitating the particle size reduction 
in a narrower range and decreasing the tensile strength while increasing 
friability [10]. These changes in properties improve the upgraded bio-
fuel’s grinding, storage, and transportation. By facilitating grindability, 
torrefaction reduces the energy consumption linked to particle size 
reduction [11]. Manouchehrinejad et al. [12] stated that torrefying 
wood prior to grinding reduces the energy required for grinding by up to 
90%, reducing production costs substantially. Moreover, studies showed 
that torrefied wood pellets have a lower energy density than untreated 

pellets. This results in lower transportation and fuel production costs 
compared to untreated pellets [13]. Torrefaction pretreatment produces 
a more thermally-stable lignocellulosic biomass [14], making it more 
suitable for storage. Moreover, the transportation and combustion of 
torrefied wood emit a significantly lower quantity of greenhouse gases 
(GHG) than untreated wood [15]. This means that torrefying wood prior 
to grinding and transportation for heat and power generation could be a 
viable solution to reduce biofuel prices and even replace coal [16]. 
Torrefied biomass is recommended in co-firing and has the potential to 
completely replace coal without decreasing the boiler’s efficiency [17]. 

Potassium (K) is essential for plant growth and improves photosyn-
thesis’ CO2 fixation [18]. Its presence in greenwood is in ionic form (K+) 
[19]. Potassium can be added to lignocellulosic biomass by impreg-
nating small wood particles or powder [20]. Then, the drying after 
impregnation can be achieved at a low cost using low-temperature waste 
heat, accounting for 60% of the dissipated heat in energy production 
processes [21]. Potassium is an alkali catalyst that influences the dy-
namics and products of pyrolyzed biomass [22]. Hwang et al. [23] 
noticed a char yield increase with the increase of potassium content 
during pyrolysis. According to Guo et al. [24], the K-impregnation of 
pine wood largely increases the gas yield and reduces tar formation 
during pyrolysis. During the combustion of wood particles, potassium 
impacts the ignition delay and volatile combustion times [25]. However, 
minerals’ devolatilization at high temperatures increases corrosion risks 
and slagging behavior. Therefore, the operating temperatures should not 
exceed 750–850 ◦C, depending on the desired application, to avoid K 
devolatilization [26]. This temperature range is considered sage for K- 
catalyzed thermal processes to produce high-quality biochar, activated 
carbon, or fertilizer [27–29]. At torrefaction temperatures, potassium 
addition affects the thermal degradation kinetics of wood powder by 
accelerating weight loss [30]. Silveira et al. [31] found that increasing 

Nomenclature 

Abbreviation 
GHG Greenhouse gas 
HHV Higher heating value (MJ.kg−1) 
TSI Torrefaction severity index 
EY Energy yield (%) 
EF Enhancement factor of HHV 
SY Solid yield (wt%) 
ANN Artificial neural network 
ICP-AES Inductively coupled plasma atomic emission spectroscopy 
db Dry basis 
AC Ash content (wt% db) 
VM Volatile matter content (wt% db) 
FC Fixed carbon content (wt% db) 
TR Temperature recorder 

Molecules 
C Carbon 
O Oxygen 
H Hydrogen 
N Nitrogen 

Mn Manganese 
Mg Magnesium 
Ca Calcium 
Na Sodium 
K / K+ Potassium / Potassium ion 
KCl Potassium chloride 
K2CO3 Potassium carbonate 
CO2 Carbon dioxide 

Symbols 
IP Impregnation percentage of the solution in the wood block 

(%) 
IRK Impregnation ratio of potassium in the wood compared to 

the raw (db) 
WL Weight loss (wt% db) 
σ Pearson standard deviation 
RSY Relative solid yield is the ratio between the SY of the 

impregnated sample to the SY of the raw one (%) 
REY Relative energy yield is the ratio between the EY of the 

impregnated sample to the EY of the raw one (%) 
REF Relative enhancement factor is the ratio between the EF of 

the impregnated sample to the EF of the raw one (%)  

L. Richa et al.                                                                                                                                                                                                                                    



Applied Energy 351 (2023) 121894

3

potassium content in wood decreased the maximum degradation tem-
perature, mainly attributed to cellulose. The catalytic effect of potassium 
in wood’s torrefaction is attributed to its actions of cleaving hydrogen 
bonds in cellulose and cleaving C–C bonds and glycosidic linkages [32]. 

The torrefaction severity index (TSI) is a crucial indicator to measure 
the impact of torrefaction on biomass thermodegradation [33]. When 
the torrefaction extent increases, the thermal properties of wood change. 
This change is evaluated by the determination of the energy yield (EY) 
and higher heating value (HHV) [34,35]. The energy yield depends on 
the enhancement factor of the HHV (EF) and the solid yield (SY) of the 
torrefied biomass relative to the raw [36]. The beforementioned pa-
rameters are essential to evaluate a biofuel’s energy performance and 
correlate it to different torrefaction conditions such as temperature, 
duration, catalyst, etc. Therefore, with the desire to predict torrefaction 
performance, machine learning has recently become a popular 
approach. Different methods exist, including artificial neural networks 
(ANNs), multivariate adaptive regression splines (MARS), and decision 
tree [35,36]. The most commonly used method for biomass torrefaction 
is ANN which results in accurate predictions in most cases [38,39]. 

