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Abstract

Supervised matrix factorization (SMF) is a clas-
sical machine learning method that seeks low-
dimensional feature extraction and classification
tasks at the same time. Training an SMF model
involves solving a non-convex and factor-wise
constrained optimization problem with at least
three blocks of parameters. Due to the high non-
convexity and constraints, theoretical understand-
ing of the optimization landscape of SMF has
been limited. In this paper, we provide an ex-
tensive local landscape analysis for SMF and de-
rive several theoretical and practical applications.
Analyzing diagonal blocks of the Hessian natu-
rally leads to a block coordinate descent (BCD)
algorithm with adaptive step sizes. We provide
global convergence and iteration complexity guar-
antees for this algorithm. Full Hessian analysis
gives minimum Ls-regularization to guarantee
local strong convexity and robustness of param-
eters. We establish a local estimation guarantee
under a statistical SMF model. We also propose a
novel GPU-friendly neural implementation of the
BCD algorithm and validate our theoretical find-
ings through numerical experiments. Our work
contributes to a deeper understanding of SMF op-
timization, offering insights into the optimization
landscape and providing practical solutions to en-
hance its performance.

1. Introduction

In classical classification models, the standard approach
uses observed high-dimensional raw features as the input.
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In many cases, these features may include vast amounts
of irrelevant or redundant information, posing challenges
for generalization and interpretability. To address this, the
integration of interpretable dimension reduction techniques
prior to classification becomes important.

Matrix factorization (MF) is a classical unsupervised fea-
ture extraction framework that learns latent structures in
complex datasets. It is regularly applied in the analysis
of text and images (Elad & Aharon, 2006; Mairal et al.,
2007; Peyré, 2009). In particular, nonnegative matrix fac-
torization (NMF) (Lee & Seung, 2000) stands out as one
of the most widely used modern MF tools, aiming to ap-
proximately factorize a data matrix into the product of two
nonnegative matrices. Nonnegativity is crucial for enabling
interpretable “parts-based learning” (Lee & Seung, 1999) of
high-dimensional objects. This feature has led NMF finding
applications in various domains, including text analysis for
topic modeling, image reconstruction, bioinformatics, and
the extraction of latent motifs from networks (Sitek et al.,
2002; Berry & Browne, 2005; Berry et al., 2007; Chen et al.,
2011; Taslaman & Nilsson, 2012; Boutchko et al., 2015;
Ren et al., 2018; Lyu et al., 2024).

Supervised matrix factorization (SMF) is a popular clas-
sical machine learning method that aims to perform low-
dimensional feature extraction and classification tasks si-
multaneously. Given that matrix factorization and classifi-
cation are not inherently aligned objectives, SMF involves
a necessary trade-off when aiming to achieve both goals
simultaneously. As its name implies, SMF integrates a clas-
sification model and MF into a single optimization problem.
While it has been applied to various problem domains (Zhao
et al., 2015; Yankelevsky & Elad, 2017; Li et al., 2019), our
current understanding of its optimization landscape and the
behavior of widely used iterative optimization algorithms
remains limited.

At its core, training SMF requires solving a non-convex
constrained optimization problem involving three or four
blocks of parameters. Even the optimization landscape
of NMEF, a two-block constrained bi-convex problem, is
not completely understood (Panageas et al., 2020; Bjorck
et al., 2021) to date. This lack of thorough understanding
makes the optimization landscape of SMF challenging to
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unravel. The goal of this paper is to establish a theoretical
and algorithmic foundation for SMF, providing researchers
with a reliable and rigorous background.

1.1. Contributions
We establish the following novel contributions in this work:

e Local Landscape Analysis: We provide a local land-
scape analysis of the general SMF optimization prob-
lem. We explicitly compute the (4 x 4) block structure
of the corresponding Hessian matrix and determine
the minimum Ls-regularization on each parameter for
local strong convexity. (Theorems 4.3 and C.6)

e BCD Algorithm and Convergence Guarantee: We
derive a block coordinate descent (BCD) algorithm
for SMF and establish its convergence guarantees by
obtaining bounds on the eigenvalues of the diagonal
blocks in the Hessian matrix. Additionally, we demon-
strate that the algorithm achieves an e-stationary point
of the objective within O(e~*(loge~1)?) iterations
(Theorem 4.4).

e Local Consistency and Estimation Guarantee: We
show the existence of a local minimizer of an Lo-
regularized landscape near a stationary point of SMF.
Under a statistical SMF model, we demonstrate that
at least one matrix factor can be locally consistently
estimated with high probability (Theorem 4.5).

o Neural Network Implementation: We provide a com-
pact neural network implementation of the proposed
BCD algorithm for SMF that enables GPU acceleration.
(Figure 2).

1.2. Related works

Recently, Lee et al. (Lee et al., 2023) found a method to
reformulate SMF problems as low-rank matrix estimation
by employing a ‘double-lifting’ idea in the parameter space.
When the lifted problem is well-conditioned, they demon-
strated that low-rank projected gradient descent (LPGD)
can find a global optimum for the original problem at an
exponential rate. However, their approach faces limitations
in handling constraints on individual factor matrices, such as
enforcing the nonnegativity of factors. It is because one can-
not find an optimal nonnegative matrix decomposition from
singular value decomposition (SVD). To address this limita-
tion, we take a different approach by directly analyzing the
local (constrained) landscape of SMF and investigating the
robustness of local optima under Lo-regularization.

The SMF training problem in (3) is a non-convex and po-
tentially constrained optimization problem, often featuring
non-unique minimizers. Since it is difficult to solve exactly,
approximate procedures such as BCD (see, e.g., (Wright,
2015)) are often used. These approaches utilize the fact that

the objective function in (3) is convex in each of the four
(matrix) variables. Such an algorithm iteratively optimizes
one block while fixing the others (see (Mairal et al., 2008;
Austin et al., 2018; Leuschner et al., 2019; Ritchie et al.,
2020)). However, existing literature on the convergence
analysis or statistical estimation bounds for such algorithms
remains somewhat limited. Referring to established con-
vergence results for BCD methods (Grippo & Sciandrone,
2000; Xu & Yin, 2013), one can, at best, guarantee asymp-
totic convergence to the stationary points. Alternatively,
polynomial convergence toward Nash equilibria or the ob-
jective (3) is achievable, contingent upon careful verification
of the assumptions underpinning these general findings. Our
derivation and analysis of Algorithm 1 and 2 are based on
the framework of block projected gradient descent viewed
as block majorization-minimization (Lyu & Li, 2023).

One of our main results of non-asymptotic consistency for
constrained and regularized maximum likelihood estimation
(MLE) (Theorem D.1) plays a crucial role in establishing
the local consistency of SMF in the general case (Theorem
4.5). This result draws inspiration from the work on local
consistency guarantees for non-concave penalized MLE in
(Fan & Li, 2001).

Various SMF-type models have been proposed in the past
two decades. Following (Lee et al., 2023), we divide them
into two categories depending on whether the extracted low-
dimensional feature or the feature extraction mechanism
itself is supervised. We refer to them as feature-based and
filter-based SMF, respectively. Feature-based SMF mod-
els include the one by Mairal et al. (Mairal et al., 2008;
2011) as well as the more recent model of convolutional
matrix factorization by (Kim et al., 2016). Filter-based SMF
models have been studied more recently in the literature
on SMF, particularly in studies on supervised nonnegative
matrix factorization (Austin et al., 2018; Leuschner et al.,
2019) and supervised principal component analysis (PCA)
(Ritchie et al., 2020).

2. Preliminaries
2.1. Notations

In this paper, we use the notation R? to represent the am-
bient space for data, equipped with standard inner project
(-, ), inducing the Euclidean norm ||-||. We refer to the set
{0,1,..., K} as the space of class labels, containing ~ + 1
classes. For a convex subset ® in an Euclidean space, we
denote Ilg the projection operator onto ©.

For a matrix A = (a;;) € R™*", the expressions Al[i, :]
and A[:, j] refer to the ith row and the jth column of
A foreach 1 < i < mand 1 < j < n, respec-
tively. For each integer n > 1, I,, denotes the n X n
identity matrix. We denote its Frobenius, operator (2-),
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Figure 1. (a) Overall scheme of Supervised Matrix Factorization (specifically, SMF-W with rank = 2). The columns of W serve as
‘composite variables’ or ‘filters’, whose association with the labels is given by the regression coefficients in 3. Taking convolution of
the raw data matrix W with W gives a supervised dimension reduction, as illustrated in b for a 35, 982-dimensional gene microarray
sequence data for breast cancer patients. Similar dimension reduction results obtained by (¢) principal component analysis along with
logistic regression and (d) logistic regression to select the two most highly associated raw variables show less clear separation.

and supremum norm by ||A[% = Z” afj, A2 =
SUPxern, x||=1 [AX[; [Alloc  := max;;|a;|, respec-
tively. For square symmetric matrices A, B € R"*",
A < B indicates that v Av < vI'Bv holds for all unit
vectors v € R™. If 0 < o~ < at, then we write A < o+ B
to denote «~ B < A < o™ B. The horizontal concatenation
of two matrices A and B is denoted by [A, B] when their
dimensions match.

2.2. Model formulation

Here we give a mathematical formulation of the SMF prob-
lem. For the simplicity of presentation, here we focus on
the case of binary labels. We provide full details on general
multi-label cases and score functions for the classifier in Ap-
pendix B. Consider the following problem setting: we have
a set of n observations (y;,x;,x}) fori = 1,...,n where
y; € {0,1} represents an observed binary label, x; € R?
denotes a high-dimensional feature, and x’i € RY is a low-
dimensional auxiliary feature for the ¢-th individual (p > q).
To predict y;, a low-dimensional representation of x; in
dimension r < p for some suitable r may be utilized,
combined with x;. This implies that the observed x; is
approximated by a linear transformation of the basis vec-
tors wi, ..., w, € RP using a suitable code h;. Let W =
[W1,...,w,] € RPX" be referred to as the (latent) factor
matrix, and H = [hy, ... h,] € R"™*™ as its code matrix.
In a more compact form, X = [x1,...,X,] & WH, known
as reconstruction. In practical terms, we can determine 7 as
the approximate rank of the data matrix X.

Now, we present our probabilistic modeling assumption.
Consider fixed parameters W € RP*" h;, € R", 3 € R",
and v € RY. Suppose y; is a realization of a random variable

whose conditional distribution is defined as

exp(a;)

P(yi = 1|Xi7x/) = H—Tp@-)’

i ey
where a; € R is the activation for y;. The activation is de-
fined in two ways, depending on whether we use a ‘feature-

based’ model (SMF-H) or a ‘filter-based’ model (SMF-W):

for SMF-W

= BTWTXi + ’YTX§ )
! for SMF-H.

B h; +~7x]

Here, (3, ) are logistic regression coefficients associated
with input features (h;, x}) or (W7'x;, x/), respectively. In
equation (2), the code h; or the *filtered feature’ W7'x; is
the low-dimensional representation of x;. Notable differ-
ences between SMF-H and SMF-W arise when predicting
the unknown label of a test point (Lee et al., 2023).

