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ABSTRACT

The unprecedented success of artificial intelligence (AI) enriches

machine learning (ML)-based applications. The availability of big

data and compute-intensive algorithms empowers versatility and

high accuracy in ML approaches. However, the data processing

and innumerable computations burden conventional hardware sys-

tems with high power consumption and low performance. Breaking

away from the traditional hardware design, non-conventional ac-

celerators exploiting emerging technology have gained significant

attention with a leap forward since the emerging devices enable

processing-in-memory (PIM) designs of dramatic improvement in

efficiency. This paper presents a summary of state-of-the-art PIM

accelerators over a decade. The PIM accelerators have been im-

plemented for diverse models and advanced algorithm techniques

across diverse neural networks in language processing and image

recognition to expedite inference and training. We will provide

the implemented designs, methodologies, and results, following

the development in the past years. The promising direction of the

PIM accelerators, vertically stacking for More than Moore, is also

discussed.

CCS CONCEPTS

• Hardware → Emerging architectures;Memory and dense

storage; • Computer systems organization→ Data flow archi-

tectures; •Computingmethodologies→Artificial intelligence;

Machine learning.
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Figure 1: (a) Dramatically increasing model size in recent

years and (b) the end of Moore’s law

1 INTRODUCTION

Numberless decent applications on edges stem from artificial intel-

ligence (AI)-based technology. Machine learning (ML) techniques

leveraging deep neural networks (DNNs) are considered the key to

the bright future of AI, as they have been verified through diverse

applications from spatial processing (e.g., image recognition) to

sequential processing (language and bioinformatics), even both like

video-based applications. However, the model size is unprecedent-

edly increasing under the development of algorithms. As shown in

Figure 1(a), the emergence of large language models (LLMs) expe-

dites the model size increase, and accordingly state-of-the-art deep

learning needs trillions of parameters.

The increasing size of DNN models, however, is not affordable in

hardware due to two fundamental limitations: the end of Moore’s

law and memory wall—also known as von Neumann bottleneck.

Moore’s law was found by empirical observation by a co-founder of

Intel, Gordon E. Moore: a doubling in transistor density every two

years. The law stood firm for many decades, indicating remarkable

technology node down-scaling. Yet a gap between the projection

Moore made and industry capabilities at the time began to form

around 2000, as Figure 1(b) displays. Researchers around the globe

reached a consensus that the end of Moore’s law was approaching

after the 2000s. Furthermore, the other limitation, memory wall,

was caught in the existing computer architecture, which is based

on von Neumann architecture separating the memory and com-

puting units. The heterogeneity in the von Neumann architecture
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Table 1: Characteristics according to different memory types,

including DRAM, SRAM, RRAM, PCM, and MRAM [16].

DRAM SRAM RRAM PCM MRAM

Cell structure 1T1C 6T 1T1R 1T1R 1T1R

Cell size 6𝐹 2 >100𝐹 2 4-12𝐹 2 4-30𝐹 2 6-50𝐹 2

Write voltage <1V <1V <3V <3V <1.5V

W/R latency <10ns 0.3ns 10ns 50ns 20ns

Write energy ∼5fJ ∼0.7fJ ∼0.1pJ ∼10pJ ∼0.1pJ

Endurance > 1016 > 1016 < 1012 < 109 > 1015

limits the computational performance improvement because of the

speed mismatch between the computing and data transfer [9]. To

overcome the memory wall in the post-Moore era, we need a new

paradigm in hardware.

Fortunately, the emerging memory technology, discovered un-

der the name of memristor, has expedited the development of a

novel hardware paradigm. The memristor is considered a promi-

nent solution as a memory device for its brilliant properties, such

as non-volatility. Unlike the volatile conventional memories, the

non-volatility remarkably reduces power consumption by hold-

ing written data without a power supply. Also, the memristor is

advantageous in area efficiency and multi-level storage capabil-

ity. Moreover, the metal-insulator-metal (MIM) structure enables

the form of a crossbar architecture, which is actively exploited in

process-in-memory (PIM) accelerators.