To the authors’ knowledge, all studies of potassium’s effect on wood 
torrefaction were limited to the impregnation of wood powder [40–42]. 
However, the upscaling of the process needs to be studied because 
biomass behavior is different between laboratory and industrial scales. 
For example, different wood particle sizes lead to different product 
yields [43,44]. When using wood boards instead of powder, the heat and 
mass transfer phenomena within the wood board are no longer negli-
gible. However, most of the modeling of the torrefaction process relies 
on the mechanisms observed in wood powder. To the best of the authors’ 
knowledge, K impregnation in wood boards has not been done, and no 

method has been established to impregnate the catalyst at an industrial 
scale successfully. Furthermore, since catalytic torrefaction before par-
ticle size reduction is convenient for reducing production costs, it is 
necessary to focus on optimizing and understanding the torrefaction of 
wood boards instead of powder. Therefore, this study’s motivation is to 
propose catalytic torrefaction as the first step, followed by grinding and 
transportation for power/heat generation. 

This study aims to scale up and investigate the feasibility of K- 
impregnation in wood blocks instead of powder and evaluate its impact 
on torrefaction. This work aims to quantify the potassium content after 
impregnation of wood boards having a thickness similar to what is used 
in industry. The purpose is to optimize wood’s torrefaction duration and 
thermal properties and assess the effect of K-impregnation on the TSI. 
This study develops a novel insight into the relationship between K and 
the calorific value of the wood, which, so far, has not been established in 
the literature. Moreover, this work allows us to predict valuable torre-
faction parameters, including SY, EY, and EF, based on the torrefaction 
duration and K content in wood using ANN. Consequently, the torrefied 
wood’s desired solid yield and HHV can be achieved by knowing the K 
content and setting a convenient torrefaction duration. The results 
provide answers regarding the feasibility of large-scale catalytic torre-
faction to upgrade biofuel and lower production costs. 

Fig. 1. Wood blocks impregnation process diagram. 
*TR = temperature recorder. 

Fig. 2. (a) Wood block torrefaction device and (b) wood block before impregnation, after impregnation, and after torrefaction.  

Table 1 
Mineral content in raw and impregnated beech.  

Sample Mineral content (wt%) 

Mn Mg Ca Na K 
Washed 0.019 0.023 0.058 0.001 0.078 
Raw 0.021 0.020 0.066 0.001 0.103 
0.004 M 0.018 0.022 0.059 0.001 0.126 
0.008 M 0.018 0.022 0.056 0.001 0.157 
0.012 M 0.014 0.018 0.068 0.001 0.207  

Table 2 
Potassium content and impregnation results for raw and impregnated beech 
wood.  

Sample K (wt%) beech powder a K (wt%) IP (%) IRK (%) 
Washed Not available 0.078 102.7 (5.90)b −24.3 
Raw 0.101 0.103 0.0 0.0 
0.004 M 0.176 0.126 108.6 (3.75) 22.3 
0.008 M 0.230 0.157 108.4 (5.75) 52.4 
0.012 M 0.310 0.207 108.0 (2.95) 101.0  

a from a previous study using the same K2CO3 solutions concentrations [65], b 

Pearson standard deviation. 
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2. Materials and methods 

2.1. Wood block impregnation and torrefaction 

2.1.1. Impregnation 
The selected biomass was beech wood (Fagus sylvatica), an abundant 

European hardwood species and easy to impregnate. Beech blocks were 
obtained from larger boards from France (Vosges PromoBois sawmill, in 
Vosges region). The wood was cut into 2 × 6 × 14 cm3 (radial ×
tangential × longitudinal directions according to wood fiber orienta-
tion) blocks. The dimensions represent the industrial size and are 
compatible with the torrefaction reactor used in this study. The blocks 
were dried in an oven at 105 ◦C to remove moisture until mass 
stabilization. 

Three impregnations were done using different potassium carbonate 
(K2CO3) concentrations (0.004, 0.008, and 0.012 M), and the samples 
were labeled accordingly. A fourth impregnation was conducted with 
demineralized water only. The corresponding sample was labeled 
‘washed’ since most water-soluble potassium was removed in the pro-
cess commonly known as leaching [45]. The wood block samples were 
placed in a sealed tank of 10 L, filled with the impregnating solution 

(Fig. 1). The impregnation was carried out using a vacuum cycle (110 
mbar) for 30 min followed by a pressure cycle at 2 bars for 30 min. The 
impregnated blocks were air-dried for 72 h, then oven-dried at 105 ◦C 
for another 72 h. 