Let Z := (W, H, 3, ) be our block parameters of interest.
In order to estimate Z from observed data (x;,x},y;) for
i = 1,...,n, we consider the following multi-objective
non-convex constrained optimization problem:

: o _ 2 s
wéc?,lﬁe@f(z) = ¢[IX WHHFJrZE(yz,az) (©)
BeCs,.T'eCy i=1

where £(y;, a;) = log(1 + exp(a;)) — yia;.
Here C; for j = 1,...,4 represent convex constraint sets

of each block parameter, X = [x1,...,X,] € RP*" q; is
as in (2), and the last term in (3) is the classification loss
defined as the negative log-likelihood. Note that the four
block parameters are individually assumed to be constrained
in (3). A tuning parameter £ controls the trade-off between
the dual objectives of classification and matrix factorization.
The stated problem is inherently non-convex, involving four
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block parameters that may come with additional constraints
such as bounded norm. This formulation encompasses sev-
eral classical models as special cases. Specifically, when
& > 1, it transforms into the classical matrix factorization
with constraints (Lee & Seung, 1999; 2000).

3. Methods
3.1. Sketch of idea for Constrained Matrix Factorization

We illustrate our approach to analyzing SMF by demon-
strating it for the simpler setting of constrained MF without
supervision, which amounts to minimizing the bi-convex
objective (W, H) — ||X — WH]||% under factor-wise con-
straints on W and H. Its Hessian is given by

vec(W)T vec(H)”
VGC(W) HHT X Ip A12 (4)
vec(H) AT, L, o WIw |’

where A1y = [H® W) + I, ® (WH — X)] C(™™ with
commutation matrix C"™) € {0, 1}""*"" (See Appendix
A for a formal definition). Denoting the diagonal blocks as
Aqq and Agy, we have

)\Inin(HHT)Ipr <A = )\III&X(HHT)I;,,T 5)
)\min(WTW)InT j A22 j )\maX(WTW)InT.

We first leverage the upper bounds in (5) to derive a BCD
algorithm with adaptive step size as well as its iteration
complexity for achieving an e-stationary point. Namely,
from (5), it follows that the marginal loss restricted to W
or H has Lipschitz continuous gradients with parameters
Amax (HHT) and Ay (WTW), respectively. So we can
naturally derive the following BCD algorithm (¢ > 0 fixed)

1 T
W 11 (W— SoEET T (WH — X)H ) (6)
7 1 T
H«II (H—mw (WH—X))

with II,II’ being suitable projection operators. Using
the recent complexity analysis of block majorization-
minimization algorithms in (Lyu & Li, 2023), we can obtain
iteration complexity of the BCD algorithm (6) for MF.

Next, when X can be approximated by a low-rank factor-
ization X ~ W, H, with the true factors W, and H,, it
is desirable to introduce regularization to the objective to
ensure that the new objective is locally strongly convex and
can be minimized near (W, H,) for efficient and robust
parameter estimation. While Lo-regularization naturally
improves local convexity, it may significantly perturb the
local landscape. Therefore, applying the least amount of Lo-
regularization is ideal to minimize this perturbation. While

it may be challenging to ‘curve-up’ the landscape to main-
tain minimization at (W,, H,), we can preserve at least
one of the factors, either W, or H,, at the new minimizer.

We establish these claims by a local landscape analysis. In
the ‘large-sample regime’ (n > p), we find that regular-
ization is required only for H. This results in a new local
landscape that is strongly convex near (W, H, ) and is min-
imized at (W, H') for some H'. The distance between H’
and H, is minimized when the added L»-regularization term
for H is the smallest. Similarly, in the ‘high-dimensional
regime’ (p > n), regularization is only necessary for W
and obtain a new local landscape that is strongly convex
near (W, H,) and minized at (W', H,,) for some W',

To illustrate the key idea, first recall that block-diagonal
dominance is a well-established sufficient condition to en-
sure that a block matrix is positive definite, as outlined in
(Feingold & Varga, 1962). Let A1 and A5 denote the Lo-
regularization parameters for W and H respectively. In our
context, this condition can be expressed as follows:

)\min(H*HZ) + A1 — [|Ai2]l2 > 0, @)
)\min(WTW*) + )\2 — ||A12||2 > 0. (8)

For simplicity, assume typical orders for the eigenvalues of
the matrices in the Hessian (4):

Amin(H.HT) = O(rn),
[A12]l2 = ©(ry/pn).

Amin (sz*) = @(Tp) )

Now consider the large-sample setting (n > p). The W-
block already has block-diagonal dominance Apin (A11) —
[[Aiz2llz = ©(rn) — O(ry/pn) > 0 but the H-block does
not: )\min(Agg) — ||A21||2 = @(Tp) — @(T pn) < 0. This
allows us to set Ay = 0 (i.e., no Ly-regularization for W
needed), while we may use Ao = O(r,/pn). Consequently,
the Lo-regularized objective ||X — WH||% + 22 ||H||% is p-
strongly convex at (W, H,) with p = Ay — ©(r,/pn). By
Taylor expansion, one can show that it is locally minimized
at (W, H’), where |H — H,||r < %}TI*”\/%) when
||HL || r is sufficiently small.

Conversely, in the high-dimensional setting (p > n), we can
set A\ = 0 and \y = ©(r,/pn). Then the Ly-regularized
objective | X — WH]|Z + 21| W/||% is p-strongly convex
near (W,, H, ) with p = Ay — ©(r,/pn). It is locally mini-

mized at (W', H,), where |[W' — W, ||p < %%.

While our analysis for SMF follows a similar logical frame-
work as illustrated here for MF, the full analysis is substan-
tially more challenging due to the Hessian’s representation
as a 4 x 4 block matrix, involving intricate interactions
among the four block parameters W, H, 3 and I
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3.2. BCD algorithm for SMF

We consider both filter- and feature-based SMF models in
(3), allowing for convex constraints on each of the variables
W,H, 3, and . A key scenario of interest involves in-
corporating nonnegativity constraints on both W and H,
resulting in the SMF model (3) that combines NMF with
logistic regression in two different ways. For simplicity, we
only give a full statement of the BCD algorithm for SMF-
‘W. The corresponding algorithm for SMF-H is given in
Algorithm 2 in Appendix.

Algorithm 1 BCD algorithm for SMF-W
1: Input: X € RP*"™ (Data); Xax € R?7*" (Auxiliary
covariate); Yipel € {0, ..., x}1X" (Label);
2: Constraints: Convex subsets C; C RP*", Cy C R"™*",
Cg C RT‘XK,’ C4 - RI*~
3: Parameters: ¢ > 0 (Tuning parameter); 7' € N (num-
ber of iterations); (7k;;)k>1,1<i<4 (step-sizes)
4: Initialize W € C;, He€ Co, B € C3, T' € Cy
5: Fork=1,2,...,Tdo: (> Fora™' seeB.I and B.1)
6: (Update W)
7.
8
9

Update activation a1, ..., a, and K
Vwf(Z) < XKT8" +2¢(WH — X)H”

: Choose ;1 > Ly = a™(|B]13 - || X3 + 2¢||H|3
10: W Il (W - nkvlef(Z))
11:  (Update H)
122 Vuf(Z) + 26WT(WH - X)
13:  Choose nk_é > Lo = 2¢||W||3
14: H + Il, (H - nk,QVHf(Z))
15:  (Update 3)
16:  Update activation aq, . .
17: Vgf(Z) + WIXKT
18:  Choose 7;, 5 > Ls := ot [W[3 - || X[[3
190 B« e, (B —m3Vf(Z))
20:  (Update I)
21:  Update activation ay, . .
22: Vrf(Z) + XuxK?
23: Choose 1,y > Ly := o || Xaul[3
24: T« Tle, (T = maVr f(Z))
25: End for
26: Output: Z = (W, H,3,T)

.,a, and K

.,a, and K

Our algorithm, outlined in Algorithm 1, iteratively per-
forms BCD on the four blocks with an adaptively chosen
step-size. For its statement, note that « takes any inte-
ger value above 1, with k = 1 for binary labels. Denote

K = [h(y1,a1),- .., h(yn, an)] € R*™ where

exp(a)

Vally,a) = hly,0) = ="

eR.

This matrix appears in the gradient of the SMF objective f.

In most of the experiments in this paper, we choose the con-
vex constraint sets to be C; = {W € RI"||[|[W||p <
1}, C; = {H € RE[[H|p < C1}, C3 = {B €
R™*|[|B]lp < C2}, and €y = {T' € RT* [T < Ci},
where C', Cs, C'5 > 0 are fixed constants.

Here are some remarks on the computational complexity
of the algorithms. In Algorithm 1, the per-iteration cost
is proportional to the cost of computing gradients for each
block variable in the objective (e.g., W, H, 3,T"), which
is O((pr + q)n) for both SMF-W and SMF-H. While
they have the same asymptotic order, computing gradients
for SMF-W are constant factors more expensive than that
for SMF-H, which can be seen by comparing the gradi-
ent formulas. Namely, SMF-W computes the additional
XKT 3T for the gradient of W, and the gradient of 3 uses
more expensive matrix multiplication W7 XK of com-
plexity O(rpnk). In contrast, SMF-H employs HK” for
its gradient or smaller order O(rnk), independent of p.

Using BCD instead of full gradient descent (GD) allows
for larger step sizes, which has the potential for fast con-
vergence. Namely, the allowed step size for each block in
Algorithm 1 is determined by the reciprocal of the largest
eigenvalue of the diagonal blocks of the Hessian (59) (see
Theorem 4.3). In contrast, with GD, the step size is lim-
ited to the reciprocal of the largest eigenvalue of the entire
Hessian, which may be considerably smaller.

3.3. Neural implementation of SMF-W for GPU
acceleration

Neural SCMF-W Training

—_Backprop

— Reconstructor

17 Classifier

Figure 2. The SMF-W implementation involves two coupled two-
layer neural networks: reconstructor and classifier. These networks
share the first layer weight W. The training process consists of
repeating backpropagation in each network and subsequently syn-
chronizing their first-layer weights through their convex combina-
tion. This configuration allows for extremely fast training on GPU.
n data points are the columns of X = [x1,...,X,] € RP*" and
e; is the ith standard basis vector in R”.

While our BCD algorithm for SMF is derived from a careful
local landscape analysis with rigorous theoretical guarantee,
we provide a neural network architecture (see Figure. 2)
that approximately implements our BCD algorithm in order
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to bring the advantage of a modern GPU computation to the
practitioners in the ML community.

Reconstructor network: The reconstructor network operates
as a two-layer neural network with weights W € RP*"
and H € R"*™ with identity activation to expedite matrix
factorization. Each input vector e; for this network is the
ith standard basis vector in R”. Each p-dimensional input
is transformed into an r-dimensional vector W' e;, which
is then transformed to an n-dimensional vector HT W e;.
The target output is the ith row of the data matrix, X[i,:]T €
R™. Using mean-squared error (MSE) loss for this network,
the overall loss is for this network is exactly 1 || X —WH|[%..

Classifier network: The classifier network serves for both
dimension reduction and classification within a neural net-
work framework. Each input vector x; = X[i,:]7 has
p dimensions, where ¢ ranges from 1 to n. The network
uses weight matrices W € RP*" for dimension reduction
and 3 € R" to compress each p-dimensional input x; to
an r-dimensional vector W7x;. The second layer with
weight 3 € R"*" and sigmoid activation o yields the pre-
dicted probability distribution (37 W7 z;) for the output
yi € {0,1,...,k}. For this layer we use the cross-entropy
loss for back-propagation.

Synchronizing the first-layer weight: The novel feature
of our neural implementation of SMF is that we syn-
chronize the the first-layer weight W after every step of
back-propagation. Note that given the current first-layer
weight W, back-propagation within the reconstructor and
the classifier networks updates W separately to two ver-
sions W’ and W”, respectively. The synchronization
step takes a convex combination of these two versions as
W ﬁlgW' + 1€TSWH , which agrees with updating W
by a gradient descent with Vv f(W,H, 3) for f the SMF-
W loss in (3). We can then replace W with max{O, W}
to ensure nonnegativity.