PIM is an effective solution to tackle thememorywall by integrat-

ing memory and computing models into one unit. The memristor-

based PIM particularly empowers the efficient execution of matrix

processing because of its crossbar architecture parallelizing compu-

tations. Correspondingly, memristor-based PIM accelerators have

been actively researched for DNN models to alleviate the move-

ment of numerous parameters across heterogeneous units with

high-performance computing through high parallelism.

In this paper, we present a summary of PIM hardware designs

based on emerging technology for ML acceleration in the past

decade. Memristor-based PIM accelerators have made progress by

chasing the development of algorithms. Its potential in ML accel-

eration was demonstrated with traditional models and has been

extended to various DNN models with inference and training pro-

cesses. The advanced algorithm techniques to leverage the inherent

sparsity of DNNs started being considered for accelerator designs.

Then, different dataflow was first introduced and considered in

a recent year. Beyond such a trace of memristor-based PIM ac-

celerators, we discuss one of the most promising technologies in

memory-based accelerators for the future, vertically stacked 3D,

and its status quo.

2 EMERGING NONVOLATILE TECHNOLOGY

Memristor was defined in the early 1970s as a fourth element, which

had been missing for a long [4, 5]. Then, a memristor device was

first realized by the nano-scale thin-film structure in 2008 [19]. The

device remembers data as resistance (memristance), even without

power, which could reduce remarkable power consumption. As

a result, it has been considered a promising technology for the

future, named emerging nonvolatile memory (eNVM). Based on

the potential, various eNVMs have been introduced with different

Figure 2: (a) VMM and its implementation in RRAM-based

crossbar hardware [1] and (b) digitally implemented logic

computation methodology [10], MAGIC [14].

materials and properties, including resistive, phase-change, and

magnetoresistive RAM (RRAM, PCRAM, and MRAM). Along with

the non-volatility, eNVMs have desirable properties as memory

technology. It can be confirmed in Table 1, which compares the

conventional memories and eNVMs. Conventional memories sac-

rifice resources noticeably. Specifically, DRAM slowly reads and

writes data, and SRAM needs large areas. On the other hand, eN-

VMs show small area occupation, high efficiency, and even multi-bit

storage [2]. Among eNVM devices, RRAM is one of the particularly

compelling future devices because of its device excellence (Table 1).

As memristive devices, RRAMs have a metal-insulator-metal

(MIM) structure, where a metal oxide layer is sandwiched between

a top electrode (TE) and a bottom electrode (BE). Voltages with

a proper pulse width or magnitude over a threshold program the

device resistance (memristance). The resistance level accordingly

programmed represents data in a cell. It is noteworthy that the MIM

structure hasmotivated brain-inspired hardware design through the

crossbar array form. As illustrated in Figure 2(a), the array is struc-

tured by placing devices at every cross-point. Thanks to Ohm’s and

Kirchhoff’s Law, RRAM crossbar arrays accelerate vector-matrix

multiplication (VMM) operations, which are dominant in neural

network models.

While multi-level representation is available in RRAM for ef-

ficient computing, the analog implementation could deteriorate

the efficiency because of reliability issues from non-ideal device

properties. Enough margin by using RRAM in digital can guarantee

reliable results, which can be achieved by reading the data with

two states, low and high resistant states (LRS and HRS) expressing

’1’ and ’0’, respectively. For read operations, a voltage under the

writing threshold is applied across two electrodes of the device, and

the detected current obtained from the device indicates the device

state, that is, the stored logic value in the cell. This digital usage

of RRAM devices can be extended to logic computing in RRAM, as

described in Figure 2(b). Although the device is interpreted digitally,

the multiplied result at each cross-point is accumulated with the

current from other cells and it requires power-hungry peripheries

like converters. That’s why logic computation with RRAMs has

been investigated as one of the implementation methodologies,
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Figure 3: The development of RRAM-based PIM accelerators.

under the name of memristor-aided logic (MAGIC) [14] based on

the voltage divider rule.

