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Abstract. This paper develops a new class of nonlinear acceleration algorithms based on extend-
ing conjugate residual-type procedures from linear to nonlinear equations. The main algorithm has
strong similarities with Anderson acceleration as well as with inexact Newton methods—depending
on which variant is implemented. We prove theoretically and verify experimentally, on a variety of
problems from simulation experiments to deep learning applications, that our method is a powerful
accelerated iterative algorithm. The code is available at https://github.com/Data-driven-numerical-
methods/Nonlinear-Truncated-Conjugate-Residual.
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1. Introduction. There has been a surge of interest in recent years in numeri-
cal algorithms whose goal is to accelerate iterative schemes for solving the following
problem:

(1.1) Find x € R" such that f(z)=0,

where f is a continuously differentiable mapping from R™ to R™. This problem can
itself originate from unconstrained optimization where we need to minimize a scalar
function,

(1.2) min ¢(z),

in which ¢ : R™ — R. In this situation, we will be interested in a local minimum
which can be found as a zero of the system of equations f(z) =0 where f(z) = V¢(x).

The problem (1.1) can be formulated as a fized point problem, where one seeks
to find the fixed point of a mapping g from R" to itself:

(1.3) Find 2 € R"™ such that x = g(x).

This can be achieved by setting, for example, g(z) = x + 8f(z) for some nonzero f.
Given a mapping g, the related fized point iteration, i.e., the sequence generated by

(1.4) T =g(x;),
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may converge to the fixed point of (1.3) and when g(z) =2 + 8f(x) then this limit is
clearly a solution to the problem (1.1). However, fixed point iterations often converge
slowly, or may even diverge. As a result acceleration methods are often invoked to
improve their convergence or to establish it.

A number of such acceleration methods have been proposed in the past. It is
important to clarify the terminology and discuss the distinction between accelera-
tion methods, which aim at accelerating the convergence of a fixed point sequence
of the form (1.4), and solvers, which aim at finding solutions to (1.1). Among ac-
celeration techniques are “extrapolation-type” algorithms such as the reduced-rank
extrapolation (RRE) [69], the minimal-polynomial extrapolation [15], the modified
minimal-polynomial extrapolation [38], and the vector e-algorithms [10]. These typi-
cally produce a new sequence from the original one by combining them without invok-
ing the mapping g in the process. Another class of methods produce a new sequence
by utilizing both the iterates and the mapping g. Among these, Anderson acceleration
(AA) [3] has received enormous attention in recent years due to its success in solving
a wide range of problems [67, 30, 68, 19, 71, 56, 36, 33, 77, 37]. AA can be seen as
an inexpensive alternative to second order methods such as quasi-Newton type tech-
niques. It is often used quite successfully without global convergence strategies such
as line search or trust-region techniques. These advantages made the method popular
in applications ranging from quantum physics, where they were first developed, to
machine learning. We refer readers to [11] for a survey of acceleration methods.

As was stated above, it is clear that one can invoke one of these accelerators
for solving (1.1) by applying it to the fixed point sequence associated with g(z) =
x + Bf(x). AA and its sibling Pulay mixing [59, 60] were devised precisely in this
way. Thus, an accelerator of this type can be viewed as a solver, in the same way that
a linear accelerator (e.g., conjugate gradient) combined with some basic iteration, such
as Richardson, can be viewed as a “solver.” This class of techniques does not include
the extrapolation-type methods discussed above because they require the computation
of g(x) for an arbitrary x. In extrapolation methods we have a sequence of vectors,
but we do not have access to the function g for evaluating g(x).

We can also ask the question of whether or not a given solver can be viewed as
an accelerator. If the solver only requires evaluating f(x) for an arbitrary z, then
clearly we can apply it to find the root of the equation f(z) =z — g(x) = 0, which
requires the computation g(x) given z. The related iterative process can be viewed
as an acceleration technique for the fixed point mapping g(z). Thus, our definition of
an accelerator is broad and it encompasses any method that aims to speed up a fixed
point iteration by requiring only function evaluations at each step.

AA is a good representative of this class of methods. There are three issues with
AA, and similar accelerators, which this article aims to address. The first is that for
optimization problems, AA does not seem to be amenable to exploiting the symmetry
of the Jacobian or Hessian. If we had to solve a linear system with AA, the sequence
resulting from the algorithm cannot be written in the form of a short-term recurrence,
as is the case with conjugate gradient or conjugate residual algorithms, for example.
For nonlinear optimization problems where the Hessian is symmetric, this indicates
that AA does not take advantage of symmetry and as such it may become expensive
in terms of memory and computational cost. This is especially true in a nonconvex
stochastic setting, where a large number of iterates are often needed. This can be an
acute problem, particularly in machine learning, where we often encounter practical
situations in which the number of parameters is quite large, making it impractical
to use a large number of vectors in AA. Although recent works in the literature
made efforts to improve the convergence speed of AA [76, 77, 50, 67, 81, 34], they did
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not attempt to reduce memory cost. One of the goals of this paper is to propose
an acceleration technique that exploits symmetry or near symmetry to reduce the
computational cost.

A second problem with AA, which is perhaps a result of its simplicity, is that while
it shares some similarities with quasi-Newton methods, it does not exploit standard
methods that are common in second order methods to improve global convergence
characteristics. The inclusion of line search or trust-region methods is necessary if
one wishes to solve realistic problems. A secondary goal of this paper is to introduce an
AA-like method that implements global convergence strategies borrowed from inexact
Newton and quasi-Newton methods.

Finally, one of the issues with AA, and other acceleration methods, is that it uses
a crude linear model. Specifically, acceleration methods typically rely on two sets
of consecutive vector differences, namely the differences Af; = f(x;41) — f(x;) and
the associated Ax; = z;41 — z;. The issue is that their approximate solutions are
developed from the relation A f; ~ J(z;)Az;, where J(z;) is the Jacobian at x;. This
linear approximation is likely to be rather inaccurate, especially when the iterate is
far from its limit. It is important to develop techniques that will avoid relying on
such rough approximations.

Nonlinear acceleration methods of the type discussed in this paper appeared first
in the physics literature where they were needed to accelerate very complex and com-
putationally intensive processes, such as the self-consistent field (SCF) iteration. The
best-known of these methods was discovered by Anderson [3] in 1965. In the early
1980s, Pulay proposed a similar scheme, which he called direct inversion on the it-
erative subspace (DIIS) [59, 60]. Both methods were designed specifically for SCF
iterations and it turns out that, although formulated differently, AA and DIIS are
essentially equivalent; see, e.g., [18, 27, 46]. For this reason, the method is often re-
ferred to as “Anderson—Pulay mixing,” where mixing in this context refers to the
process by which a new fixed point iterate is mized with previous ones to accelerate
the process. AA was rediscovered again in a different form in a 2000 paper by Oost-
erlee and Washio [55], who applied their technique to accelerate nonlinear multigrid
iterations.

The link between nonlinear acceleration methods such as AA and secant-type
methods was first unraveled by Eyert [26] when he compared AA with a multisecant
method proposed by Vanderbilt and Louie more than a decade earlier [73]. The
article [61] explored this idea further and expanded on it by proposing two classes of
multisecant methods. Thereafter, AA started to be studied and utilized by researchers
outside the field of physics; see, e.g., [20, 75, 72, 49, 6, 57, 25], among many others.

The primary contribution of the present paper is to take another look at this
class of methods and develop a technique that is derived by a careful extension of a
linear iterative method to nonlinear systems. The paper is motivated primarily by a
desire to overcome the three weaknesses of AA mentioned earlier and accelerate the
stochastic optimization algorithms used in deep learning applications.

2. Background: Inexact Newton, quasi-Newton, and Anderson accel-
eration. The goal of this section is to clarify key features of the method proposed in
this paper in order to establish links with known methods. Many of the approaches
developed for solving (1.1) are rooted in Newton'’s method, which exploits the local
linear model:

(2.1) flz+ Az) = f(z) + J(z)Ax,

where J(x) is the Jacobian matrix at x.
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Notation. We will often refer to an evolving set of columns where the most recent
vectors from a sequence are retained. In this situation, we found it convenient to use
the following convention. For a given m >0 we set

(2.2) Jm=max{0,j —m+1}, mj=min{m,j+1}=5—j,+1.

2.1. Inexact Newton methods. Newton’s method determines Ax; =11 —x;
at step j, to make the right-hand side on (2.1) equal to zero when x = z;, which is
achieved by solving the Newton linear system J(z;)d + f(x;) = 0. Inexact Newton
methods, e.g., [41, 21, 12] among many references, compute a sequence of iterates
in which the above Newton systems are solved approximately, often by an iterative
method. Given an initial guess xg, the iteration proceeds as follows:

(2.3) Solve J(x5)0; = —f(xj),
(24) Set .’EjJrl = l’j + 5]'.

Note that the right-hand side of the Newton system is —f(x;) and this is also the
residual for the linear system when d; = 0. Therefore, in later sections we will define
the residual vector r; to be r; = —f(x;).

