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Abstract

Supervised matrix factorization (SMF) is a clas-

sical machine learning method that seeks low-

dimensional feature extraction and classification

tasks at the same time. Training an SMF model

involves solving a non-convex and factor-wise

constrained optimization problem with at least

three blocks of parameters. Due to the high non-

convexity and constraints, theoretical understand-

ing of the optimization landscape of SMF has

been limited. In this paper, we provide an ex-

tensive local landscape analysis for SMF and de-

rive several theoretical and practical applications.

Analyzing diagonal blocks of the Hessian natu-

rally leads to a block coordinate descent (BCD)

algorithm with adaptive step sizes. We provide

global convergence and iteration complexity guar-

antees for this algorithm. Full Hessian analysis

gives minimum L2-regularization to guarantee

local strong convexity and robustness of param-

eters. We establish a local estimation guarantee

under a statistical SMF model. We also propose a

novel GPU-friendly neural implementation of the

BCD algorithm and validate our theoretical find-

ings through numerical experiments. Our work

contributes to a deeper understanding of SMF op-

timization, offering insights into the optimization

landscape and providing practical solutions to en-

hance its performance.

1. Introduction

In classical classification models, the standard approach

uses observed high-dimensional raw features as the input.
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In many cases, these features may include vast amounts

of irrelevant or redundant information, posing challenges

for generalization and interpretability. To address this, the

integration of interpretable dimension reduction techniques

prior to classification becomes important.

Matrix factorization (MF) is a classical unsupervised fea-

ture extraction framework that learns latent structures in

complex datasets. It is regularly applied in the analysis

of text and images (Elad & Aharon, 2006; Mairal et al.,

2007; PeyrÂe, 2009). In particular, nonnegative matrix fac-

torization (NMF) (Lee & Seung, 2000) stands out as one

of the most widely used modern MF tools, aiming to ap-

proximately factorize a data matrix into the product of two

nonnegative matrices. Nonnegativity is crucial for enabling

interpretable ºparts-based learningº (Lee & Seung, 1999) of

high-dimensional objects. This feature has led NMF finding

applications in various domains, including text analysis for

topic modeling, image reconstruction, bioinformatics, and

the extraction of latent motifs from networks (Sitek et al.,

2002; Berry & Browne, 2005; Berry et al., 2007; Chen et al.,

2011; Taslaman & Nilsson, 2012; Boutchko et al., 2015;

Ren et al., 2018; Lyu et al., 2024).

Supervised matrix factorization (SMF) is a popular clas-

sical machine learning method that aims to perform low-

dimensional feature extraction and classification tasks si-

multaneously. Given that matrix factorization and classifi-

cation are not inherently aligned objectives, SMF involves

a necessary trade-off when aiming to achieve both goals

simultaneously. As its name implies, SMF integrates a clas-

sification model and MF into a single optimization problem.

While it has been applied to various problem domains (Zhao

et al., 2015; Yankelevsky & Elad, 2017; Li et al., 2019), our

current understanding of its optimization landscape and the

behavior of widely used iterative optimization algorithms

remains limited.

At its core, training SMF requires solving a non-convex

constrained optimization problem involving three or four

blocks of parameters. Even the optimization landscape

of NMF, a two-block constrained bi-convex problem, is

not completely understood (Panageas et al., 2020; Bjorck

et al., 2021) to date. This lack of thorough understanding

makes the optimization landscape of SMF challenging to
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unravel. The goal of this paper is to establish a theoretical

and algorithmic foundation for SMF, providing researchers

with a reliable and rigorous background.

1.1. Contributions

We establish the following novel contributions in this work:

• Local Landscape Analysis: We provide a local land-

scape analysis of the general SMF optimization prob-

lem. We explicitly compute the (4× 4) block structure

of the corresponding Hessian matrix and determine

the minimum L2-regularization on each parameter for

local strong convexity. (Theorems 4.3 and C.6)

• BCD Algorithm and Convergence Guarantee: We

derive a block coordinate descent (BCD) algorithm

for SMF and establish its convergence guarantees by

obtaining bounds on the eigenvalues of the diagonal

blocks in the Hessian matrix. Additionally, we demon-

strate that the algorithm achieves an ε-stationary point

of the objective within O(ε−1(log ε−1)2) iterations

(Theorem 4.4).

• Local Consistency and Estimation Guarantee: We

show the existence of a local minimizer of an L2-

regularized landscape near a stationary point of SMF.

Under a statistical SMF model, we demonstrate that

at least one matrix factor can be locally consistently

estimated with high probability (Theorem 4.5).

• Neural Network Implementation: We provide a com-

pact neural network implementation of the proposed

BCD algorithm for SMF that enables GPU acceleration.

(Figure 2).

1.2. Related works

Recently, Lee et al. (Lee et al., 2023) found a method to

reformulate SMF problems as low-rank matrix estimation

by employing a ‘double-lifting’ idea in the parameter space.

When the lifted problem is well-conditioned, they demon-

strated that low-rank projected gradient descent (LPGD)

can find a global optimum for the original problem at an

exponential rate. However, their approach faces limitations

in handling constraints on individual factor matrices, such as

enforcing the nonnegativity of factors. It is because one can-

not find an optimal nonnegative matrix decomposition from

singular value decomposition (SVD). To address this limita-

tion, we take a different approach by directly analyzing the

local (constrained) landscape of SMF and investigating the

robustness of local optima under L2-regularization.

The SMF training problem in (3) is a non-convex and po-

tentially constrained optimization problem, often featuring

non-unique minimizers. Since it is difficult to solve exactly,

approximate procedures such as BCD (see, e.g., (Wright,

2015)) are often used. These approaches utilize the fact that

the objective function in (3) is convex in each of the four

(matrix) variables. Such an algorithm iteratively optimizes

one block while fixing the others (see (Mairal et al., 2008;

Austin et al., 2018; Leuschner et al., 2019; Ritchie et al.,

2020)). However, existing literature on the convergence

analysis or statistical estimation bounds for such algorithms

remains somewhat limited. Referring to established con-

vergence results for BCD methods (Grippo & Sciandrone,

2000; Xu & Yin, 2013), one can, at best, guarantee asymp-

totic convergence to the stationary points. Alternatively,

polynomial convergence toward Nash equilibria or the ob-

jective (3) is achievable, contingent upon careful verification

of the assumptions underpinning these general findings. Our

derivation and analysis of Algorithm 1 and 2 are based on

the framework of block projected gradient descent viewed

as block majorization-minimization (Lyu & Li, 2023).

One of our main results of non-asymptotic consistency for

constrained and regularized maximum likelihood estimation

(MLE) (Theorem D.1) plays a crucial role in establishing

the local consistency of SMF in the general case (Theorem

4.5). This result draws inspiration from the work on local

consistency guarantees for non-concave penalized MLE in

(Fan & Li, 2001).

Various SMF-type models have been proposed in the past

two decades. Following (Lee et al., 2023), we divide them

into two categories depending on whether the extracted low-

dimensional feature or the feature extraction mechanism

itself is supervised. We refer to them as feature-based and

filter-based SMF, respectively. Feature-based SMF mod-

els include the one by Mairal et al. (Mairal et al., 2008;

2011) as well as the more recent model of convolutional

matrix factorization by (Kim et al., 2016). Filter-based SMF

models have been studied more recently in the literature

on SMF, particularly in studies on supervised nonnegative

matrix factorization (Austin et al., 2018; Leuschner et al.,

2019) and supervised principal component analysis (PCA)

(Ritchie et al., 2020).

2. Preliminaries

2.1. Notations

In this paper, we use the notation R
p to represent the am-

bient space for data, equipped with standard inner project

⟨·, ·⟩, inducing the Euclidean norm ∥·∥. We refer to the set

{0, 1, . . . , κ} as the space of class labels, containing κ+ 1
classes. For a convex subset Θ in an Euclidean space, we

denote ΠΘ the projection operator onto Θ.

For a matrix A = (aij) ∈ R
m×n, the expressions A[i, :]

and A[:, j] refer to the ith row and the jth column of

A for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, respec-

tively. For each integer n ≥ 1, In denotes the n × n
identity matrix. We denote its Frobenius, operator (2-),
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Figure 1. (a) Overall scheme of Supervised Matrix Factorization (specifically, SMF-W with rank r = 2). The columns of W serve as

‘composite variables’ or ‘filters’, whose association with the labels is given by the regression coefficients in β. Taking convolution of

the raw data matrix W with W gives a supervised dimension reduction, as illustrated in b for a 35, 982-dimensional gene microarray

sequence data for breast cancer patients. Similar dimension reduction results obtained by (c) principal component analysis along with

logistic regression and (d) logistic regression to select the two most highly associated raw variables show less clear separation.

and supremum norm by ∥A∥2F :=
∑

i,j a
2
ij , ∥A∥2 :=

supx∈Rn, ∥x∥=1 ∥Ax∥, ∥A∥∞ := maxi,j |aij |, respec-

tively. For square symmetric matrices A,B ∈ R
n×n,

A ⪯ B indicates that vTAv ≤ vTBv holds for all unit

vectors v ∈ R
n. If 0 < α− < α+, then we write A ≍ α±B

to denote α−B ⪯ A ⪯ α+B. The horizontal concatenation

of two matrices A and B is denoted by [A,B] when their

dimensions match.

2.2. Model formulation

Here we give a mathematical formulation of the SMF prob-

lem. For the simplicity of presentation, here we focus on

the case of binary labels. We provide full details on general

multi-label cases and score functions for the classifier in Ap-

pendix B. Consider the following problem setting: we have

a set of n observations (yi,xi,x
′
i) for i = 1, . . . , n where

yi ∈ {0, 1} represents an observed binary label, xi ∈ R
p

denotes a high-dimensional feature, and x′
i ∈ R

q is a low-

dimensional auxiliary feature for the i-th individual (p≫ q).

To predict yi, a low-dimensional representation of xi in

dimension r ≪ p for some suitable r may be utilized,

combined with x′
i. This implies that the observed xi is

approximated by a linear transformation of the basis vec-

tors w1, . . . ,wr ∈ R
p using a suitable code hi. Let W =

[w1, . . . ,wr] ∈ R
p×r be referred to as the (latent) factor

matrix, and H = [h1, . . . ,hn] ∈ R
r×n as its code matrix.

In a more compact form, X = [x1, . . . ,xn] ≈WH, known

as reconstruction. In practical terms, we can determine r as

the approximate rank of the data matrix X.

Now, we present our probabilistic modeling assumption.

Consider fixed parameters W ∈ R
p×r, hi ∈ R

r, β ∈ R
r,

and γ ∈ R
q . Suppose yi is a realization of a random variable

whose conditional distribution is defined as

P (yi = 1 |xi,x
′
i) =

exp(ai)

1 + exp(ai)
, (1)

where ai ∈ R is the activation for yi. The activation is de-

fined in two ways, depending on whether we use a ‘feature-

based’ model (SMF-H) or a ‘filter-based’ model (SMF-W):

ai =

{

βT
WTxi + γTx′

i for SMF-W

βT
hi + γTx′

i for SMF-H.
(2)

Here, (β,γ) are logistic regression coefficients associated

with input features (hi,x
′
i) or (WTxi,x

′
i), respectively. In

equation (2), the code hi or the ’filtered feature’ WTxi is

the low-dimensional representation of xi. Notable differ-

ences between SMF-H and SMF-W arise when predicting

the unknown label of a test point (Lee et al., 2023).

Let Z := (W,H,β,γ) be our block parameters of interest.

In order to estimate Z from observed data (xi,x
′
i, yi) for

i = 1, . . . , n, we consider the following multi-objective

non-convex constrained optimization problem:

min
W∈C1,H∈C2

β∈C3,Γ∈C4

f(Z) := ξ∥X−WH∥2F +

n∑

i=1

ℓ(yi, ai) (3)

where ℓ(yi, ai) = log(1 + exp(ai))− yiai.

Here Cj for j = 1, . . . , 4 represent convex constraint sets

of each block parameter, X = [x1, . . . ,xn] ∈ R
p×n, ai is

as in (2), and the last term in (3) is the classification loss

defined as the negative log-likelihood. Note that the four

block parameters are individually assumed to be constrained

in (3). A tuning parameter ξ controls the trade-off between

the dual objectives of classification and matrix factorization.

The stated problem is inherently non-convex, involving four
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block parameters that may come with additional constraints

such as bounded norm. This formulation encompasses sev-

eral classical models as special cases. Specifically, when

ξ ≫ 1, it transforms into the classical matrix factorization

with constraints (Lee & Seung, 1999; 2000).

3. Methods

3.1. Sketch of idea for Constrained Matrix Factorization

We illustrate our approach to analyzing SMF by demon-

strating it for the simpler setting of constrained MF without

supervision, which amounts to minimizing the bi-convex

objective (W,H) 7→ ∥X−WH∥2F under factor-wise con-

straints on W and H. Its Hessian is given by

vec(W)T vec(H)T
[ ]

vec(W) HHT ⊗ Ip A12

vec(H) AT
12 In ⊗WTW

, (4)

where A12 = [(H⊗W) + Ir ⊗ (WH−X)]C(r,n) with

commutation matrix C(r,n) ∈ {0, 1}rn×rn (See Appendix

A for a formal definition). Denoting the diagonal blocks as

A11 and A22, we have

λmin(HHT )Ipr ⪯ A11 ⪯ λmax(HHT )Ipr (5)

λmin(W
TW)Inr ⪯ A22 ⪯ λmax(W

TW)Inr.

We first leverage the upper bounds in (5) to derive a BCD

algorithm with adaptive step size as well as its iteration

complexity for achieving an ε-stationary point. Namely,

from (5), it follows that the marginal loss restricted to W

or H has Lipschitz continuous gradients with parameters

λmax(HHT ) and λmax(W
TW), respectively. So we can

naturally derive the following BCD algorithm (ε > 0 fixed)

W← Π

(

W − 1

λmax(HHT ) + ε
(WH−X)HT

)

, (6)

H← Π′

(

H− 1

λmax(WWT ) + ε
W

T (WH−X)

)

with Π,Π′ being suitable projection operators. Using

the recent complexity analysis of block majorization-

minimization algorithms in (Lyu & Li, 2023), we can obtain

iteration complexity of the BCD algorithm (6) for MF.

Next, when X can be approximated by a low-rank factor-

ization X ≈W⋆H⋆ with the true factors W⋆ and H⋆, it

is desirable to introduce regularization to the objective to

ensure that the new objective is locally strongly convex and

can be minimized near (W⋆,H⋆) for efficient and robust

parameter estimation. While L2-regularization naturally

improves local convexity, it may significantly perturb the

local landscape. Therefore, applying the least amount of L2-

regularization is ideal to minimize this perturbation. While

it may be challenging to ‘curve-up’ the landscape to main-

tain minimization at (W⋆,H⋆), we can preserve at least

one of the factors, either W⋆ or H⋆, at the new minimizer.

We establish these claims by a local landscape analysis. In

the ‘large-sample regime’ (n ≫ p), we find that regular-

ization is required only for H. This results in a new local

landscape that is strongly convex near (W⋆,H⋆) and is min-

imized at (W⋆,H
′) for some H′. The distance between H′

and H⋆ is minimized when the added L2-regularization term

for H is the smallest. Similarly, in the ‘high-dimensional

regime’ (p ≫ n), regularization is only necessary for W

and obtain a new local landscape that is strongly convex

near (W⋆,H⋆) and minized at (W′,H⋆) for some W′.

To illustrate the key idea, first recall that block-diagonal

dominance is a well-established sufficient condition to en-

sure that a block matrix is positive definite, as outlined in

(Feingold & Varga, 1962). Let λ1 and λ2 denote the L2-

regularization parameters for W and H respectively. In our

context, this condition can be expressed as follows:

λmin(H⋆H
T
⋆ ) + λ1 − ∥A12∥2 > 0, (7)

λmin(W
T
⋆ W⋆) + λ2 − ∥A12∥2 > 0. (8)

For simplicity, assume typical orders for the eigenvalues of

the matrices in the Hessian (4):

λmin(H⋆H
T
⋆ ) = Θ(rn), λmin(W

T
⋆ W⋆) = Θ(rp),

∥A12∥2 = Θ(r
√
pn).