3 PROPOSED ACCELERATOR DESIGNS

Before the DNNs boom, traditional models ignited machine learn-

ing research. There have been efforts to implement the traditional

models in hardware accordingly. Specifically, M. Hu et al. [6] ex-

plored the brain-state-in-a-box (BSB) model by realizing the synap-

tic weighting function of RRAM. Because of the intrinsic positive-

ness of devices, the design implements two memristive arrays to

express real numbers. Parallel computing through two RRAM ar-

rays expedites VMM and the calculated results are passed to the

subsequent components to process the BSB model computations.

RRAM-based hardware implementation with PIM is continually re-

searched for diverse learning models, including unsupervised learn-

ing [11]. Beyond the traditional and relatively simple algorithms,

the early exploration became the foundation of DNN accelerators.

According to the explosive DNN algorithms, RRAM-based PIM ac-

celerators have been proposed with diverse design objectives, from

inference/training to the consideration of dataflow, as described in

Figure 3.

3.1 Various models in inference/training

The successful examples of DNN implementation led to RRAM-

based PIM accelerator designs for various models. Convolution

neural network (CNN) has been one of the most successful algo-

rithms because of its performance in image classification since

the convolution operations of LeNet-5 successfully classified the

hand-written dataset. The effectiveness of convolution operations

in image feature extraction brings about diversified CNN architec-

tures, which outperform even human-level accuracy.

Inference: The need for hardware accelerators for CNN models

also ignites the PIM designs for high performance. PRIME [3] and

ISAAC [17] are representative designs to accelerate the inference

of CNNs. By unrolling the 2D weight parameters in one kernel

in CNNs, RRAM arrays efficiently perform the convolution oper-

ations. Both accelerators implemented other functions by proper

peripheral components. Specifically, PRIME presents a full-stack

solution including hardware architecture and software interface to

support in-situ computation of neural networks in main memory,

resulting in four orders of magnitude improvement over conven-

tional CPU in speedup and energy saving. In ISAAC, the read-out,

sample and hold, analog-digital conversion, and post-processing

are scheduled in a pipeline manner in each compute tile to pro-

vide higher throughput. ISAAC outperforms a previous accelerator,

which reported 450× speedup and 150× lower energy than NVIDIA

K20M GPU, with a 14.8× higher throughput on average.

Training: In addition to the feed-forward process in inference,

training further involves backpropagation and weight update proce-

dures. Correspondingly, training is more compute-intensive than in-

ference, and the witness of the successful hardware implementation

of the inference process also stimulates training accelerators. The

call for training accelerators brought attention to PipeLayer [18],

which realizes the essential computations in training. PipeLayer

analyzes the training requirements and then introduces the pipelin-

ing scheme for efficient DNN training, as displayed in Figure 4, by

adding weight update into the computation pipeline and resolving

the dependencies in training. The RRAM arrays are designed asmor-

phable subarrays and memory subarrays to perform two functions,

computation and storage, respectively. Subarrays configured into

memory mode store the activations for calculating the errors in the

backpropagation. For batch computing of multiple input samples,

PipeLayer executes an intra-pipeline-fashioned process with the

samples. The intra-pipelining is feasible because weight update is

conducted at the end of each batch process and the samples during

the batch process show no dependence. PipeLayer shows 42.45×

speedup and 7.17× energy saving compared with a GPU platform.

GAN training: The competitive results from DNN models de-

vised a fortified training methodology through an unsupervised

paradigm in generative adversarial networks (GANs). As illustrated

in Figure 5(a), GAN is based on an adversarial game between a

generator (G) and a discriminator (D), which are typically modeled

by DNNs and trained simultaneously. Generally, G produces high-

quality samples from noise to simulate the distribution of authentic

data samples, and D is an optimized binary classifier trained by

distinguishing between real and generated samples. While GANs

are powerful, the two DNNs impose a main challenge in GAN ac-

celeration due to the high demand for computing resources and

frequent data transfer. Furthermore, GANs exploit more comput-

ing phases through highly complex operations, when compared to

traditional supervised deep learning. From the challenges, ReGAN
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Figure 4: The pipelined training in PipeLayer [18].