Additional samples (raw, washed, and K-impregnated) were ground 
and mineralized to measure the mineral content, including potassium 
(K). The measurement was conducted on a dry basis (db) using atomic 
emission spectroscopy ICP-AES (ICP-AES 720/725 Agilent) with 200 (±
0.5) mg of the sample [46–48]. The impregnation percentage was 
calculated as the percent ratio between the increased weight of the 
sample compared to the dry weight [49]: 

IP (%) = mwet − mdry

mdry
× 100 (1)  

where IP is the impregnation percentage in (%), mwet is the weight of the 
wet sample immediately after impregnation (g), and mdry is the dry 
weight of the sample before impregnation (g). The impregnation ratio of 
K (IRK) is the percentage of addition or removal of potassium relative to 
the content present in the raw wood calculated as: 

IRK (%) = Ki − Kraw

Kraw
× 100 (2)  

where Kraw and Ki are the potassium contents in the raw and impreg-
nated samples (i = washed, 0.004 M, 0.008 M, or 0.012 M), respectively. 

2.1.2. Pilot-scale torrefaction 
The dry-impregnated samples were placed in a cylindrical stainless- 

steel reactor (Fig. 2.a). The reactor had a gas inlet to keep the atmo-
sphere inert using 100 mL.min−1 of nitrogen (N2) and an outlet linked to 
a water trap to remove condensables and tars. The reactor was placed 
inside a heating chamber equipped with a fan that homogenizes the heat 
flow across the reactor. Each sample was loaded in the sealed reactor 
and heated from room temperature to 300◦C at a heating rate of 2 ◦C. 
min−1. The chosen heating rate is close to the ones used in industrial 
torrefaction facilities [44]. The temperature was then held at 300◦C for 
four torrefaction durations of 5 min, 15 min, 30 min, and 60 min. 

The sample was weighed before and after torrefaction using an 
OHAUS Analytical Plus balance (precision 0.1 mg). The weight loss was 
calculated as WL = m0−mf

m0
× 100; where WL is the weight loss (wt%), m0 

Fig. 3. Measured K content (black dots) and impregnation percentage (blue squares) in wood as a function of the K2CO3 concentration used during impregnation. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Beech blocks’ weight loss (wt%) according to potassium content and torrefaction 
duration.  

Sample K (wt 
%) 

Duration (min) 

5 15 30 60 

Washed 0.078 26.48 
(1.07)a 

31.95 
(0.58) 

38.53 
(0.05) 

51.05 
(0.79) 

Raw 0.103 26.83 (0.37) 33.52 
(1.27) 

41.16 
(0.31) 

51.76 
(0.08) 

0.004 M 0.126 29.71 (0.33) 35.20 (0.5) 43.97 
(0.09) 

53.56 
(0.76) 

0.008 M 0.157 30.47 (0.96) 36.65 
(1.12) 

46.20 
(1.71) 

54.47 
(0.31) 

0.012 M 0.207 31.92 (0.33) 37.92 
(1.82) 

49.00 
(1.09) 

56.90 
(1.02) 

WLincrease (%)b 20.54 18.69 27.17 11.46  

a Pearson standard deviation. 
b WLincrease = 100 × (WL0.012 M – WLWashed)/WLWashed. 
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is the dry weight of wood before thermal treatment (g, dry-basis), and mf 
is the wood’s weight after torrefaction (g, dry-basis). Moreover, each 
experiment was done in triplicate and represented along with the 

standard deviation of the weight loss defined as: σ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(WL−WLav)2
n

√
. σ is 

the standard deviation (wt%), WLav is the average weight loss (wt%), 
and n is the number of trials (i.e., n = 3 in this case). 

2.2. Torrefaction performance 

2.2.1. Torrefaction severity index (TSI) 
TSI is an efficient indicator of the torrefied biomass quality [50]. 

Being normalized based on the weight loss at 300 ◦C for 60 min, it 
considers the two most influential parameters in torrefaction: temper-
ature and duration, independently of the biomass species. The TSI was 

calculated according to Eq. 3 [7]: 

TSI = WLT,t

WL300◦C,60 min
(3)  

where WLT,t is the weight loss (wt%) at a certain torrefaction tempera-
ture (T in ◦C) and time (t in min) and WL300◦C,60 min is the weight loss of 
raw wood block after 60 min torrefaction at 300 ◦C. 

2.2.2. Proximate and elemental analysis 
The proximate analysis gives information about the ash (AC), vola-

tile matter (VM), and fixed carbon (FC) contents in wt% of a sample. It is 
linked to a solid fuel’s combustion properties [51]. The analysis was 
performed according to ISO procedures: ISO-18122 (AC) [52] and ISO- 
18123 (VM) [53], and the difference corresponds to FC (FC = 100 – (AC 
+ VM)). The AC and VM determinations were performed using an 

Fig. 4. Weight loss evolution (with the standard deviations) of wood blocks after the different torrefaction durations.  