Now consider the large-sample setting (n ≫ p). The W-

block already has block-diagonal dominance λmin(A11)−
∥A12∥2 = Θ(rn) − Θ(r

√
pn) > 0 but the H-block does

not: λmin(A22)−∥A21∥2 = Θ(rp)−Θ(r
√
pn) < 0. This

allows us to set λ1 = 0 (i.e., no L2-regularization for W

needed), while we may use λ2 = Θ(r
√
pn). Consequently,

the L2-regularized objective ∥X−WH∥2F + λ2

2 ∥H∥2F is ρ-

strongly convex at (W⋆,H⋆) with ρ = λ2−Θ(r
√
pn). By

Taylor expansion, one can show that it is locally minimized

at (W⋆,H
′), where ∥H′ − H⋆∥F ≤ 3λ2∥H⋆∥F

λ2−Θ(r
√
pn) when

∥H⋆∥F is sufficiently small.

Conversely, in the high-dimensional setting (p≫ n), we can

set λ2 = 0 and λ1 = Θ(r
√
pn). Then the L2-regularized

objective ∥X−WH∥2F + λ1

2 ∥W∥2F is ρ-strongly convex

near (W⋆,H⋆) with ρ = λ1−Θ(r
√
pn). It is locally mini-

mized at (W′,H⋆), where ∥W′ −W⋆∥F ≤ 3λ1∥W⋆∥F

λ1−Θ(r
√
pn) .

While our analysis for SMF follows a similar logical frame-

work as illustrated here for MF, the full analysis is substan-

tially more challenging due to the Hessian’s representation

as a 4 × 4 block matrix, involving intricate interactions

among the four block parameters W,H,β and Γ.
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3.2. BCD algorithm for SMF

We consider both filter- and feature-based SMF models in

(3), allowing for convex constraints on each of the variables

W,H,β, and Γ. A key scenario of interest involves in-

corporating nonnegativity constraints on both W and H,

resulting in the SMF model (3) that combines NMF with

logistic regression in two different ways. For simplicity, we

only give a full statement of the BCD algorithm for SMF-

W. The corresponding algorithm for SMF-H is given in

Algorithm 2 in Appendix.

Algorithm 1 BCD algorithm for SMF-W

1: Input: X ∈ R
p×n (Data); Xaux ∈ R

q×n (Auxiliary

covariate); Ylabel ∈ {0, . . . , κ}1×n (Label);

2: Constraints: Convex subsets C1 ⊆ R
p×r, C2 ⊆ R

r×n,

C3 ⊆ R
r×κ, C4 ⊆ R

q×κ

3: Parameters: ξ ≥ 0 (Tuning parameter); T ∈ N (num-

ber of iterations); (ηk;i)k≥1,1≤i≤4 (step-sizes)

4: Initialize W ∈ C1, H ∈ C2, β ∈ C3, Γ ∈ C4
5: For k = 1, 2, . . . , T do: (▷ For α+ see B.1 and B.1)

6: (Update W)

7: Update activation a1, . . . , an and K

8: ∇Wf(Z)← XKTβT + 2ξ(WH−X)HT

9: Choose η−1
k,1 > L1 := α+∥β∥22 · ∥X∥22 + 2ξ∥H∥22

10: W← ΠC1
(W − ηk;1∇Wf(Z))

11: (Update H)

12: ∇Hf(Z)← 2ξWT (WH−X)
13: Choose η−1

k,2 > L2 := 2ξ∥W∥22
14: H← ΠC2

(H− ηk;2∇Hf(Z))

15: (Update β)

16: Update activation a1, . . . , an and K

17: ∇βf(Z)←WTXKT

18: Choose η−1
k,3 > L3 := α+∥W∥22 · ∥X∥22

19: β ← ΠC3
(β − ηk;3∇βf(Z))

20: (Update Γ)

21: Update activation a1, . . . , an and K

22: ∇Γf(Z)← XauxK
T

23: Choose η−1
k,4 > L4 := α+∥Xaux∥22

24: Γ← ΠC4
(Γ− ηk;4∇Γf(Z))

25: End for

26: Output: Z = (W,H,β,Γ)

Our algorithm, outlined in Algorithm 1, iteratively per-

forms BCD on the four blocks with an adaptively chosen

step-size. For its statement, note that κ takes any inte-

ger value above 1, with κ = 1 for binary labels. Denote

K := [ḣ(y1, a1), . . . , ḣ(yn, an)] ∈ R
1×n where

∇aℓ(y, a) =: ḣ(y, a) =
exp(a)

(1 + exp(a))2
∈ R.

This matrix appears in the gradient of the SMF objective f .

In most of the experiments in this paper, we choose the con-

vex constraint sets to be C1 = {W ∈ R
p×r
≥0 | ∥W∥F ≤

1}, C2 = {H ∈ R
r×n
≥0 | ∥H∥F ≤ C1}, C3 = {β ∈

R
r×κ | ∥β∥F ≤ C2}, and C4 = {Γ ∈ R

q×κ | ∥Γ∥F ≤ C3},
where C1, C2, C3 > 0 are fixed constants.

Here are some remarks on the computational complexity

of the algorithms. In Algorithm 1, the per-iteration cost

is proportional to the cost of computing gradients for each

block variable in the objective (e.g., W,H,β,Γ), which

is O((pr + q)n) for both SMF-W and SMF-H. While

they have the same asymptotic order, computing gradients

for SMF-W are constant factors more expensive than that

for SMF-H, which can be seen by comparing the gradi-

ent formulas. Namely, SMF-W computes the additional

XKTβT for the gradient of W, and the gradient of β uses

more expensive matrix multiplication WTXKT of com-

plexity O(rpnκ). In contrast, SMF-H employs HKT for

its gradient or smaller order O(rnκ), independent of p.

Using BCD instead of full gradient descent (GD) allows

for larger step sizes, which has the potential for fast con-

vergence. Namely, the allowed step size for each block in

Algorithm 1 is determined by the reciprocal of the largest

eigenvalue of the diagonal blocks of the Hessian (59) (see

Theorem 4.3). In contrast, with GD, the step size is lim-

ited to the reciprocal of the largest eigenvalue of the entire

Hessian, which may be considerably smaller.

3.3. Neural implementation of SMF-W for GPU

acceleration

Synchronized

MSE

Classifier

Reconstructor

KL

TrainingNeural SCMF-
Backprop

Synchronization

Figure 2. The SMF-W implementation involves two coupled two-

layer neural networks: reconstructor and classifier. These networks

share the first layer weight W. The training process consists of

repeating backpropagation in each network and subsequently syn-

chronizing their first-layer weights through their convex combina-

tion. This configuration allows for extremely fast training on GPU.

n data points are the columns of X = [x1, . . . ,xn] ∈ R
p×n and

ei is the ith standard basis vector in R
p.

While our BCD algorithm for SMF is derived from a careful

local landscape analysis with rigorous theoretical guarantee,

we provide a neural network architecture (see Figure. 2)

that approximately implements our BCD algorithm in order
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to bring the advantage of a modern GPU computation to the

practitioners in the ML community.

Reconstructor network: The reconstructor network operates

as a two-layer neural network with weights W ∈ R
p×r

and H ∈ R
r×n with identity activation to expedite matrix

factorization. Each input vector ei for this network is the

ith standard basis vector in R
p. Each p-dimensional input

is transformed into an r-dimensional vector WT ei, which

is then transformed to an n-dimensional vector HTWT ei.

The target output is the ith row of the data matrix, X[i, :]T ∈
R

n. Using mean-squared error (MSE) loss for this network,

the overall loss is for this network is exactly 1
n∥X−WH∥2F .

Classifier network: The classifier network serves for both

dimension reduction and classification within a neural net-

work framework. Each input vector xi = X[i, :]T has

p dimensions, where i ranges from 1 to n. The network

uses weight matrices W ∈ R
p×r for dimension reduction

and β ∈ R
r to compress each p-dimensional input xi to

an r-dimensional vector WTxi. The second layer with

weight β ∈ R
r×κ and sigmoid activation σ yields the pre-

dicted probability distribution σ(βT
WTxi) for the output

yi ∈ {0, 1, . . . , κ}. For this layer we use the cross-entropy

loss for back-propagation.

Synchronizing the first-layer weight: The novel feature

of our neural implementation of SMF is that we syn-

chronize the the first-layer weight W after every step of

back-propagation. Note that given the current first-layer

weight W, back-propagation within the reconstructor and

the classifier networks updates W separately to two ver-

sions W′ and W′′, respectively. The synchronization

step takes a convex combination of these two versions as

W← 1
1+ξW

′ + ξ
1+ξW

′′, which agrees with updating W

by a gradient descent with∇Wf(W,H,β) for f the SMF-

W loss in (3). We can then replace W with max{O,W}
to ensure nonnegativity.

4. Statement of results

4.1. Assumptions

We introduce two minor assumptions below.

Assumption 4.1. (Constraint sets) The constraint sets

C1, . . . , C4 in (3) are closed, convex, and compact.

Assumption 4.2. (Bounded activation) The activation a ∈
R

κ defined in (2) assumes bounded norm, i.e., ∥a∥ ≤ M
for some constant M ∈ (0,∞). (c.f. Note that κ = 1 in the

main text but we discuss the multi-label case κ ≥ 1 in the

appendix, see Sec. B.)

Assumption 4.1 allows one to constrain each factor within a

compact and convex set. A typical choice would be bounded

nonnegative orthant, which entails supervised nonnegative

matrix factorization models (Austin et al., 2018; Leuschner

et al., 2019). It does not, however, entail supervised PCA

models (Ritchie et al., 2020) or low-rank matrix constraints

as the Grassmannian constraint is non-convex.

Assumption 4.2 imposes a constraint on the norm of the

activation a, as the input for the classification model in

(3) is bounded. This is standard in the literature (see, e.g.,

(Negahban & Wainwright, 2011; Yaskov, 2016; LecuÂe &

Mendelson, 2017; Lee et al., 2023)) to uniformly bound

the eigenvalues of the Hessian of the multinomial logistic

regression model.

Under Assumption 4.2, we introduce the following con-
stants:

γmax := 1 +
eM

1 + eM + (κ− 1)e−M
≤ 2 (9)

α− :=
e−M

1 + e−M + (κ− 1)eM

α+ :=
eM

(

1 + 2(κ− 1)eM
)

(1 + eM + (κ− 1)e−M )2
≤ 1/4.

These constants will appear in uniform bounds on the first

and the second derivatives of the log likelihood ℓ(y, a) and

the first derivative of the predictive probability distribution

(see (BÈohning, 1992)).

4.2. How does the local landscape look like?

In Theorem 4.3, we provide a local landscape result for

SMF-W. A key step is to compute the Hessian of the

objective f in (3), which turns out to take the following

4× 4 block form:

vec(W)T vec(H)T vec(β)T vec(Γ)T









vec(W) A11 A12 A13 O

vec(H) A21 A22 O O

vec(β) A31 O A33 A34

vec(Γ) O O A43 A44

(10)

The exact formulas for each block entry are given in Lemma

C.2. For our analysis, we consider the following L2-

regularized objective F (Z) defined by

f(Z) +
λ1

2
∥W∥2F +

λ2

2
∥H∥2F +

λ3

2
∥β∥2F +

λ4

2
∥Γ∥2F (11)

Also denote

Λ1 := λmin(HH
T )− ∥W∥2∥H∥2 − ∥WH−X∥2, (12)

Λ2 := λmin(W
T
W)− ∥W∥2∥H∥2 − ∥WH−X∥2.

Theorem 4.3 (Local landscape of SMF-W). Let f(Z) de-

note the objective of SMF-W in (3). Suppose Assumptions

4.1 and 4.2 hold. Then the followings hold:

(i) A11 ≍ α±(ββT ⊗XXT ) + 2ξ(HHT ⊗ Ip),

A22 = 2ξ(In ⊗WTW),

A33 ≍ α±(Iκ ⊗WTXXTW),

A44 ≍ α±(Iκ ⊗XauxX
T
aux).
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(ii) F is ρ-strongly convex at Z = (W,H,β,Γ) for ρ =
min1≤i≤4(λi − λ∗

i ) where

λ∗

1 := γmax

√
κn∥X∥2 + α+∥β∥2∥W∥2∥X∥22

− 2ξΛ1 − α−λmin(ββ
T )λmin(XX

T ),

λ∗

2 := −2ξΛ2,

λ∗

3 := γmax

√
κn∥X∥2 ++α+∥β∥2∥W∥2∥X∥22

+ α+∥Xaux∥2∥WT
X∥2 − α−λmin(W

T
XX

T
W),

λ∗

4 := α+∥Xaux∥2∥WT
X∥2 − α−λmin(XauxX

T
aux).

(iii) Suppose Z⋆ = [W⋆,H⋆,β⋆,Γ⋆] is a stationary point

of f over Θ. If Λ1 > 0, ξ ≫ 1, and λ1 = 0, then

F is locally minimized at (W⋆, θ
′) with the following

perturbation bound:

∥θ′ − θ⋆∥F ≤
3max1≤i≤4(λi)

min1≤i≤4(λi − λi⋆)
∥θ⋆∥F , (13)

where θ′ := (H′,β′,Γ′), θ⋆ := (H⋆,β⋆,Γ⋆) and

∥θ⋆∥F is assumed to be sufficiently small.

If Λ2 > 0, then by taking λ2 = 0 and denoting

θ′ := (W′,β′,Γ′) and θ⋆ := (W⋆,β⋆,Γ⋆), when-

ever ∥θ⋆∥F is sufficiently small, F is locally minimized

at (H⋆, θ
′) with the same perturbation bound in (13).

The interpretation of Theorem 4.3 (iii) aligns with our ear-

lier discussion on the simpler MF case. Specifically, in

the high-dimensional regime (p ≫ n), it is likely that

Λ2 = Ω(rp)−O(r
√
pn) = Ω(rp) > 0. Consequently, we

can introduce suitable L2-regularization only to W,β,Γ
so that the regularized landscape attains local minimization

at the stationary point H with the other stationary factors

perturbed. This implies that H⋆ can be locally robustly esti-

mated in this scenario. In the large-sample regime (n≫ p),

it is likely that Λ1 = Ω(rn)−O(r
√
pn) = Ω(rn) > 0. By

choosing a sufficiently large tuning parameter ξ such that

λ1⋆ ≤ 0, we can use suitable L2-regularization to H,β,Γ.

It ensures that the regularized landscape is locally mini-

mized at the stationary point W⋆ with the other stationary

factors perturbed. Consequently, W⋆ can be locally and

robustly estimated in this scenario.

In Theorem C.6, we provide a similar local landscape result

for SMF-H. One notable difference is that, for SMF-W,

we require a large weight ξ on the matrix factorization loss

in the large-sample regime, whereas, it should be used in

the high-dimensional regime for SMF-H.

Next, in Theorem 4.4 below, we establish the convergence of

Algorithm 1 and 2 to the stationary points of the SMF objec-

tive f in (3). Furthermore, these algorithms converge to an

‘ε-stationary point’ solution within Õ(ε−1) iterations. More

precisely, consider the problem of minimizing a function

f : Rp → R over a convex set Θ ⊂ R
p. A θ∗ ∈ Θ is a sta-

tionary point of f over Θ if infθ∈Θ ⟨∇f(θ∗), θ−θ∗⟩ ≥ 0.

This is equivalent to stating that −∇f(θ∗) is in the normal

cone of Θ at θ∗. Every local minimum of f over Θ is a

stationary point. Relaxing this notion, for each ε ≥ 0, we

define θ∗ ∈ Θ to be an ε-stationary point of f over Θ if

Gap(θ⋆) := sup
θ∈Θ, ∥θ−θ∗∥≤1

⟨−∇f(θ∗), θ − θ∗⟩ ≤ ε. (14)

Theorem 4.4 (Convergence rate of BCD). Suppose Assump-

tions 4.1 and 4.2 hold. Let Zt = (Wt,Ht,βt, Γt), t ≥ 1
denote the sequence of estimated parameters from Algo-

rithm 1 or 2. Then for every initial estimate Z0 and choice

of parameters ξ, the followings hold:

(i) min
1≤t≤T

Gap(Zt) = O(T−1/2 log T ). (15)

(ii) For each ε > 0, an ε-stationary point is achieved within

iteration O(ε−1(log ε−1)2).

(iii) Further assume that the step sizes ηk,i are uniformly

upper bounded. Then Zt converges to the set of sta-

tionary points of f over Θ.

Proofs of Theorems 4.3 and 4.4 are in Appendices C.