4. Statement of results

4.1. Assumptions

We introduce two minor assumptions below.

Assumption 4.1. (Constraint sets) The constraint sets
C1,...,C4in (3) are closed, convex, and compact.

Assumption 4.2. (Bounded activation) The activation a €
R* defined in (2) assumes bounded norm, i.e., ||a|| < M
for some constant M € (0, 00). (c.f. Note that k = 1 in the
main text but we discuss the multi-label case v > 1 in the
appendix, see Sec. B.)

Assumption 4.1 allows one to constrain each factor within a
compact and convex set. A typical choice would be bounded
nonnegative orthant, which entails supervised nonnegative
matrix factorization models (Austin et al., 2018; Leuschner
et al.,, 2019). It does not, however, entail supervised PCA

models (Ritchie et al., 2020) or low-rank matrix constraints
as the Grassmannian constraint is non-convex.

Assumption 4.2 imposes a constraint on the norm of the
activation a, as the input for the classification model in
(3) is bounded. This is standard in the literature (see, e.g.,
(Negahban & Wainwright, 2011; Yaskov, 2016; Lecué &
Mendelson, 2017; Lee et al., 2023)) to uniformly bound
the eigenvalues of the Hessian of the multinomial logistic
regression model.

Under Assumption 4.2, we introduce the following con-
stants:

M
€

max = 1 <2 9
B +1+eM+(/<571)e—M* ©

B eflw

= l+e M4 (k—1)eM
M M
e’ (1+2(k—1)e
= ( ( ) )2§1/4.
(1+eM+(k—1)eM)

«

These constants will appear in uniform bounds on the first
and the second derivatives of the log likelihood ¢(y, a) and
the first derivative of the predictive probability distribution
(see (Bohning, 1992)).

4.2. How does the local landscape look like?

In Theorem 4.3, we provide a local landscape result for
SMF-W. A key step is to compute the Hessian of the
objective f in (3), which turns out to take the following
4 x 4 block form:

vec(W) T vec(H) T vec(8)T vec(T) T
VGC(W) A11 A12 A13 (0]
VeC(H) A21 A22 0 O
VeC(ﬂ) A31 (0] Add A34
() (¢] o Ags Aua

(10)

The exact formulas for each block entry are given in Lemma
C.2. For our analysis, we consider the following Lo-
regularized objective F'(Z) defined by

7(Z) + SHIWIE + 22 [H)E + 22805 + STIE (D
Also denote
A1 = Ain(HH) — |[W|[2|[H[|2 — [WH = X[, (12)
Ag = Anin (WW) — [W][2|[H[|2 — [WH — X
Theorem 4.3 (Local landscape of SMF-W). Ler f(Z) de-

note the objective of SMF-W in (3). Suppose Assumptions
4.1 and 4.2 hold. Then the followings hold:

i) Ay = o (887 @ XXT) + 2¢(HHT ® 1,,),
Agy = 2¢(I, @ WT'W),
Asz =< ot (I, @ WIXXTW),
Ay = a® (I, @ Xox X %)

aux
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(ii) F is p-strongly convex at’Z = (W, H, 3,T) for p =
min1§i§4()\i — )\:() where
Al = Ymax VAR X2 + o™ [|B]|2[[ W21 X2
= 26A1 — o Amin (B87) Amin (XXT),
A5 = —2EAo,
A5 = YmaxV/Rn[ X2 + +a B[] W2 X[3
+ | X2 [WF X2 — @7 Apin (W XXTW),
Af = o XKl 2 WXz — 0 Amin (K X ).
(iii) Suppose Z, = [W,,H,, B,,T\] is a stationary point
of fover®. If Ay > 0, & > 1, and Ay = 0, then
F is locally minimized at (W, 0") with the following
perturbation bound:
3m3X1§i§4(>\1‘)

0 —0,|r <
| e < ming<;<a(Ai — Aix)

10llr,  (13)

where 0 = (H',3',T"), 0, = (H,,3,,T.) and
104l is assumed to be sufficiently small.

If Ao > 0, then by taking Ay = 0 and denoting
¢ = (W' ,3.1) and 0, = (W,,3,,T,), when-
ever ||0. || F is sufficiently small, F is locally minimized
at (H,, 0") with the same perturbation bound in (13).

The interpretation of Theorem 4.3 (iii) aligns with our ear-
lier discussion on the simpler MF case. Specifically, in
the high-dimensional regime (p > n), it is likely that
Ay = Q(rp) — O(ry/pn) = Q(rp) > 0. Consequently, we
can introduce suitable Lo-regularization only to W, 3, T°
so that the regularized landscape attains local minimization
at the stationary point H with the other stationary factors
perturbed. This implies that H, can be locally robustly esti-
mated in this scenario. In the large-sample regime (n > p),
it is likely that Ay = Q(rn) — O(ry/pn) = Q(rn) > 0. By
choosing a sufficiently large tuning parameter ¢ such that
A1« < 0, we can use suitable Ly-regularization to H, 3, T".
It ensures that the regularized landscape is locally mini-
mized at the stationary point W, with the other stationary
factors perturbed. Consequently, W, can be locally and
robustly estimated in this scenario.

In Theorem C.6, we provide a similar local landscape result
for SMF-H. One notable difference is that, for SMF-W,
we require a large weight £ on the matrix factorization loss
in the large-sample regime, whereas, it should be used in
the high-dimensional regime for SMF-H.

Next, in Theorem 4.4 below, we establish the convergence of
Algorithm | and 2 to the stationary points of the SMF objec-
tive f in (3). Furthermore, these algorithms converge to an
‘e-stationary point’ solution within O~(5’1) iterations. More
precisely, consider the problem of minimizing a function
f :RP — R over a convex set ® C R”. A 6" € O is a sta-
tionary point of f over © if infgce (Vf(0"), 6 —0) > 0.

This is equivalent to stating that —V f(0*) is in the normal
cone of ® at 8*. Every local minimum of f over © is a
stationary point. Relaxing this notion, for each ¢ > 0, we
define 8" € O to be an e-stationary point of f over © if

Gap(6.):=  sup  (~Vf(6"),0-6") <c. (14)
6€®, ||6—-06%|<1

Theorem 4.4 (Convergence rate of BCD). Suppose Assump-
tions 4.1 and 4.2 hold. Let Zy = (W, H;, 3, T}), t > 1
denote the sequence of estimated parameters from Algo-
rithm 1 or 2. Then for every initial estimate Zq and choice
of parameters &, the followings hold:

. . —-1/2

@) min Gap(Z;) = O(T~?logT).  (15)

(ii) Foreach e > 0, an e-stationary point is achieved within
iteration O (e~ (loge~1)?).

(iii) Further assume that the step sizes 1y, ; are uniformly
upper bounded. Then Z, converges to the set of sta-
tionary points of f over ©.

Proofs of Theorems 4.3 and 4.4 are in Appendices C.

4.3. How close is an MLE to the true parameter?

We can extend Theorem 4.3 to provide a local estimation
guarantee for generative SMF models that we introduce
below. Fix parameters W, € RP*" H, € R™*" 3, €
R™* T, € R?* and A\, € R?*!, Suppose the data,
auxiliary covariate, and label triples (x;, X}, y;) are drawn
independently (not necessarily identically distributed) ac-
cording to the following generative model:

x; ~ N (W, H,[;,i],0%I,) , x; ~N(X, (¢/)%1,),
exp(ai)

1+ exp(a;)

where a; := (8,)T(W,)Tx; + (T,)Tx,.

vy; | Xi, %} ~ Bernoulli ( (16)

For consistent estimation, we further assume that the mean
r-dimensional representation H, [:, 7] of the ith data column
x; is an 1//n-perturbation of a ‘true mean vector’ h, € R":
IHL[:,i] — hy|lr < ¢/+/n for some constant ¢ > 0. (c.f.
When « > 1, the conditional distribution of y; in (16) is
taken to be the multinomial distribution with probability of
label ¢ being proportional to h(a;[c]) with h general score
function. See Appendix B.)

We assume (x;, x},y;) fori = 1,...,n are independent,
and also x; and x;» are independent for each 1 < ¢ < n.
We refer to the above as the generative SMF-W model.
Assuming that ¢ and ¢’ are known, our goal is to es-
timate the true factors Wy, h,, 3, T, and A, from
an observed sample (x;,x},y;), ¢ = 1,...,n of size n,
where n is large and fixed. We consider the maximum
likelihood estimation framework with Ls-regularization
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of the parameters. Namely, denote Z := (W, h,3,T),
X = [X1,...,%Xp], and Xyx = [X],...,%,]. Then the
negative log-likelihood of observing the given data with an
additional Lo-regularization is (up to a constant), letting F’
isasin (11),

1 &,
L(Z,X) := F(Z) + WZHxi =A% an
=1

The added Lo-regularizer in F' can be understood by using a
Gaussian prior for the parameters and interpreting the above
as the negative logarithm of the posterior distribution.

Let £(Z,\) := E[L(Z, )] denote the expected regular-
ized negative log-likelihood function. In classical local con-
sistency theory of MLE (e.g., (Fan & Li, 2001)), it is crucial
that £ with zero Lo-regularization is strongly convex at the
true parameter. Equivalently, this means that Fisher infor-
mation, which is the Hessian V2L of the expected negative
log-likelihood function (with no Ly-regularizer) evaluated
at the true parameter, is positive definite. However, this is
not the case for the generative SMF-W model in (16) (e.g.,
the model parameter in (16) is not identifiable), unless we
add suitable Lo regularization. Our key observation in The-
orem 4.3 was that, in the large-sample or high-dimensional
setting, such Lo-regularization is unnecessary for W or H,
respectively. We extend this to the statistical setting to ob-
tain local consistency of the MLEs. The following result
can be regarded as a high-probability (1/+/n)-perturbation
of the local landscape result in Theorem 4.3.

Theorem 4.5. (Regularized local consistency) Consider the
generative SMF-W model (16). Assume that Assumptions
4.1 and 4.2 hold. Suppose p := minj<;<a(A; — Aix) > 0.
Suppose A1 > 0, \y =0, and 0 < 1 (resp., Ay > 0 and
Ao=0). Fix ¢ > 0. Then there exists a constant C' > 0 such
that with probability at least 1 — €, L in (17) is minimized
locally at some (W, 0, X) (resp., (H, 0, X)) with

W — W, || < C/vn (resp.. |[HL — H,|| < C/v/n) (18)
A=Al <C/vn
Hé _ G*HF < C’n_l/Q (1 + 3max{/\;7>\3,)\4}“0*|F> \

where 0' := (H',3',T), 0, :== (H,,3,,T,) (resp., 0/ =
(W', 3. T), 0, .= (W,,3,,T,)) and |0, r is assumed
to be sufficiently small.

Recall that in the generative SMF-W model (16), the Fisher
information is a 5 x 5 block matrix with the first 4 x 4 block
sub-matrix being the Hessian of the SMF objective f in
(3) which is not positive definite. Hence the classical local
consistency theory of MLE is not applicable. Our proof of
Theorem 4.5 relies on Theorem 4.3, along with a substantial
non-asymptotic generalization of such theory, which we
establish Theorem D.1 in Section D. To prove this result,

we use uniform McDirmid’s inequality (Lemma D.2) and
Berry-Esseen theorem for independent but non-identically
distributed random variables (Thoerem D.3). See Appendix
D for details.