Fig. 5. TSI in the function of potassium content in the sample for the different torrefaction durations.  
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OHAUS Analytical Plus balance and a muffle furnace Carbolite CSF 1200. 
The standard deviation was calculated for the AC and VM. The FC was 
represented without standard deviation since it was obtained by dif-
ference. The elemental analysis was determined using a CHNS analyzer 
(Thermo Scientific FlashSmart Elemental Analyzer). It determines the 
carbon (C) and hydrogen (H) percentages in the sample, and the oxygen 
(O) was obtained by subtraction (%O = 100 – (%H + %C)). The atomic 
ratios H/C and O/C were calculated and represented in the van Krevelen 
diagram, in which a lower ratio indicates a higher fuel energy content 
[54]. The data ranges of biomass, peat, lignite, coal, and anthracite in 

the van Krevelen plot were taken from the literature [55]. 

2.2.3. Energy analysis 
The higher heating value (HHV) characterizes a fuel’s gross energy 

during combustion [56]. It was measured according to ISO-18125 [57] 
using a Parr 6100 Calorimeter. The calorimeter bomb was filled with 
pure oxygen to obtain complete combustion of the sample. Dry un-
treated and torrefied beech samples (raw, washed, and K-impregnated) 
were ground and then pressed into 0.5 g pellets. The pellet was linked to 
the ignition thread and loaded inside the bomb vessel of the calorimeter. 
The sample was burned, and the calorimeter computed the produced 
energy per unit of mass of the sample. The experiments were performed 
in duplicates, and the mean values were used since the relative error was 
below 3%. 

The energy yield (EY) is a significant index for measuring the tor-
refaction performance, while the enhancement factor of the HHV (EF) 
evaluates the torrefaction quality [58]. The EY and EF are related 
through the solid yield (SY), which is the weight ratio of torrefied 
biomass to the raw one. The SY, EF, and EY were calculated according to 
Eqs. 4–6 [59]: 

SY (%) = mtorrefied

mraw,untreated
× 100 (4)  

EF = HHVtorrefied

HHVraw,untreated
(5)  

EY (%) = EF × SY (6)  

where mtorrefied and mraw,untreated are respectively the weight of the tor-
refied sample (having different K content) and raw sample without 
torrefaction (g, dry-basis). HHVtorrefied and HHVraw,untreated are the higher 
heating values of the torrefied sample (having different K contents) and 
raw sample without torrefaction (g, dry-basis). Then the relative solid 
yield (RSY), relative energy yield (REY), and relative enhancement 
factor (REF) were calculated as RXi,j/RXraw,j. X is the SY, EY, or EF, i is the 
sample (washed, raw, 0.004, 0.008, or 0.012 M), and j is the torrefaction 
duration (5, 15, 30, or 60 min). 

2.3. Machine learning 

Machine learning consists of training the machine learning model 
until it can efficiently optimize the output based on some changes in the 
input data [37]. In this study, ANN is selected to predict the torrefaction 
behavior using Megaputer PolyAnalyst 6.5. This is represented by the 
prediction of the three important biofuel outputs: EY, SY, and EF. The 
input parameters were the K content and torrefaction duration. The data 
were divided into 70% for training and 30% for testing according to 
what is recommended in the literature for biomass torrefaction [60]. 
Then different combinations of activation functions (Sigmoid, Elliot, and 
Piecewise linear) and learning methods (Quick propagation, Back-
propagation, and RPROP) were tested to obtain the highest efficiency 
[38]. The neuron number in the hidden layer was obtained according to 
the method used by Aniza et al. [38]. It equals powers zero to three of 
the input variables (2 input types in this case), resulting in 1, 2, 4, and 8 
neurons tested (i.e., 8 = 23). Once the model is trained, it can predict the 
EY, SY, and EF based on different inputs. Then the relative error between 
experimental data and estimated values was calculated to evaluate the 
ability of the ANN to predict the torrefaction behavior. 

3. Results and discussion 

3.1. Impregnation efficiency 

The results of ICP-AES concerning the five most abundant minerals in 
wood are shown in Table 1. Among the five minerals of Mn, Mg, Ca, Na, 
and K, potassium’s yield was the highest (0.103 wt%) and sodium was 

Fig. 6. Proximate analysis with standard deviation of untreated and torrefied 
woods at different durations and K concentrations. 
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the lowest (0.001 wt%) [61,62]. The mineral content (Mn, Mg, Ca, and 
Na) remained almost constant after the impregnations. The only one that 
varied with the different impregnations was the potassium content 
which decreased with the washing and increased with the addition of 
K2CO3 solution [63]. 