The technique for solving the local system (2.3) is not specified. Suppose that
we invoke a Krylov subspace method for solving (2.3). If we set J = J(z;), then the
method will usually generate an approximate solution that can be written in the form

(25) 5]' = ijij
where Vj is an orthonormal basis of the Krylov subspace
(2.6) K; =Span{r;,Jrj,...,J" 'r;}.

The vector y; represents the expression of the solution in the basis V. For example,
if GMRES or, equivalently, generalized conjugate residual (GCR) [22] is used, then
y; becomes y; = (JV;)T(—f(z;)), where 1 denotes the pseudoinverse. In essence the
inverse Jacobian is approximated by the rank m matrix:

Bj.amres =Vi(JV;)T

In inexact Newton methods the approximations just defined are valid only for the
jth step, i.e., once the solution is updated, they are discarded and the process will
essentially compute a new Krylov subspace and related approximate Jacobian at point
Zjy1. This “lack of memory” can be an impediment to performance. In contrast,
quasi-Newton methods will compute approximate Jacobians or their inverses by a
process that is continuously being updated, using the most recent iterate for this
update.

2.2. Quasi-Newton methods. Standard quasi-Newton methods build a lo-
cal approximation J; to the Jacobian J(z;) progressively by using previous iterates.
These methods require the relation (2.1) to be satisfied by the updated J;11 which is
built at step j. This means that the following secant condition is imposed:

(2.7) Jip1Az; =Afj,
where Afj:= f(z;4+1) — f(z;). The following no-change condition is also imposed:

(2.8) Jit1g=Jjq Vg such that qTij =0.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/21/24 to 134.84.145.34 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

716 H. HE, Z. TANG, S. ZHAO, Y. SAAD, AND Y. XI

In other words, there should be no new information from J; to J;11 along any direction
g orthogonal to Az;. Broyden showed that there is a unique matrix J;41 that satisfies

both conditions (2.7) and (2.8) and it can be obtained by the update formula:
Aa:]T
(2.9) i =Jj+(Af; = JjAafj)m-

Broyden’s second method approximates the inverse Jacobian directly instead of the
Jacobian itself. If G; denotes this approximate inverse Jacobian at the jth iteration,
then the secant condition (2.7) becomes

(210) GjJrlAfj :A!Ej.

By minimizing E(Gj41) = ||Gj+1 — G;||% with respect to Gj11 subject to (2.10), one
finds this update formula for the inverse Jacobian,
(2.11) G G;+ (A G;Af;) Aij
] =G T — GiAf)—L
J+ J J J J AijAf]
which is also the only update satisfying both the secant condition (2.10) and the
no-change condition for the inverse Jacobian:

We will revisit secant-type methods again when we discuss AA in the next section.
AA can be viewed from the angle of multisecant methods, i.e., block forms of the
secant methods just discussed, in which we impose a secant condition on a whole set
of vectors Ax;, Af; at the same time.

2.3. General nonlinear acceleration and Anderson’s method. Accelera-
tion methods, such as AA, take a different viewpoint altogether. Their goal is to
accelerate a given fixed point iteration of the form (1.4). Thus, AA starts with an
initial z¢ and sets x1 = g(xo) = z¢ + B fo, where 5> 0 is a parameter. At step j >m
we define X; = [z, m,...,zj_1] and Fj; = [fj_m,..., fj—1] along with the differences:

(2.13) X =[Azj_pm --- Az € R™™, Fi=[Afj—m - Afj_1] e R™™.
We then define the next AA iterate as follows:

(2.14) zj1 =z + Bf; — (X + BF;) 0Y)  where

(2.15) 60) = argmingesn| f; — ;0]

Note that z;;1 can be expressed with the help of intermediate vectors:

(2.16) Tj=a;— X 09 fi=f—F 09 zj=%+Bf;

There is an underlying quasi-Newton second order method aspect to the proce-
dure. In Broyden-type methods, Newton’s iteration ;41 = z; — J(z;) ! f; is replaced
with z;11 =x; — G, f;, where G; approximates the inverse of the Jacobian J(x;) at
x; by the update formula Gj;1 = G; + (Azx; — GjAfj)Uf in which v; is defined in
different ways; see [61] for details. AA belongs to the class of multisecant methods.
Indeed, the approximation (2.14) can be written as

(2.17) wj1 = aj — =81+ (X + BF))(F] Fy) ' Filfj =5 — Gy fi.
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Thus, G; can be seen as an update to the (approximate) inverse Jacobian G _,,, = —I
by the formula
(2.18) Gj=Gjmm + (X = GjomF) (F] F5) 7 ]

It can be shown that the approximate inverse Jacobian G; is the result of minimizing
|G; + BI||F under the multisecant condition of type IL*

(2.19) GiF;=4X,.

This link between AA and Broyden multisecant type updates was first unraveled by
Eyert [26] and expanded upon in [61]. Thus, the method is in essence what we might
call a “block version” of Broyden’s second update method, whereby a rank m, instead
of rank 1, update is applied at each step.

2.4. The issue of symmetry. Consider again the specific case where the non-
linear function f(x) is the gradient of some scalar function ¢(z) to be minimized, i.e.,
f(x) = Va(x). In this situation the Jacobian of f becomes V2¢ the Hessian of ¢, and
therefore it is symmetric. Approximate Jacobians that are implicitly or explicitly ex-
tracted in the algorithm will be symmetric or nearly symmetric. Therefore this raises
the possibility of developing accelerators that take advantage of symmetry or near-
symmetry. One way to achieve this is to extend linear solvers that take advantage of
symmetry to the nonlinear context. This was one of the primary initial motivations
for this work.

We saw earlier that AA is a multisecant version of a Broyden type II method
where the approximate inverse Jacobian is updated by formula (2.18). An obvious
observation here is that the symmetry of the Jacobian cannot be exploited in any
way in this formula. This has been considered in the literature (very) recently; see,
for example, [7, 66, 8]. In a 1983 report, Schnabel [65] showed that the matrix G;
obtained by a multisecant method that satisfies the secant condition (2.19) is symmet-
ric iff the matrix X]-T.Fj is symmetric. It is possible to explicitly force symmetry by
employing generalizations of the symmetric versions of Broyden-type methods. Thus,
the authors of [7, 8] recently developed a multisecant version of the Powell symmetric
Broyden update due to Powell [58] while the article [66] proposed a symmetric mul-
tisecant method based on the popular Broyden—Fletcher-Goldfarb—Shanno (BFGS)
approach as well as the Davidon—Fletcher—Powell update. However, there are a num-
ber of issues with the symmetric versions of multisecant updates, some of which are
discussed in [66].

3. Nonlinear truncated generalized conjugate residual (nlTGCR) al-
gorithm. For understanding the conjugate residual-based methods in the nonlinear
case, it is important to first provide some background for linear systems. A large
class of Krylov subspace methods for solving nonsymmetric linear systems have been
developed in the past four decades. The reader is referred to the recent volume by
Meurant and Tebbens [52], which contains a rather exhaustive and detailed cover-
age of these methods. The main aim of the techniques proposed in this article is to
adapt the residual-minimizing subclass of Krylov methods for linear systems to the
nonlinear case. The guiding principle in this adaption is that we would like it to
also approximately minimize the nonlinear residuals. This is in contrast with inexact
Newton methods, where the goal is to roughly solve the linear systems that arise in
Newton’s method as a way to provide a good search direction.

1Type I Broyden conditions involve approximations to the Jacobian, while type II conditions
deal with the inverse Jacobian.
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Algorithm 3.1 GCR.
1: Input: Matrix A, RHS b, initial x.

: Set pg:=1r9g=b— Axyg.
: for j=0,1,2,..., until convergence do

a; = (rj, Ap;)/(Ap;, Ap;)

Tjp1:=Tj +oyp;

Tjt1: =1 — ajAp;

Pi+1:="j41 — 210 Bijpi where B = (Arjq1, Api) /(Api, Ap;)
end for

I A A

3.1. The linear case: Generalized conjugate residual algorithm. We first
consider solving a linear system of the form

(3.1) Ar=b.

A number of iterative methods developed in the 1980s aimed at minimizing the norm
of the residual r = b — Az of a new iterate that lies in a Krylov subspace; see [52]
for a detailed account. Among these, we focus on the GCR algorithm [22] for solving
(3.1), which is sketched in Algorithm 3.1.

The main point of the algorithm is to build a sequence of search directions p;,
i =0:j at step j so that the vectors Ap; are orthogonal. This is done in line 7.
With this we know that the iterate as defined by lines 4-5 is optimal in the sense
that it yields the smallest residual norm among solution vectors selected from the
Krylov subspace xo + Span{po, ..., pr }—see [63, pp. 195-196]. The GCR algorithm
is mathematically equivalent? to GMRES [64] and to some of the forms of other
methods developed earlier, e.g., ORTHOMIN [74], ORTHODIR [39], and Axelsson’s
CGLS method [5].