4.3. How close is an MLE to the true parameter?

We can extend Theorem 4.3 to provide a local estimation

guarantee for generative SMF models that we introduce

below. Fix parameters W⋆ ∈ R
p×r, H⋆ ∈ R

r×n, β⋆ ∈
R

r×κ, Γ⋆ ∈ R
q×κ, and λ⋆ ∈ R

q×1. Suppose the data,

auxiliary covariate, and label triples (xi,x
′
i, yi) are drawn

independently (not necessarily identically distributed) ac-

cording to the following generative model:

xi ∼ N
(
W⋆H⋆[:, i], σ

2Ip
)
, x′

i ∼ N(λ⋆, (σ
′)2Iq),

yi |xi,x
′
i ∼ Bernoulli

(
exp(ai)

1 + exp(ai)

)

(16)

where ai := (β⋆)
T (W⋆)

Txi + (Γ⋆)
Txi.

For consistent estimation, we further assume that the mean

r-dimensional representation H⋆[:, i] of the ith data column

xi is an 1/
√
n-perturbation of a ‘true mean vector’ h⋆ ∈ R

r:

∥H⋆[:, i] − h⋆∥F ≤ c/
√
n for some constant c > 0. (c.f.

When κ ≥ 1, the conditional distribution of yi in (16) is

taken to be the multinomial distribution with probability of

label c being proportional to h(ai[c]) with h general score

function. See Appendix B.)

We assume (xi,x
′
i, yi) for i = 1, . . . , n are independent,

and also xi and x′
i are independent for each 1 ≤ i ≤ n.

We refer to the above as the generative SMF-W model.

Assuming that σ and σ′ are known, our goal is to es-

timate the true factors W⋆, h⋆, β⋆,Γ⋆, and λ⋆ from

an observed sample (xi,x
′
i, yi), i = 1, . . . , n of size n,

where n is large and fixed. We consider the maximum

likelihood estimation framework with L2-regularization

7
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of the parameters. Namely, denote Z := (W,h,β,Γ),
X := [x1, . . . ,xn], and Xaux := [x′

1, . . . ,x
′
n]. Then the

negative log-likelihood of observing the given data with an

additional L2-regularization is (up to a constant), letting F
is as in (11),

L(Z,λ) := F (Z) +
1

2(σ′)2

n∑

i=1

∥x′
i − λ∥2. (17)

The added L2-regularizer in F can be understood by using a

Gaussian prior for the parameters and interpreting the above

as the negative logarithm of the posterior distribution.

Let L̄(Z,λ) := E [L(Z,λ)] denote the expected regular-

ized negative log-likelihood function. In classical local con-

sistency theory of MLE (e.g., (Fan & Li, 2001)), it is crucial

that L̄ with zero L2-regularization is strongly convex at the

true parameter. Equivalently, this means that Fisher infor-

mation, which is the Hessian∇2L̄ of the expected negative

log-likelihood function (with no L2-regularizer) evaluated

at the true parameter, is positive definite. However, this is

not the case for the generative SMF-W model in (16) (e.g.,

the model parameter in (16) is not identifiable), unless we

add suitable L2 regularization. Our key observation in The-

orem 4.3 was that, in the large-sample or high-dimensional

setting, such L2-regularization is unnecessary for W or H,

respectively. We extend this to the statistical setting to ob-

tain local consistency of the MLEs. The following result

can be regarded as a high-probability (1/
√
n)-perturbation

of the local landscape result in Theorem 4.3.

Theorem 4.5. (Regularized local consistency) Consider the

generative SMF-W model (16). Assume that Assumptions

4.1 and 4.2 hold. Suppose ρ := min1≤i≤4(λi − λi⋆) > 0.

Suppose Λ1 > 0, λ1 = 0, and σ ≪ 1 (resp., Λ2 > 0 and

λ2=0). Fix ε > 0. Then there exists a constant C > 0 such

that with probability at least 1− ε, L in (17) is minimized

locally at some (Ŵ, θ̂, λ̂) (resp., (Ĥ, θ̂, λ̂)) with

∥Ŵ −W⋆∥ ≤ C/
√
n (resp., ∥Ĥ−H⋆∥ ≤ C/

√
n) (18)

∥λ̂− λ⋆∥ ≤ C/
√
n

∥θ̂ − θ⋆∥F ≤ Cn−1/2

(

1 +
3max{λ2, λ3, λ4}

ρ
∥θ⋆∥F

)

,

where θ′ := (H′,β′,Γ′), θ⋆ := (H⋆,β⋆,Γ⋆) (resp., θ′ :=
(W′,β′,Γ′), θ⋆ := (W⋆,β⋆,Γ⋆)) and ∥θ⋆∥F is assumed

to be sufficiently small.

Recall that in the generative SMF-W model (16), the Fisher

information is a 5×5 block matrix with the first 4×4 block

sub-matrix being the Hessian of the SMF objective f in

(3) which is not positive definite. Hence the classical local

consistency theory of MLE is not applicable. Our proof of

Theorem 4.5 relies on Theorem 4.3, along with a substantial

non-asymptotic generalization of such theory, which we

establish Theorem D.1 in Section D. To prove this result,

we use uniform McDirmid’s inequality (Lemma D.2) and

Berry-Esseen theorem for independent but non-identically

distributed random variables (Thoerem D.3). See Appendix

D for details.

5. Simulation and Applications

In Figure 3, we provide numerical verification of Theorem

4.4. The first dataset is generated from the MNIST database

(LeCun & Cortes, 2010) (p = 282 = 784, q = 0, n = 500,

κ = 1) for digit detection, and the second dataset is a text

dataset named ‘Employment Scam Aegean Dataset’ (Labo-

ratory of Information and Communication Systems, 2016)

(p = 2840, q = 72, n = 17880, κ = 1) for fake job posting

prediction. Details about these datasets are in Section G.

We used Algorithms 1 and 2 with r = 20 for both datasets.

We see sublinear convergence of both algorithms for various

instances as stated in Theorem 4.4. Notably, algorithms for

SMF-H (resp., SMF-W) converge faster for large (resp.,

small) ξ. This is consistent with the implications of Theo-

rems 4.3 and C.6. Also, our neural implementation (Figure

2) enjoys significant GPU acceleration, especially for large

datasets.

Figure 3. Plots of training loss vs. elapsed time at different ξ
values for fitting SMF-W using Algorithm 1 (BCD), the neural

implementation in Figure 2 (Neural), and low-rank projected gradi-

ent descent (LPGD) in (Lee et al., 2023). Shaded regions indicate

one standard deviation across 10 runs.

In Figure 4, we evaluate the performance of different meth-

ods on the bi-objective tasks of SMF through a Pareto plot of

F-score/Accuracy vs. relative reconstruction error. The base-

line methods include logistic regression (LR) on raw data

and NMF followed by logistic regression (MF-LR). Addi-

tionally, low-rank projected gradient descent algorithms for

SMF (LPGD) in (Lee et al., 2023) are used. Increasing the

tuning parameter ξ in the various SMF models seems to in-

terpolate between two extremes of LR and MF-LR. Notably,

SMF-W shows the best overall performance achieving both

objectives.
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Figure 4. Pareto plots of relative reconstruction error vs. classifica-

tion accuracy/F-score for different models.

Methods Pancreatic Breast

SMF-W (BCD) 0.869 (0.02) 0.924 (0.01)

SMF-H (BCD) 0.823 (0.06) 0.880 (0.02)

SMF-W (Neural) 0.854 (0.04) 0.881 (0.02)

SMF-W (LPGD) 0.869 (0.02) 0.894 (0.02)

SMF-H (LPGD) 0.885 (0.07) 0.875 (0.01)

PCA-LR 0.747 (0.13) 0.454 (0.27)

CNN 0.769 (0.07) 0.854 (0.06)

FFNN 0.816 (0.04) 0.890 (0.02)

Naive Bayes 0.815 (0.07) 0.810 (0.02)

SVM 0.746 (0.09) 0.866 (0.02)

Random Forest 0.815 (0.06) 0.844 (0.02)

Table 1. Cancer classification results using microarray data.

Lastly in Figure 5, we demonstrate supervised topic model-

ing with auxiliary covariates using SMF-W under nonneg-

ative constraints. We compare SMF with the classic topic

modeling approaches Latent Dirichlet allocation (LDA),

NMF, and a recent deep learning-based approach, neural

topic model with Gaussian Softmax distribution (GSM)

(Miao et al., 2017).

Unsupervised topics mostly related to the true job postings,

representing 95% of the dataset. Hence, applying unsuper-

vised topic modeling methods is expected to learn topics

that are mostly describing the true jobs postings, neglect-

ing possible topics related to the scarce fake job postings.

Indeed, our experiment shows that while traditional topic

modeling methods successfully identify topics that describe

the majority of job posting data, these topics may not be

effective for classifying fake and true job postings. In con-

trast, our SMF with nonnegative constraints successfully

ºtiltsº the topics to faithfully represent the 5% fake job post-

ings. This is why our method achieves the best classification

performance in terms of the F-score.

Next, we apply the proposed methods to two datasets from

the Curated Microarray Database (CuMiDa) (Feltes et al.,

2019). CuMiDa provides well-preprocessed microarray data

for various cancer types for various machine-learning ap-

proaches. One consists of 54,676 gene expressions from 51

Figure 5. Topics in the job postings data learned by (a) SMF-W

with ξ = 1, (b) latent Dirichlet allocation, (c) NMF, and (d) a neu-

ral topic model (GSM) in Miao et al. (2017). Without supervision,

the learned topics are highly skewed toward the true job postings

consisting of 95% of the data and lead to poor classification.

subjects with binary labels indicating pancreatic cancer; An-

other we use has 35,982 gene expressions from 289 subjects

with binary labels indicating breast cancer. The primary

purpose of the analysis is to classify cancer patients solely

based on their gene expression.

6. Conclusion and Limitations

This study contributes to the advancement of SMF, a classi-

cal machine learning method designed for simultaneous low-

dimensional feature extraction and classification. Despite

facing non-convex optimization challenges, we propose a

BCD algorithm with adaptive step size, ensuring global

convergence and providing iteration complexity guarantees.

Minimum L2-regularization enhances local strong convex-

ity, and we explore parameter robustness within a statistical

SMF model. Our GPU-friendly neural BCD implementa-

tion bridges theoretical insights with practical applicability,

validated through numerical experiments for effectiveness.

Our contributions enhance the understanding and applica-

tion of SMF, addressing non-convexity and constraints in

machine learning optimization.
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Supplementary Material

A. Preliminaries

This section covers key notations and fundamental concepts of linear algebra and matrix calculus.

If A = (aij) is an m×n matrix and B is a p× q matrix, then the Kronecker product A⊗B is the mp×nq matrix such that

A⊗B =






a11B · · · a1nB
...

. . .
...

am1B · · · amnB




 .

Recall that we have

(A⊗B)T = AT ⊗BT .

If A′ is an m× n′ matrix and B′ is a p′ × q matrix, we define the m× (n+ n′) horizontally stacked matrix as [A,A′] and

the the (p+ p′)× n vertically stacked matrix as [B∥B′] := [BT , (B′)T ]T . Then by properties of the Kronecker product,

we have

[A,A′]⊗B = [A⊗B,A′ ⊗B], A⊗ [B∥B′] = [A⊗B ∥A⊗B′]. (19)

For each m× n matrix A = [a1, . . . , an], we define its vectorization as vec(A) = [aT1 , . . . , a
T
n ]

T ∈ R
mn.

The commutation matrix C(a,b) is the ab× ab matrix such that

C(a,b) vec(A) = vec(AT ),

for any a × b matrix A. For each pair of integers a, b ≥ 1, there is a unique matrix C(a,b) ∈ {0, 1}ab×ab. Recall the

following properties of the commutation matrix:

• (C(a,b))T = C(b,a).

• (C(a,b))TC(a,b) = Iab, that is, C(a,b) is positive semi-definite.

•C(a,1) = Ia = C1,a.

•C(p,m)(A⊗B) = (B ⊗A)C(q,n) for every m× n matrix A and p× q matrix B (20)

. • (A⊗B)(C ⊗D) = (AC)⊗ (BD) for any matrices with compatible sizes for the products AC and BD. (21)

Furthermore, for any matrices A ∈ R
a×b, B ∈ R

b×c, and C ∈ R
c×d, the vectorizing product of matrices is given by

vec(AB) = (Ic ⊗A) vec(B) = (BT ⊗ Ia) vec(A), (22)

vec(ABC) = (CT ⊗A) vec(B) = (Id ⊗AB) vec(C) = (CTBT ⊗ Ia) vec(A). (23)

Next, for differentiable functions f : Ra×1 → R
b×1 and g : Rb×1 → R

c×1, the Jacobian Jf can be represented as

Jf (x) =
(
∇xf(x)

T
)T

∇x

(
g(f(x))T

)
= ∇x

(
f(x)T

)
∇f(x)

(
g(f(x))T

)
, (24)

where the second equality holds by chain rule Jg◦f (x) = Jg(f(x))Jf (x). And for any a× b matrix A, we have

∇vec(A) vec(A)
T = Iab,

∇vec(A) vec(A
T )T = ∇vec(A) vec(A)

TC(b,a) = C(b,a).
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B. Model formulation for general multi-label setting

Consider the following problem setting: we have a set of n observations (yi,xi,x
′
i) for i = 1, . . . , n where yi ∈

{0, 1, . . . , κ} represents an observed label, xi ∈ R
p denotes a high-dimensional feature, and x′

i ∈ R
q is a low-dimensional

auxiliary feature for the i-th individual (p ≫ q). To predict yi, a low-dimensional representation of xi in dimension

r ≪ p for some suitable r may be utilized, combined with x′
i. This implies that the observed xi is approximated by a

linear transformation of the basis vectors w1, . . . ,wr ∈ R
p using a suitable code hi. Let W = [w1, . . . ,wr] ∈ R

p×r

be referred to as the (latent) factor matrix, and H = [h1, . . . ,hn] ∈ R
r×n as its code matrix. In a more compact form,

X = [x1, . . . ,xn] ≈WH, known as reconstruction. In practical terms, we can determine r as the approximate rank of the

data matrix X.

Now, we present our probabilistic modeling assumption. Consider fixed parameters W ∈ R
p×r, hi ∈ R

r, β ∈ R
r×κ, and

γ ∈ R
q×κ. Let h : R → [0,∞) be a score function. Suppose yi is a realization of a random variable whose conditional

distribution is defined as

[P (yi = 0 |xi,x
′
i) , . . . ,P (yi = κ |xi,x

′
i)] := C[1, h(ai,1), . . . , h(ai,κ)], (25)

where C is the normalization constant and ai = (ai,1, . . . , ai,κ) ∈ R
κ is the activation for yi. For multinomial logistic

regression, we have

[P (yi = 0 |xi,x
′
i) , . . . ,P (yi = κ |xi,x

′
i)] =

1

1 +
∑κ

c=1 exp(ai,c)
[1, exp(ai,1), . . . , exp(ai,κ)],

where the score function h(·) = exp(·).
The activation is defined in two ways, depending on whether we use a ‘feature-based’ model (SMF-H) or a ‘filter-based’

model (SMF-W):

ai =

{

βT
WTxi + γTx′

i for SMF-W

βT
hi + γTx′

i for SMF-H
∈ R

κ. (26)

Here, (β,γ) are multinomial logistic regression coefficients associated with input features (hi,x
′
i) or (WTxi,x

′
i), respec-

tively. In equation (26), the code hi or the ’filtered feature’ WTxi is the low-dimensional representation of xi.

Let Z := (W,H,β,γ) be our block parameters of interest. In order to estimate Z from observed data (xi,x
′
i, yi) for

i = 1, . . . , n, we consider the following multi-objective non-convex constrained optimization problem:

min
W∈C1,H∈C2

β∈C3,Γ∈C4

f(Z) :=
n∑

i=1

ℓ(yi,ai) + ξ∥X−WH∥2F , (27)

where Cj for j = 1, . . . , 4 represents convex constraint sets of each block parameter, X = [x1, . . . ,xn] ∈ R
p×n, ai is as in

(26), and ℓ(·) is the classification loss defined as the negative log-likelihood:

ℓ(y,a) = log

(

1 +

κ∑

c=1

h(ac)

)

−
κ∑

c=1

1{y=c} log h(ac).

Note that the four block parameters are individually assumed to be constrained in (27). A tuning parameter ξ controls the

trade-off between the dual objectives of classification and matrix factorization.

With the choice of general score function h in (25), we impose the following assumption on uniform bounds on the first and

the second derivatives observed information and the first derivative of the predictive probability distribution (see (BÈohning,

1992)).