[1] leverages RRAM PIM effectiveness in VMM high-performance

computing. ReGAN partitions RRAM memory arrays into three

regions. One is memory subarrays to purely save data, another is

full-function subarrays for on-site VMM and data storage, and the

last one is buffer subarrays for intermediates between layers, includ-

ing generated images, data required to compute partial derivatives,

etc. To avoid wasting the limited bandwidth of memory subarrays

by buffer accesses, ReGAN connects the buffer and full-function

arrays by high-throughput private local data ports. Also, ReGAN

adopts the spike-based scheme for smooth communications across

RRAM subarrays and peripheries to minimize the energy overhead

by power-hungry analog-digital converters (ADC). The non-linear

activation function is conducted by utilizing a look-up table, and

other peripheral units, such as subtractors and shift-and-adds, are

implemented to support various computations in training. ReGAN

reports 240× speedup and 94× energy saving than GPU on average.

FP training in digital: However, the efficiency of RRAM ar-

rays in VMM computing improves fixed-point computing but is

hardly realizable in floating-point computations. Moreover, previ-

ous designs heavily relying on analog VMM computing necessitate

power-hungry components converting digital to analog or vice

versa, as the accumulated currents from an RRAM array should be

interpreted in digital to communicate with other units. FloatPIM [7]

executes DNNs with floating-point (FP) computing for the first time

without ADC/DACs by leveraging digital implementation method-

ology in PIM. The MAGIC scheme removes the need for converters

for required computations and operations by propagating them dig-

itally. More importantly, the logic-based implementation enables

floating-point computing of complex operations.

Transformer: Beyond the image applications, the huge success

of large language models (LLMs) makes fast progress by producing

superior algorithms like GPT and BERT model series. The multi-

head-attention model (Figure 5(b)) becoming the basis of the LLM

success shows its effectiveness in language processing, and ReTrans-

former [22] is a design for the transformer in a pipeline fashion by

reordering the data generation and the computing process in scaled

dot-product attention layer between𝑊𝑄 and𝑊𝐾 . The inference

starts with the initialization of two RRAM arrays with𝑊𝑄 and𝑊𝐾 ,

respectively. Following the original flow, two weight matrices (𝑊𝑄

and𝑊𝐾 ) are computed with input matrices to generate 𝑄 and 𝐾 ,
which will multiply the 𝑄 and 𝐾𝑇 intermediate matrices. RRAM

crossbars, therefore, hold one of the results 𝑄 and 𝐾 for the dot

product operation between 𝑄 and 𝐾 .

Figure 5: Various compute- and memory-intensive algo-

rithms, such as (a) GAN based on CNN architectures [1] and

(b) multi-head-attention structure enabling LLMs [22].

Instead, ReTransformer proposes to reorder the original compu-

tation flow into two cascaded steps. After computing the 𝑄 matrix

first, it is multiplied with the weight matrix (𝑊𝐾 ), rather than com-

puting the 𝐾 matrix separatively. Then, the generated matrix is

multiplied by the input matrix. To prevent frequent writing op-

erations of intermediate values into RRAM arrays, ReTansformer

performs the optimized computing flow in a pipeline fashion. Ini-

tialization of RRAM arrays with weight matrices at the beginning

is followed by two stages, to multiply weights and inputs for 𝑄
and to compute intermediate results by multiplying the generated

𝑄 and weights. In the meantime, other RRAM crossbar arrays are

initialized with inputs so that the intermediate results can be per-

formed with the input matrix to shorten the computing time. The

evaluation displays the improved efficiency of ReTransformer with

the proposed reordering and pipelining scheme by up to 80%.

3.2 Hardware support for compressed ML

Because of the increasing model size, advanced algorithm tech-

niques have emerged, i.e., sparsification [21] and quantization [15].

DNN algorithms have inherent sparsity, referring to the radio of

zeros, in activations and weights because of non-linear functions,

etc. However, the irregular distribution of the zero values cannot be

exploited to accelerate the learning process for its unpredictability.