Next, we will discuss a truncated version of GCR in which the Ap;’s are orthogonal
only to the m previous ones instead of all of them. This algorithm was first introduced
by Vinsome as early as 1976 and was named ORTHOMIN [74]. We will just refer
to it as the truncated version of GCR or TGCR(m). In a practical implementation,
we need to keep a set of m vectors at step j for the p;’s and another set for the
vectors v; = Ap;. In addition, we replace the classical Gram—Schmidt of line 7 of
Algorithm 3.1 by the modified form of Gram-Schmidt: the vector Ar;4; initially set
to a vector v which is orthogonalized against the successive Ap;’s. Thus, line 7 of
Algorithm 3.1 becomes

Ta. p:=rj41; v:=Ap; and j,, :==max(0,j —m+ 1)
7. fori=j,:j

Tc. Bij = (v, Ap;)

7d. pi=p— Bijpi; vi=0v — Bijvi;

7e. end for

Tt pjr=p/lvll; v =v/lvlf;

We refer to the algorithm obtained from Algorithm 3.1 where line 7 is replaced
by lines 7a—7f above as the truncated GCR (TGCR(m)) algorithm. This algorithm is

2Here equivalent is meant in the sense that if exact arithmetic is used and if the compared
algorithms both succeed in producing the jth iterate from the same initial g, then the two iterates
are equal.
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a slight variant of the original ORTHOMIN introduced in [74] and analyzed in [22].

It produces a system of vectors Vjy1 = [vj,,,j,,41,---,Vj,vj41] that is orthonormal.
When j >m, V41 consists of a “window” of m+1 vectors. TGCR(m) approximately
minimizes the quadratic form ¢4(z) = 3||b — Az||3 in a certain Krylov subspace.

With m = oo we obtain the nonrestarted GCR method—which is equivalent to the
nonrestarted GMRES [64].

A few properties of the vectors generated in TGCR(m) have been analyzed in [22,
Thm. 4.1] which also discussed the convergence of the algorithm when A is positive
definite, i.e., when A+ AT is symmetric positive definite (SPD). When A is symmetric
a number of simplifications take place in Algorithm 3.1. In this situation, all the 3;;’s
except Bj; vanish. The resulting simplified algorithm yields the standard conjugate
residual algorithm which dates back to Stiefel [70]; see [64, section 6.8] for details.
See Appendix A for a unified presentation of a number of theoretical results of GCR.

3.2. The nonlinear extension: The nlITGCR algorithm. We now return
to the nonlinear problem and ask the question, How can we generalize the algorithms
for linear systems of section 3.1 for solving nonlinear equations? We should begin
by stating what the desired features of this extension are. First, we would like the
algorithms to fall back to TGCR when the problem is linear. Second, we would like a
method that can be adapted in such a way as to yield the inexact Newton viewpoint
when desired or a multisecant (AA-like) approach when desired. Third, we would like
a method that exploits a more accurate linear model than either Newton or a quasi-
Newton approach—possibly at the cost of a few extra function evaluations. Finally,
we would like the algorithm to be easily adaptable to the very common context in
which the function f is “fuzzy,” as is the case when dealing with stochastic methods.

In our model, we assume that at step j we have a set of (at most) m current
“search” directions {p;} for j,, <i < j gathered as columns of a matrix P;, where we
recall the notation j,, = max{0,j —m + 1}. Along with p;’s, we also have a matrix
denoted by V; such that

(32) P] = [pjnL’pj'm"l'l’ cte 7pj]’ V] = [Uj’7727vj77L+17 tte 7Uj]'

Note that this pair of matrices plays the same role as the pair &;, F; defined in (2.13)
for AA. We then write the linear model used locally as

(3-3) f(xj + Py) = f(x;) + Vjy.

While this is again somewhat similar to what was done for AA, we note a very
important distinction that may have a significant effect on performance: In AA the
linear model is simply based on the relation f(x; — X;0) ~ f(x;) — F,;0, whereas
nlTGCR evaluates explicitly the action of J(x;) on some vector. This evaluation can
be quite accurate if desired. In contrast, the relation f(x; — X;0) =~ f(z;) — F;0 can
be quite rough, especially at the beginning of the process where the vectors Az; and
Af; are usually not small.

The projection method will minimize the norm || f(z;) + Vjy||2. This is achieved
by determining y in such a way that
(34)  flay)+Vyy LSpan{V;} — (V;))T[f(a;) + Viyl =0 — y=V"r;,

J

where it is assumed the v;’s are orthonormal.
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Instead of (2.3)—(2.4) of the inexact Newton approach we now have an iteration
of the form

(3.5) Find y; = argminy || f(z;) + Vjy|2,
(36) Set i1 =2 + Pjy;.

A major distinction between this approach and the standard inexact Newton is
that the latter exploits approximations to the Jacobian around one point in order to
build the next iterate. The iterates generated by the iterative process can be viewed
as intermediate points but they rely on a Jacobian J(zg) calculated at the initial
approximation xg. We will revisit the inexact Newton viewpoint in a later section.

The idea of the nonlinear version of the truncated GCR method is to exploit the
directions that are produced by the TGCR algorithm. Note that there is a decoupling
between the update from the current iterate (lines 4-5 of GCR/TGCR) to a new one
and the construction of the p;’s in TGCR (lines 7a—7f of TGCR). In essence, the
first part just builds a new approximation given a new “search” subspace—while the
second adds a new direction to this evolving subspace. This distinction will help us
generalize our approach to cases where the objective function or the Jacobian varies
as the iteration proceeds.

We now derive our general algorithm from which a few variants will follow. The
algorithm is an extension of the TGCR(m) algorithm discussed above—with a few
needed changes that reflect the nonlinearity of the problem. The first change is that
any residual is now to be replaced by the negative of f(z) so rg becomes ro = — f(x¢)
and line 6 of GCR/TGCR(m) must be replaced by 711 = —f(x;4+1). In addition, the
matrix A in the products Arg and Ap invoked in line 2 and line 7a, respectively, is
the Jacobian of f at the most recent iterate. The most important change is in lines
4-5 of Algorithm 3.1, where according to the above discussion the scalar a; is to be
replaced by the vector y; that minimized ||f(z;) 4+ Vjyl||2 over y. The reason for this
was explained above.

The resulting nlTGCR(m) algorithm is shown in Algorithm 3.2. It requires two
function evaluations per step: one in line 8 and the other in line 10. Alternatively,

Algorithm 3.2 nlTGCR(m).
1: Input: f(z), initial z.
: Set rg :=—f ().
: Compute v := J(zg)ro; (Use Frechet)
s v =0/l po:=ro/lv[|2;
: for j=0,1,2,..., do

i1 = —f(2j+1)

9: Set: p:=rjy1; and jn, :=max(0,j —m+1)
10: Compute v = J(z;4+1)p (Use Frechet)
11: for i=j,,:j do

12: Bij = (v, v;)

13: p:=p—Bi;pi

14: V=0 — 5ijvi

15: end for

16:  pj1:=p/llvll2; vjgr =v/[vll2;
17: end for
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when constructing the Jacobian is inexpensive, one can compute Jp in line 10 as a
matrix-vector product. Clearly, the system [vj, , v, +1,-..,V;j+1] is orthonormal.

4. Theoretical results. This section discusses connections of the nITGCR(m)
algorithm with inexact and quasi-Newton methods and analyzes its convergence.

4.1. Linearized update version and the connections to inexact Newton
methods. We first consider a variant of the algorithm which we call the “linearized
update version.” We will show that this version is equivalent to inexact Newton
methods in which the system is approximately solved with TGCR(m). Two changes
are made to Algorithm 3.2 to obtain this linearized update version. First, in line 8
we update the residual by using the linear model, namely, we replace line 8 by

8as: Tj+1 = Tj — V}yj

The second change is that the Jacobian is not updated in line 10, i.e., J(z;41) in
line 10 is kept constant and equal to J(zg). In other words v is computed as

10a: v=J(xo)p

The algorithm is stopped when the residual norm r;,; is small enough or the
number of steps is exceeded. In addition, we consider the algorithm merely as a
means of providing a search direction as is often done with inexact Newton methods.
In other words the direction d = xj,5; — Tg is provided to another function that will
use it in an iterative procedure that includes a line search technique at xg.

It is easy to see that one iteration defined as a sweep using j substeps of this
linear update version is nothing but an inexact Newton method in which the system
(2.3) (with j = 0) is approxzimately solved with the TGCR(m) algorithm. Indeed,
in this situation the two main loops (lines 3-8 of Algorithm GCR/TGCR(m) and
lines 5-17 of Algorithm 3.2) are identical. Lines 5-17 of Algorithm 3.2 perform k
steps of the TGCR(m) algorithm to solve the linear systems f(xg) + J(xo)Py = 0.
Within Algorithm 3.2 the update is written in a progressive form as ;11 = x; + a;py;
note that the right-hand side does not change during the algorithm and is equal to
ro = —f(zg). In effect the last iterate, xy, is updated from zy by adding a vector
from the Krylov subspace or equivalently the span of P. As a consequence of this
observation, it turns out that y; has only one nonzero component, namely the last
one. Indeed, from [22, Thm. 4.1], we see that if we replace A by the Jacobian J at
xg, then

(rjt1,Jpi) =0fori=(j—1)m,...,J.