Assumption B.1. (Bounded stiffness and eigenvalues of observed information) The score function h : R→ [0,∞) is twice

continuously differentiable. Further, let observed information Ḧ(y,a) := ∇a∇aT ℓ(y,a) for y and a. Then, for the constant

M > 0 in Assumption 4.2, there are constants γmax, α
−, α+ > 0 s.t. γmax := sup∥a∥≤M max1≤s≤n ∥∇aℓ(ys,a)∥∞

α− := inf
∥a∥≤M

min
1≤s≤n

λmin(Ḧ(ys,a)), (28)

α+ := sup
∥a∥≤M

max
1≤s≤n

λmax(Ḧ(ys,a)). (29)

13
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Under Assumption 4.2 and the multinomial logistic regression model h(·) = exp(·), the quantities γmax and α± in B.1 can

be bounded as in (9) in the main text.

Remark B.2 (Multinomial Logistic Classifier). Let ℓ denote the negative log-likelihood function in (3), where we take

the multinomial logistic model with the score function h(·) = exp(·). In this case Assumption B.1 is easily satisfied.

To see this, denote (ḣ1, . . . , ḣκ) := ∇aℓ(y,a) and Ḧ(y,a) := ∇a∇aT ℓ(y,a). Then in this special case, we have

ḣj(y,a) = gj(a) − 1(y = j) and Ḧ(y,a)i,j = gi(a) (1(i = j)− gj(a)) (See (167) and (169) in Appendix). Under

Assumption 4.2, according to Lemma F.1, we can take γmax = 1 + eM

1+eM+(κ−1)e−M ≤ 2, α− = e−M

1+e−M+(κ−1)eM
, and

α+ =
eM(1+2(κ−1)eM)

(1+eM+(κ−1)e−M )2
. For binary classification, α+ ≤ 1/4.

C. Local landscape analysis for SMF

In this section, we prove Theorem 4.3 as well as Theorem 4.4 for the general multi-label setting we introduced in Section B.

Throughout this section, we denote Z = [W,H,β,Γ] for the combined SMF parameters. The activation as for the sth

sample (see (2)) is given by

as :=

{

βT
WTxs + ΓTx′

s for SMF-W

βT
hs + ΓTx′

s for SMF-H
.

Then the objective function in (3) in the general setting then can be written as

f(Z) =

n∑

s=1

ℓ(ys,as) + ξ∥X−WH∥2F (30)

=

n∑

s=1

(

log

κ∑

c=0

h(as[c])−
κ∑

c=0

1{ys=c} log h(as[c])

)

+ ξ∥X−WH∥2F , (31)

where as[i] ∈ R denotes the ith component of as ∈ R
κ and h(a[0]) = 1. Recall the functions ḣ and Ḧ introduced in

Assumption B.1. An easy computation shows

∇aℓ(y,a) =: ḣ(y,a) = (ḣ1, . . . , ḣκ) ∈ R
κ, ∇a∇aT ℓ(y,a) = Ḧ(y,a) =: (ḧij) ∈ R

κ×κ, (32)

where

ḣj = ḣj(y,a) :=

(
h′(aj)

1 +
∑κ

c=1 h(ac)
− 1(y = j)

h′(aj)

h(aj)

)

, (33)

ḧij :=

(

h′′(aj)1(i = j)

1 +
∑κ

c=1 h(ac)
− h′(ai)h′(aj)

(1 +
∑κ

c=1 h(ac))
2

)

− 1(y = i = j)

(

h′′(aj)

h(aj)
− (h′(aj))

2

(h(aj))
2

)

. (34)

For the forthcoming computations, define matrices

K := [ḣ(y1,a1), . . . , ḣ(yn,an)] ∈ R
κ×n, M := diag

(

Ḧ(y1,a1), . . . , Ḧ(yn,an)
)

∈ R
κn×κn. (35)

C.1. Proof for SMF-W

In this section, we prove Theorem 4.4 for SMF-W. An analogous argument for SMF-H will be provided in the next section.

Proposition C.1. Let f(Z) denote the objective of SMF-W in (30). Suppose Assumption B.1 holds. Let as := βT
WTxs +

ΓTx′
s for s = 1, . . . , n. Then







∇vec(W) ℓ(ys,as) = C(r,p)(xs ⊗ β) ḣ(ys,as),

∇vec(β) ℓ(ys,as) = C(κ,r)(WTxs ⊗ Iκ) ḣ(ys,as),

∇vec(Γ) ℓ(ys,as) = C(k,q)(x′
s ⊗ Iκ) ḣ(ys,as),







∇vec(W) vec(K)T = (β ⊗X)C(κ,n)M,

∇vec(β) vec(K)T = (Iκ ⊗WTX)C(κ,n) M,

∇vec(Γ) vec(K)T = (Iκ ⊗Xaux)C
(κ,n) M.

(36)
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Proof. We first show







∇vec(W)a
T
s = C(r,p)(xs ⊗ β),

∇vec(H)a
T
s = O,

∇vec(β)a
T
s = C(κ,r)(WTxs ⊗ Iκ),

∇vec(Γ)a
T
s = C(k,q)(x′

s ⊗ Iκ).

(37)

∇vec(H)a
T
s = O is clear. For differentiating as by vec(W), observe that by using (22), we can write

as = vec(as) = vec
(

βT
WTxs + ΓTx′

s

)

= (xT
s ⊗ βT ) vec(WT ) + vec(ΓTx′

s).

Noting that vec(WT )T = (C(p,r) vec(W))T = vec(W)TC(r,p),

∇vec(W)a
T
s = ∇vec(W) vec(W

T )T (xs ⊗ β)

= ∇vec(W) vec(W)TC(r,p)(xs ⊗ β)

= C(r,p)(xs ⊗ β).

For differentiating as by vec(β), writing as = (xT
s W ⊗ Iκ) vec(β

T ) + vec(ΓTx′
s), we get

∇vec(β)a
T
s = ∇vec(β) vec(β

T )T (WTxs ⊗ Iκ)

= ∇vec(β) vec(β)
TC(κ,r)(WTxs ⊗ Iκ)

= C(κ,r)(WTxs ⊗ Iκ).

For differentiating as by vec(Γ), writing as = vec(βT
WTxs) + ((x′

s)
T ⊗ Iκ) vec(Γ

T ), we get

∇vec(Γ)a
T
s = ∇vec(Γ) vec(Γ

T )T (x′
s ⊗ In)

= ∇vec(Γ) vec(Γ)
TC(k,q)(x′

s ⊗ Iκ)

= C(k,q)(x′
s ⊗ Iκ).

This verifies (37). Then by using the chain rule (24), we get

∇vec(W)ℓ(ys,as) = ∇vec(W)a
T
s ∇as

ℓ(ys,as) = C(r,p)(xs ⊗ β) ḣ(ys,as).

Other gradients ∇vec(β) ℓ(ys,as) and ∇vec(Γ) ℓ(ys,as) also follow from (37) and the chain rule.

Next, we compute the gradients of vec(K)T in (36). First, using (37), the chain rule (24), and (32),

∇vec(W) ḣ(ys,as)
T = ∇vec(W)a

T
s ∇as

ḣ(ys,as)
T = C(r,p)(xs ⊗ β)Ḧ(ys,as),

∇vec(β) ḣ(ys,as)
T = ∇vec(β)a

T
s ∇as ḣ(ys,as)

T = C(κ,r)(WTxs ⊗ Iκ)Ḧ(ys,as),

∇vec(Γ) ḣ(ys,as)
T = ∇vec(Γ)a

T
s ∇as

ḣ(ys,as)
T = C(κ,q)(x′

s ⊗ Iκ)Ḧ(ys,as).

Now since vec(K)T = [ḣ(y1,a1)
T , . . . , ḣ(yn,an)

T ] and vec(KT )T = (C(κ,n) vec(K))T = vec(K)TC(n,κ), it follows

that

∇vec(W) vec(K)T
(a)
=
[

C(r,p)(x1 ⊗ β)Ḧ(y1,a1), . . . ,C
(r,p)(xn ⊗ β)Ḧ(yn,an)

]

(b)
= C(r,p) [x1 ⊗ β, . . . ,xn ⊗ β] diag

(

Ḧ(y1,a1), . . . , Ḧ(yn,an)
)

(c)
= C(r,p)(X⊗ β)M

(d)
= (β ⊗X)C(κ,n)M,

where (a) follows from (37) and the chain rule, (b) is an algebra, (c) follows from (19), and (d) follows from (20). The other

gradients ∇vec(β) vec(K)T and ∇vec(Γ) vec(K)T follow from similar computations.
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Lemma C.2 (Derivatives of the SMF-W objective). Let f(Z) denote the objective of SMF-W in (30). Suppose Assumption

B.1 holds. Recall ḣ and Ḧ defined in (33). Then the gradients of f(Z) are given by

∇W f(Z) = XKTβT + 2ξ(WH−X)HT , (38)

∇H f(Z) = 2ξWT (WH−X), (39)

∇β f(Z) = WTXKT , (40)

∇Γ f(Z) = XauxK
T . (41)

The block-diagonal terms in the Hessian are given by

∇vec(W)∇vec(W)T f(Z) = (β ⊗X)C(κ,n)MC(n,κ)(β ⊗X)T + 2ξ(HHT ⊗ Ip), (42)

∇vec(H)∇vec(H)T f(Z) = 2ξ(In ⊗WTW), (43)

∇vec(β)∇vec(β)T f(Z) = (Iκ ⊗WTX)C(κ,n)MC(n,κ)(Iκ ⊗WTX)T , (44)

∇vec(Γ)∇vec(Γ)T f(Z) = (Iκ ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗Xaux)

T . (45)

The block-off-diagonal terms in the Hessian are given by

∇vec(H)∇vec(W)T f(Z) = 2ξ
[

(HT ⊗WT ) +C(n,r)(Ir ⊗ (WH−X))T
]

, (46)

∇vec(β)∇vec(W)T f(Z) = C(κ,r)(Ir ⊗XKT )T + (Iκ ⊗WTX)C(κ,n)MC(n,κ)(β ⊗X)T , (47)

∇vec(Γ)∇vec(W)T f(Z) = ∇vec(β)∇vec(H)T f(Z) = ∇vec(Γ)∇vec(H)T f(Z) = O, (48)

∇vec(Γ)∇vec(β)T f(Z) = (Ir ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗WTX)T . (49)

Proof. For convenience, recall that W ∈ R
p×r, β ∈ R

r×κ, H ∈ R
r×n, and Γ ∈ R

q×κ.

Computation of the first-order derivatives.

We first compute the following gradient:

∇vec(W)

n∑

s=1

ℓ(ys,as)
(a)
= C(r,p)

n∑

s=1

(xs ⊗ β) ḣ(ys,as) (50)

= C(r,p) [x1 ⊗ β, . . . ,xn ⊗ β]






ḣ(y1,a1)
...

ḣ(yn,an)




 (51)

(b)
= C(r,p)(X⊗ β) vec(K) (52)

(c)
= (β ⊗X)C(κ,n) vec(K) (53)

(d)
= (β ⊗X) vec(KT ), (54)

where (a) follows from Proposition C.1, (b) follows from (19), (c) follows from (20), and (d) uses the definition of the

commutation matrices. Then by using (22), we deduce

∇Wf(Z) = XKTβT + 2ξ(WH−X)HT . (55)
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Next, we compute ∇vec(β)f(Z). By using similar computations as before, we get

∇vec(β)

n∑

s=1

ℓ(ys,as) = C(κ,r)
n∑

s=1

(WTxs ⊗ Iκ) ḣ(ys,as)

= C(κ,r)
[
WTx1 ⊗ Iκ, . . . ,W

Txn ⊗ Iκ
]






ḣ(y1,a1)
...

ḣ(yn,an)






= C(κ,r)(WTX⊗ Iκ) vec(K)

= (Iκ ⊗WTX)C(κ,n) vec(K)

= (Iκ ⊗WTX) vec(KT ).

From this and (22), we deduce

∇βf(Z) = WTXKT . (56)

We move on to compute ∇vec(Γ)f(Z). This yields

∇vec(Γ)

n∑

s=1

ℓ(ys,as) = C(k,q)
n∑

s=1

(x′
s ⊗ Iκ) ḣ(ys,as)

= C(κ,q)(Xaux ⊗ Iκ) vec(K)

= (Iκ ⊗Xaux)C
(κ,n) vec(K)

= (Iκ ⊗Xaux) vec(K
T )

From this and (22), we deduce

∇Γf(Z) = XauxK
T . (57)

The last derivative∇H f(Z) = 2ξWT (WH−X) is easy.

Computation of the second-order derivatives.

By vectorizing (55), we get

∇vec(W)f(Z) = vec
(

XKTβT
)

+ 2ξ vec(WHHT )− 2ξ vec(XHT )

= (β ⊗X) vec(KT ) + 2ξ(HHT ⊗ Ip) vec(W)− 2ξ vec(XHT ). (58)

Then using Proposition C.1 with (58) and noting that vec(KT )T = (C(κ,n) vec(K))T = vec(K)TC(n,κ), we get

∇vec(W)∇vec(W)T f(Z)

= ∇vec(W)

(

vec(K)TC(n,κ)(β ⊗X)T + 2ξ vec(W)T (HHT ⊗ Ip)
T − 2ξ vec(XHT )T

)

= (β ⊗X)C(κ,n)MC(n,κ)(β ⊗X)T + 2ξ(HHT ⊗ Ip).

Similarly, we can compute

∇vec(β)∇vec(β)T f(Z)

= ∇vec(β) vec(W
TXKT )T

= ∇vec(β) vec(K
T )T (Iκ ⊗WTX)T

= ∇vec(β) vec(K)TC(n,κ)(Iκ ⊗WTX)T

= (Iκ ⊗WTX)C(κ,n)MC(n,κ)(Iκ ⊗WTX)T .
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Also, note that

∇vec(Γ)∇vec(Γ)T f(Z) = ∇vec(Γ) vec(XauxK
T )T

= ∇vec(Γ) vec(K)TC(n,κ)(Iκ ⊗Xaux)
T

= (Iκ ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗Xaux)

T .

Similarly, we get

∇vec(H)∇vec(H)T f(Z) = ∇vec(H)

(
2ξ vec(WTWH)T − 2ξ vec(WTX)T

)

= 2ξ∇vec(H) vec(H)T (In ⊗WTW)

= 2ξ(In ⊗WTW).

Next, we compute the off-diagonal block terms in the Hessian of f . Recall that from (22), we have

vec(XKTβT ) = (Ir ⊗XKT ) vec(βT ) = (β ⊗X) vec(KT ).

Then using the product rule, we get

∇vec(β)∇vec(W)T f(Z) = ∇vec(β) vec(XKTβT )T

=
(

∇vec(β) vec(β
T )T

)

(Ir ⊗XKT )T +
(
∇vec(β) vec(K

T )T
)
(β ⊗X)T

= C(κ,r)(Ir ⊗XKT )T + (Iκ ⊗WTX)C(κ,n)MC(n,κ)(β ⊗X)T .

Second, note that ∇vec(Γ)∇vec(W)T f(Z) = O. Third, for the forthcoming computation, note that from (22),

vec(HHT ) = (Ir ⊗H) vec(HT ) = (H⊗ Ir) vec(H).

So by the product rule,

∇vec(H) vec(HHT )T =
(
∇vec(H) vec(H

T )T
)
(Ir ⊗H)T +

(
∇vec(H) vec(H)T

)
(H⊗ Ir)

T

= C(n,r)(Ir ⊗HT ) + (HT ⊗ Ir).

Now observe that

∇vec(H)∇vec(W)T f(Z) = 2ξ∇vec(H)

[
vec(WHHT )− vec(XHT )

]T

= 2ξ∇vec(H)

[
vec(HHT )T (Ir ⊗W)T − vec(HT )T (Ir ⊗X)T

]

= 2ξ
(
∇vec(H) vec(HHT )T

)
(Ir ⊗W)T −

(
∇vec(H) vec(H

T )T
)
(Ir ⊗X)T

= 2ξ
[(

C(n,r)(Ir ⊗HT ) + (HT ⊗ Ir)
)

(Ir ⊗W)T −C(n,r)(Ir ⊗X)T
]

= 2ξ
[

C(n,r)(Ir ⊗HTWT ) + (HT ⊗WT )−C(n,r)(Ir ⊗X)T
]

= 2ξ
[

C(n,r)(Ir ⊗ (WH−X))T + (HT ⊗WT )
]

.