Consequently, intended sparsification through pruning insignifi-

cant values.

Sparse NN: ReCom [8] is an RRAM-based efficient PIM architec-

ture to better resource utilization in compressed NN by leveraging

the sparsity in weights and activations. Weights are compressed

through structured sparsification, and non-zero activations cor-

responding to the non-zero weights are fetched through an opti-

mized unit, structurally weight-oriented fetching (SWOF). In-layer

pipeline for memory and computation (IMPC) further speeds up

the process, while skipping redundant computations in case of

all-zero activations. Experiments verify that ReCom can shorten

the computation time by up to 10.66× and improve energy effi-

ciency by up to 9.43×, compared to the early introduced accelerator,

PipeLayer. Memristor-based sparse compact CNN (MSCCNN) [20]

further saves resource consumption by compact models and sparsi-

fication through pruning. Point-wise and depth-wise convolutions,

which make compact models, are utilized to replace fully-connected

and vanilla convolution layers, respectively. Then, MSCCNN ap-

plied pruning to remove redundancy and pursue further compact
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network structures. The evaluation results prove excellent hard-

ware efficiency improvement and even superior accuracy levels by

MSCCNN.

Quantized NN: In addition, low-precision computing is induced

by the quantization of high-precision activations/parameters to re-

duce the overhead in the hardware and learning process. As a result,

quantized DNNs preserve accuracy with much smaller overheads

in hardware Kim et al. proposed a 3D RRAM design for a binarized

neural network (3D-BNN), an outcome of an extreme quantization

of weight parameters [10]. The authors noticed that MAGIC-based

computing consumes numerous RRAM devices and cycles for in-

termediate values because multiplication and addition need several

logic-computing despite one-bit operations. Driven by the motiva-

tion, the authors propose simplified logic-based BNN computations

and their efficient implementation in 3D RRAM hardware.

BNN maintains high accuracy with great savings in parameters

at the algorithm level. Moreover, the adoption of binarized weights

eliminates the requirement of multiplication and necessitates only

additions. However, the original logic-based addition demands nu-

merous intermediates and corresponding devices. Therefore, the au-

thors propose a simplified logic-based full-adder scheme to shorten

the computing latency and device consumption, recognizing that

the outcome of a logic-based full-adder depends on a specific term

in the equation. After that, its implementation is performed with a

3D RRAM structure for parallel computing. Half of the operands

are saved into stacked layers with different assumptions regarding

carry-in. According to the real carry-out value, the corresponding

layer is selected for the computation propagation. In such a design,

3D-BNN shows no accuracy loss from the original BNN but also

saves time and the number of RRAMs in PIM by up to 6×.

3.3 Dataflow

The fact that data movements to off-chip components are expen-

sive leads to an in-depth discussion on dataflow in other types of

accelerators based on systolic arrays, GPUs, etc. In contrast, the

previous RRAM-based PIM accelerators have been built on one

dataflow, weight-stationary (WS) dataflow, by keeping weights in

PIM RRAM arrays and fetching/saving inputs (activations) to exter-

nal memory units. It has been adopted because weight parameters

are static values while activations are dynamic. However, catching

that dataflow is one of the most critical factors determining the ac-

celerator efficiency in PIM also, INCA [13] investigated and raised

a question about the efficiency of WS for the first time. According

to the observations in INCA, WS has four fundamental limitations

in hardware. First, as shown in Figure 6(a), WS needs to move

the same data according to the layer propagation in DNN because

of a unique feature of NN—activations of a layer became inputs

of its next layer. Besides, dataflow affects the number of required

devices, RRAM array utilization, and accuracy, following insights

provided by INCA. WS needs more RRAM cells than IS because

of the larger weight parameter size in inference and the unable

recycling of weight parameters in training. Also, when executing

compact DNN models, coarsely embedded RRAM arrays in WS

show low utilization. Accuracy is dropped in WS because of RRAM

non-ideal properties because it turned out that accuracy leans on

weight values, which are impacted by the real effects of RRAM

devices in WS.