The impregnation results are presented in Table 2. The IP was above 
100%, meaning that the impregnation cycle applied (30 min vacuum 
+30 min pressure) was sufficient for the wood to absorb the impreg-
nation solution. The vacuum cycle frees the air trapped in the wood to 
allow for the impregnating solution to penetrate. Then, increasing the 
pressure improves the permeability, but high pressure could alter the 
wood’s physical or chemical properties [49,64]. The potassium 
impregnation ratio (IRK) ranged from −24.2% to 101.0% between the 
washed and 0.012 M solution. This means that the demineralized water 
impregnation removed 24.3% of the K present in the wood, while the 
impregnation with 0.012 M of K2CO3 doubled the K content (0.207 wt%) 
compared to the raw (0.103 wt%). 

The evolution of the K content in wood measured by the ICP-AES in 
the function of the molarity of the impregnating solution of K2CO3 was 
plotted in Fig. 3. The increase of K content in wood increased linearly 
with the K2CO3 solution concentration (R2 = 0.9925). Therefore, for 
beech wood, the linear equation could be used in this range to predict 
the actual K content based on the solution prepared. The highest con-
centration added (0.012 M) did not saturate the wood with K; therefore, 
higher concentrations could potentially be used for impregnation. 

A previous study was conducted on wood powder using the same 
concentrations of K2CO3 solutions [65]. The ICP-AES results are also 
presented in Table 2. They show that the efficiency of wood powder 
impregnation was close to the block for 0.004 M. This K content 
increased more rapidly in powder with the increase of K2CO3 concen-
trations. This behavior is expected, considering that wood is a porous 
material, and the thicker the sample, the more difficult it is for K to 
diffuse [66]. Moreover, when impregnating wood powder, the contact 
surface between the impregnation solution and the wood is larger than 
the wood block. 

3.2. Torrefaction performance 

3.2.1. Weight loss and TSI 
The weight loss of wood at the four torrefaction durations was rep-

resented in Table 3 and plotted in Fig. 4. The weight loss, ranging from 
26.48 to 56.90 wt%, increased with increasing torrefaction time and K 
content. Based on the literature, a weight loss of beech wood ranging 
from 30 to 48 wt% is required to reach moderate to very good grind-
ability [67]. Thus, impregnating wood blocks with potassium followed 
by a torrefaction could be a cost-effective pretreatment method for wood 
used in energy production. Moreover, the weight loss of the 0.012 M 
wood block after 5 min torrefaction (31.92 wt%) was equal to that of the 
washed block after 15 min torrefaction (31.95 wt%). The same behavior 
could be observed between 0.012 M beech torrefied for 15 min (37.92 
wt%) and the washed torrefied for 30 min (38.53 wt%). These results 
prove that adding K to the wood reduced the torrefaction duration by up 
to 67%. Safar et al. [68] reported a similar behavior for wood powder 
impregnated with the same concentrations of K2CO3 and torrefied at 
300 ◦C. They found that to achieve a weight loss of 40 wt%, K-impreg-
nation can reduce the torrefaction duration by 28%. In this study on 
wood boards, to achieve a similar weight loss (approximately 39 wt%), 
50% of the torrefaction duration can be gained instead of 28%. Conse-
quently, the scale-up from wood powder to wood boards was highly 
efficient in terms of operating time reduction. The results can be 
explained by the scale change from powder to wood boards, where the 
produced volatiles inside the board have more difficulty evacuating to 
the atmosphere. These volatiles include some catalytic by-products, 
such as acetic acid, that can further react to degrade the wood due to 
longer residence time [69]. Additionally, exothermic reactions have 
been observed with increasing the wood’s thickness [44], which could 
be enhanced in the presence of potassium, resulting in a more sub-
stantial catalytic effect. 

The relative weight loss increase between the 0.012 M sample and 
the washed was almost constant, ranging between 20.54% and 18.69%, 
respectively, after 5 min and 15 min torrefaction. As the torrefaction 
duration was prolonged to 30 min, the catalyzing impact of K was 
accentuated, reaching up to 27.17% of weight loss increase with 0.012 

Fig. 7. Van Krevelen diagram of untreated and torrefied woods having different K concentrations.  
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M compared to the washed. After 60 min torrefaction, the degrading 
effect of potassium dropped quickly (11.46%) with a weight loss of 56.9 
wt% for the 0.012 M. This weight loss could correspond to the point 
where the hemicelluloses and most of the cellulose have been degraded, 
thus approaching the limit of the potassium’s catalyzing effect on 
wood’s thermal degradation [42,63]. This behavior was demonstrated 
in a previous study [65] on wood powder doped with different K con-
centrations: during torrefaction at 300 ◦C, the weight loss increased for 
the samples with a higher K content. But as the weight loss approached 

65 wt%, the catalytic effect of potassium started to decrease. After this 
point, potassium promoted char formation instead of wood degradation. 
In the case of wood blocks, this behavior can also be observed. The 
decrease of the catalytic efficiency of K between 30 min and 60 min is 
probably also due to the weight loss getting close to 65 wt%. This could 
be attributed to the fact that potassium primarily acts on celluloses and 
hemicelluloses [42]. As the torrefaction extent increases, these compo-
nents are almost completely degraded. 