Fourth, observe that

∇vec(Γ)∇vec(β)T f(Z) = ∇vec(Γ) vec(W
TXKT )T

= ∇vec(Γ) vec(K)TC(n,κ)(Iκ ⊗WTX)T

= (Iκ ⊗Xaux)C
(κ,n) MC(n,κ)(Iκ ⊗WTX)T .

The remaining zero-second derivatives are easy to see.

For two matrices A,B of the same size, we write A ⪰ B if A−B is positive semi-definite. The partial ordering ⪰ is called

the Loewner ordering.
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Lemma C.3. Let f(Z) denote the objective of SMF-W in (30). Suppose Assumption B.1 holds. Recall ḣ and Ḧ defined in

(33). Then the following hold:

(i) Write the Hessian ∇2f(Z) as the 4× 4 block matrix (Aij)1≤i,j≤4. Then

α−(ββT ⊗XXT ) + 2ξ(HHT ⊗ Ip) ⪯ A11 ⪯ α+(ββT ⊗XXT ) + 2ξ(HHT ⊗ Ip)

A22 = 2ξ(In ⊗WTW),

α−(Iκ ⊗WTXXTW) ⪯ A33 ⪯ α+(Iκ ⊗WTXXTW),

α−(Iκ ⊗XauxX
T
aux) ⪯ A44 ⪯ α+(Iκ ⊗XauxX

T
aux).

(ii) The function f(Z) = f(W,H,β,Γ) restricted to each block coordinate has Lipschitz-continuous gradients with

Lipschitz constants LW, LH, Lβ, LΓ given by

LW := α+∥β∥22 · ∥X∥22 + 2ξ∥H∥22,
LH := 2ξ∥W∥22,
Lβ := α+∥W∥22 · ∥X∥22,
LΓ := α+∥Xaux∥22.

(iii) The Hessian of the L2-regularized objective f(Z) + λW

2 ∥W∥2F + λH

2 ∥H∥2F +
λβ

2 ∥β∥2F + λΓ

2 ∥Γ∥2F is positive definite

if

λW > 2ξ
(
∥H∥2 ∥W∥2 + ∥WH−X∥2 − λmin(HHT )

)
+ γmax

√
κn∥X∥2

+ α+∥β∥2∥W∥2∥X∥22 − α−λmin(ββ
T )λmin(XXT )

λH > 2ξ
(
∥H∥2 ∥W∥2 + ∥WH−X∥2 − λmin(W

TW)
)
,

λβ > γmax

√
κn∥X∥2 + α+∥β∥2∥W∥2∥X∥22 + α+∥Xaux∥2∥XTW∥2 − α−λmin(W

TXXTW),

λΓ > α+∥Xaux∥2∥XTW∥2 − α−λmin(XauxX
T
aux)

Proof. Observe that the block-diagonal matrix M in (35) is symmetric by definition and is also positive definite by

Assumption B.1:

0 < α− ≤ λmin(M) ≤ λmax(M) ≤ α+.

Since the commutation matrices are orthogonal and satisfies C(a,b)C(b,a) = Iab, it follows that

α−Iκn ⪯ C(κ,n)MC(n,κ) ⪯ α+Iκn.

Then the first Loewner ordering for A11 = ∇vec(W)∇vec(W)T f(Z) follows from Lemma C.2. The other Loewner orderings

can be shown similarly. This shows (i).

(ii) follows immediately from (i), ∥A ⊗ B∥2 = ∥A∥2 · ∥B∥2, and the fact that the Lipschitz constant for the gradient

is upper-bounded by the largest eigenvalue of the corresponding block Hessian, which are the diagonal blocks Aii for

i = 1, . . . , 4.

For (iii), note that if L2-regularization coefficients are large enough so that the following condition is satisfied

λmin(Aii) + λi >
∑

j ̸=i

∥Aij∥2 ∀1 ≤ i ≤ 4,

where λ1 = λW, λ2 = λH, λ3 = λβ, and λ4 = λΓ, then the L2-regularized Hessian of the objective f is block diagonally

dominant and is positive definite (see (Feingold & Varga, 1962)). The L2-regularized Hessian takes the following 4× 4
block form:

vec(W)T vecHT vec(β)T vec(Γ)T









vec(W) A11 + λWIrp A12 A13 O

vec(H) A21 A22 + λHIrn O O

vec(β) A31 O A33 + λβIrκ A34

vec(Γ) O O A43 A44 + λΓIqκ

(59)
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Thus it suffices to take

λW > ∥A12∥2 + ∥A13∥2 − λmin(A11),

λH > ∥A12∥2 − λmin(A22),

λβ > ∥A13∥2 + ∥A34∥2 − λmin(A33),

λΓ > ∥A34∥2 − λmin(A44).

Using Lemma C.2 and Assumption B.1, we can upper bound the operator norm of the off-diagonal blocks as

∥A12∥2 ≤ 2ξ (∥WH∥2 + ∥WH−X∥2) ,
∥A13∥2 ≤ ∥XKT ∥2 + α+∥β∥2∥W∥2∥X∥22

≤ γmax

√
κn∥X∥2 + α+∥β∥2∥W∥2∥X∥22

A14 = A23 = A24 = O,

∥A34∥2 ≤ α+∥XauxX
TWT ∥2,

where we have used ∥1a∥2 =
√
a, ∥A⊗B∥2 = ∥A∥2 · ∥B∥2, and ∥KT ∥2 ≤

√
κn∥K∥max =

√
κnγmax. Furthermore, we

can also get lower bounds on the eigenvalues of the diagonal blocks. Then the assertion in (iii) follows.

Lemma C.4 (First-order approximation of functions with Lipschitz gradient). Let f : Ω(⊆ R
p)→ R be differentiable and

∇f be L-Lipschitz continuous on Ω. Then for each θ, θ′ ∈ Ω,

∣
∣f(θ′)− f(θ)−∇f(θ)T (θ′ − θ)

∣
∣ ≤ L

2
∥θ − θ′∥2.

Proof. This is a classical lemma. See Lemma 1.2.3 in (Nesterov, 1998).

A simple but important lemma we use in our local landscape analysis is the following. It will be used in the proof of

Theorems 4.3, C.6, and 4.5.

Lemma C.5 (L2-perturbation of local landscape). Let x 7→ f(x) be three-times continuously differentiable function

for x ∈ R
p. Suppose x⋆ is a stationary point of f over a convex set Θ ⊆ R

p. Suppose for constants λ ≥ 0, ρ > 0,

F (x) := f(x) + λ
2 ∥x∥2 is ρ-strongly convex at x⋆. Let M = M(d) denote the supremum of the absolute values of all

third-order partial derivatives of f over all x with ∥x− x⋆∥ ≤ d. Then as long as ∥x⋆∥ and d are sufficiently small, there

exists a local minimizer of F at some x′ with ∥x′ − x⋆∥ ≤ d.

More precisely, we have

inf
x∈Θ, ∥x−x⋆∥=d

F (x)− F (x⋆) > 0 (60)

provided d and ∥x⋆∥ are sufficiently small so that

3ρ

4
> M(d)d and

ρ

8
d ≥ λ∥x⋆∥.

In particular, (60) holds if d = 4λ∥x⋆∥
ρ and ∥x⋆∥ is sufficiently small so that

3ρ
2 > M(d)d holds.

Proof. Since x⋆ is a stationary point of f over Θ, we have

⟨∇F (x⋆), x− x⋆⟩ ≥ ⟨λx⋆, x− x⋆⟩ ≥ −λ∥x⋆∥ · ∥x− x⋆∥.

By Taylor’s theorem, whenever ∥x− x⋆∥ = d,

F (x)− F (x⋆) ≥ −λ∥x⋆∥ · ∥x− x⋆∥+
1

2
(x− x⋆)

T [∇x∇xTF (x)]x=x⋆
(x− x⋆)−

M(d)

6
∥x− x⋆∥3

≥ d

(

−λ∥x⋆∥+
ρd

4
− M(d)

6
d2
)

︸ ︷︷ ︸

=:I

+
ρ

4
d2.
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Note that I ≥ 0 if

ρ

8
d ≥ λ∥x⋆∥ and

ρd

8
>

M(d)d2

3
.

The above condition is held by the hypothesis. This shows (60), as desired.

Now we are ready to derive Theorem 4.3 as well as Theorem 4.4 for SMF-W.

Proof of Theorem 4.3 for SMF-W. Parts (i) and (ii) are re-statements Lemma C.3. Part (iii) follows from Lemmas C.3 and

C.5.

Proof of Theorem 4.4 for SMF-W. Here we prove the statement for SMF-W. Recall that Algorithm 1 is a block projected

gradient descent with adaptive step sizes. This algorithm is well-known to be a special instance of a more general class of

algorithms called block majorization-minimization (BMM) with prox-linear surrogates (Lyu & Li, 2023). For instance, for

updating Wk−1 to Wk given Sk−1 := (Hk−1,βk−1,Γk−1), we consider the following prox-linear surrogate

g
(1)
k (W) := f(W,Sk−1) + ⟨∇Wf(Wk−1,Sk−1), W −Wk−1⟩+

1

2ηk;1
∥W −Wk−1∥2F .

Note that g
(1)
k (Wk−1) = f(Wk−1,Sk−1). By Lemma C.3, the marginal objective function W 7→ f

(1)
k (W) :=

f(W,Sk−1) has LW-Lipschitz continuous gradient where LW := α+∥β∥22 · ∥X∥22 + 2ξ∥H∥22. Hence by Lemma

C.4, g
(1)
k (W) ≥ f

(1)
k (W) for all W ∈ C1 (i.e., g

(1)
k is a majorizing surrogate of f

(1)
k over C1) provided η−1

k;1 > LW. Indeed

we choose η−1
k;1 > LW in Algorithm 1. Furthermore, the marorization gap g

(1)
k − f

(1)
k is quadratically lower-bounded:

g
(1)
k (W)− f

(1)
k (W) ≥

η−1
k;1 − LW

2
∥W −Wk−1∥2F for all W ∈ C1. (61)

Furthermore, one can easily verify that

argmin
W∈C1

g
(1)
k (W) = ΠC1

(

Wk−1 −
1

ηk;1
∇Wf(W,Sk−1)

)

.

Hence we recover the projected gradient descent step for computing Wk in Algorithm 1 as minimizing the majorizing

surrogate g
(1)
k of f

(1)
k over the constraint set C1. For other blocks, one can construct majorizing prox-linear surrogates g

(i)
k

of marginal loss functions f
(i)
k for i = 2, 3, 4, defined similarly.

Asymptotic convergence to stationary points and iteration complexity of the BMM for smooth non-convex objective with

convex constraints is recently established in Theorem 2.1 in (Lyu & Li, 2023). For the iteration complexity result, the

hypotheses we need to verify are

(A1) The constraint sets C1, C2, C3, and C4 are closed and convex;

(A2) The objective f : Θ → R is continuously differentiable, lower-bounded on Θ, and has L-Lipschitz continuous

gradient over Θ for some L > 0. Furthermore, the sub-level sets {θ ∈ Θ | f(θ) ≤ a} for a ∈ R are compact;

(A3) The majorizaiton gaps h
(i)
k := g

(i)
k − f

(i)
k for k ≥ 1 and i = 1, 2, 3, 4 are quadratically lower-bounded and has

Lh-Lipscthiz continuous gradient over the constraint sets for some constant Lh > 0.

Indeed, (A1) and (A2) follow from 4.1 (especially with the compactness of the constraint sets) and Lemma C.2. The first part

of (A3) follows from (61). For its second part, let Lg denote the supremum of the Lipschitz constants Li for i = 1, . . . , 4

over all parameters in Θ. Since Θ is compact by 4.1, Lg <∞. Then η−1
k,i < Lg for all k ≥ 1 and i = 1, . . . , 4, ∇g(i)k s are

Lg-Lipschtiz continuous. Recall that ∇f (i)
k is L-Lipschitz continuous by (A2). Hence ∇h(i)

k s are (Lg + Lf )-Lipschitz

continuous. Now the above three properties with Theorem 2.1 in (Lyu & Li, 2023) are enough to imply the iteration

complexity results in Theorem 4.4 (i)-(ii).

Lastly, asymptotic convergence of the iterates to the stationary points in (Lyu & Li, 2023) requires the following further

assumption:
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(A4) The majorizing surrogates g
(i)
k for k ≥ 1 and i = 1, 2, 3, 4 are ρ-strongly convex for some constant ρ > 0.

Since g
(i)
k is η−1

k,i -strongly convex and since we assume the step-sizes ηk,i are uniformly upper bounded in Theorem 4.4(iii),

we can choose ρ to be the reciprocal of such uniform upper bound on ηk,is. This finishes the proof.

C.2. Proof for SMF-H

The following result stated in Theorem C.6 is the counterpart of the local landscape result (Theorem 4.3) for SMF-H, which

we prove in this section. We also establish Theorem 4.4 for SMF-H. The structure of the argument is identical to that for

SMF-W we provided in the previous section.

Theorem C.6 (Local landscape of SMF-H). Let f(Z) denote the objective of SMF-H in (30). Suppose Assumption B.1

holds. Then the following hold:

(i) A11 = 2ξ(Ip ⊗HHT )

A22 ≍ α±(In ⊗ ββT ) + 2ξ(In ⊗WTW),

A33 ≍ α±(Iκ ⊗HHT ),

A44 ≍ α±(Iκ ⊗XauxX
T
aux).

(ii) F is ρ-strongly convex at Z⋆ = (W⋆,H⋆,β⋆,Γ⋆) for ρ = min1≤i≤4(λi − λi⋆) where

λ1⋆ := −2ξΛ1,

λ2⋆ := γmax

√
κn+ α+∥β⋆∥2 (∥H⋆∥2+∥Xaux∥2)

− 2ξΛ2 − α−λmin(β⋆β
T
⋆ ),

λ3⋆ := γmax

√
κn+ α+∥β⋆∥2 (∥H⋆∥2+∥Xaux∥2)

− α−λmin(β⋆β
T
⋆ )

λ4⋆ := α+∥Xaux∥2 (∥β⋆∥2+∥H⋆∥2)− α−λmin(XauxX
T
aux).

(iii) Suppose Λ1 > 0. Denote θ′ := (H′,β′,Γ′) and θ⋆ := (H⋆,β⋆,Γ⋆). If ∥θ⋆∥F is sufficiently small, then F is minimized

locally at (W⋆, θ
′) with

∥θ′ − θ⋆∥F ≤
3max1≤i≤4(λi)

min1≤i≤4(λi − λi⋆)
∥θ⋆∥F . (62)

If Λ2 > 0 and ξ ≫ 1, then for θ′ := (W′,β′,Γ′) and θ⋆ := (W⋆,β⋆,Γ⋆), if ∥θ⋆∥F is sufficiently small, then F is

minimized locally at (θ′,H⋆) with (62).

For each s = 1, . . . , n, let es denote the sth standard basis vector in R
n.

Proposition C.7. Let f(Z) denote the objective of SMF-H in (30). Suppose Assumptions 4.1, 4.2, and B.1 hold. Let

as := βT
H[:, s] + ΓTx′

s for s = 1, . . . , n. Then







∇vec(H) ℓ(ys,as) = (es ⊗ β) ḣ(ys,as),

∇vec(β) ℓ(ys,as) = C(κ,r)(H[:, s]⊗ Iκ) ḣ(ys,as),

∇vec(Γ) ℓ(ys,as) = C(κ,q)(x′
s ⊗ Iκ) ḣ(ys,as),







∇vec(H) vec(K)T = (In ⊗ β)M,

∇vec(β) vec(K)T = (Iκ ⊗H)C(κ,n) M,

∇vec(Γ) vec(K)T = (Iκ ⊗Xaux)C
(κ,n) M.

(63)

Proof. We first show







∇vec(H)a
T
s = es ⊗ β,

∇vec(β)a
T
s = C(κ,r)(H[:, s]⊗ Iκ),

∇vec(Γ)a
T
s = C(κ,q)(x′

s ⊗ Iκ).

(64)
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For differentiating as by vec(H), observe that by using (22), we can write

as = vec(as) = βT
H[:, s] + vec

(

ΓTx′
s

)

= (xT
s ⊗ βT ) vec(WT ) + vec(ΓTx′

s).

Noting that vec(WT )T = (C(p,r) vec(W))T = vec(W)TC(r,p),

∇vec(H)a
T
s = ∇vec(H)H[:, s]Tβ = es ⊗ β.