5. Simulation and Applications

In Figure 3, we provide numerical verification of Theorem
4.4. The first dataset is generated from the MNIST database
(LeCun & Cortes, 2010) (p = 282 = 784, ¢ = 0, n = 500,
x = 1) for digit detection, and the second dataset is a text
dataset named ‘Employment Scam Aegean Dataset’ (Labo-
ratory of Information and Communication Systems, 2016)
(p =2840,q = 72,n = 17880, xk = 1) for fake job posting
prediction. Details about these datasets are in Section G.
We used Algorithms 1 and 2 with r = 20 for both datasets.
We see sublinear convergence of both algorithms for various
instances as stated in Theorem 4.4. Notably, algorithms for
SMEF-H (resp., SMF-W) converge faster for large (resp.,
small) £. This is consistent with the implications of Theo-
rems 4.3 and C.6. Also, our neural implementation (Figure
2) enjoys significant GPU acceleration, especially for large
datasets.
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Figure 3. Plots of training loss vs. elapsed time at different £
values for fitting SMF-W using Algorithm 1 (BCD), the neural
implementation in Figure 2 (Neural), and low-rank projected gradi-
ent descent (LPGD) in (Lee et al., 2023). Shaded regions indicate
one standard deviation across 10 runs.

In Figure 4, we evaluate the performance of different meth-
ods on the bi-objective tasks of SMF through a Pareto plot of
F-score/Accuracy vs. relative reconstruction error. The base-
line methods include logistic regression (LR) on raw data
and NMF followed by logistic regression (MF-LR). Addi-
tionally, low-rank projected gradient descent algorithms for
SMF (LPGD) in (Lee et al., 2023) are used. Increasing the
tuning parameter £ in the various SMF models seems to in-
terpolate between two extremes of LR and MF-LR. Notably,
SMEF-W shows the best overall performance achieving both
objectives.
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Figure 4. Pareto plots of relative reconstruction error vs. classifica-

tion accuracy/F-score for different models.

0.4 0.6 0.8
Reconstruction error

Methods Pancreatic Breast

SMF-W (BCD) 0.869 (0.02) 0.924 (0.01)
SMF-H (BCD) 0.823 (0.06) 0.880 (0.02)
SMF-W (Neural) 0.854 (0.04) 0.881 (0.02)
SMF-W (LPGD) 0.869 (0.02) 0.894 (0.02)
SMF-H (LPGD)  0.885 (0.07) 0.875(0.01)
PCA-LR 0.747 (0.13)  0.454 (0.27)
CNN 0.769 (0.07) 0.854 (0.06)
FFNN 0.816 (0.04) 0.890 (0.02)
Naive Bayes 0.815(0.07) 0.810(0.02)
SVM 0.746 (0.09) 0.866 (0.02)
Random Forest 0.815 (0.06) 0.844 (0.02)

1.0

Table 1. Cancer classification results using microarray data.

Lastly in Figure 5, we demonstrate supervised topic model-
ing with auxiliary covariates using SMF-W under nonneg-
ative constraints. We compare SMF with the classic topic
modeling approaches Latent Dirichlet allocation (LDA),
NMEF, and a recent deep learning-based approach, neural
topic model with Gaussian Softmax distribution (GSM)
(Miao et al., 2017).

Unsupervised topics mostly related to the true job postings,
representing 95% of the dataset. Hence, applying unsuper-
vised topic modeling methods is expected to learn topics
that are mostly describing the true jobs postings, neglect-
ing possible topics related to the scarce fake job postings.
Indeed, our experiment shows that while traditional topic
modeling methods successfully identify topics that describe
the majority of job posting data, these topics may not be
effective for classifying fake and true job postings. In con-
trast, our SMF with nonnegative constraints successfully
tilts” the topics to faithfully represent the 5% fake job post-
ings. This is why our method achieves the best classification
performance in terms of the F-score.

Next, we apply the proposed methods to two datasets from
the Curated Microarray Database (CuMiDa) (Feltes et al.,
2019). CuMiDa provides well-preprocessed microarray data
for various cancer types for various machine-learning ap-
proaches. One consists of 54,676 gene expressions from 51

a SMF-W topics (£ = 1, Accuracy = 0.92, F-score = 0.43)
16.71 0.93 -4.01 -10.27
b LDA topics (Accuracy = 0.78, F-score = 0.24)
414 316 -1.95 4.08
C NMEF topics (Accuracy = 0.66, F-score = 0.16)
2.01 1.67 -0.82 -1.61

d Neural topic model (GSM) topics (Accuracy = 0.59, F-score = 0.14)

187 181 3.20 349

Figure 5. Topics in the job postings data learned by (a) SMF-W
with £ = 1, (b) latent Dirichlet allocation, (¢) NMF, and (d) a neu-
ral topic model (GSM) in Miao et al. (2017). Without supervision,
the learned topics are highly skewed toward the true job postings
consisting of 95% of the data and lead to poor classification.

subjects with binary labels indicating pancreatic cancer; An-
other we use has 35,982 gene expressions from 289 subjects
with binary labels indicating breast cancer. The primary
purpose of the analysis is to classify cancer patients solely
based on their gene expression.

6. Conclusion and Limitations

This study contributes to the advancement of SMF, a classi-
cal machine learning method designed for simultaneous low-
dimensional feature extraction and classification. Despite
facing non-convex optimization challenges, we propose a
BCD algorithm with adaptive step size, ensuring global
convergence and providing iteration complexity guarantees.
Minimum Ls-regularization enhances local strong convex-
ity, and we explore parameter robustness within a statistical
SMF model. Our GPU-friendly neural BCD implementa-
tion bridges theoretical insights with practical applicability,
validated through numerical experiments for effectiveness.
Our contributions enhance the understanding and applica-
tion of SMF, addressing non-convexity and constraints in
machine learning optimization.
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Supplementary Material

A. Preliminaries
This section covers key notations and fundamental concepts of linear algebra and matrix calculus.

If A = (a;;)is an m x n matrix and B is a p x ¢ matrix, then the Kronecker product A ® B is the mp x ng matrix such that

allB al’l’LB
A® B = :

CLm1B s amnB
Recall that we have
(Ao B)T = AT @ BT.

If A’ is an m x n’ matrix and B’ is a p’ x ¢ matrix, we define the m x (n 4 n’) horizontally stacked matrix as [A, A’] and
the the (p + p’) x n vertically stacked matrix as [B||B] := [BT, (B")T]™. Then by properties of the Kronecker product,
we have

[A,Al® B=[A® B,A’ ® B], A® B|B1=[A® B|A® B']. (19)
For each m x n matrix A = [ay, ..., a,], we define its vectorization as vec(A4) = [af, ..., al]T € R™".

The commutation matrix C(%?) is the ab x ab matrix such that
C@?) vec(A) = vee(AT),

for any a x b matrix A. For each pair of integers a,b > 1, there is a unique matrix C(*?) ¢ {0,1}20*9_ Recall the
following properties of the commutation matrix:

o (C@D)T — Clba),

. (C(a*b))TC(a’b) = 1I,, thatis, clah) ig positive semi-definite.

eCl@l) =, =Ch,

e CP™(A® B) = (B ® A)C%™ for every m x n matrix A and p x ¢ matrix B (20)
.o (A® B)(C ® D) = (AC) ® (BD) for any matrices with compatible sizes for the products AC and BD.  (21)

Furthermore, for any matrices A € R®*%, B € R"*¢, and C' € R, the vectorizing product of matrices is given by

vec(AB) = (I, ® A) vec(B) = (BT ® 1,,) vec(A), (22)
vec(ABC) = (CT @ A) vec(B) = (Iy ® AB) vec(C) = (CT BT @1,) vec(A). (23)

Next, for differentiable functions f : R2*! — R**1 and g : R®*! — R*1, the Jacobian .J; can be represented as

T

Jp(x) = (Vaf(x)")
Ve (9(f(@)") = Vo (f(2)7) Vi) (9(f(=)T), (24)

where the second equality holds by chain rule Jyo ¢ (z) = J4(f(x))J¢(x). And for any @ x b matrix A, we have

vvec(A) VeC(A)T = L,
Viec(4) vec(AT)T = Viec(4) vec(A)TC(b’a) =),

12
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B. Model formulation for general multi-label setting

Consider the following problem setting: we have a set of n observations (y;,x;,x}) for i = 1,...,n where y; €
{0,1,..., K} represents an observed label, x; € R? denotes a high-dimensional feature, and x € R? is a low-dimensional
auxiliary feature for the ¢-th individual (p > ¢). To predict y;, a low-dimensional representation of x; in dimension
r < p for some suitable r may be utilized, combined with x}. This implies that the observed x; is approximated by a
linear transformation of the basis vectors wi, ..., w, € RP using a suitable code h;. Let W = [wy,...,w,] € RP*"
be referred to as the (latent) factor matrix, and H = [hy,... h,] € R™" as its code matrix. In a more compact form,
X = [x1,...,%X,] ® WH, known as reconstruction. In practical terms, we can determine r as the approximate rank of the
data matrix X.

Now, we present our probabilistic modeling assumption. Consider fixed parameters W € RP*" h; € R", 8 € R"*", and
v € R7** Let h : R — [0, 00) be a score function. Suppose y; is a realization of a random variable whose conditional
distribution is defined as

[P (yl =0 | Xi,X;‘) PR a]P) (yl =K | Xi,X;)] = C[lv h(CLi’l), DI h(ai,H)L (25)

where C is the normalization constant and a; = (a; 1,...,a;,) € R" is the activation for y;. For multinomial logistic
regression, we have
_ 1

1+ Z:=1 exp(a; ¢

[P (yl =0 | XZ‘,X;') PR aP (y’t =K | X%X:)] ) [1’exp(ai,1)7 e aexp(ai,fi)]v

where the score function h(-) = exp(-).

The activation is defined in two ways, depending on whether we use a ‘feature-based’ model (SMF-H) or a ‘filter-based’
model (SMF-W):
T T T/
Wx; . for SME-W
a, — ﬁT Xty lor R, (26)
B h; +~v'x, for SMF-H
Here, (3, ~) are multinomial logistic regression coefficients associated with input features (h;, x}) or (W7 x;, x}), respec-
tively. In equation (26), the code h; or the *filtered feature’ WTx; is the low-dimensional representation of x;.

Let Z := (W, H, 3,~) be our block parameters of interest. In order to estimate Z from observed data (x;,x},y;) for
i=1,...,n, we consider the following multi-objective non-convex constrained optimization problem:
n
min_ f(Z):=> Ly, a;) + X - WHI[3, (27)
WeC;, HeC, _ ‘
BEeC3,T'eCy =1
where C; for j = 1,...,4 represents convex constraint sets of each block parameter, X = [x1,...,x,]| € RP*", a; is as in

(26), and £(-) is the classification loss defined as the negative log-likelihood:

L(y,a) = log (1 + Z h(ac)> - Z 1y—cy logh(ac).
c=1 c=1
Note that the four block parameters are individually assumed to be constrained in (27). A tuning parameter & controls the
trade-off between the dual objectives of classification and matrix factorization.

With the choice of general score function A in (25), we impose the following assumption on uniform bounds on the first and
the second derivatives observed information and the first derivative of the predictive probability distribution (see (Bohning,
1992)).