It was shown in [12] that under mild conditions, the update to the iterate is a
descent direction. In addition, the article describes “global convergence strategies”
based on line search and trust-region techniques. If we do not apply a global conver-
gence strategy, then the algorithm may have difficulties converging.

Inexact Newton methods [21] are often implemented with residual reduction stop-
ping criteria of the form

(4.1) 1f(25) + J(25)d5ll2 <yl f ()2,

where 7, € [0,1) is called the forcing term. This only means that the iterative proce-
dure that is applied when approximately solving the linear system (2.3) exists when
the relative residual norm falls below 7;. A number of articles established convergence
conditions under conditions based on this framework; see, e.g., [21, 12, 13, 23] among
others.
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Probably the most significant disadvantage of inexact Newton methods is that a
large number of function evaluations may be needed to build the Krylov subspace in
order to obtain a single iterate, i.e., the next iterate. After this iterate is computed,
all the information gathered at this step, e.g., Py, Vg, is discarded. This is to be
contrasted with quasi-Newton techniques where the most recent function evaluation
contributes to building an updated approximate Jacobian.

4.2. Nonlinear update version. The “linearized update version” of Algo-
rithm 3.2 discussed above uses a simple linear model to update the residual r; in
which the Jacobian is not updated. Next, we consider the “nonlinear update version”
as described in Algorithm 3.2.

Assume a sweep using j substeps of Algorithm 3.2 has been carried out. Our next
result will invoke the linear residual

(42) Fj—i—l = T‘j - ‘/jyja

as well as the deviation between the actual residual r;4; and its linear version ;1
at the (j + 1)th iteration:

(4.3) Zj41 =Tj41 — Tjt1-

We first analyze the magnitude of z;4,. Define

(4.4) w; =J(xj)pi —v; for i=jy,,...,5; and W, =[w;j,,...,w;],
so that
(4.5) J(a:j)pizvi + w;.

Note that the algorithm suggests that J(x;)p; ~ v; but that equality is not satisfied
except in the linear case.?> We also define

(4.6) sj = f(@j1) = fl25) = J(2)) (@01 = 25).

Recall from the Taylor series expansion s; is a second order term relative to ||z,11 —
zj||2. Then we derive the following bound on the norm of z;44 in the next proposition.

PROPOSITION 4.1. The difference 7j11 — rj41 satisfies the relation
(4.7) Fir1 = je1 = Wiyj + 55 =W;ViTrj + s,
and therefore
(4.8) 171 = riaalla < IW5llo limsllz =+ llsy -

Proof. We rewrite the difference as

Fip1 — i1 = (—f(z5) = Vjy;) + f(zj41)
(f(ijrl) - f(ffj)) = Vjy;
J(x;)Pyyj + s; — Vjy;.

(4.9)

3We thank Eric de Sturler for catching a statement in an earlier version of this paper related to
this observation.

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/21/24 to 134.84.145.34 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NONLINEAR TRUNCATED GCR 723

Lettlng y] = [nj’nL,ann+17 o ] we get frOm (45)

J(@)Pry; =Y mid (x)pi = »_milvi +wi
(4.10) = Viy; + ijj.

The proof follows by combining (4.9) and (4.10). ad

Proposition 4.1 shows that z;;1 is a quantity of the second order: when the
process is nearing convergence, ||[W;||2||7;||2 is the product of two first order terms
while s; is a second order term according to its definition (4.6). Furthermore, we can
prove the following properties of Algorithm 3.2.

PROPOSITION 4.2. The following properties are satisfied by the vectors produced
by Algorithm 3.2:
1. (fj—i-lavi) :0 fOT’ ]m S 7 S], z'.e., ijTfj_i_l :O,'
2. |74 lle = miny [| = £(z;) + Viyll2;
3. (vjs1,Tj1) = (Vj4175);
4 y; =VIr; = (vj,7)em, — V] zj, where e, =[0,0,...,1]7 € R™.
Proof. Properties 1 and 2 follow from the definition of the algorithm. For property
3 first observe that Vj = [vj, ,vj,.+1,---,vj—1,v;] and that vy, is made orthogonal
against the m; vectors v;, to vj, so UjT+1VJ' =0 and

T = _,T Vo] — T o
Uj+1rj+17vj+1[7'] Viyjl = Vjt1Ty-

It is convenient to prove property 4 for the index j + 1 instead of j. We write
Viirivr =V (741 — zj11], where zj 1 was defined in (4.3). Recalling properties 1
and 3, we have that (7;41,v;) =0 for j,, <i < j—so there is only one nonzero term
in the product V' 741, namely v\, 7;41. This gives the results after adjusting for

the change of index. 0

Property 4 in Proposition 4.2 indicates that when z; is small, as when the model
is close to being linear or when it is nearing convergence, then y; will have small
components everywhere except for the last component. As a result it is also possible
to consider a slight variant of the algorithm in which y; is truncated so as to contain
only its last entry. We will discuss this variant in detail in section 4.4.

Adaptive update. The nonlinear update version of nITGCR generally exhibits
greater robustness compared to the linearized update version, particularly during the
initial phases. In order to leverage the advantages of reduced function evaluations
offered by the linearized update version, we introduce an adaptive update version.
As indicated by property 4 in Proposition 4.2, we employ a mechanism for checking
residuals that controls the transition between the two update versions. Let T]T-Ll and

Té—m represent the nonlinear and linear residuals at iteration j, respectively:
l li l
(4.11) riv = —f(xjp), v =] = Viy;.

We define the “cosine distance” between the nonlinear and linear residuals as follows:

(T‘?l)TT'é-in

! 175 2 I 2

We choose a threshold 6 which is 0.01 in this paper. Then, the linearized update
version is engaged when 6; < 6, while the nonlinear update version is active when
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6; > 0. Note that, when switching from the linearized version to the nonlinear version,
the previous vectors P; and V; are reset, initiating a new start for nlTGCR with a
beginning point at x;. This mechanism effectively reduces the overall number of
function evaluations without compromising convergence or accuracy.

4.3. Connections to quasi-Newton and multisecant methods. In this sec-
tion, we show that nIlTGCR(m) can be viewed from the alternative angle of a quasi-
Newton/multisecant approach. In this viewpoint, the inverse of the Jacobian is ap-
proximated progressively. Because it is the inverse Jacobian that is approximated,
the method is akin to Broyden’s second update method.

First observe that in nlITGCR the update at step j takes the form

Tj41 =T +PjV3TT’j =T; +P3V3T(7f(x]))

Thus, we are in effect using a secant-type method. The approximate inverse Jacobian
at step j, denoted by Gj41 for consistency with common notation, is

(4.13) Gjp =PV

If we apply this to v; we get Gj1v; = P; Viji = p; for j,, <i < j. It therefore satisfies
the secant equation

(4.14) Gj1vi=p; for jim <i<j,

which is a version of (2.10) used in Broyden’s second update method. Here, p; plays
the role of Az; and v; plays the role of Af;. In addition, the update G satisfies
the “no-change” condition:

(4.15) Git19=0 VYgqlwv; for j,<i<j.

The usual no-change condition for secant methods is of the form (G;+1 —Gj_m)q=0
for ¢ L Af;, which in our case would be (Gj4+1 —Gj—m)q=0 for ¢ L v; for j, <i<j.
One can therefore consider that we are updating G;_,, =0.

Thus, consider the optimization problem

(4.16) min{||G||r subject to GV; = P;},
which will yield the matrix of the smallest F-norm satisfying the condition (4.14).
Not surprisingly this matrix is just G41.

PROPOSITION 4.3. The unique minimizer of problem (4.16) is the matriz G441
given by (4.13).

Proof. The index j is dropped from this proof. Exploiting orthogonal projectors
we write G as G=GVVT + GUI - VVT)=PVT + G(I — VVT) and observe that

IG|F =t ([PVT +GUI - VVOVPT +(I-VVT)GT))
=tr (PP") +tr (G - VV)(I-VVTGT)
=PIz +IGI-VV)|3.

The right-hand side is minimized when G(I — VVT) = 0, which means when G =
GVVT. Recalling the constraint GV = P yields the desired result. ]
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It is also possible to find a link between the method proposed herein and AA
reviewed in section 2.3, by unraveling a relation with multisecant methods. Based on
Proposition 4.3, we know that

(4.17) GjaVi=Pj.

This is similar to the multisecant condition G,;F; = X; of (2.19)—seec also equa-
tion (13) of [61], where F; and X are defined in (2.13). In addition, we also have
a multisecant version of the no-change condition (4.15). This is similar to a block
version of the no-change condition equation (2.12) as represented by equation (15) of
[61], which stipulates that

(4.18) (Gj —Gj—m)q=0 Vq L Span{F;}.

Strong links can be established with the class of multisecant methods to which
AA belongs. Without loss of generality and in an effort to simplify notation we also
assume that j,, =1 this time and 8 =0. According to (2.14)—(2.15), the jth iterate
becomes simply z ;41 = x; — X;0;, where 6; is a vector that minimizes || f; — F;6/||. For
nlTGCR(m), we have x;41 = x; + P;y;, where y; minimizes || f(z;) + V;y||. So this is
identical with (2.14) when 5 =0 in which P; =X}, and F; =V}:

AA X; Fj 0,
nlTGCR Pj ‘/J —Yj

In multisecant methods we set
Fi=lf—fo.fa—fi, ... fi—fi=1] &Xj=lz1—wo,z2—21,...,25 — x;-1]
and, with G;_,,, =0, the multisecant matrix in (2.18) becomes
(4.19) G =X;(F/F) ' F].