For differentiating as by vec(β), writing as = (H[:, s]T ⊗ Iκ) vec(β
T ) + vec(ΓTx′

s), we get

∇vec(β)a
T
s = ∇vec(β) vec(β

T )T (H[:, s]⊗ Iκ)

= ∇vec(β) vec(β
T )C(κ,r)(H[:, s]⊗ Iκ)

= C(κ,r)(H[:, s]⊗ Iκ).

For differentiating as by vec(Γ), writing as = vec(βT
H[:, s]) + ((x′

s)
T ⊗ Iκ) vec(Γ

T ), we get

∇vec(Γ)a
T
s = ∇vec(Γ) vec(Γ

T )T (x′
s ⊗ In)

= ∇vec(Γ) vec(Γ)
TC(κ,q)(x′

s ⊗ Iκ)

= C(κ,q)(x′
s ⊗ Iκ).

This verifies (64). Then by using the chain rule (24), we get

∇vec(H)ℓ(ys,as) = ∇vec(H)a
T
s ∇asℓ(ys,as) = (es ⊗ β) ḣ(ys,as).

The other gradients ∇vec(β) ℓ(ys,as) and ∇vec(Γ) ℓ(ys,as) also follows from (64) and the chain rule.

Next, we compute the gradients of vec(K)T in (63). First, using (64), the chain rule (24), and (32),

∇vec(H) ḣ(ys,as)
T = ∇vec(W)a

T
s ∇as ḣ(ys,as)

T = (es ⊗ β)Ḧ(ys,as), (65)

∇vec(β) ḣ(ys,as)
T = ∇vec(β)a

T
s ∇as

ḣ(ys,as)
T = C(κ,r)(H[:, s]⊗ Iκ)Ḧ(ys,as), (66)

∇vec(Γ) ḣ(ys,as)
T = ∇vec(Γ)a

T
s ∇as ḣ(ys,as)

T = C(κ,q)(x′
s ⊗ Iκ)Ḧ(ys,as). (67)

Now since vec(K)T = [ḣ(y1,a1)
T , . . . , ḣ(yn,an)

T ] and vec(KT )T = (C(κ,n) vec(K))T = vec(K)TC(n,κ), it follows

that

∇vec(H) vec(K)T
(a)
=
[

(e1 ⊗ β)Ḧ(y1,a1), . . . , (en ⊗ β)Ḧ(yn,an)
]

(68)

(b)
= [e1 ⊗ β, . . . , en ⊗ β] diag

(

Ḧ(y1,a1), . . . , Ḧ(yn,an)
)

(69)

(c)
= (In ⊗ β)M, (70)

where (a) follows from (64) and the chain rule, (b) is an algebra, (c) follows from (19), The other gradients∇vec(β) vec(K)T

and ∇vec(Γ) vec(K)T follow from similar computations.

Lemma C.8 (Derivatives of the SMF-H objective). Let f(Z) denote the objective of SMF-H in (30). Suppose Assumption

B.1 holds. Recall ḣ and Ḧ defined in (33). Then the gradients of f(Z) are given by

∇W f(Z) = 2ξ(WH−X)HT , (71)

∇H f(Z) = βK+ 2ξWT (WH−X), (72)

∇β f(Z) = HKT (73)

∇Γ f(Z) = XauxK
T . (74)
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The block-diagonal terms in the Hessian are given by

∇vec(W)∇vec(W)T f(Z) = 2ξ(Ip ⊗HHT ), (75)

∇vec(H)∇vec(H)T f(Z) = (In ⊗ β)M(In ⊗ β)T + 2ξ(In ⊗WTW), (76)

∇vec(β)∇vec(β)T f(Z) = (Iκ ⊗H)C(κ,n)MC(n,κ)(Iκ ⊗H)T , (77)

∇vec(Γ)∇vec(Γ)T f(Z) = (Iκ ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗Xaux)

T . (78)

The block-off-diagonal terms in the Hessian are given by

∇vec(H)∇vec(W)T f(Z) = 2ξC(n,r)
[
(HT ⊗WT ) + Ir ⊗ (WH−X)T

]
(79)

∇vec(β)∇vec(W)T f(Z) = ∇vec(Γ)∇vec(W)T f(Z) = O, (80)

∇vec(β)∇vec(H)T f(Z) = (K⊗ Ir) + (Iκ ⊗H)C(κ,n) M(In ⊗ β)T , (81)

∇vec(Γ)∇vec(H)T f(Z) = (Iκ ⊗Xaux)C
(κ,n) M(In ⊗ β)T , (82)

∇vec(Γ)∇vec(β)T f(Z) = (Iκ ⊗Xaux)C
(κ,n) M(Iκ ⊗H). (83)

Proof. For convenience, recall that W ∈ R
p×r, β ∈ R

r×κ, H ∈ R
r×n, and Γ ∈ R

q×κ.

Computation of the first-order derivatives.

We first compute the following gradient:

∇vec(H)

n∑

s=1

ℓ(ys,as)
(a)
=

n∑

s=1

(es ⊗ β) ḣ(ys,as) (84)

= [e1 ⊗ β, . . . , en ⊗ β]






ḣ(y1,a1)
...

ḣ(yn,an)




 (85)

(b)
= (In ⊗ β) vec(K), (86)

where (a) follows from Proposition C.1, (b) follows from (19), (c) follows from (20), and (d) uses the definition of the

commutation matrices. Then by using (22), we deduce

∇Hf(Z) = βK+ 2ξWT (WH−X). (87)

Next, we compute ∇vec(β)f(Z). By using similar computations as before, we get

∇vec(β)

n∑

s=1

ℓ(ys,as) = C(κ,r)
n∑

s=1

(H[:, s]⊗ Iκ) ḣ(ys,as)

= C(r,p) [H[:, 1]⊗ Iκ, . . . ,H[:, n]⊗ Iκ]






ḣ(y1,a1)
...

ḣ(yn,an)






= C(r,p)(H⊗ Iκ) vec(K)

= (Iκ ⊗H)C(κ,n) vec(K)

= (Iκ ⊗H) vec(KT ).

From this and (22), we deduce

∇βf(Z) = HKT . (88)

That ∇vec(Γ)f(Z) = XauxK
T as in the proof of Lemma C.2. The last derivative∇W f(Z) = 2ξ(WH−X)HT is easy.
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Computation of the second-order derivatives.

By vectorizing ∇Hf(Z) in (71), we get

∇vec(H)f(Z) = vec(βK) + 2ξ vec(WTWH)− vec(WTX)

= (In ⊗ β) vec(K) + 2ξ(In ⊗WTW) vec(H)− vec(WTX).

Then using Proposition C.1 with (89), we get

∇vec(H)∇vec(H)T f(Z)

= ∇vec(H)

(
vec(K)T (In ⊗ β)T + 2ξ vec(H)T (In ⊗WTW)T

)

= (In ⊗ β)M(In ⊗ β)T + 2ξ(In ⊗WTW).

Similarly, we can compute

∇vec(β)∇vec(β)T f(Z)

= ∇vec(β) vec(HK)T

= ∇vec(β) vec(K
T )T (Iκ ⊗H)T

= ∇vec(β) vec(K)TC(n,κ)(Iκ ⊗H)T

= (Iκ ⊗H)C(κ,n)MC(n,κ)(Iκ ⊗H)T .

Also, note that

∇vec(Γ)∇vec(Γ)T f(Z) = ∇vec(Γ) vec(XauxK
T )T

= ∇vec(Γ) vec(K)TC(n,κ)(Iκ ⊗Xaux)
T

= (Iκ ⊗Xaux)C
(κ,n)MC(n,κ)(Iκ ⊗Xaux)

T .

Similarly, we get

∇vec(W)∇vec(W)T f(Z) = ∇vec(W)

(
2ξ vec(WHHT )T − 2ξ vec(XHT )T

)

= 2ξ∇vec(H) vec(H)T (Ip ⊗HHT )

= 2ξ(Ip ⊗HHT ).

Next, we compute the off-diagonal block terms in the Hessian of f . Recall that from (84) and (22), we have

vec(βK) = (In ⊗ β) vec(K) = (KT ⊗ Ir) vec(β).

Then using the product rule, we get

∇vec(β)∇vec(H)T f(Z) = ∇vec(β) vec(βK)T

=
(
∇vec(β) vec(β)

T
)
(KT ⊗ Ir)

T +
(
∇vec(β) vec(K)T

)
(In ⊗ β)T

= (K⊗ Ir) + (Iκ ⊗H)C(κ,n) M(In ⊗ β)T .

Second, note that

∇vec(Γ)∇vec(H)T f(Z) = ∇vec(Γ) vec(βK)T

= ∇vec(Γ) vec(K)T (In ⊗ β)T

= (Iκ ⊗Xaux)C
(κ,n) M(In ⊗ β)T .

Second, note that ∇vec(Γ)∇vec(H)T f(Z) = O. Third, by the same computation as in the proof of Lemma C.2,

∇vec(H)∇vec(W)T f(Z) = 2ξ∇vec(H)

[
vec(WHHT )− vec(XHT )

]T

= 2ξC(n,r)
[(
(HT ⊗WT ) + (Ir ⊗HTWT )

)
− (Ir ⊗X)T

]
.
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Fourth, observe that (In ⊗ β) vec(K)

∇vec(Γ)∇vec(β)T f(Z) = ∇vec(Γ) vec(HK)T

= ∇vec(Γ) vec(K)T (Iκ ⊗H)T

= (Iκ ⊗Xaux)C
(κ,n) M(Iκ ⊗H).

The remaining zero-second derivatives are easy to see.

Lemma C.9. Let f(Z) denote the objective of SMF-H in (30). Suppose Assumption B.1 holds. Recall ḣ and Ḧ defined in

(33). Then the following hold:

(i) Write the Hessian ∇2f(Z) as the 4× 4 block matrix (Aij)1≤i,j≤4. Then

A11 = 2ξ(Ip ⊗HHT ) (89)

α−(In ⊗ ββT ) + 2ξ(In ⊗WTW) ⪯ A22 ⪯ α+(In ⊗ ββT ) + 2ξ(In ⊗WTW) (90)

α−(Iκ ⊗HHT ) ⪯ A33 ⪯ α+(Iκ ⊗HHT ), (91)

α−(Iκ ⊗XauxX
T
aux) ⪯ A44 ⪯ α+(Iκ ⊗XauxX

T
aux). (92)

(ii) The function f(Z) = f(W,H,β,Γ) restricted to each block coordinate has Lipschitz-continuous gradients with

Lipschitz constants LW, LH, Lβ, LΓ given by

LW := 2ξ∥H∥22, (93)

LH := α+∥β∥22 + 2ξ∥W∥22, (94)

Lβ := α+∥H∥22, (95)

LΓ := α+∥Xaux∥22. (96)

(iii) The Hessian of the L2-regularized objective f(Z) + λW

2 ∥W∥2F + λH

2 ∥H∥2F +
λβ

2 ∥β∥2F + λΓ

2 ∥Γ∥2F is positive definite

if

λW > 2ξ
(
∥H∥2 · ∥W∥2 + ∥WH−X∥2 − λmin(HHT )

)
(97)

λH > 2ξ
(
∥H∥2 · ∥W∥2 + ∥WH−X∥2 − λmin(W

TW)
)
+ γmax

√
κn (98)

+ α+∥β∥2 (∥H∥2 + ∥Xaux∥2)− α−λmin(ββ
T ), (99)

λβ > γmax

√
κn+ α+∥β∥2 (∥H∥2 + ∥Xaux∥2)− α−λmin(HHT ), (100)

λΓ > α+∥Xaux∥2 (∥β∥2 + ∥H∥2)− α−λmin(XauxX
T
aux). (101)

Proof. Observe that the block-diagonal matrix M in (35) is symmetric by definition and is also positive definite by

Assumption B.1:

0 < α− ≤ λmin(M) ≤ λmax(M) ≤ α+. (102)

Since the commutation matrices are orthogonal and satisfies C(a,b)C(b,a) = Iab, it follows that

α−Iκn ⪯ C(κ,n)MC(n,κ) ⪯ α+Iκn. (103)

Then the first Loewner ordering for A11 = ∇vec(W)∇vec(W)T f(Z) follows from Lemma C.2. The other Loewner orderings

can be shown similarly. This shows (i).

(ii) follows immediately from (i) and the fact that the Lipschitz constant for the gradient is upper-bounded by the largest

eigenvalue of the corresponding block Hessian, which are the diagonal blocks Aii for i = 1, . . . , 4.

For (iii), note that if L2-regularization coefficients are large enough so that the following condition is satisfied

λmin(Aii) + λi >
∑

j ̸=i

∥Aij∥2 ∀1 ≤ i ≤ 4, (104)

26



Supervised Matrix Factorization: Local Landscape Analysis and Applications

where λ1 = λW, λ2 = λH, λ3 = λβ, and λ4 = λΓ, then the L2-regularized Hessian of the objective f is block diagonally

dominant and is positive definite (see (Feingold & Varga, 1962)). The L2-regularized Hessian takes the following 4× 4
block form:

vec(W)T vecHT vec(β)T vec(Γ)T









vec(W) A11 + λWIrp A12 O O

vec(H) A21 A22 + λHIrn A23 A24

vec(β) O A32 A33 + λβIrκ A34

vec(Γ) O A42 A43 A44 + λΓIqκ

(105)

Thus it suffices to take

λW > ∥A12∥2 − λmin(A11), (106)

λH > ∥A12∥2 + ∥A23∥2 + ∥A24∥2 − λmin(A22), (107)

λβ > ∥A23∥2 + ∥A34∥2 − λmin(A33), (108)

λΓ > ∥A34∥2 + ∥A24∥2 − λmin(A44). (109)

Using Assumption B.1, we can upper bound the operator norm of the off-diagonal blocks as

∥A12∥2 ≤ 2ξ (∥H∥2 · ∥W∥2 + ∥WH−X∥2) (110)

∥A23∥2 ≤ γmax

√
κn+ α+∥H∥2 · ∥β∥2, (111)

∥A24∥2 ≤ α+∥Xaux∥2 · ∥β∥2, (112)

∥A34∥2 ≤ α+∥Xaux∥2 · ∥H∥2. (113)

We can also obtain lower bounds on the eigenvalues of the diagonal blocks. Then the assertion in (iii) follows.

We now prove Theorems C.6 and 4.4 for SMF-H.

Proof of Theorems C.6 and 4.4 for SMF-H. Theorem C.6 follows from Lemmas C.9 and C.5.

The proof of Theorem 4.4 for SMF-H again amounts to verify the hypothesis of Theorem 2.1 in (Lyu & Li, 2023) for the

block projected gradient descent algorithm in Algorithm 1 as a BMM with suitable prox-linear surrogates. The argument is

identical to that for SMF-W we provided in the previous section, together with the corresponding lemmas establishing

gradient and Hessian computations for SMF-H (Lemmas C.8 and C.9).

D. Proof of Theorem 4.5: A non-asymptotic local consistency of MLE

In this section, we provide a general result on the non-asymptotic local consistency of MLE in a general setting, where the

data samples are assumed to be independent but may not be identically distributed, and the unknown true parameter used for

a generative model may lie on the boundary of the parameter space and the Fisher information at the true parameter is not

necessarily positive definite. The result we present (Theorem D.1) in this section is general and could be of independent

interest. From this general result and Theorem 4.3 we can deduce Theorem 4.5.

Fix a sample size n ≥ 1. Suppose πθ is a probability distribution on R
d parameterized by θ ∈ Θ ⊆ R

p. If an n-tuple

X = [x1, . . . ,xn] of vectors in R
d is observed under the product distribution πθ := πθ1 ⊗ · · · ⊗ πθn , θ = (θ1, . . . , θn),

then the regularized negative log-likelihood of observing X under πθ is

L(X ; θ) :=
n∑

i=1

(L0(xi; θi) +R(θi)) , L0(x; θ) := − log πθ(x), (114)

where R(θi) is a suitable choice of regularizer for parameter θi. Denote R(θ) :=
∑n

i=1 R(θi). We denote

L0(X ; θ) :=

n∑

i=1

L0(x; θi). (115)
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Now suppose there is true and unknown parameter θ⋆ = (θ1⋆, . . . , θn⋆) such that we have independent samples x1, . . . ,xn

jointly from πθ⋆ . Let θ̂n denote a (possibly non-unique) minimizer of the above function over the n-fold product parameter

space Θn. This is a minimizer of the random loss function L over the product constraint set Θn, which we call the

constrained and regularized maximum likelihood estimator (MLE) of θ⋆. Note that here we consider a general constrained

MLE problem in three aspects: (1) The distribution of n data samples are parameterized separately by θ1, . . . , θn; (2) The

constraint set Θn may be a proper convex subset of Rp×n and θ⋆ could be at the boundary of Θn; (3) The loss function L in

(114) may be non-convex and may have multiple local minima.