Assumption B.1. (Bounded stiffness and eigenvalues of observed information) The score function & : R — [0, c0) is twice
continuously differentiable. Further, let observed information H(y, a) := V4V, £(y, a) for y and a. Then, for the constant
M > 0 in Assumption 4.2, there are constants Ypax, &, & > 0 s.t. Vax := SUD|jaf| <M MAX1<s5<n IVal(ys,a)|loo

— = 1 f 1 )\min H S5 , 28
a0 Awin (H(ys, 2) "
at = sup max Apax(H(ys,a)). o)

lal|<m 1<ss<n

13
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Under Assumption 4.2 and the multinomial logistic regression model A (-) = exp(+), the quantities Yy and a® in B.1 can
be bounded as in (9) in the main text.

Remark B.2 (Multinomial Logistic Classifier). Let £ denote the negative log-likelihood function in (3), where we take
the multinomial logistic model with the score function i(:) = exp(-). In this case Assumption B.1 is easily satisfied.
To see this, denote (hy,...,h.) := Val(y,a) and H(y,a) := V,Varl(y,a). Then in this special case, we have
hi(y,a) = gj(a) — 1(y = j) and H(y,a);; = gi(a) (1(i = j) — g;(a)) (See (167) and (169) in Appendix). Under

. . M —1\4
Assumption 4.2, according to Lemma F.1, we can take vax = 1 + W <2, a = m, and
eM(1+2(k—1)e™)

(1+eM 4 (k—1)e—M)2"

at = For binary classification, ot < 1/4.

C. Local landscape analysis for SMF

In this section, we prove Theorem 4.3 as well as Theorem 4.4 for the general multi-label setting we introduced in Section B.

Throughout this section, we denote Z = [W, H, 3, I'] for the combined SMF parameters. The activation a; for the sth
sample (see (2)) is given by

o BTWTx, + T7x! for SME-W
" 18"h, + 17X, for SMF-H

Then the objective function in (3) in the general setting then can be written as

Z)=> lys,as) + &)X - WHJ| 7 (30)
s=1
=Y <logZh(as[cD =) 1y log h(as[c])) +£|X — WH||%, (31)
s=1 c=0 c=0

where a,[i] € R denotes the ith component of a, € R” and h(a[0]) = 1. Recall the functions h and H introduced in
Assumption B.1. An easy computation shows

Val(y.a) = h(y,a) = (h1,...,h) € R, VaV.rl(y,a) = H(y,a) =: (h;) € R**", (32)
where
e — o Mey) _.h'(aj))
h] - h] (yva) T <1 + chﬂ:l h(ac) 1(y - j) h(aj) ) (33)
i h"(a;)1(i = j) h'(ai)h'(a;) (W) (W)
h’z = = - -1 =1 = - . 34
) (1 FET ) (4 h<ac>>2> ==y ( Was)  (hlay)? oY
For the forthcoming computations, define matrices
K:= [h(yhal)""vh(ynvan)] € Rﬁxnr _dlag ( (ylaal) I:I(ynaa’rb)) € RXAT, (35)

C.1. Proof for SMF-W

In this section, we prove Theorem 4.4 for SMF-W. An analogous argument for SMF-H will be provided in the next section.

Proposition C.1. Ler f(Z) denote the objective of SMF-W in (30). Suppose Assumption B.1 holds. Let ag := BTWTx, +
I‘Tx;fors =1,...,n. Then

Vvec(VV) e(ysa as) = C( P) (X ® ﬁ) (ysv as)a vvec(W) VeC( )T = (ﬁ ® X)C(Hm)Mv
vvcc(ﬁ) g(y& as) = C ( Xs & In) h(ysv as)a vvcc VeC( )T = (Im ® WTX)C(HTL) M, (36)
vvec(I‘) f(y& as) = C (X ®I ) h(ysa as)a vvec VeC(K)T = (In Y Xaux)c(ﬁm/) M.

14
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Proof. We first show

Vvec(W) az = C(T,p) (Xs &® ﬂ)a
vvec(H)aZ =0,

vvec(,@)az = C(K’T) (WTXS 02y Iﬁ)a
chc(p)az = Ck:9) (x, ®L,).

VveC(H)aST = O is clear. For differentiating a, by vec(W), observe that by using (22), we can write
a, = vec(ag) = vec (BTWTXS + I‘Tx’s) = (xI @ BT) vec(WT) + vec(ITx.).
Noting that vec(W™)T = (C®7) vec(W))T = vec(W)TCP),
Vyeew) @l = Vyeeew) vee(W) T (x, @ B)
= VVCC(W) VGC(W)TC(T’I)) (xs ® 3)
= C"P)(x, @ B).
For differentiating a, by vec(3), writing a, = (xI W @ I,) vec(87) + vec(T'''x),), we get
Viee@)ar = Viee(sy vee(8")T (WTx, ® L)
= Viee(B) vec(ﬂ)TC(’”) (WTx, ®1,)
= CHEI(WTx, @ 1,).
For differentiating a, by vec(T), writing a, = vec(87 WTx,) + ((x,)T @ L.) vec(T'"), we get
vvcc(l")az = vvcc(l") VeC(I‘T)T(X; ® In)
= vveC(I‘) VeC(F)TC(k’q) (X; ® Ifi)
=CckIx ®1L,).

This verifies (37). Then by using the chain rule (24), we get
vvec(W)é(ysa as) = vvec(W)ag Vasf(ys, as) =) (Xs ® ﬁ) h(ysv as).

Other gradients V. (g) £(ys, as) and Vyee(r) £(ys, a,) also follow from (37) and the chain rule.
Next, we compute the gradients of Vec(K)T in (36). First, using (37), the chain rule (24), and (32),

vvcc(W) h(ysa as)T = vvcc(W)aZ vash(y& as)T =Cp) (Xs ® /@)H(y87 as)7

vvec(ﬁ) fl(ys, as)T = vvec(ﬂ)az Vasfl(ys, as)T = C(K’T) (WTXS 02y IK,)I:I(y& as)a

vvec(l") h(ysa as>T = vvec(l")az Vash(ysa as)T - C(H7q) (X; & IH)H(:U& as)~

(37

Now since vec(K)T = [h(y1,a1)7, ..., h(yn, a,)7] and vec(KT)T = (C*) vec(K))T = vec(K)TC™) it follows

that

—~

VVec(W) VeC(K)T ;) C(np) (Xl oY B)H(yly 31)7 EERR C(T,p) (Xn oY ,B)H(yn, an):|

®)

=

C(T’p) [Xl & /67 <oy Xp & ﬂ] dlag (H(ylv al)a ) H(yna an))
Y et (X @ g)M

where (a) follows from (37) and the chain rule, (b) is an algebra, (c) follows from (19), and (d) follows from (20). The other

gradients Vyec(g) vec(K)T and Veq(r) vec(K)” follow from similar computations.

15
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Lemma C.2 (Derivatives of the SMF-W objective). Let f(Z) denote the objective of SMF-W in (30). Suppose Assumption

B.1 holds. Recall h and H defined in (33). Then the gradients of f(Z) are given by

Vw f(Z) = XKTp" +2¢(WH — X)HT |
Vu f(Z) = 26W'(WH - X),

Vs f(Z) = WIXKT,

Vr f(Z) = Xan K.

The block-diagonal terms in the Hessian are given by

Vyeetw) Veeerw)r f(Z) = (B X)CMC™ (8@ X)T + 26(HHT @ 1,),
Vyeo(t) Vveemyr f(Z) = 26(L, @ WTW),
Ve ) Vaee(ayr £(Z) = (L, @ WIX)CmmMC™#)(1, @ WIX)T,
Voee) Vaeemr F(Z) = (L @ Xaux) CEIMC (L, @ Xoux) -

The block-off-diagonal terms in the Hessian are given by

f(Z

vveC(H) vec(W)T (HT ® WT) C(n,r) (Ir (%9 (WH — X))T

f(Z
f(Z

chc(l") vec(W)T

f(Z)

vvec(ﬂ)vvec(W)T (Z)
( ) vv vvec(H)T f(Z) = vvcc(l")vvec(H)T f(Z) =0,
f(Z) = (I,

vvcc(l")vvec(ﬁ)T & )(aux)(j(’/v n)Mc(n *) (I 24 WTX)

Proof. For convenience, recall that W € RP*" 3 € R"™** H € R"™*", and I" € RI**,
Computation of the first-order derivatives.

We first compute the following gradient:

vcc ZE ys;as ( )C(T’p) Z Xs ®/8 y87as)

h(y1,31>
=C"Px;08,...,%x, ® 0]
h(yman)

Y et (X © B) vee(K)

9 (B®X)CHEM vec(K)
@ (8 ©X)vec(KT),

cI(1, @ XK 4 (1, o WIX)cmMC ™) (8 @ X)T,

(3%)
(39)
(40)
(41)

(42)
(43)
(44)
(45)

(46)

(47)
(43)
(49)

(50)

D

(52)
(53)
(54)

where (a) follows from Proposition C.1, (b) follows from (19), (c) follows from (20), and (d) uses the definition of the

commutation matrices. Then by using (22), we deduce
Vwf(Z) = XKT8" 4 2¢(WH — X)HT.

16
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Next, we compute Ve.(g)f(Z). By using similar computations as before, we get

n

vvec(ﬂ) Z‘e(ysa as) = C(N’T) Z(WTXS ® In) h(ys, as)

s=1 s=1

h(yi,a1)
=Cr) Wik, @1,,..., Wix, @ 1,]

h(ynv an)
= CHEN(WTX @ 1,) vec(K)
= (I, ® WIX)CF™ vec(K)
= (I, ® WTX)vec(KT).

From this and (22), we deduce

Vaf(Z)=WTXK". (56)

We move on to compute Vyeq(r f(Z). This yields

n

vvec(I‘) Z E(ys, as) =Ccha) Z(X; & IR) fl(ys, as)
s=1

s=1
= CHD (X, @ L) vee(K)
= (I, ® Xaux)C*™ vec(K)
= (I, ® Xauy) vec(KT)

From this and (22), we deduce
Vrf(Z) = XanK". (57)
The last derivative Vi f(Z) = 26 W1 (WH — X) is easy.
Computation of the second-order derivatives.
By vectorizing (55), we get
Vyeorw) f(Z) = vec (XKTﬂT) + 2¢ vec(WHHT) — 2¢ vee(XHT)
= (B®X) vec(KT) + 2¢(HH” @ 1,) vec(W) — 2¢ vec(XHT). (58)
Then using Proposition C.1 with (58) and noting that vec(K” )7 = (C*™ vec(K))T = vec(K)TC(*), we get
VVec(W) vVec(W)T f(Z)
= Viee(w) (vec(K)TC("’“) (B® X)T +2¢ vec(W)T(HHT ® Ip)T —2¢ vec(XHT)T)
= (B X)CHIMC (3o X)T + 26(HH” @ I,,).
Similarly, we can compute

Viee(8) Vvee(@)r f(Z)
= Vyece(s) veo(WT XK
= Vyee(p) vee(KN) (I, @ WTX)"
= Vyee(s) vec(K)TC9)(1, @ WIX)T
= (I, @ WIX)CcmMCm) (1, o WIX)T.