We restate the result from [61] that characterizes multisecant methods also known as
generalized Broyden techniques [26], for the particular case in which G;_,, =0:
e G in (4.19) is the only matrix that satisfies both the secant condition (2.19)
and the no-change condition (4.18);
e G; is also the matrix that minimizes |G||r subject to the condition GF; = &j.
Consider now nlTGCR. If we set F; =V; and &; = P; in Anderson, the multise-
cant matrix G; in (4.19) simplifies to (4.17)—which also minimizes ||G||r under the
secant condition GV; = P;. Therefore the two methods differ mainly in the way in
which the sets F;/V;, and X;/P; are defined. Let us use the more general notation
V;, P; for the pair of subspaces.
In both cases, a vector v; is related to the corresponding p; by the fact that

(4.20) vj = J(z;)p;.

In the case of nITGCR(m) this relation is explicitly enforced by a Frechet differenti-
ation (line 10). In the case of AA, we have v; = Af;_1 = f; — f;—1 and the relation
exploited is that

(4.21) fim i+ (i) (e — i) = Afja = (@5 1) Az
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However, relation (4.20) in nlTGCR is more accurate because we use an ad-
ditional function evaluation to explicitly obtain an accurate approximation (ideally
exact value) for J(z;)r; in line 10, which is likely to lead to a smaller error in (4.20).
In contrast, when x; and x;_; are not close, then (4.21) can be a very rough approx-
imation. This is a key difference between the two methods.

4.4. Line search techniques and convergence analysis. In this section, we
discuss how to include line search techniques to improve the global convergence of
nlTGCR(m). More specifically, if d; = P;y;, then line 7 of Algorithm 3.2 will be
replaced by ;41 = ; + a;d; with a suitable stepsize o;.

When nlTGCR(m) is applied to solve a nonlinear system f(x) =0, we define the
scalar function ¢(z) = 3||f(z)||3. Since V¢(z) = J(z)T f(z) and r; = —f(z;), the
stepsize «; is chosen to fulfill the Armijo-Goldstein condition [4]:

(4.22) 1f (5 4 ajd;) |15 < llrsll3 — 261 - o (J () s, dy).

If we approximate the nonlinear residual — f(x ;1) with the linearized one ;11 =1, —
V;y;, we need to replace the left-hand side of the inequality (4.22) by ||r; —a;V;y;]|3.
Here d; is a descent direction for ¢ if (J(z;)"r;,d;) > 0.

It is possible to inexpensively check the above condition by first noting that

(J () ry dj) = (ry, J(x;)d;).

Then, using Frechet differentiation we can write

(123) (T3 13, ds) =y, Sy edy) = ),

where € is some small parameter. We already have f(z;) available and in the context
of line search techniques f(x; + Aod;) is computed as the first step, where )¢ is some
parameter, often set to Ag = 1. If || Aod;|| is small enough relative to z; we can get an
accurate estimate of (J(z;)?r;,d;) using relation (4.23) with e replaced by A¢. If not,
we may compute an additional function evaluation to obtain f(z; + ed;) for a small e
to get the same result with high accuracy. Note that as the process nears convergence
lld;ll2 becomes small and this is unlikely to be needed.

Often, the direction d; = P;y; is observed to be a descent direction and this can
be explained from the result of Proposition 4.2. A few algebraic manipulations lead
to the following proposition.

PROPOSITION 4.4. Let ¢(x) = %Hf(x)“% and let v;,,,...,0; be the columns of
(4.24) V; = J(x;)P;.
Then,
J
(4.25) (Vo(wy)ds)=— Y (vi,rj){(@isry) = —r] V; Vi,
i=jm
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Proof. From property 4 of Proposition 4.2 we have VjTrj = (vj,7j)€m; — Vszj
and so
(Vo(z)),d > ~(J (@) Ty, Byl(07,75)em; — Vi z5])
(v, T () g, p5) + (S () Ty, PV 25)
— (v, 75 )(rs, J(x5)p;) + (rj, J(2;) PV} 25)
— (i, s+ 2;)(05,m5) + (ry, ViV 25)
i) (05, m5) — (v, 25) (B5,m5) + (15, V; Vi 25).

—(v;
We write the last term (r;, f/ V;I'z;) in the form

<.

I

ﬁ

(4.26)

J J
ool s =Y (@) (v z).
i=jm i=jm
We now note that the last term in the above sum is equal to the middle term in (4.26).
The result is that
j—1
(4.27) (Vo(x)), dj) = —(vj,r)(B5,m5) + > (rs, T30] 25).
1=jm

Next observe that for each of the terms in the sum we have

Jj—1 Jj—1
vz =v] (75 =) =—v]r; = Y (ry 0] ) ==Y (Bi,m5) (vi 7).
1=Jm 1=Jm
Substituting this in (4.27) yields the desired result. 0

We have v; = J(x;)p; while 0; = J(x;)p;. Near convergence, the two vectors will
be close enough that the inner products (v;,7;) and (%;,7;) will have the same sign,
in which case the inner product (4.25) is negative and d; is a descent direction. In
addition, we saw in the proof that (v;,r;) = —(v;, 2;) for jn,, <1 < j—1. Thus, the
terms (v;,7;)(9;,7;) are likely to be smaller order terms for i < j.

Based on the above discussion, we may assume that the direction produced by
Algorithm 3.2 is likely to always be a descent direction, but this not guaranteed.
However, if needed, this can be inexpensively checked as described earlier at a small
additional cost.

In order to ensure global convergence, we also implemented backtracking line
search. Specifically, an initial stepsize o'? is defined where the superscript indicates
the backtracking steps. We repeatedly set ag-kﬂ) =T ag-k) for a shrinking param-
eter 7 € (0,1) and check if the Armijo—Goldstein condition is satisfied or if we have
exceeded the maximum allowed number of backtracking steps. Our tests use 7 =0.8.

In addition, we found it effective to select the initial stepsize ago) adaptively in order

(0) .

to reduce the number of line search steps. For example, letting o’ := 1, we define

min{1, a / 7} if line search finishes in 1 step;

0

Ty otherwise.

It is possible to prove that under a few assumptions nlTGCR (m) converges glob-
ally. Suppose that we have a line search procedure which at the jth step considers
iterates of the form

(4.29) Ij+1(f):l‘j —l-tdj, with d = ]y] P]‘V}TT‘]'.
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We further assume that the line search is exact, i.e.,
Assumption 1:

T =argming, , o),ccjollf(@i+1())]-
We expand f(z; + td;) locally as follows:
(4.30) fla; +td;) = fxj) +tJ(z;)d; + s;(t).

The term s,(t) is a second order term and we will make the following smoothness
assumption:
Assumption 2: There is a constant K > 0 such that for each j we have

(4.31) s ()1 < K| f ()£

In addition, we will assume, without loss of generality, that K > %
Next, for the term J(z;)d; in (4.30), which is equal to J(x;)P;y;, it is helpful to
exploit the notation (4.4) and observation (4.5). Indeed, these imply that

(4.32) J () Pyy; = Viy; + Wiy;.

It was argued in the discussion following Proposition 4.1 that W;y; can be expected
to be much smaller in magnitude than r; and this leads us to our third assumption.
Assumption 3: There is a scalar 0 < u < 1 such that for all j,

(4.33) Wiyl < ullrsl -

Finally, we assume that each linear least-squares problem is solved with a certain
relative tolerance.
Assumption 4: At every step j the least-squares solution Vjy; satisifies

(4.34) 1f(x5) + Viyill <n |[f ()]l
With these the following theorem can be stated.

THEOREM 4.5. Let Assumptions 1-4 be satisfied and assume that the linear least-
squares problem in (4.34) is solved with a relative tolerance n with 0 <n<1—pu, i.e.,
1 satisfies

(4.35) c=1—(n+u)>0.

Then, under these assumptions, we have 0 < 1—c?/4K < 1 and the following inequality
1s satisfied at each step j:

(4.30) I < 1= S| Wl
Proof. Recall that
(4.37) F(@jea(t) = f(x;) + tViy; + tWjy; + 55(),
which we rewrite as
(4.38) [ @) = t[f (z5) + Viys] + (1 =) f(25) + tW;y; + s5(8).
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Thus, for any ¢t with 0 <t <1

1 Gejea (O < ElLF () + Vigsll + [(1 =) + pt] | f (@) || + K1 f ()12
<l f (@)l + (1= t) + ut] | f ()| + K| f ()12
(4.39) S[U= (1 —n—wt 1f (@)l + K f ;) ]1£.

Let us set p; =||7;||. From the definition of ¢ and (4.39) we get
(4.40) mtin I|f (x| < pj % mtin [Kt* —ct+1].