In this general setting, we would like to provide a high-probability guarantee that there exists a local minimizer of (114)

that is close to the true parameter θ⋆. In the special case where we impose θ1 = · · · = θn and θ⋆ is assumed to be in

the interior of Θn, this type of result is provided by the classical local consistency theory of MLE (Fan & Li, 2001) in an

asymptotic setting where the sample size n tends to infinity. Below in Theorem D.1, we generalize such a classical result in

the non-asymptotic, constrained, and regularized setting. For its proof, we combine a classical approach in (Fan & Li, 2001)

with concentration inequalities, namely, a classical Berry-Esseen bound for deviations from standard normal distribution for

independent but non-identically distributed random variables and a uniform McDirmid bound (Lemma D.2). The former is

used to control the linear term in the second-order Taylor expansion of the log-likelihood function, and the latter is used to

control the second-order term. By using an ε-net argument, the latter concentration inequality can be extended to a setting

where the random variables are parameterized within a compact set.

Theorem D.1 (Non-asymptotic local consistency of constrained and regularized MLE). Consider the constrained and

regularized MLE problem (114) with unknown parameters θ1⋆, . . . , θn⋆ from a convex subset Θ ⊆ R
p. Fix a convex set

Θ ⊆ Θn. Assume the following holds:

(a0) (Parameter consistency) Suppose that there exists θ⋆ ∈ Θ and a constant c > 0 such that

max
1≤i≤n

∥θ⋆ − θi⋆∥ ≤ c/
√
n. (116)

(a1) (Smoothness) For each realization of the data X = [x1, . . . ,xn] ∈ R
p×n, the function θ 7→ L(X ; θ) is three-

times continuously differentiable and R(θ) is differentiable. Furthermore, denote Yi := ∇θL0(xi; θi⋆) ∈ R
p,

Y i := Yi − E[Yi], and Wi :=
〈

Y i,
θ⋆−θi⋆
c/

√
n

〉

. Suppose there are constants D1, d1 ∈ (0,∞) such that

max
1≤i≤n

E[∥Y i∥3] < D1, max
1≤i≤n

E
[
W 3

i

]
< D1, min

1≤i≤n
min

1≤k≤p
Var(Yi(k)) > d1, min

1≤i≤n
Var(Wi) > d1. (117)

(a2) (First-order optimality) The true parameter θ⋆ := (θ1⋆, . . . , θn⋆) is a stationary point of the expected negative

log-likelihood function L0(θ) := Eθ⋆
[L0(X;θ)] over Θ:

⟨∇θ L0(θ), θ − θ⋆⟩ ≥ 0 ∀θ ∈ Θ. (118)

(a3) (Approximate second-order optimality) Let L̄(θ) := L0(θ) + R(θ) denote the expected regularized negative log

likelihood function. Then the regularized ‘joint Fisher information’ ∇2L̄(θ) is positive definite at θ = θ⋆ with

minimum eigenvalue ρ > 0.

Fix a constant C > 0 and let D = n−1/2
(

C + 4∥∇R(θ⋆)∥
ρ

)

. Let M = M(D) > 0 denote the supremum of the absolute

values of all third-order partial derivatives of L over all θ with ∥θ− θ⋆∥ ≤ D. Suppose ∥∇R(θ⋆)∥ is small enough so that

√
nD ≤ 3ρ

4M(D)
. (119)

Then there are constants c1, c2, c3 > 0 such that

P



 inf
θ∈Θ

∥θ−θ⋆∥=D

L(X ; θ, . . . , θ)− L(X ; θ⋆) > 0



 ≥ 1− c1 exp

(

−C2ρ2

64

)

− c2√
n
−O(exp(−c3n)). (120)

That is, with high probability explicitly depending on C, ρ, p, and n, there exists a local maximizer of θ 7→ L(X ; θ, . . . , θ)
in Θ within distance D from θ⋆.
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We can easily deduce Theorem 4.5 from Theorem D.1.

Proof of Theorem 4.5. This is a straightforward application of the general result we just established in Theorem D.1 and

the local landscape result in Theorem 4.3. Details are omitted.

We devote the rest of this section to proving Theorem D.1.

Lemma D.2 (A uniform McDirmid’s inequality). Let X1, . . . , Xn be independent random vectors in R
d from a joint

distribution π. Fix a compact parameter space Θ ⊆ R
p and fθ : Rd → [−M,M ] is a bounded functional for each θ ∈ Θ

such that

∥fθ − fθ′∥∞ ≤ L∥θ − θ′∥, ∀θ,θ′ ∈ Θ (121)

for some constant L > 0. Further assume that E[fθ(Xk)] = 0 for all θ ∈ Θ and k = 1, . . . , n. Then there exists constants

K,M > 0 such that for each n ≥ 0, and η > 0,

P

(

sup
θ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

k=1

fθ(Xk)

∣
∣
∣
∣
∣
≥ η

)

≤ K

(
2L diam(Θ)

η

)p

exp

(

− η2n

2M2

)

. (122)

Proof. Recall that Θ ⊆ R
p is compact, so it can be covered by a finite number of L2-balls of any given radius ε > 0.

Denote by Uε such an open cover using the least number of balls of radius ε > 0. Let N(ε) = |Uε| denote the smallest

number of such balls to cover Θ. Moreover, let diam(Θ) be the diameter of Θ, which is finite since Θ is compact. Then

Θ is contained in a p-dimensional box of side length diam(Θ). Thus there exists a constant K > 0, depending only on

diam(Θ) and d, for which

N(ε) ≤ K

(
diam(Θ)

ε

)p

. (123)

Next, fix η > 0, θ ∈ Θ, and ε > 0. Let θ1, · · · ,θN(ε) be the centers of balls in the open cover Uε. Then there exists

1 ≤ j ≤ N(ε) such that ∥θ − θj∥ < ε. By the hypothesis, fθ depends on θ uniformly continuously with respect to the

supremum norm. Hence there exists δ = δ(ε) > 0 such that

∥fθ − fθj∥∞ ≤ Lε. (124)

Denote Hn(θ) := n−1
∑n

k=1 fθ(Xk). Then it follows that, almost surely,

|Hn(θ)−Hn(θj)| ≤ Lε. (125)

Furthermore, by the hypothesis, ∥fθ∥∞ is uniformly bounded by M > 0. It follows that for each θ ∈ Θ, Hn(θ) changes

its value at most by M when one of X1, . . . , Xn is replaced arbitrarily. Therefore by the standard McDirmid’s inequality

(see, Theorem 2.9.1. in (Vershynin, 2018)) and a union bound, with choosing ε = η/(2L), we have

P (|Hn(θ)| ≥ η) ≤
N(η/2L)
∑

j=1

P (|Hn(θj)| ≥ η/2) ≤ K

(
2L diam(Θ)

η

)p

exp

(

− nη2

2M2

)

. (126)

The above holds for all n ≥ 1, η > 0, and θ ∈ Θ.

Next, we recall the classical Berry-Esseen theorem for the rate of convergence of normal approximation for the sum of

independent but not necessarily identically distributed random variables due to Feller.

Theorem D.3 (Berry-Esseen, Feller ’68 (Feller, 1968)). Let X1, X2, . . . , Xn be independent and not necessarily identically

distributed random variables with zero means and finite variances. Define W =
∑n

i=1 Xi and assume that Var(W ) = 1.

Let F be the distribution function of W and Φ be the standard normal distribution function. Then

∥F − Φ∥∞ ≤ 6

(
n∑

i=1

E[X2
i 1(|Xi| > 1)] +

n∑

i=1

E[X3
i 1(|Xi| ≤ 1)]

)

. (127)
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Now we prove Theorem D.1. The proof is essentially handling an additional probabilistic perturbation in the proof of

Lemma C.5.

Proof of Theorem D.1. Suppose an n-tuple X = [x1, . . . ,xn] of vectors xs in R
d is observed under the product distribution

πθ1⋆ ⊗ · · · ⊗ πθn⋆
. Denote θ⋆ = (θ1⋆, . . . , θn⋆). Also by the hypothesis, L0 is twice continuously differentiable, so

E[∇L0] = ∇E[L0] and E[∇2L0] = ∇2
E[L0] by the dominated convergence theorem.

Fix θ = (θ1, . . . , θn) ∈ Θ such that ∥θi − θ⋆∥ = D for all i = 1, . . . , n. Then from (116), for all i = 1, . . . , n,

D − c√
n
≤ ∥θi − θi⋆∥ ≤ D +

c√
n
. (128)

We introduce two random variables that we will bound to be small by using some concentration inequalities:

Tn(θ) :=
1√
nD
⟨∇θL0(X;θ⋆)− E [∇θL0(X;θ⋆)] , θ − θ⋆⟩ , (129)

Sn(θ) :=
1

n∥θ − θ⋆∥2
(θ − θ⋆)

T (∇θ∇θTL(X ; θ⋆)−∇θ∇θT (E [L(X ; θ⋆)])) (θ − θ0). (130)

Since θ 7→ L(X; θ) is assumed to be three times continuously differentiable, the quantity M in the assertion is well-defined

and is finite. Then using a Taylor expansion, we may write

L(X ; θ)− L(X ; θ⋆) ≥ ⟨∇θL(X;θ⋆), θ − θ⋆⟩+
1

2
(θ − θ⋆)

T∇θ∇θTL(X ; θ⋆)(θ − θ⋆) (131)

−
n∑

i=1

M(∥θ − θi⋆∥)
6

∥θ − θi⋆∥3. (132)

We will lower bound the first two terms on the right-hand side above. Note that

⟨∇θL(X;θ⋆), θ − θ⋆⟩ = [⟨∇θL0(X;θ⋆), θ − θ⋆⟩ − E [⟨∇θL0(X;θ⋆), θ − θ⋆⟩]] (133)

+ ⟨∇θE[L0(X;θ⋆)], θ − θ⋆⟩+ ⟨∇R(θ⋆), θ − θ⋆⟩ (134)

(a)

≥ ⟨∇θL0(X;θ⋆), θ − θ⋆⟩ − E [⟨∇θL0(X;θ⋆), θ − θ⋆⟩]− ∥∇R(θ⋆)∥ ∥θ − θ⋆∥ (135)

(b)
= −
√
nD Tn(θ)− ∥∇R(θ⋆)∥ ∥θ − θ⋆∥, (136)

where for (a) we use the fact that θ⋆ is a stationary point of E[L0(X;θ)] over Θ and Cauchy-Schwarz inequality; for (b) we

used the definition of Tn(θ).

Next, we turn our attention to the second-order term in the Taylor expansion (131). Recall that from the hypothesis,

E [∇θ∇θTL(X ; θ⋆)] = ∇θ∇θT (E [L(X ; θ⋆)]) ⪰ ρIpn, (137)

where ρ > 0 is a constant. It follows that

(θ − θ⋆)
T∇θ∇θTL(X ; θ⋆)(θ − θ⋆) (138)

≥ (θ − θ⋆)
T [∇θ∇θTL(X ; θ⋆)−∇θ∇θT (E [L(X ; θ⋆)])] (θ − θ⋆) + ρ∥θ − θ⋆∥2 (139)

≥ ∥θ − θ⋆∥2 (Sn(θ) + ρ) . (140)

Combining the above inequalities with noting that ∥θ − θ⋆∥2 = nD2, we obtain

L(X ; θ)− L(X ; θ⋆)

∥θ − θ⋆∥2
≥ 1

∥θ − θ⋆∥

(

−∥∇R(θ⋆)∥+
ρ

4

√
nD − M(D)

6
nD2

)

︸ ︷︷ ︸

=:I1

(141)

+

(
1

2
(Sn(θ) +

ρ

2
)− 1√

nD
Tn(θ)

)

︸ ︷︷ ︸

=:I2

. (142)

30



Supervised Matrix Factorization: Local Landscape Analysis and Applications

Note that I1 ≥ 0 if

ρ

8

√
nD ≥ ∥∇R(θ⋆)∥ and

ρ

8

√
nD ≥ M(D)

6
nD2. (143)

The former condition holds by the choice of D, and the latter condition holds by the hypothesis. Thus I1 ≥ 0.

We now take infimum over all θ = (θ, . . . , θ) ∈ Θn such that ∥θ − θ⋆∥ = D. In the proof of Lemma C.5, we have seen

that the infimum of I1 defined above is positive under the hypothesis. Hence it suffices to show that the random variable I2
defined above is positive with high probability. To this end, write

inf
θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

I2 ≥




 inf

θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

−Tn(θ)√
nD






︸ ︷︷ ︸

=:A

+



 inf
θ∈Θ

∥θ−θ⋆∥=D

(

Sn(θ, . . . , θ) +
ρ

2

)





︸ ︷︷ ︸

=:B

. (144)

Then the last expression in (144) is at least ρ/8 if A ≥ −ρ/8 and B ≥ ρ/4. Thus

P




 inf

θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

L(X ; θ)− L(X ; θ⋆)

∥θ − θ⋆∥2
≥ ρ/8




 ≥ P(A ≥ −ρ/8) + P(B ≥ ρ/4)− 1. (145)

By the hypothesis, D = O(1) so it is uniformly bounded. Then by the uniform McDirmid’s inequality in Lemma D.2, there

exists constants C ′, C ′′ > 0 such that

P(B < ρ/4) ≤ P



 inf
θ∈Θ

∥θ−θ⋆∥=D

Sn(θ, . . . , θ) < −ρ/4



 ≤ DpC ′ exp(−C ′′n). (146)

Next, we will show the following inequalities: For K = 6D1/d
3/2
1 ,

P(A < −ρ/8)
(c)

≤ P




 inf

θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

Tn(θ) ≥
√
nDρ

8






(d)

≤ (p+ 1)

(

P

(

Z ≥ p−1/2

(√
nDρ

8

))

+
K√
n

)

(147)

(e)

≤ (p+ 1)

(

exp

(

−nD2ρ2

64

)

+
K√
n

)

(148)

(f)

≤ (p+ 1)

(

exp

(

−C2ρ2

64

)

+
K√
n

)

, (149)

where Z ∼ N(0, 1) is an independent standard normal random variable. Then the assertion will follow by combining (144),

(145), (146), and (149). Note that (c) in (149) follows from the definition of A in (144). Also, note that (e) is a simple

consequence of the standard Gaussian tail bound P(N(0, 1) > x) ≤ e−x2/2

x
√
2π

and that
√
nD ≥ C. (f) follows from the choice

of D which yields nD2 ≥ C2.

It remains to verify (d) in (149). To this end, define p× n matrix Q by letting its ith column Q[:, i] be

Q[:, i] :=

n∑

i=1

∇θL0(xi; θi⋆)− E [∇θL0(xi; θi⋆)] = Yi, (150)

where Yi is defined in the assertion. Note that Q has independent mean zero columns and they do not depend on any specific

choice of the running parameter θ. Then we can write

Tn(θ, . . . , θ) =
1√
n

n∑

i=1

〈

Q[:, i],
θ − θi⋆

D

〉

(151)

=

〈

1√
n

n∑

i=1

Q[:, i],
θ − θ⋆
D

〉

+
1√
n

c/
√
n

D

n∑

i=1

〈

Q[:, i],
θ⋆ − θi⋆
c/
√
n

〉

︸ ︷︷ ︸

=Wi

. (152)
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It is important to note that the random variables Wi do not depend on the specific parameter choice θ, while the first term

in the last expression above does. Such dependence on θ can be removed by using Cauchy-Schwarz inequality. Namely,

denote Qk•
n := n−1/2

∑n
i=1 Q[k, i] for k = 1, . . . , p. Also noting that c/

√
n ≤ D, we deduce

Tn(θ, . . . , θ) ≤
∥
∥
∥
∥
∥

1√
n

n∑

i=1

Q[:, i]

∥
∥
∥
∥
∥
+

1√
n

n∑

i=1

Wi

︸ ︷︷ ︸

=:Zn

(153)

=
√
p

p
∑

k=1

∣
∣Qk•

n

∣
∣+ Zn. (154)

Note that for each k = 1, . . . , p, Q[k, i] for i = 1, . . . , n are independent and mean zero random variables with uniformly

bounded variances. Likewise, Xi for i = 1, . . . , n are independent and mean zero random variables with uniformly bounded

variances. Hence by union bound,

P




 inf

θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

Tn(θ) ≥ t




 ≤

[
p
∑

k=1

P

(

Qk•
n ≥

t

2
√
p

)]

+ P

(

Zn ≥
t

2
√
p

)

. (155)

Then by the Berry-Esseen Theorem (Theorem D.3) and the hypothesis,

sup
z∈R

∣
∣P
(
Qk•

n ≤ z
)
− P (Z ≤ z)

∣
∣ ≤ 6

∑n
i=1 E[∥Yi∥3]

(
∑n

i=1 Var(Yi(k)))
3/2
≤ 6D1

d
3/2
1

√
n

for k = 1, . . . , p (156)

sup
z∈R

|P (Zn ≤ z)− P (Z ≤ z)| ≤ 6
∑n

i=1 E[|Wi|3]
(
∑n

i=1 Var(Wi))
3/2
≤ 6D1

d
3/2
1

√
n
. (157)

Combining with (155) and denoting K = 6D1/d
3/2
1 , we obtain

P




 inf

θ=(θ,...,θ)∈Θn

∥θ−θ⋆∥=D

Tn(θ) ≥ t




 ≤ (p+ 1)

(

P

(

Z ≥ t

2
√
p

)

+
K√
n

)

, (158)

Thus (d) in (149) follows.