Although not fully elucidated due to its great complexity, it is 

Fig. 8. HHV (a) versus potassium content in sample and HHV (b) versus the torrefaction duration.  
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believed that the mechanism driving the torrefaction of wood consists of 
an intricate combination of chemical transformations involving the 
main wood constituents (cellulose, hemicelluloses, and lignin), extrac-
tives, and their thermal degradation by-products. Many studies have 
revealed the formation of CO2, water, and acetic acid among the main 
products obtained during torrefaction [70]. Hydrolysis of poly-
saccharides (such as cellulose and hemicelluloses) is known to take place 
under acidic conditions. The partial degradation of relatively chemically 

active hemicelluloses and amorphous cellulose improves material 
properties. Previous studies suggested that K+ ions assist in transforming 
the cellulose molecules’ structure from crystalline to amorphous by 
weakening hydrogen bonds [32]. The results reported herein indicate 
that K+ directly affects wood torrefaction, accelerating thermal degra-
dation. It can be speculated that K+ can work as a Lewis acid, interacting 
directly with electron-rich sites along the wood structure, most likely 
increasing the polarity of glycosidic bonds in cellulose and hemi-
celluloses, leading to easier hydrolysis in comparison to torrefaction 
performed in the absence of K2CO3 impregnation. 

The TSI (Fig. 5) increased as a function of the wood’s torrefaction 
duration and potassium content [71]. The extent of the torrefaction was 
improved in the samples doped with potassium, reaching a TSI of 1.10. 
This value was higher than the maximum expected TSI as it is a 
normalized index between 0 and 1 [72]. For example, the torrefaction 
severity index was enhanced by 10% when torrefaction was operated at 
300 ◦C for 60 min torrefaction with the impregnation of 0.012 M K2CO3. 
A higher TSI is associated with better biochar quality [50,73]. 

3.2.2. Proximate analysis 
Proximate analysis is important for biochar characterization because 

it is inexpensive to test the fuel’s quality. The AC, VM, and FC of the 
washed, raw, and 0.012 M samples were plotted for the different tor-
refaction experiments (Fig. 6). A low VM is an indicator of a higher coal 
rank because it significantly impacts the presence or absence of com-
plete combustion at low temperatures [74]. This study showed a strong 
decrease of the VM by 54%, reaching 39.0% for the 0.012 M wood 
torrefied for 60 min. Lower VM in biomass is desired because it lowers 
GHG emissions during combustion due to decreased CO2 production 
[75]. The ash content increased in the wood blocks that were previously 

Fig. 9. EF of HHV relative to untreated raw beech versus potassium content in sample.  

Table 4 
Calculated SY, EY, and EF for the different wood samples.   

Washed Raw 0.004 M 0.008 M 0.012 M 

5 min 
SY (%) 73.52 73.17 70.29 69.53 68.08 
EY (%) 86.06 86.60 84.65 83.80 82.83 
EF (−) 1.17 1.18 1.18 1.21 1.22  

15 min 
SY 68.05 66.48 64.80 63.35 62.08 
EY 82.90 81.31 81.57 80.63 80.42 
EF 1.22 1.22 1.26 1.27 1.30  

30 min 
SY 61.52 59.69 56.98 52.09 51.00 
EY 78.16 77.88 76.08 73.05 72.92 
EF 1.27 1.30 1.34 1.40 1.43  

60 min 
SY 48.95 48.24 46.44 45.53 43.10 
EY 69.52 69.73 69.42 69.27 66.92 
EF 1.42 1.45 1.49 1.52 1.55  
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torrefied and was even higher for the K-impregnated sample. This could 
be partially attributed to the higher potassium content in the impreg-
nated and torrefied wood that probably remained in the ash upon 
combustion at 550 ◦C [45,76]. Additionally, as the potassium intensified 
the wood’s degradation, it led to a lower VM, resulting in relatively more 
ash. Despite the increased AC, the value ranging from 0.41% to 1.48% is 
low compared to most coals’ AC, which varies between 0 and 70% [77]. 
After K-impregnation and 60 min torrefaction, the FC registered an in-
crease of >5 times compared to the washed untreated wood, reaching 
58.4%. The potassium had a visible effect on the rise of the FC, especially 
for the longer torrefaction durations. A higher FC content leads to a 

higher combustion quality and thus makes the torrefied K-impregnated 
biomass more suitable as a fuel source [78]. As one of the technical is-
sues of biomass in co-combustion is its high VM and low FC, using this 
approach allows shifting these proportions for energy production and 
increases the process efficiency [7]. 