The minimum with respect to ¢ of the quadratic function in the brackets is reached
for top = ¢/(2K) and the minimum value is

. 2 02
(4.41) min [K#* —ct + 1] = {1 4K} :
Note that our assumptions imply that ¢ > 0 so top; > 0. In addition, ¢ < 1 and so
¢/(2K) <1/(2K) <1 (since K > 1/2). Thus, the (exact) line search for ¢ € [0,1]
will yield z;1. Relations (4.41) and (4.40) imply that p; 11 <[1 —c?/(4K)]p; where
|1 — ¢?/(4K)| < 1 under the assumptions on ¢ and K. This proves relation (4.36),
which establishes convergence under the stated assumptions. 0

The theorem suggests that the residual norm for each solve must be reduced by
a certain minimum amount in order to achieve convergence. For example, if ©=0.1
(recall that p is small under the right conditions) and we set ¢ = 0.1, then we would
need a reduction of at least 0.8, which is similar to the residual norm reduction
required in our experiments by default. Also, the four assumptions do not require f
to be convex.

4.5. Extension to the stochastic case. Inspired by the great success of non-
linear acceleration methods in accelerating fixed point iterations, it is natural to ask
whether they can be applied to accelerate practical applications, such as stochastic op-
timization problems [62] in deep learning where gradients are approximated by using a
random batch of samples in each iteration. We show that the nlITGCR(m) algorithm
can be easily generalized to stochastic cases such as minibatching in deep learning.
The main difference is that we now build the pair {P;,V;} with respect to different
objective functions ¢;(z) instead of only one objective function ¢(x). In this case,
line 10 of Algorithm 3.2 becomes v := J;(x;41)p where J;(z) indicates the Jacobian
corresponding to ¢;(x). We found it important to also add gradient prenormalization
to enhance the stability and speed up the training process. That is, the combined
gradient of all layers of the entire model has unit 2-norm. Prenormalizing the gra-
dient is useful because the “search” space Span{P;} is invariant to the magnitude
of its component vectors p;. When the batch size is sufficiently large, the “search”
direction originating from the stochastic gradient is close to the one generated from
the full-batch gradient. Prenormalization can help mitigate the damaging impact of
noisy gradients [14]. Given the significance of this topic, we intend to explore this in
future work, focusing on the theoretical aspects of the proposed methods [70].

5. Numerical experiments. This section presents a few experiments to com-
pare nlTGCR(m) with existing methods in the literature. We propose an adaptive
mechanism that combines the nonlinear update version with the linearized residual
computation. This adaptive version is presented in section 5.1.1 and is implemented
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in other experiments by default. All experiments were conducted on a workstation
equipped with an Intel i7-9700k CPU and an NVIDIA GeForce RTX 3090 GPU. The
first three experiments were implemented in MATLAB 2022b, and the baseline meth-
ods were based on the implementations by Kasai [40] and Kelley [42]. Deep learning
experiments are implemented using PyTorch [1] and run with GPU acceleration.

5.1. Bratu problem. We first consider a nonlinear partial differential equation
problem, namely the Bratu problem [32] of the following form with A =0.5:

Au+Xe"=0 in Q=(0,1) x (0,1),
u(z,y) =0 for (z,y) € 09.

This problem is known to be not particularly difficult to solve but our purpose is to
illustrate the importance of an accelerator that exploits symmetry. The problem is
discretized with centered finite differences [16, 29, 78] using a grid of size 100 x 100,
yielding a nonlinear system of equations f(s) =0 where f:R"™ — R", with n = 10,000.
The corresponding fixed point problem takes the form g(s) = s+ 8f(s).

5.1.1. Superiority of the adaptive update version. The Bratu problem
possesses the property of being almost linear despite the presence of an exponential
term. This property also appears in numerous applications when nearing convergence.
Hence, this problem is suitable to illustrate the difference between the linearized and
nonlinear update versions, while also showing the advantage of utilizing the adaptive
update version.

For the experiment in Figure 5.1, the window size is m = 1, and the starting
point is a vector of all-ones xg = 1. The cost/objective is the relative residual norm
IIf(@)]|2/]1 f(z0)]|2. We compare all three types of residual update schemes in terms
of the number of function evaluations and present results in Figure 5.1(a). It can be
observed that the convergence rate of the adaptive update version is close to that of
the linearized updated version in the first few iterations. This is because the adaptive
update version switches to linear updates at the second iteration and switches back to
the nonlinear form at the 110th iteration, where the linear update version stalls. As
for the cost (Y-axis) of each iteration, Figure 5.1(b) indicates that all three versions
decrease almost in the same way per iteration before the onset of stagnation. The
adaptive update version performs as well as the nonlinear update version afterward.

L Y

\yvvvvvvvv-vvvw

S,
&

B
B

Cost: [[{(x)[L/11f(xp)llp

—e—nITGCR s —e—nITGCR

15 =V nITGCR linear ° 15 =V nITGCR linear
10° nITGCR adaptive 10771 nITGCR adaptive
0 200 400 600 800 1000 1200 0 100 200 300 400 500 600
Function evaluation Iteration

(a) Number of function evaluations vs. relative (b) Number of iterations vs. relative residual
residual norm. norm.

Fic. 5.1. Comparison between the standard, linearized update, and adaptive update versions of
nlTGCR(m) with m =1 on the Bratu problem. Each marker represents 20 iterations.

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/21/24 to 134.84.145.34 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NONLINEAR TRUNCATED GCR 731

10 v
2| -
o L e S o
£ £
=, =
=0 =
3 3
1] —6—nITGCR (m=1) 8 —6—nITGCR (m=1)
10°6 E[~+ Nesterov -+ Nesterov
L-BFGS 108 L-BFGS
AA AA
—¥—NCG —¥—NCG
-&-- Newton-CG -5~ Newton-CG
10°® 1070
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Function evaluation Function evaluation
(a) Starting point zo = 0. (b) Starting point zg = 1.

Fic. 5.2. Number of function evaluations versus relative residual norm on the Bratu problem
with different starting points. Each marker represents 10 iterations, except Newton-CG, where each
marker represents 1 outer loop step.

Sections 5.1.2 and 5.2 report on more experiments with the adaptive version of nlT-
GCR(m). In sections 5.3 to 5.5 we utilize the standard (nonlinear) update version of
nlTGCR(m) for deep learning tasks, as the proposed residual check is not applicable
in a stochastic context.

5.1.2. Exploiting symmetry. We now investigate whether nITGCR(m) takes
advantage of short-term recurrences when the Jacobian is symmetric. Recall that in
the linear case, GCR is mathematically equivalent to the conjugate residual algorithm
when the matrix is symmetric. In this situation a window size m =1 is optimal [63].
We tested nlTGCR(m) along with baselines including Nesterov’s accelerated gradient
[54], L-BFGS [47], AA, nonlinear conjugate gradient (NCG) of Fletcher—Reeves type
[28], and Newton-CG [21]. Results are presented in Figures 5.2(a) and 5.2(b). We
analyzed the convergence in terms of the number of function evaluations rather than
the number of iterations because the backtracking line search is implemented for all
methods considered except AA by default. We present the results of the first 300
function evaluations for all methods. The window size for nITGCR(m) is m = 1,
while for L-BFGS and AA, it is m = 10. The mixing parameter for AA is set to
B8 =0.1 as suggested in [9]. For Newton-CG method, the maximum number of steps
in the inner CG solve is 50. This inner loop can be terminated early if

(5.1) &l < nll f (zo)ll-

We choose the forcing term 1 = 0.9 and adjust it via the Eisenstat—Walker method [24].

The Jacobian for the Bratu problem Vf(s) is SPD, making nlTGCR(m) with
m =1 a highly efficient method. Other methods that do not take advantage of this
symmetry require a larger number of vectors to achieve comparable performance. We
tested the methods with two different initial guesses. The first, used in the experiments
in Figure 5.2(a), is ¢yp = 0, which is somewhat close to the global optimum. The second
initial guess, used in the experiments in Figure 5.2(b), is the vector of all ones z¢ = 1.
In both cases, we set the window size of L-BFGS and AA to 10, which means that
20 vectors in addition to x; and r; need to be stored. In contrast, nlTGCR(m=1)
only requires 2 extra vectors. In this problem, nlTGCR(m =1), Nesterov, NCG, and
Newton-CG are memory-efficient in terms of the number of vectors required to store
information from previous steps. Among these competitive methods, nlTGCR(m =1)
performs best—suggesting that nlTGCR(m) benefits from symmetry.
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Fi1c. 5.3. Comparison of nlTGCR(m) with m = 1,2,3,5,10 on the modified Bratu problem.
FEach marker represents 20 iterations.

To further clarify our claim, we modify the Bratu problem
Au+ aug + A =0

by introducing asymmetry to the Jacobian via the term au,. We employ the standard
nlTGCR method with no restarts, and we consider various table sizes m = 1,2,3,5,
10 and initiate the process using an all-one vector 1.

In Figure 5.3(a), we set A = —100 and a = 0, resulting in a nonlinear symmetric
Jacobian. The overlap of all lines confirms the observation that nITGCR benefits
from the symmetry of the Jacobian. Conversely, in Figure 5.3(b) where A = 0 and
o = —2, the Jacobian is linear and asymmetric. The selection of table size m pro-
foundly impacts the performance. Hence, nITGCR exploits the symmetry to establish
short-term recurrence and improve convergence, while the nonlinearity of the problem
mainly affects the adaptive update mechanism.