17
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Also, note that

vvec(F)vvec(F)Tf(Z) = Vvec(l") VeC(XauXKT)T
= Vvec(l") VeC(K)TC(nJ{) (In ® Xaux)T
= (L, ® Xauw) CEMC ) (I, @ Xoux) ™

Similarly, we get
Veee) Vvee@)™ f(Z) = Vyeomr) (2§ vee( W WH)T — 2¢ vec(WT X)T)
= 2V vee(am vee(H) " (I, @ WIW)
=2((1, ® WI'W).
Next, we compute the off-diagonal block terms in the Hessian of f. Recall that from (22), we have
vec(XKTBT) = (I, ® XKT) vec(8”) = (8 ® X) vec(KT).
Then using the product rule, we get
Vyee(8) Vvee W) [ (Z) = Vyee(s) vee( XK 8T)T
= (Vieetm vee(BN)T) (1, @ XKT)T + (Voo vee(K)T) (80 X)T
= C*I(1, @ XKT)T 4 (I, @ WIX)CcEmMC ™) (8 @ X)T.
Second, note that Vyee(r) Vyec(w)r f(Z) = O. Third, for the forthcoming computation, note that from (22),
vec(HH”) = (I, ® H) vec(H”) = (H® I,.) vec(H).
So by the product rule,

vVec(H) veC(HHT)T = (vvec(H) vec( T)T) ( ® H)T (vvec(H) VeC(H)T) (H ® IT)T
=Cct(1, oHT) + HT 9 1,).

Now observe that
T
Vyee ) Vee(w)r f(Z) = 2V veeq) [vec(WHHT) — vec(XH)]

= 26V yeeqmy [vecHHT)T(I, @ W) — vec(H")" (I, ® X)"
= 25 ( vec(H) VeC(HHT)T) (IT ® W)T - (vvoc(H) VeC(HT)T) (IT ® X)T
=2 {(C(n (1, @ HT) (HT ® Ir)) I ® W)T _ ) (I, ® X)T]
=2 [C n r) . ® HTWT) (HT ® WT) — ) I, ® X)T}
=2 [C(" (L, @ (WH - X)) + (HT WT)} .

Fourth, observe that

vvcc(I‘)vvec(B)Tf(Z) = vvcc(I‘) VeC(WTXKT)T
= vvct:(l") VeC(K)TC(n’K) (In & WTX)T
_ (IK ® Xaux)c(n,n) ]_v_[(::(n,n)(LC ® WTX)T.

The remaining zero-second derivatives are easy to see. O

For two matrices A, B of the same size, we write A = B if A — B is positive semi-definite. The partial ordering > is called
the Loewner ordering.

18
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Lemma C.3. Let f(Z) denote the objective of SMF-W in (30). Suppose Assumption B.1 holds. Recall hand H defined in
(33). Then the following hold:

(i) Write the Hessian V? f(Z) as the 4 x 4 block matrix (A;j)1<i j<4. Then
a” (BT @ XXT) + 26(HHT ©1,) < Ay < ot (88" @ XXT) + 2¢(HH? @ 1)
Aoy = 26(1, @ WIW),
o (I, ® WIXXTW) < A3 < ot (I, ® WIXXTW),
o (T, @ X XL ) = Ay < oI, @ X X2).

aux aux

(ii) The function f(Z) = f(W,H, 3,T) restricted to each block coordinate has Lipschitz-continuous gradients with
Lipschitz constants Lw , Ly, Lg, Lt given by

L = o83  |IX]5 + 2¢|[H]3,
Ly = 2¢| W3,
Lg = o [[W]3 - [ X3,

Lr = a1 || X2

(iii) The Hessian of the Ly-regularized objective f(Z)+ ¥ | W% + 22 |H||% + )\73 I1BII% + AR T || is positive definite
if
Aw > 26 ([Hll2 [Wl2 + [WH = X]|2 — Amin (HHT)) + Ymax /57| X2
+ (|82 W2lIX13 — &~ Anin(B87) Amin(XXT)
Ast > 2 (I[El [W s + [WH — X]l> — Apin( WTW))
A > Ymax V| X2 + |8l W2 X3 + o [ Xau 2 X Wl2 = a7 Ain (W XXTW),
A1" > 05+||Xaux||2HXTWH2 - aiAmin(XauxXT

aux)

Proof. Observe that the block-diagonal matrix M in (35) is symmetric by definition and is also positive definite by
Assumption B.1:

0<a™ S )\min(M) S )\max(M) S 04+~
Since the commutation matrices are orthogonal and satisfies Clab)lba) — I, it follows that
a I, < CEVIMC™Y < a1,

Then the first Loewner ordering for A1 = Vyec(w) Vvec(w)r f(Z) follows from Lemma C.2. The other Loewner orderings
can be shown similarly. This shows (i).

(i) follows immediately from (i), ||A ® Bll2 = ||A||2 - || B||2, and the fact that the Lipschitz constant for the gradient
is upper-bounded by the largest eigenvalue of the corresponding block Hessian, which are the diagonal blocks A;; for
1=1,...,4

For (iii), note that if Lo-regularization coefficients are large enough so that the following condition is satisfied
>\min(Aii) + A > ZHA’L]HQ Vi<i< 4,
J#i
where A\ = Aw, A2 = Am, A3 = Ag, and Ay = Ar, then the Ly-regularized Hessian of the objective f is block diagonally

dominant and is positive definite (see (Feingold & Varga, 1962)). The Ls-regularized Hessian takes the following 4 x 4
block form:

vec(W)T vec HT vec(B8)T vec(T)T
vec(W) rAi1 + Awlyp A1z Az (0]
vec(H) Aa Ago + Al (@) (@) (59)
vec(3) A3z O Ass + Aglrs Asa
vec(T) o (0] Ay Asa + Arlge
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Thus it suffices to take

Aw > [|Aszll2 4 [[A13]l2 = Amin(A11),
Al > [|Arz]l2 — Amin(Az22),
A > [[Awsll2 + [[Asall2 — Amin (Ass),
Ar > || Asall2 — Amin (Aaa).

Using Lemma C.2 and Assumption B.1, we can upper bound the operator norm of the off-diagonal blocks as

A2z < 2§ ([[WH]|l2 + [WH — X|2),
[Azl2 < XK |2 + o™ ||B]|2[W2]| X3
< YmaxVER X2 4+ o (|82 W21 X3
Ay = A3 = Az =0,
[Asa]l2 < o || Xax X" W72,

where we have used || 1,2 = v/a, [|[A® B2 = || A2 - || B|2, and |[KT |2 < v/&En||K|/max = v/A7Ymax. Furthermore, we
can also get lower bounds on the eigenvalues of the diagonal blocks. Then the assertion in (iii) follows. O

Lemma C.4 (First-order approximation of functions with Lipschitz gradient). Let f : Q(C RP) — R be differentiable and
V f be L-Lipschitz continuous on ). Then for each 0,6’ € Q,

16— &)1

£(0) = £(6) = VF(O)T (6 —0)| < g

Proof. This is a classical lemma. See Lemma 1.2.3 in (Nesterov, 1998). O

A simple but important lemma we use in our local landscape analysis is the following. It will be used in the proof of
Theorems 4.3, C.6, and 4.5.

Lemma C.5 (L-perturbation of local landscape). Let © — f(x) be three-times continuously differentiable function
for x € RP. Suppose x, is a stationary point of f over a convex set @ C RP. Suppose for constants X > 0, p > 0,
F(z) := f(z) + 3||z||? is p-strongly convex at x. Let M = M (d) denote the supremum of the absolute values of all
third-order partial derivatives of f over all x with ||z — .|| < d. Then as long as ||x,|| and d are sufficiently small, there
exists a local minimizer of F' at some &' with |2’ — z,|| < d.

More precisely, we have

F(z) - F(z,) > 0 (60)

inf
+€®, oz, |=d
provided d and ||| are sufficiently small so that

% > M(d)d and La > .

In particular, (60) holds if d = % and ||z, || is sufficiently small so that %p > M(d)d holds.

Proof. Since x, is a stationary point of f over ®, we have

(VE(@.), o —2.) = (s, 7 — ) > =] - |2 — 2.

By Taylor’s theorem, whenever ||z — z.|| = d,
1 M(d
F(z) = F(we) 2 =Mlza]| - |z = 2l + 5z ~ )T [VaVor F(2)]ama, (€ — 2.) — & ) = z®
pd  M(d) 5\ P o
>d =Mz + 5= - Eq2.
d( Moo | + 5 - ==d* ) +1d
=7
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Note that Z > 0 if

d  M(d)d?
gdz Az,|| and % > (3) .
The above condition is held by the hypothesis. This shows (60), as desired. O

Now we are ready to derive Theorem 4.3 as well as Theorem 4.4 for SMF-W.

Proof of Theorem 4.3 for SMF-W. Parts (i) and (ii) are re-statements Lemma C.3. Part (iii) follows from Lemmas C.3 and
C.5. O

Proof of Theorem 4.4 for SMF-W. Here we prove the statement for SMF-W. Recall that Algorithm 1 is a block projected
gradient descent with adaptive step sizes. This algorithm is well-known to be a special instance of a more general class of
algorithms called block majorization-minimization (BMM) with prox-linear surrogates (Lyu & Li, 2023). For instance, for
updating Wy, _; to Wy, given Sg_1 := (Hg_1, B;,_1,'x—1), we consider the following prox-linear surrogate

1
9 (W) = F(W.Ske1) + (Tw (Wi, Si-1), W= Wioa) + 5o —|[W = Wiy 3.

Note that g,(cl)(Wk_l) = f(Wg_1,Sk—1). By Lemma C.3, the marginal objective function W f,il)(W) =
f(W,S;_1) has Lyw-Lipschitz continuous gradient where Lw := (8|3 - || X]||2 + 2¢||HJ||3. Hence by Lemma
C4, g,gl) (W) > f,gl) (W) forall W € C; (ie., g,(cl) is a majorizing surrogate of f,gl) over Cy) provided 7} > Lw. Indeed

we choose nﬁ > Lw in Algorithm 1. Furthermore, the marorization gap gél) — f,il) is quadratically lower-bounded:

-1
g W) — fOwy > L Ww w2 forall We . 61)

Furthermore, one can easily verify that

. 1
arg min g (W) = Ile, (Wk_l - vwf(W,sk_n) :
WeC, k1

Hence we recover the projected gradient descent step for computing W, in Algorithm | as minimizing the majorizing
surrogate g](cl) of ,gl) over the constraint set C;. For other blocks, one can construct majorizing prox-linear surrogates g,(gz)

of marginal loss functions f,ii) for ¢ = 2, 3, 4, defined similarly.
Asymptotic convergence to stationary points and iteration complexity of the BMM for smooth non-convex objective with

convex constraints is recently established in Theorem 2.1 in (Lyu & Li, 2023). For the iteration complexity result, the
hypotheses we need to verify are

(A1) The constraint sets C1, Cs, C3, and Cy4 are closed and convex;

(A2) The objective f : @ — R is continuously differentiable, lower-bounded on ®, and has L-Lipschitz continuous
gradient over © for some L > 0. Furthermore, the sub-level sets {0 € © | f(0) < a} for a € R are compact;

(A3) The majorizaiton gaps h,(:) = ,(f) — f,gi) fork > 1 and i = 1,2, 3,4 are quadratically lower-bounded and has

Ly,-Lipscthiz continuous gradient over the constraint sets for some constant Ly > 0.

Indeed, (A1) and (A2) follow from 4.1 (especially with the compactness of the constraint sets) and Lemma C.2. The first part
of (A3) follows from (61). For its second part, let L, denote the supremum of the Lipschitz constants L; for¢ =1,...,4

over all parameters in ©. Since © is compact by 4.1, L, < oo. Thenn, | < L, forallk > landi =1,...,4, Vg,(:)s are
L,-Lipschtiz continuous. Recall that V sz‘) is L-Lipschitz continuous by (A2). Hence Vh,(j)s are (L, + Ly)-Lipschitz

continuous. Now the above three properties with Theorem 2.1 in (Lyu & Li, 2023) are enough to imply the iteration
complexity results in Theorem 4.4 (i)-(ii).