3.2.3. Atomic H/C and O/C ratio 
The van Krevelen diagram (Fig. 7) demonstrated the effect of tor-

refaction duration and increasing K content in wood on the atomic O/C 
and H/C ratios. The two ratios decreased drastically as the torrefaction 
severity (e.g., duration or K content) increased. They shifted from the 

Fig. 10. REY, RSY, and REF variation with potassium content in sample for the different torrefaction durations (a) 5 min, (b) 15 min, (c) 30 min and (d) 60 min.  

Table 5 
ANN training results for SY, EF, and EY prediction.  

Test Neurons Hidden layer Outut layer Training R2 EY R2 EF R2 SY 

1 1 Elliot Piecewise Quick 0.9306 0.9047 0.9173 
2 1 Sigmoid Elliot Back 0.7658 0.8384 0.8910 
3 1 Elliot Piecewise RPROP 0.9413 0.9080 0.9339 
4 2 Piecewise Elliot RPROP 0.7836 0.8144 0.4821 
5 2 Sigmoid Piecewise Quick 0.9750 0.9308 0.9266 
6 2 Elliot Sigmoid Back 0.8328 0.9796 0.9811 
7 4 Elliot Piecewise Back 0.9913 0.9948 0.9444 
8 4 Sigmoid Elliot Quick 0.7867 0.8346 0.7307 
9 4 Piecewise Sigmoid RPROP 0.5321 0.5985 0.4351 
10 8 Sigmoid Piecewise RPROP 0.9922 0.9991 0.9986 
11 8 Piecewise Elliot Back 0.7649 0.8131 0.7471 
12 8 Elliot Sigmoid RPROP 0.9989 0.9997 0.9991  
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biomass range (untreated raw wood) to the coal range for the 0.008 M 
and 0.012 M samples at 60 min torrefaction. Additionally, the 0.012 M 
sample torrefied for 60 min was close to meeting the criteria of the 
European biochar certificate, where biochar evaluated is often obtained 
from biomass pyrolysis. Therefore, this catalytic torrefaction at 300 ◦C 
achieved results expected to be obtained at a higher temperature range. 
The 0.012 M sample’s carbon yield was above 50 wt% db, and the O/C 
was below 0.4. However, the H/C reached 0.76, higher than the required 
value of 0.7 [79]. It should be noted that the lower the O/C and H/C 
ratios, the higher the coal rank [80]. Furthermore, the achieved low O/C 
ratio is desirable in gasification to limit exergetic losses [81,82], which 
makes this proposed torrefaction process a viable pretreatment for 
multiple uses, including biomass gasification. 

3.2.4. Higher heating value 
A linear relationship between HHV increase and weight loss increase 

during torrefaction has been studied in the literature [83–85]. However, 

the linear profile of HHV with increasing K content or torrefaction 
duration has not been reported yet. The increased potassium content in 
wood (Fig. 8a) and the longer torrefaction duration (Fig. 8b) positively 
impacted the wood blocks’ HHV. Specifically, Fig. 8a shows a linear 
correlation between the HHV and the potassium content in wood (0.94 
< R2 < 0.95), and Fig. 8b depicts a higher linear correlation between the 
HHV and torrefaction duration (0.96 < R2 < 1). The HHV of torrefied 
wood varied between 21.59 MJ.kg−1 for washed sample (5 min) and a 
maximum of 28.65 MJ.kg−1 for the 0.012 M sample (60 min). This 
maximal value was higher than that of low-rank coals, typically between 
21 and 22.7 MJ.kg-1, and was close to that of bituminous coal commonly 
used for power generation (24.4–32.6 MJ.kg−1) [86–88]. Biomass needs 
to have a higher energy density to achieve boiler load stability; there-
fore, coal-like properties are important for co-firing with coal [17]. 
Tumuluru et al. [89] stated that for co-firing biomass and coal, biomass 
requires a higher heating value, higher storage stability, and lower 
moisture content that can be achieved through torrefaction. 

Fig. 9 represents the EF of the HHV of all samples (torrefied and non- 
torrefied, K-impregnated and unimpregnated) relative to the HHV of 
untreated raw beech (18.45 MJ.kg−1). The torrefaction increased the 
HHV between 18% and 45% for the wood torrefied between 5 min and 
60 min. The effect of torrefaction on the HHV of biochar was consistent 
with the literature [90,91] and with the atomic H/C and O/C ratios 
obtained (part 3.2.3) [7,92]. Moreover, the potassium further increased 
the HHV by 55% (EF = 1.55) after 60 min torrefaction for the 0.012 M 
sample. The increased HHV with the K-impregnation was reported in the 
literature for the biodiesel and biochar produced from beech wood py-
rolysis [88]. However, no studies in the literature were made to relate 
the impact of K on the improvement of HHV during torrefaction. The 
increase observed in this study is attributed to the improved weight loss 
through the degradation of celluloses and hemicellulose, which mainly 
leaves a relatively larger lignin content with a higher HHV (23.3–26.6 
MJ.kg−1) [7,94]. 