E. BCD algorithm for SMF

In the main text, we introduce the BCD algorithm for SMF-W. When κ > 1, the algorithm can be easily extended to the

multi-label setting. Here, K is defined as real-valued κ× n matrix such that

K := [ḣ(y1,a1), . . . , ḣ(yn,an)] ∈ R
κ×n

where each ḣ(y,a) denotes

∇aℓ(y,a) =: ḣ(y,a) = (ḣ1, . . . , ḣκ) ∈ R
κ, ḣj :=

h′(aj)

1 +
∑κ

c=1 h(ac)
− 1(y = j)h′(aj)

h(aj)
, (159)

with a proper score function h(·) in (25).

Below we state the BCD algorithm with adaptive step sizes for SMF-H. The structure of the algorithm is identical to

Algorithm 1 for SMF-W.
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Algorithm 2 BCD algorithm for SMF-H

1: Input: X ∈ R
p×n (Data); Xaux ∈ R

q×n (Auxiliary covariate); Ylabel ∈ {0, . . . , κ}1×n (Label);

2: Constraints: Convex subsets C1 ⊆ R
p×r, C2 ⊆ R

r×n, C3 ⊆ R
r×κ, C4 ⊆ R

q×κ

3: Parameters: ξ ≥ 0 (Tuning parameter); T ∈ N (number of iterations); (ηk;i)k≥1,1≤i≤4 (step-sizes)

4: Initialize W ∈ C1, H ∈ C2, β ∈ C3, Γ ∈ C4
5: For k = 1, 2, . . . , T do: (▷ For α+ see Assumption B.1.)

6: (Update W)

7: ∇Wf(Z)← 2ξ(WH−X)HT

8: Choose η−1
k,1 > L1 := 2ξ∥H∥22

9: W← ΠC1
(W − ηk;1∇Wf(Z))

10: (Update H)

11: Update activation a1, . . . ,an and K

12: ∇Hf(Z)← βK+ 2ξWT (WH−X)
13: Choose η−1

k,2 > L2 := α+∥β∥2 + 2ξ∥W∥22
14: H← ΠC2

(H− ηk;2∇Hf(Z))

15: (Update β)

16: Update activation a1, . . . ,an and K

17: ∇βf(Z)← XKT

18: Choose η−1
k,3 > L3 := α+∥H∥22

19: H← ΠC3
(β − ηk;3∇βf(Z))

20: (Update Γ)

21: Update activation a1, . . . ,an and K

22: ∇Γf(Z)← XauxK
T

23: Choose η−1
k,4 > L4 := α+∥Xaux∥22

24: Γ← ΠC4
(Γ− ηk;4∇Γf(Z))

25: End for

26: Output: Z = (W,H,β,Γ)

F. Generalized multinomial logistic regression

In this section, we provide some background on a generalized multinomial logistic regression and record some useful

computations. (See (BÈohning, 1992) for backgrounds on multinomial logistic regression.) Without loss of generality, we can

assume that the κ+1 classes are the integers in {0, 1, . . . , κ}. Say we have training examples (ϕ(x1), y1), . . . , (ϕ(xn), yn),
where

• x1, . . . ,xn: Input data (e.g., collection of all medical records of each patient)

• ϕ1 := ϕ(x1), . . . ,ϕn := ϕ(xn) ∈ R
p : Features (e.g., some useful information for each patient)

• y1, . . . , yn ∈ {0, 1, . . . , κ}: κ+ 1 class labels (e.g., digits from 0 to 9).

The basic idea of multinomial logistic regression is to model the output y as a discrete random variable Y with probability

mass function p = [p0, p1, . . . , pκ] that depends on the observed feature ϕ(x), score function h : R→ R (strictly increasing,

twice differentiable, and h(0) = 1), and a matrix parameter W = [w1, . . . ,wκ] ∈ R
p×κ through the following relation:

p0 =
1

1 +
∑κ

c=1 h(⟨ϕ(x),wc⟩)
, pj =

h(⟨ϕ(x),wj⟩)
1 +

∑κ
c=1 h(⟨ϕ(x),wc⟩)

, for j = 1, . . . , κ. (160)

That is, given the feature vector ϕ(x), the probability pi of x having label i is proportional to h evaluated at the ‘linear

activation’ ⟨ϕ(x),wi⟩ with the base category of class 0. Note that using h(x) = exp(x), the above multiclass classification

model reduces to the classical multinomial logistic regression. In this case, the corresponding predictive probability

distribution p is called the softmax distribution with activation a = [a1, . . . , aκ] with ai = ⟨ϕ(x),wi⟩ for i = 1, . . . , κ.

Notice that this model has parameter vectors w1, . . . ,wκ ∈ R
p, one for each of the κ nonzero class labels.
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Next, we derive the maximum log-likelihood formulation for finding optimal parameter W for the given training set

(ϕi, yi)i=1,...,n. For each 1 ≤ i ≤ n, define the predictive probability mass function pi = [pi0, pi1, . . . , piκ] using (160)

with ϕ(x) replaced by ϕi. We introduce the following matrix notations

Y :=






1(y1 = 1) · · · 1(y1 = κ)
...

...

1(yn = 1) · · · 1(yn = κ)






∈ {0, 1}n×κ

,
P :=






p11 · · · p1κ
...

...

pn1 · · · pnκ






∈ [0, 1]n×κ

(161)

Φ :=





↑ ↑
ϕ(x1) · · · ϕ(xn)
↓ ↓





∈ R
p×n

,
W :=





↑ ↑
w1 · · · wκ

↓ ↓



 .

∈ R
p×κ

(162)

Note that the sth row of Y is a zero vector if and only if ys = 0. Similarly, since ps0 = 1 − (ps1 + · · · + psκ), the

corresponding row of P determines its predictive probability distribution. Then the joint likelihood function of observing

labels (y1, . . . , yn) given input data (x1, . . . ,xn) under the above probabilistic model is

L(y1, . . . , yn ; W) = P(Y1 = y1, . . . , Yn = yn ; W) =

n∏

s=1

κ∏

j=0

(psj)
1(ys=j). (163)

Denote w0 = 0. Then since h(0) = 1 by definition, we can conveniently write

psj =
h(⟨ϕs,wj⟩)

∑κ
c=0 h(⟨ϕs,wc⟩)

for s = 1, . . . , n and j = 0, 1, . . . , κ. (164)

Now we can derive the negative log-likelihood ℓ(Φ,W) := −∑n
s=1

∑κ
j=0 1(ys = j) log psj in a matrix form as follows:

ℓ(Φ,W) =

n∑

s=1

log

(

1 +

κ∑

c=1

h(⟨ϕ(xs),wc⟩)
)

−
n∑

s=1

κ∑

j=0

1(ys = j) log h (⟨ϕ(xs),wj⟩) (165)

=

(
n∑

s=1

log

(

1 +
κ∑

c=1

h(⟨ϕ(xs),wc⟩)
))

− tr
(

YTh(ΦTW)
)

, (166)

where tr(·) denotes the trace operator. Then the maximum likelihood estimates Ŵ is defined as the minimizer of the above

loss function in W while fixing the feature matrix Φ.

Both the maps W 7→ ℓ(Φ,W) and Φ 7→ ℓ(Φ,W) are convex and we can compute their gradients as well as the Hessian

explicitly as follows. For each y ∈ {0, 1, . . . κ}, ϕ ∈ R
p, and W ∈ R

p×κ, define vector and matrix functions

ḣ(y,ϕ,W) := (ḣ1, . . . , ḣκ)
T ∈ R

κ×1, ḣj :=
h′(⟨ϕ,wj⟩)

1 +
∑κ

c=1 h(⟨ϕ,wc⟩)
− 1(y = j)

h′(⟨ϕ,wj⟩)
h(⟨ϕ,wj⟩)

(167)

Ḧ(y,ϕ,W) :=
(

Ḧij

)

i,j
∈ R

κ×κ, (168)

Ḧij =
h′′(⟨φ,wj⟩)1(i=j)
1+

∑κ
c=1

h(⟨φ,wc⟩) −
h′(⟨φ,wi⟩)h′(⟨φ,wj⟩)
(1+

∑κ
c=1

h(⟨φ,wc⟩))
2 − 1(y = i = j)

(

h′′(⟨φ,wj⟩)
h(⟨φ,wj⟩) −

(h′(⟨φ,wj⟩))
2

(h(⟨φ,wj⟩))2

)

. (169)

For each W = [w1, . . . ,wκ] ∈ R
p×κ, let Wvec := [wT

1 , . . . ,w
T
κ ]

T ∈ R
pκ denote its vectorization. Note that

Ey

[

ḣ(y,ϕ,W)
]

= 0. (170)
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A straightforward computation also shows

∇vec(W)ℓ(Φ,W) =

n∑

s=1

ḣ(ys,ϕs,W)⊗ ϕs, (171)

H := ∇vec(W)∇vec(W)T ℓ(Φ,W) =

n∑

s=1

Ḧ(ys,ϕs,W)⊗ ϕsϕ
T
s , (172)

where ⊗ above denotes the Kronecker product. Recall that the eigenvalues of A ⊗ B, where A and B are two

square matrices, are given by λiµj , where λi and µj run over all eigenvalues of A and B, respectively. Also, for

two square matrices A,B of the same size, write A ⪯ B if vTAv ≤ vTBv for all unit vectors v. Then denoting

λ+ := max1≤s≤n λmax(Ḧ(ys,ϕs,W)),

H ⪯ λ+
n∑

s=1

I⊗ ϕsϕ
T
s = λ+I⊗ΦΦT . (173)

Similarly, λ−I⊗ΦΦT ⪯ H, where λ− denotes the minimum over all λmin(Ḧ(ys,ϕs,W)). Hence we can deduce

λ−λmin

(

ΦΦT
)

≤ λmin(H) ≤ λmax(H) ≤ λ+λmax

(

ΦΦT
)

. (174)

There are some particular cases worth noting. First, suppose binary classification case, κ = 1. Then the Hessian H above

reduces to

H =

n∑

s=1

Ḧ11(ys,ϕs,W)ϕsϕ
T
s . (175)

Second, let h(x) = exp(x) and consider the multinomial logistic regression case. Then h = h′ = h′′ so the above yields

the following concise matrix expression

∇W ℓ(Φ,W) = Φ(P−Y) ∈ R
p×κ, ∇Φ ℓ(Φ,W) = W(P−Y)T ∈ R

p×n, (176)

H =

n∑

s=1








ps1(1− ps1) −ps1ps2 . . . −ps1psκ
−ps2ps1 ps2(1− ps2) . . . −ps2psκ

...
...

. . .
...

−psκps1 −psκps2 . . . psκ(1− psκ)







⊗ ϕsϕ

T
s . (177)

Note that H in this case does not depend on ys for s = 1, . . . , n. The bounds on the eigenvalues depend on the range of

linear activation ⟨ϕi,wj⟩ may take. For instance, if we restrict the norms of the input feature vector ϕi and parameter wj ,

then we can find a suitable positive uniform lower bound on the eigenvalues of H.

Lemma F.1 (Lemma B.1 in (Lee et al., 2023)). Suppose h(·) = exp(·). Then

λmin

(

Ḧ(ϕs,W)
)

≥ min
1≤i≤κ

exp(⟨ϕs,wi⟩)
(1 +

∑κ
c=1 exp(⟨ϕs,wc⟩))2

, (178)

λmax

(

Ḧ(ϕs,W)
)

≤ max
1≤i≤κ

exp(⟨ϕs,wi⟩)
(1 +

∑κ
c=1 exp(⟨ϕs,wc⟩))2

(

1 + 2

κ∑

c=2

exp(⟨ϕs,wc⟩)
)

. (179)

F.1. Additional Figures

G. Experimental details

All numerical experiments were performed on a workstation with Xeon Gold 6248R @ 3.00GHz CPU, 512GM of RAM,

and two RTX A6000 GPUs.
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Figure 6. (a,b) Plots of training loss for Algorithms 1 and 2 vs. elapsed time at different ξ values. (c) Comparison of convergence speed

between BCD and its neural implementation ran on GPU at ξ = 0.1, with shaded regions indicating one standard deviation across 10

runs.

G.1. Experiments on semi-synthetic MNIST dataset

We follow the experimental setting in (Lee et al., 2023) for the semi-synthetic MNIST dataset. For the reader’s convenience,

we give details here. Denote p = 282 = 784, n = 500, r = 2, and κ = 1. First, we randomly select 10 images each from

digits ’2’ and ’5’. Vectorizing each image as a column in p = 784 dimension, we obtain a true factor matrix for features

Wtrue,X ∈ R
p×r. Similarly, we randomly sample 10 images of each from digits ’4’ and ’7’ and obtain the true factor matrix

of labels Wtrue,Y ∈ R
p×r. Next, we sample a code matrix Htrue ∈ R

r×n whose entries are i.i.d. with the uniform distribution

U([0, 1]). Then the ‘pre-feature’ matrix X0 ∈ R
p×n of vectorized synthetic images is generated by Wtrue,XHtrue. The

feature matrix Xdata ∈ R
p×n is then generated by adding an independent Gaussian noise εj ∼ N(0, σ2Ip) to the jth column

of X0 for j = 1, . . . , n, with σ = 0.5. We generate the binary label matrix Y = [y1, . . . , yn] ∈ {0, 1}1×n (recall κ = 1) as

follows: Each entry yi is an independent Bernoulli variable with probability pi =
(

1 + exp (−βT
true,YWT

true,YXdata[:, i])
)−1

,

where βtrue,Y = [1,−1]. No auxiliary features were used for the semi-synthetic dataset (i.e., q = 0).

G.2. Experiments on the Job postings dataset

Next, we provide detailed information about the dataset used in our study (Laboratory of Information and Communication

Systems, 2016). The dataset consists of 17,880 job postings, encompassing 15 variables that include binary values,

categorical variables, and textual information in the form of job descriptions. Within the dataset, 17,014 postings (95.1%)

are classified as genuine job postings, while 866 postings (4.84%) are identified as fraudulent. This highlights a considerable

class imbalance, with a significantly larger number of genuine postings compared to fraudulent ones. In our analysis, we

designated fake job postings as positive examples and true job postings as negative examples.

In our experiments, we represented each job posting as a p = 2480 dimensional word frequency vector derived from its job

description. This vector was augmented with q = 72 auxiliary features, encompassing binary and categorical variables.

These features include indicators specifying whether a job posting includes a company logo or if the advertised job is located
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in the United States. To compute the word frequency vectors, we represented the job description variable as a term/document

frequency matrix, applying Term Frequency-Inverse Document Frequency (TF-IDF) normalization (Pedregosa et al., 2011).

This normalization method assigns lower importance to common words appearing in all documents and considers words

specific to particular documents as more significant. In our analysis, we focused on the 2,480 most frequent words for

further investigation. Due to the high imbalance, the accuracy of classification can be trivially high (e.g., by classifying

everything to be negative), and hence achieving a high F-score is of importance.

37