Figure 6: Comparison between (a) WS and (b) IS dataflow

proposed in INCA [13].

Input Stationary: Instead, INCA enforces an input-stationary

dataflow by placing inputs (activations) in PIM modules and trans-

ferring weight parameters from/to external memories. Accordingly,

activations can be immediately consumed for the next layer like Fig-

ure 6(b), without saving and fetching them into external memories;

that is, INCA reduces redundant accesses needed by activations in

DNN. The less input data and recycling capability save a remark-

able number of RRAM; embedded RRAM arrays in INCA are fully

utilized regardless of model size; and accuracy is meagerly affected

by input (activation) variation due to device noise. As the prevalent

RRAM array design increases the number of redundant device cells,

INCA proposes a two-transistor-one-RRAM (2T1R)-based array

structure for direct (one-shot) convolution, as illustrated in Figure

7(a). The proposed design conducts one convolution per operation,

losing high parallelism. Therefore, the authors stacked 64 crossbar

layers horizontally to preserve high parallel computing. The first

IS-implemented hardware shows noticeable improvement in energy

efficiency (20.6× and 260× in inference and training on average),

and speedup (4.8× and 18.6×)—even three orders of magnitude

improved in case of compact models.

4 STACKING FOR FUTURE

The ever-sizing models and their complexity need much-shortened

signal distance to prevent data transfer delay and signal loss as

well as to pursue the maximized area density. The limitation in

integrating more transistors per unit chip area turns the attention

in academia and industry to stacking technologies. As proposed

in previous designs [10, 13] (Figure 7), 3D stacking technology has

been applied for RRAM accelerators. The most straightforward

methodology for stacking, namely heterogeneous 3D stacking tech-

nology (H3D), is using through-silicon vias (TSVs). The previously

proposed 3D PIM designs are also based on H3D, where individual

dies manufactured separately are bonded by TSVs after a punch-

ing process. However, H3D does not minimize the area density

because it should secure the space for thick TSVs and micro-bumps

for bonding. Moreover, the heterogeneously stacked planes need

accurate and precise alignments.
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Figure 7: Diverse 3D RRAM architectures proposed in (a)

INCA [13] and (b) efficient 3D RRAM for BNN [10].

Alternatively, monolithic 3D (M3D) design has emerged as a

breakthrough for future 3D technologies [12]. Distinguished from

the separate fabrication of each tier, dies in M3D integration are

sequentially fabricated. Sequential stacking employs monolithic

inter-tier vias (MIVs) whose dimensions are similar to local vias;

therefore, it maximizes the area density. Also, the use of MIVs in

M3D instead of TSVs mitigates the alignment issues in H3D. RRAM

is also proved for the M3D architecture; Tang and Xu et al. success-

fully manufactured a 3D PIM system using stacked 1T1R arrays,

taking advantage of M3D [23]. Each of the three stacks in the design

serves different roles: standard CMOS logic functions in the first

die and the following two 1T1R arrays for computation (second die)

and data storage (third die). Upper stacks are fabricated with a low-

temperature process because high temperatures would degrade the

functionality of lower dies. Likewise, a tacked architecture can have

more layers in the M3D technology. Additionally, different RRAM

materials tailored for corresponding goals of different tiers are used

in the design, i.e., hafnium oxide (second layer) and tantalum oxide

(third) The M3D PIM chip was evaluated with representative DNN

algorithms like ResNets in CNNs. While the classification results

were comparable to a GPU, the M3D RRAM PIM chip spent around

49× less time and 39× less energy than the baseline GPU.

5 CONCLUSION

This paper presented an overview of RRAM-based PIM accelerators

in the past decade. Behind the great success of ML, increasing model

size, resource-restrained edges, and limitations in hardware call

for a new paradigm, PIM. RRAM-based PIM acceleration has been

researched to support advanced ML model designs and techniques,

and we specifically summarized RRAM-PIM designs for inference

and training of various models, compressed ML, and dataflow. The

development of PIM accelerators is in progress with advanced hard-

ware architecture with 3D stacking technology for the future.
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