3.2.5. Relative energy yield 
The computed SY, EF, and EY for the different conditions used are 

presented in Table 4. Based on the literature, an energy yield of around 

Fig. 11. (a) Neural network structure with highest fit quality R2, and (b-d) the predicted ANN results as a function of the experimental data.  

Fig. 12. Weight of the inputs (K content and torrefaction duration) that in-
fluences each of the SY, EY, and EF. 
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80% is considered good, mainly when associated with a high EF [72]. 
The energy yield was above 80% for all samples torrefied for 15 min at 
300 ◦C with a solid yield between 68.05 and 62.08%. These results agree 
with the study of Peng et al. [95], which found an EY of 80% for an SY of 
70%. For longer durations, the EY decreased faster but was still related 
to a continuous increase of the EF until 1.55. 

The REY, RSY, and REF were plotted in Fig. 10 to understand more 
profoundly the impact of the K and torrefaction duration on these 
thermal parameters. The results confirmed that with the increase of 
torrefaction severity (duration and K content), the REF increased but led 
to declined energy efficiency. The highest difference was observed for 
the 0.012 M sample after 30 min torrefaction marked by a REY (0.94), 
almost equal to 0.008 M, and had the highest increase of the REF of 1.10. 
A compromise should be found between the allowable reduction of the 
energy yield (the energy retained by the wood after thermal treatment) 
and the improvement of the EF [90]. Therefore, a less severe treatment 
should be investigated for industrial applications by reducing the 
treatment duration or temperature. 

3.3. Artificial neural network prediction 

The ANN training results are shown in Table 5. The highest fit quality 
R2 for the SY (0.9991), EY (0.9989), and EF of the HHV (0.9997) was 
obtained using 8 neurons constructed according to Fig. 11a. Excellent 
results were achieved using Elliot function in the hidden layer, Sigmoid 
in the output layer with RPROP training method. Onsree et al. [97] used 
gradient tree boosting machine learning to predict the SY of torrefied 
biomass and obtained a fit quality R2 equal to 0.90. The results obtained 
in this study with R2 > 0.99 suggest that ANN is more robust for pre-
dicting the catalytic torrefaction performance. The predicted results 
were validated in Fig. 11b. The linearity analysis shows excellent fit 
quality between the predicted and experimental results for all parame-
ters (SY, EY, and EF). The supervised ANN models that yielded the 
highest R2 were tested for combinations of K content and torrefaction 
durations and yielded results with a relative error below 3%. These 
findings can target specific results, such as the SY, by evaluating 
different combinations of the input parameters [38]. The ANN model 
has robust predictions according to the tested range and conditions. For 
more general applications in the industry, more data should be fed to the 
model to account for larger variations in the conditions or even the 
different biomass species. Upon sufficient training, the ANN has a 
promising potential to optimize the catalytic torrefaction process ac-
cording to the desired product characteristics (EY, SY, or EF). 

Fig. 12 shows the influence weight of each variable on the torre-
faction’s outcome. The K content’s influence on the EF and SY was not 
negligible, with a weight of 0.313 and 0.329, respectively. This high-
lights potassium’s influence on HHV improvement and weight loss 
during torrefaction. However, the torrefaction duration largely 
impacted EY with a weight of 0.814. This correlates with the literature 
that found the torrefaction time to have the most effect (second to 
temperature) on the EY of torrefied biomass [7,98]. By further devel-
oping these findings, they may be integrated into the management and 
optimization of ANN-assisted bioenergy systems in industry and 
research technology. 

4. Conclusions 

The tested impregnation method on wood blocks led to a linear in-
crease of the K content diffused in wood in regards to the molarity of the 
impregnation solution. Additionally, by changing the scale and per-
forming the catalytic torrefaction on wood boards, the catalytic effect of 
potassium gave better results than what was reported for wood powder. 
The torrefaction duration was reduced by up to 67% with K addition. 
Moreover, increasing the potassium content in wood increased the 
severity of torrefaction to achieve a TSI up to 1.10. The K-impregnated 
torrefied wood had a lower VM and higher FC, corresponding to 

upgraded fuel properties. Moreover, the relative H/C and O/C ratios 
decreased, and the HHV reached values comparable to coal. A linear 
increase of the HHV with the torrefaction time and K content was 
observed. The torrefaction temperature was too severe at long durations, 
as seen by EY’s sharp drop after 30 and 60 min. The ANN-developed 
model was excellent in predicting the SY, EY, and EF based on the 
provided input (K content and torrefaction duration). These results 
provide a starting point for integrating machine learning in bioenergy. 
Given the upgraded wood properties achieved through this method, the 
torrefied wood can subsequently be valorized in different applications, 
whether as a fossil fuel replacement or for co-firing and co-gasification. 
Torrefaction of wood boards prior to grinding substantially reduces the 
costs and energy consumption of the process. Therefore, the tested 
method shows great potential for industrial application. Further studies 
should evaluate the behavior of different wood species with increasing K 
content. 
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