5.2. Molecular optimization with Lennard-Jones potential. The second
experiment focuses on the molecular optimization with the Lennard-Jones (LJ)
potential, which is a geometry optimization problem. The goal is to find atom posi-
tions that minimize total potential energy as described by the LJ potential:*

N i—1 1 1
(5.2) E= 4 % [ - .
;; ly =il Nlyi —w;5°

In the above expression each y; is a three-dimensional vector whose components are
the coordinates of the location of atom i. We start with a certain configuration and
then optimize the geometry by minimizing the potential starting from that position.
Note that the resulting position is not a global optimum—it is just a local minimum
around the initial configuration (see, e.g., Figure 5.4(a)). In this particular example,
we simulate an Argon cluster by taking the initial position of the atoms to consist
of a perturbed initial face-centered-cubic (FCC) structure [53]. We took 3 cells per
direction—resulting in 27 unit cells. FCC cells include 4 atoms each and so we end
up with a total of 108 atoms. The problem is rather hard due to the high powers in
the potential. In this situation backtracking or some form of line search is essential.

4We benefited from Stefan Goedecker’s course site at Basel University.
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Fi1G. 5.4. (a) Initial and final configurations of 108 atoms with the Argon cluster experiment.
(b) Number of function evaluations versus shifted potential norm on the LJ problem. Each marker
represents 10 iterations for all methods except Newton-GMRES, where each marker represents 1
outer loop step.

In this experiment, we set f = VE. Each iterate in nlTGCR(m) is a vectorized
array of coordinates of all atoms put together. So, it is a flat vector of length 3 x108 =
324. We present the results of the first 220 function evaluations for nlTGCR(m), AA,
Nesterov, and Newton-GMRES in Figure 5.4(b). The reason for excluding L-BFGS,
NCG, and Newton-CG is that the Jacobian/Hessian of the LJ problem is indefinite
at some xj, which can lead to a nondescending update direction. The window sizes
for nIlTGCR(m) are m =1 and m = 10, while for AA it is m = 10 and for Newton-
GMRES it is m = 20. This is because nlTGCR(m) and AA require storing twice as
many additional vectors as the window size to generate the searching subspace, while
Newton-GMRES does not. For each inner GMRES solve, GMRES is allowed to run up
to 40 steps and utilizes a forcing term n=0.9 to terminate the inner loop. Moreover,
AA does not converge unless the underlying fixed point iteration s;11 =s;+8f(s;) is
carefully chosen. In this experiment, we select 3 =1073. The cost (Y-axis) represents
the shifted potential E — E,,;,, where E,,;, is the minimal potential achieved by all
methods, approximately equal to —579.4638.

In Figure 5.4(b), we observe that nlTGCR(m = 10) converges the fastest. The
convergence of nlTGCR(m = 1) and Newton-GMRES with a subspace dimension of
20 is close and slightly slower than nlTGCR(m = 10). One observed phenomenon
worth mentioning is the quick termination of the inner loop of Newton-GMRES dur-
ing the first few iterations. Newton-GMRES moves quickly to the next Jacobian at
the beginning and focuses on a single Jacobian when nearing convergence. This be-
havior is made possible by the use of the Eisenstat—Walker technique, which accounts
for the fast convergence of Newton-GMRES. However, without this early stopping
mechanism, Newton-GMRES will fail to converge. In contrast, nlTGCR(m) and AA
do not exclusively rely on one Jacobian at each iteration.

5.3. Image classification using ResNet. We now test the usefulness of nlT-
GCR(m) for deep learning applications by first comparing it with two commonly
used optimization algorithms, Adam [43] and momentum. We report the training
mean squared error (MSE) and test accuracy on the CIFAR10 dataset [45] using
ResNet [37]. We employed a ResNet 18 architecture from PyTorch.’ The window size

Shttps://github.com/pytorch/vision/blob/main /torchvision/models/resnet.py.
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Fia. 5.5. Image classification on CIFAR10 using ResNet (averaged over 5 independent runs).
nlTGCR(m = 1), Adam, and momentum achieved a test accuracy of 91.56%,90.13%,89.53%,
respectively.

m is 1 for nlTGCR(m) because we found a large window size did not help improve
the convergence too much in our preliminary experiments. The hyperparameters of
the baseline methods are set to be the same as suggested in [37], i.e., the learning rate
is 0.001 and 0.1 for Adam and momentum, respectively. Figure 5.5(a) depicts the
training loss over time for each optimization algorithm, and Figure 5.5(b) shows the
corresponding test accuracy. As can be seen, nlTGCR(m = 1) achieved the best per-
formance in terms of both convergence speed and accuracy. The experimental results
revealed that nIlTGCR outperformed the baseline methods by a significant margin.
It is worth noting that nlTGCR converges to a loss of 0 for this problem, which
empirically verifies the theoretically established global convergence properties of the
method. This suggests that nlTGCR(m = 1) may lead to an interesting alternative
to the state-of-the-art optimization methods in deep learning.

5.4. Learning dynamic using neural-ODE solver. We conducted experi-
ments using a neural-ODE solver [17] to learn underlying dynamic ODEs from sam-
pled data. In our work, we focused on studying the spiral function

dz  [-01 —1.0
a |10 —01|*

which is a challenging dynamic to fit and is often used as a benchmark for testing
the effectiveness of machine learning algorithms. We generated the training data by
randomly sampling points from the spiral and adding small amounts of Gaussian
noise. The goal was to train the model to generate data-like trajectories.

However, training such a model is computationally expensive. Therefore, we
introduced nlTGCR(m) to recover the spiral function quickly and accurately, with
the potential for better generalization to other functions. Our experiments involved
training and evaluating a neural-ODE model on the sampled dataset for the spiral
function compared with Adam and momentum. After a grid search, we set the learning
rate as 0.01 for Adam and window size m =1 for nlTGCR(m). We reported the MSE
training loss and visualized the model’s ability to recover the dynamic in Figure 5.6.
We did not visualize the momentum results as it took over 100 epochs to converge.

Figure 5.6(a) shows that nlTGCR(m=1) converges faster and more stably than
Adam. Additionally, Figures 5.6(b) and 5.6(c) demonstrate that nlTGCR(m=1) is
capable of generating data-like trajectories in just 15 epochs, whereas Adam struggles
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Fia. 5.6. Learning true dynamic using neural ODE. It can be observed that nlTGCR(m =1)
converges much faster and can recover the true dynamic up to 5x faster than Adam.

to converge even after 50 epochs. This experiment demonstrates the superiority of
nlTGCR(m = 1) for this interesting application, relative to commonly used optimizers
such as Adam and momentum.

5.5. Node classification using graph convolutional networks. Finally, we
explore the effectiveness of nlTGCR(m) in deep learning applications by implementing
graph convolutional networks (GCNs) [44]. We use the commonly used Cora dataset
[51], which contains 2708 scientific publications on one of 7 topics. Each publication is
described by a binary vector of 1433 unique words indicating the absence or presence
in the dictionary. This network consists of 5429 links representing the citation. The
objective is a node classification via words and links. The neural network has one
GCN layer and one dropout layer of rate 0.5. We adopted the GCN implementation
directly from PyTorch-Geometric [2].

We set m =1 and m = 10 in nlTGCR(m) and compare it with Adam [43], AdamW
[48], and AdaHessian [79] with learning rates ir = 0.01, 0.01, 0.003, respectively, after a
grid search. We present results of the training loss (cross entropy) and test accuracy
in Figures 5.7(a) and 5.7(b). Note that a lower loss function does not necessarily
mean a better solution or convergence because of the bias and variance trade-off.
Although Adam achieved a lower training loss, it is not considered as a better solution
because its poor generalization capability on unseen datasets. We can observe that
nlTGCR(m = 1) shows the best performance in this task. Specifically, it is not
necessary to use a large window size since there is no significant difference between
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F1G. 5.7. GCN on Cora. nlTGCR(m = 1) achieved a test accuracy of 88.13%, which is 4.02%
higher than the second best baseline AdamW.
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m =1 and m = 10. This experiment shows again that nlTGCR(m = 1) can be adapted
to the solution of deep learning problems.

6. Concluding remarks. The initial goal of this study was primarily to develop
Anderson-like methods that can take advantage of the symmetry of the Hessian in
optimization problems. What we hope to have conveyed to the reader is that, by a
careful extension of linear iterative schemes, one can develop a whole class of methods,
of which nlTGCR(m) is but one member, that can be quite effective, possibly more so
than many of the existing techniques in some situations. We are cautiously encouraged
by the results obtained for deep learning problems, although much work remains to
be done to adapt and further test nlTGCR(m) for the stochastic context. In fact, our
immediate research plan is precisely to perform such an in-depth study that focuses
on deep learning applications.