Lastly, asymptotic convergence of the iterates to the stationary points in (Lyu & Li, 2023) requires the following further
assumption:
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(A4) The majorizing surrogates g,(f) fork > 1andi = 1,2, 3,4 are p-strongly convex for some constant p > 0.

Since g,(j) is n,:%-strongly convex and since we assume the step-sizes 7y, ; are uniformly upper bounded in Theorem 4.4(iii),

we can choose p to be the reciprocal of such uniform upper bound on 7y, ;s. This finishes the proof. O

C.2. Proof for SMF-H

The following result stated in Theorem C.6 is the counterpart of the local landscape result (Theorem 4.3) for SMF-H, which
we prove in this section. We also establish Theorem 4.4 for SMF-H. The structure of the argument is identical to that for
SMF-W we provided in the previous section.

Theorem C.6 (Local landscape of SMF-H). Let f(Z) denote the objective of SMF-H. in (30). Suppose Assumption B.1
holds. Then the following hold:

(@ Ay =2¢(1, @ HHT)
Azy = (I, ® BAT) + 261, © WTW),
Asz < oF (1, @ HHT),
Ayy = o (I, @ Xax XL ).

aux

X

)

(i) F' is p-strongly convex at Z, = (W, ,H,, B8,,T'\) for p = minj<;<4(A; — Aix) where

A1y 1= —28Aq,
Azi 1= Ymax v/ + a8, |2 (HL |24 Xaux]|2)
—26A2 — & Anin (B.87),
Azx = Ymax VAN + a8, ]l2 (IHa |2+ Xauxl2)
- a_)‘min<ﬂ*ﬂ3)
Asx = o [ Xauxl2 (1B, ll2+Hy[2) — ai)‘min(xauxxzzlx)'
(iii) Suppose A1 > 0. Denote ¢ := (H',3',T') and 0, := (H,, B,,T.). If |0 || r is sufficiently small, then F is minimized
locally at (W, 0") with

3 max1§i§4()\i)

0" —0]|r <
” ”F - m1111§i§4()\i — )\H)

(10| - (62)

If Ay > 0and & > 1, then for ' .= (W', 3, T) and 0, :== (W,, B,,T.), if ||0«||r is sufficiently small, then F is
minimized locally at (', H,.) with (62).

Foreach s = 1,...,n, let e, denote the sth standard basis vector in R™.

Proposition C.7. Let f(Z) denote the objective of SMF-H in (30). Suppose Assumptions 4.1, 4.2, and B.1 hold. Let
a, = B H[;, 5] + T, fors = 1,...,n. Then

Vvec(H) e(ysa as) = (es ® /8) h(ysa as): ] Vvec(H) VeC(K)T = (In oY ,B)M,
Viee(d) {ys,as) = CHI(HL, s] @ 1) h(ys, as), Viees) vee(K)T = (I, @ H)C™) M, (63)
vvec(l") [(ys, as) = Cma) (Xls ® In) h(ysa as)v Vvec(l") VeC(K)T = (Ika ® Xaux)c(n’n) M.

Proof. We first show
vvec(H)aZ =€ /3’

Viee@ar = CWI(H[, 8] @ 1), (64)
vvcc(l")az = C(K’q) (Xg & I,{)
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For differentiating a, by vec(H), observe that by using (22), we can write
a, = vec(a,) = B H[:, s] + vec (FTX/S> = (xI' @ BT) vec(WT) + vec(T''x)).
Noting that vec(WT)T = (C®") vec(W))T = vec(W)TCrp),
Vyecmas = VyecanH[:, 5] 8 = e, ® .
For differentiating a, by vec(3), writing a, = (H[:, s]7 @ L) vec(87) + vec(I'Tx.,), we get

HTH[:, 5] @ 1,)

)
eI H:, 5] © 1)
— C(n r) (H[ 75] ® IH)

vvcc(,@)aT vcc ec(,@
B

- vvec VeC(

For differentiating a, by vec(T), writing a, = vec(8” H[:, s]) + ((x,)T @ I.) vec(T'"), we get

vvec(l‘)az = vvec(I‘) VeC(FT)T(X; ® In)
= Vyee(r) VGC(I‘)TC(H’Q)(XIS ®1,)
= C9(x! ®1,).

This verifies (64). Then by using the chain rule (24), we get
Vvec(H)E(ysv as) = Vvec(H)az Vasg(ysu as) = (es & /8) h(ysa as)~

The other gradients Vyc(g) £(ys,a;) and Vee(r) £(Ys, a,) also follows from (64) and the chain rule.
Next, we compute the gradients of vec(K ) in (63). First, using (64), the chain rule (24), and (32),

vvec(H) h(ysv as)T = vvec(W)aZ vash(y37 as)T =(es® ﬁ)H(yw as), (65)
vvcc(ﬂ) h(y57 as)T = vvcc(ﬂ)az vash(ym as)T =) (H[:7 S] ® In)ﬁ(ys, as)7 (66)
vvec(I‘) h(y87 as)T = vvec(l")az Vash(ys, as)T = C(H’q) (X; & IR)H(ys, as)- (67)

Now since vec(K)T = [h(y1,a1)7, ..., h(yn,a,)7] and vec(KT)T = (C*) vec(K))T = vec(K)T C") it follows
that

Vieern vee(K)™ @ [(e1 @ (1, 21), ., (en ® B)F(yo, an>] (68)
Yier®8,... e, ® G diag ( (y1,a1), .., Hyn, an)) (69)
9 (1, © )M, (70)

where (a) follows from (64) and the chain rule, (b) is an algebra, (c) follows from (19), The other gradients V¢ (g) vec(K)T
and Vo) vec(K)T follow from similar computations. O]

Lemma C.8 (Derivatives of the SMF-H objective). Let f (Z) denote the objective of SMF-H in (30). Suppose Assumption
B.1 holds. Recall h and H defined in (33). Then the gradients of f(Z) are given by

Vw f(Z) = 2¢(WH - X)H", (71)
Vu f(Z) = BK + 26 WT(WH - X), (72)
Vs f(Z) = HK” (73)
Vr f(Z) = X K" (74)
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The block-diagonal terms in the Hessian are given by

Veeetw) Vaeerw)r f(Z) = 2¢(I, @ HHT)
Voo Veem)r f(Z) = (I, @ B)M(L, @ B)" + 2¢(I, ® W'W),
Ve Veee(s)r f(Z) = (I, @ H)ICHMC)(I, @ H)T,
Ve Vaeemr f(Z) = (L @ Xaux) CEIMC™ (T, @ Xau)” -

The block-off-diagonal terms in the Hessian are given by

Ve Veew)r f(Z) = 26C7 [(HT @ WT) + 1, ® (WH — X)7 ]
Viee(8) Vvee(w) ™ f(Z) = Viee(r) Vieew)r f(Z) = O,
Veeed) Veenyr f(Z) = (K@ 1) + (I, ® H)C"" M(IL, ® 8)”,
Vyeer) Vveer £ (Z) = (I, ® Xau)CH™ M(I, @ B)7,

(Z) =

vvec( vec(,@)Tf Z ( ® XauX)C(K’n) M(In & H)

Proof. For convenience, recall that W € RP*" 3 € R™% H € R"™*™, and I" € R7*",
Computation of the first-order derivatives.

We first compute the following gradient:

vvec(H) Zg(ym as) (é) Z(es ® ﬂ) h(ysv as)
s=1 s=1
h(ylval)
:[el®/67"'7en®ﬂ] :
h(yn,a,)

Y (1, ® B) vec(K),

(75)
(76)
(77)
(78)

(79)
(80)
(81)
(82)
(83)

(84)

(85)

(86)

where (a) follows from Proposition C.1, (b) follows from (19), (c) follows from (20), and (d) uses the definition of the

commutation matrices. Then by using (22), we deduce

Vuf(Z) = BK + 26WT(WH — X).

Next, we compute Vec(g).f(Z). By using similar computations as before, we get

n

Vvec(ﬁi) Z E(ysv as) = C(H’T) Z(H[; 3} & In) h(ysv as)

s=1 s=1

h(ylaal)
= C(T’p) [H[Z, 1] & I/m v 7H[:7 TL] ® I’{]

h(ym an)
= C"P)(H®I,) vec(K)
= (I, ® H)C*™ vec(K)
= (I, ® H) vec(KT).

From this and (22), we deduce

Vsf(Z) = HK.

87

(88)

That Vyeer f(Z) = Xaux K as in the proof of Lemma C.2. The last derivative Vw f(Z) = 26(WH — X)H7 is easy.
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Computation of the second-order derivatives.
By vectorizing Vi f(Z) in (71), we get
Veieen) f(Z) = vec(BK) + 2¢ vec(WTWH) — vec(WTX)
= (I, ® B) vec(K) + 2¢£(I,, @ WIW) vec(H) — vec(WTX).
Then using Proposition C.1 with (89), we get

vvec(H)vvec(H)Tf(Z)
= Vyec(H) (VGC(K)T(In @ B)T + 2¢vec(H)T (1, ® WTW)T)
= (L, @ BM(L, ® B)" +2¢(I, © W'W).

Similarly, we can compute

vvec(,@ vec( Tf( )
= Vyee(B) Vec(HK)T
(K" (I, o H)"
= Vyee(g) vec(K) yfet (1, @ H)T
= (I, e H)CHIMC™ (I, o H)T.

vec(ﬁ) vec K

Also, note that
Vvec(l" vec( Tf( ) = vec(F) VeC(XauxKT)T
= Vvec(l") VeC(K)TC(mK) (Im & Xaux)T
= (L, @ Xaux)CEIMC™)(I, @ Xoue) T
Similarly, we get
vvec(W)vvec(W)Tf(Z) = vVec(W) (2§ VeC(WHHT)T - 25 VeC(XHT)T)
= 2£vvec(H) VeC(H)T(IP ® HHT)
= 2¢(I, ® HHT).

Next, we compute the off-diagonal block terms in the Hessian of f. Recall that from (84) and (22), we have
vec(BK) = (I, ® B) vec(K) = (KT @ I,.) vec(3).
Then using the product rule, we get

Vvec(,(?)vvec(H)Tf( ) vVeC VeC(ﬂK)
= (Vyee(a) vee(B)") (KT @ L) 4+ (Vyee(s) vee(K)") (I, @ 8)"
= (K®L)+ I, o H)CH M(1, © 8)7.
Second, note that
vVec(l")vvec(H)Tf(Z) = Vve<:(1") VeC(ﬁK)T
= Viee(n) vec(K)T (1, ® B)T
= (L, ® Xaux)CH™ M(IL, @ B)7.