Appendix A. More on GCR for solving linear systems. A number of
results on the GCR algorithm for linear systems are known but their statements or
proofs are not readily available from a single source. For example, it is intuitive, and
well-known, that when A is Hermitian then GCR will simplify to its CG-like algorithm
known as the conjugate residual algorithm, but a proof cannot be easily found. This
section summarizes the most important of these results with an emphasis on a unified
presentation that exploits a matrix formalism.

A.1. Conjugacy and orthogonality relations. We start with Algorithm 3.1,
where we assume no truncation (m =oo). It is convenient to use a matrix formalism
for the purpose of unraveling some relations and so we start by defining

(A.1) Ry =[ro,m1,-- 7k

The relation in line 7 of the algorithm can be rewritten in matrix form as

(A.2) Ry, = P,B®,

where B*) is an upper triangular matrix of size (k + 1) x (k+ 1) defined as follows:

0 if i>7,
(A.3) B0 e REFDX(+1) gl = g it i=j
ﬁ(ifl),(jfl) if 4 <j.

Similarly, note that the relation from line 6 of the algorithm can be recast as
(A.4) APy = Ry H®,

where H® is a (k4 2) x (k + 1) lower bidiagonal matrix with

L if i=j,
® )t
(A.5) H: =< =— if i=j+1,

=] a1

0 if i<jori>j+1.

ProPOSITION A.1 (Eisenstat, Elman, and Schultz [22]). The residual vectors
produced by (full) GCR are semiconjugate.
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Proof. Semiconjugacy means that each r; is orthogonal to Arg, Ary,...Ar;_q,
so we need to show that RL ARy is upper triangular. We know that each 7,41 is
orthogonal to Ap; for i=1,...,7, a relation we write as

where Uy, is some upper triangular matrix. Then, from (A.2) we have ARy = AP, B(¥)
and therefore

(A7) RT AR, = RTAP,B® = U, B®,

which is upper triangular as desired. 0
We get an immediate consequence of this result for the case when A is Hermitian.

COROLLARY A.2. When A is symmetric real (Hermitian complez), then the di-
rections {r;} are A-conjugate.

Proof. Indeed, when A is symmetric real the matrix RY ARy = UpB® is also
symmetric and since it is upper triangular it must be diagonal, which shows that the
r;’s are A-conjugate. |

In this situation, we can write
(A.8) RFAR,, = Dy,

where Dy, is a (kK + 1) x (k4 1) diagonal matrix. The next result shows that the
algorithm simplifies when A is symmetric. Specifically, the scalars §;; needed in the
orthgonalization in line 7 are all zero except 3;;.

PROPOSITION A.3. When A is symmetric real, then the matriz (AR)T (APy) is
lower bidiagonal.

Proof. As a result of (A.4) the matrix (ARy)T (AP) is
(ARy)" (APy) = (ARy)" Ry H®.

Observe that (ARy)T Ryy1 = [Dy,0(x+1)x1] and the product [Dk,O(k_H)Xl]ﬂ(k) yields
the (k+1) x (k+ 1) matrix obtained from H™ but deleting its last row which we
denote by H®*). Therefore,

(AR)T(APy) = D,H®

is a (k+1) x (k+ 1) bidiagonal matrix. O

A.2. Breakdown of GCR. Next we examine the conditions under which the
full GCR breaks down.

PROPOSITION A.4. When A is nonsingular, the only way in which (full) GCR
breaks down is when it produces an eract solution. In other words, its only possible
breakdown is the so-called lucky breakdown.

Proof. The algorithm breaks down only if Ap;,1 produced in line 7 is zero, i.e.,
when p; 1 == 0 since A is nonsingular. In this situation ;4 = Z?:o Bijpi- It can be
easily seen that each p; is of the form p; = u;(A)ro where y; is a polynomial of degree
i. Similarly 741 = pj11(A)re in which p;;1 is a polynomial of degree (exactly) j + 1.
Therefore, the polynomial 7,41 (t) = pj11(t) — >.7_, Bijpi(t) is a polynomial of degree
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exactly j + 1 such that m;;1(A)ro = 0. Thus, the degree of the minimal polynomial
for g is 7 + 1 and we are in the standard situation of a lucky breakdown. Indeed,
since the algorithm produces a solution x;,1 that minimizes the residual norm, and
because the degree of the minimal polynomial for rq is equal to j + 1, we must have
Ti+r1= 0. 0

Note that the proposition does not state anything about convergence. The iterates
that are computed will have a residual norm that is nonincreasing but the iterates
may stagnate. Convergence can be shown in the case when A is positive definite, i.e.,
when its symmetric part is SPD.

In addition, the proof of this result requires that the solution that is produced
has a minimal residual, which is not the case for the truncated version. Thus, in the
truncated version, we may well have a situation where p;,1 =0 but the solution z;,
is not exact. If we had p;y1 =0 it would mean that 7;41(A4)ro =0, i.e., the minimal
polynomial for 7y is again of degree exactly j + 1. This is an unlikely event that we
may term “unlucky breakdown.” However, in practice, the more common situation
that can take place is to get a vector p;y; with a small norm.

Suppose now that A is positive definite, i.e., that its symmetric part is SPD. Let
us assume that py = 0 but rp # 0—which represents the scenario of an “unlucky
breakdown” at step k. Then since the last column of Py is a zero vector the last
column of the matrix Uy in (A.6) is also zero. This in turn would imply that the
last row of the product U, B*) in (A.7) is zero. However, this can’t happen because
according to (A.7) it is equal to the last row of the matrix RF AR, where A is positive
definite. Thus, the “unlucky breakdown” scenario invoked above is possible only when
A is indefinite.

A.3. Properties of the induced approximate inverse. When zy = 0 the
approximate solution obtained at the end of the algorithm is of the form x4 =
PkaTb. We say that the algorithm induces the approximation By = PkaT to the
inverse of A. Note that even in the case when A is symmetric, By is not symmetric
in general. However, By obeys a few easy-to-prove properties stated next.

PROPOSITION A.5. Let Ly, = Span(Vy) and let m =V, V;I' be the orthogonal projec-
tor onto Ly. The (full) GCR algorithm induces the approzimate inverse By, = PkaT
which satisfies the following properties:

1. B, = A~ 1r,

2. By inverts A exactly in Ly, i.e., Bpx = A7lz for x € L. Equivalently,
Byr=A"17.

3. ABy, equals the orthogonal projector .

=~

. When A is symmetric then By is self-adjoint when restricted to L.

5. ByAx =z for any x € Span{ Py}, i.e., By inverts A exactly from the left when
A is restricted to the range of Pj.

6. BiA is the projector onto Span{ Py} and orthogonally to AT L.

Proof. (1) The first property follows from the relation AP =V}, and the definition
of Bk.

(2) To prove the second property we write a member of Span(Vy) as = Viy.
Then from the previous property we have

Bz =AWV VIViy= A" "Wy = A1z,

(3) AB, = AP VI =V, Vil =
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(4) The self-adjointness of By in Ly, is a consequence of (2). It can also be readily
verified as follows. For any vectors x,y € Lj write

(Brz,y) = (A" ra,y) = (A7 e, y) = (2, A7 y) = (v, A" 'my) = (2, Bry).
(5) Let a member of Span(Py) be written as = Pyy and apply BrA to x:
ByAz = BLAPwy = ByViy= A" 'ViVIViy = A=Wy = Py = .

Therefore, By A leaves vectors of Span(Py) unchanged.

(6) Because By A leaves vectors of Span(Py) unchanged it is a projector, call it
7o (for oblique), with Ran(mp) = Span{P;}. We now need to show that (u — mou) L
AT L. for any u. Since ATV}, is a basis for AT Ly, this is equivalent to showing that
(ATV)T (u — mou)) = 0 for any u. We have for any given vector u € R™

(ATV)T (u — mou) = Vi¥ (Au — AP VE Au) = Vi (Au — Vi Vi Au)
=V (I -V Au=0. u|

Thus (4) and (6) indicate that while ABy, is an orthogonal projector, By A is an
oblique projector. Although (4) is an obvious consequence of (3), it is interesting to
note that it is rather similar to relations obtained in the context of Moore-Penrose
pseudoinverses.

Appendix B. Convergence analysis. We provide an alternative analysis of
the global convergence of nI TGCR based on the backtracking line search strategy. We
will make the following assumptions:

Assumption A:

(B.1) The set S = {x: ¢(x) < P(x0)} is bounded.

Assumption B:

(B.2) V¢ is L-Lipschitz, | Vé(x) — Vo(y)|| < L||z — y||, 0 < L < o0.
Assumption C: There exists a v > 0 such that d; produced by Algorithm 3.2 satisfies

d] Vo(x;) )
-_J 7 > 0 V.
la; VoG] =177

Assumption D: There exist two positive constants p and © such that

(B.3)

(B.4) i1l = ull Vo)l lldsll < © V.

THEOREM B.1. For any scalar function ¢(x), consider the iterates xj41 = x; +
ajd; with descent directions d; produced by Algorithm 3.2 and stepsizes o produced
by backtracking line search (4.22). Suppose Assumptions A-D also hold; then

(B.5) Tim V()| =0.

This theorem is a well-known result in optimization and it can be found in various
sources, including [31]. We omit its proof.
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