Second, note that Vee(r) Vyecs)r f (Z) = O. Third, by the same computation as in the proof of Lemma C.2,

Vee(t) Veow)r F(Z) = 26V yoe(ar) [vec(WHHT) — vee(XHT)]"
=26C) [(HT @ WT) + (I, o H'WT)) — (I, ® X) 7] .
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Fourth, observe that (I,, ® 3) vec(K)
vvct:(l") vvec(ﬁ)Tf(Z) = vcc(l" eC(HK)
= Vyee() vee(K) (I, @ H)T
= (L, ® X )C"™ M(I,, @ H).
The remaining zero-second derivatives are easy to see. O

Lemma C.9. Let f(Z) denote the objective of SMF-H in (30). Suppose Assumption B.1 holds. Recall h and H defined in
(33). Then the following hold:

(i) Write the Hessian V? f(Z) as the 4 x 4 block matrix (A;j)1<i j<4. Then

Ay =2¢(1, e HHT) (89)

a™ (L, ® BB”) +26(L, ® WIW) < Ay < ot (I, ® BB7) + 26(1, @ WT'W) (90)
a (I, ® HHT) < A3z < o (I, @ HHT), on

o™ (I ® Xa XL ) < Agg = o (L, @ Xou X5). (92)

(ii) The function f(Z) = f(W,H, 3,T) restricted to each block coordinate has Lipschitz-continuous gradients with
Lipschitz constants Ly, Ly1, Lg, Lt given by

Ly = 2¢|[H]]3, (93)
Li = o8I + 2¢| W3, (94)
Lg = o [[HIf3, (95)
L = || Xaul/3- (96)

(i) The Hessian of the Lo-regularized objective f(Z) + ¥ |W||% + 22 ||H||% + )\75 1812 + 2E||T||% is positive definite

if
Aw > 26 ([Hllz - [[W]l2 + [[WH — X[|2 — Amin(HHT)) 97)
Am > 26 (|[Hllz - [[W]l2 + [[WH = X||2 = Anin(WTW)) + ymaxv/rn (98)
+ a8z (1H[2 + [Xaull2) — &~ Amin(B87), (99)
A8 > Ymax VAN + (| Bll2 ([ H|2 + [ Xaul2) — @~ Amin(HHT), (100)
Ar > o ([ Xaudl2 (182 + Hll2) — o Amin (Xaux Xy - (101)

Proof. Observe that the block-diagonal matrix M in (35) is symmetric by definition and is also positive definite by
Assumption B.1:

0<a <Amin(M) < A\pax(M) < at. (102)
Since the commutation matrices are orthogonal and satisfies Cclab)cba) — I, it follows that
a L., < CEMIMCMH) < of1,,. (103)

Then the first Loewner ordering for A11 = Vyee(w) Vyee(w)r f(Z) follows from Lemma C.2. The other Loewner orderings
can be shown similarly. This shows (i).

(ii) follows immediately from (i) and the fact that the Lipschitz constant for the gradient is upper-bounded by the largest
eigenvalue of the corresponding block Hessian, which are the diagonal blocks A;; fori =1,...,4.

For (iii), note that if Lo-regularization coefficients are large enough so that the following condition is satisfied

Amin(Aii) + X > Y || Ailla V1 <i <4, (104)
J#i
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where A\ = Aw, A2 = Am, A3 = Ag, and Ay = Ar, then the Ly-regularized Hessian of the objective f is block diagonally
dominant and is positive definite (see (Feingold & Varga, 1962)). The Ls-regularized Hessian takes the following 4 x 4
block form:

vec(W)T vecH” vee(B8)T vec(I)T
vec(W) rAi1 + Awlrp Al (@) (@)
vec(H) Aoy Azz + gl Aas Azq (105)
vec(03) (0] Aso Ass + A\glrx Aszq
vec(T) o Ago Ags Aga + Arlys
Thus it suffices to take
Aw > [|Ai2ll2 = Amin(A11), (106)
Au > || Aizl2 + [[A2sll2 + [|A24]l2 — Amin (A22), (107)
Ag > [|Azsll2 + [|As4ll2 — Amin(A33), (108)
Ar > || Azall2 + || A24ll2 — Amin(Aaa)- (109)

Using Assumption B.1, we can upper bound the operator norm of the off-diagonal blocks as

[Ax2]l2 < 26 ([ H|2 - [[W]|2 + [[WH — X[|2) (110)
[ Az23]l2 < Ymax Vi + " [Hllz - [| B2, (111)
[A2a]l2 < o[ Xaux |2 - [1Bll2, (112)
| Asall2 < o || Xaull2 - [[H]2- (113)
We can also obtain lower bounds on the eigenvalues of the diagonal blocks. Then the assertion in (iii) follows. [

We now prove Theorems C.6 and 4.4 for SMF-H.

Proof of Theorems C.6 and 4.4 for SMF-H. Theorem C.6 follows from Lemmas C.9 and C.5.

The proof of Theorem 4.4 for SMF-H again amounts to verify the hypothesis of Theorem 2.1 in (Lyu & Li, 2023) for the
block projected gradient descent algorithm in Algorithm 1 as a BMM with suitable prox-linear surrogates. The argument is
identical to that for SMF-W we provided in the previous section, together with the corresponding lemmas establishing
gradient and Hessian computations for SMF-H (Lemmas C.8 and C.9). O

D. Proof of Theorem 4.5: A non-asymptotic local consistency of MLE

In this section, we provide a general result on the non-asymptotic local consistency of MLE in a general setting, where the
data samples are assumed to be independent but may not be identically distributed, and the unknown true parameter used for
a generative model may lie on the boundary of the parameter space and the Fisher information at the true parameter is not
necessarily positive definite. The result we present (Theorem D.1) in this section is general and could be of independent
interest. From this general result and Theorem 4.3 we can deduce Theorem 4.5.

Fix a sample size n > 1. Suppose 7y is a probability distribution on R? parameterized by § € © C RP. If an n-tuple
X = [x1,...,Xy,] of vectors in R? is observed under the product distribution g := 79, ® --- @ 79, 0 = (61,...,6,),
then the regularized negative log-likelihood of observing X under g is

L(X;6) = (Lo(xi36:) + R(6:)), Lo(x;0) = —logme(x), (114)

i=1

where R(6;) is a suitable choice of regularizer for parameter 6;. Denote R(6) := Y .- | R(6;). We denote

Lo(X; 0) =" Lo(x;0;). (115)
=1
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Now suppose there is true and unknown parameter 8, = (61, . .., 0,,) such that we have independent samples x1, ..., X,
jointly from mg_. Let 6,, denote a (possibly non-unique) minimizer of the above function over the n-fold product parameter
space ©™. This is a minimizer of the random loss function £ over the product constraint set ©", which we call the
constrained and regularized maximum likelihood estimator (MLE) of 8. Note that here we consider a general constrained
MLE problem in three aspects: (1) The distribution of n data samples are parameterized separately by 61, ..., 60,; (2) The
constraint set ©™ may be a proper convex subset of RP*"™ and 6, could be at the boundary of ©™; (3) The loss function £ in
(114) may be non-convex and may have multiple local minima.

In this general setting, we would like to provide a high-probability guarantee that there exists a local minimizer of (114)
that is close to the true parameter 6,. In the special case where we impose ; = --- = #,, and 6, is assumed to be in
the interior of ©”, this type of result is provided by the classical local consistency theory of MLE (Fan & Li, 2001) in an
asymptotic setting where the sample size n tends to infinity. Below in Theorem D.1, we generalize such a classical result in
the non-asymptotic, constrained, and regularized setting. For its proof, we combine a classical approach in (Fan & Li, 2001)
with concentration inequalities, namely, a classical Berry-Esseen bound for deviations from standard normal distribution for
independent but non-identically distributed random variables and a uniform McDirmid bound (Lemma D.2). The former is
used to control the linear term in the second-order Taylor expansion of the log-likelihood function, and the latter is used to
control the second-order term. By using an e-net argument, the latter concentration inequality can be extended to a setting
where the random variables are parameterized within a compact set.

Theorem D.1 (Non-asymptotic local consistency of constrained and regularized MLE). Consider the constrained and
regularized MLE problem (114) with unknown parameters 014, . .., 0,4 from a convex subset © C RP. Fix a convex set
© C O". Assume the following holds:

(a0) (Parameter consistency) Suppose that there exists 0, € © and a constant ¢ > 0 such that

—0.. | < .
ax [16. — 0| < ¢/ Vn (116)

(al) (Smoothness) For each realization of the data X = [x1,...,X,] € RP*", the function 6 — L(X; 0) is three-
times continuously differentiable and R(0) is differentiable. Furthermore, denote Y; := VoLo(x;;0:4) € RP,

Y=Y, —EY;], and W; := <?i, ‘gg/_\%* > Suppose there are constants D, dy € (0, 00) such that

max E[||Y;|?] <Di, max E[W?] <D;, min min Var(Y;(k)) >di, min Var(W;) >di. (117)
1<i<n 1<i<n . 1<i<n 1<k<p 1<i<n

(a2) (First-order optimality) The true parameter 0, := (01, ...,0n) is a stationary point of the expected negative
log-likelihood function Lo(0) := Eg, [Lo(X;0)] over ©:

(VoLo(0),0—6,)>0 VOcO. (118)

(a3) (Approximate second-order optimality) Let L£(0) := Ly(6) + R(0) denote the expected regularized negative log
likelihood function. Then the regularized ‘joint Fisher information’ N2L(0) is positive definite at 0 = 0, with
minimum eigenvalue p > 0.

Fix a constant C > 0 and let D = n=1/? (C’ + w). Let M = M(D) > 0 denote the supremum of the absolute
values of all third-order partial derivatives of L over all 0 with |0 — 0,|| < D. Suppose |V R(0,.)|| is small enough so that

3
VnD < 4M€D). (119)

Then there are constants ¢y, co, c3 > 0 such that

02[)2
64

P ein(g L(X;0,...,0) — L(X;0,) >0 >1—clexp<—
€
llo—6.]=D

C2
) v O(exp(—c3n)). (120)

That is, with high probability explicitly depending on C, p, p, and n, there exists a local maximizer of 0 — L(X; 0,...,0)
in © within distance D from 0,.
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We can easily deduce Theorem 4.5 from Theorem D.1.

Proof of Theorem 4.5. This is a straightforward application of the general result we just established in Theorem D.1 and
the local landscape result in Theorem 4.3. Details are omitted. O

We devote the rest of this section to proving Theorem D.1.

Lemma D.2 (A uniform McDirmid’s inequality). Let X1, ..., X,, be independent random vectors in R¢ from a joint
distribution 7. Fix a compact parameter space ® C R and fo : R® — [~ M, M| is a bounded functional for each 6 € ©
such that

Ifo — forlloo < L0 —6'], V0,0'c® (121)
for some constant L > 0. Further assume that E[fo(X})] = 0forall @ € ® and k = 1,...,n. Then there exists constants
K, M > 0 such that for eachn > 0, and n > 0,

1 & 2L diam(©) \” n*n
P = Xi)| > <K|——= -—— . 122
(Stelg n;f"( k) _n> < ( g ) exp (—5 773 (122)

Proof. Recall that ® C RP is compact, so it can be covered by a finite number of L2-balls of any given radius ¢ > 0.
Denote by U. such an open cover using the least number of balls of radius ¢ > 0. Let N (&) = |U.| denote the smallest
number of such balls to cover ®. Moreover, let diam(®) be the diameter of ©, which is finite since © is compact. Then
O is contained in a p-dimensional box of side length diam(®). Thus there exists a constant &K > 0, depending only on
diam(®) and d, for which

diam(®)\?
N(e) < K (m;()) . (123)
Next, fixn > 0,0 € O, and e > 0. Let 04, --- ,HN(s) be the centers of balls in the open cover /.. Then there exists

1 < j < N(e) such that [|@ — 0,|| < . By the hypothesis, fo depends on 8 uniformly continuously with respect to the
supremum norm. Hence there exists 6 = () > 0 such that

| fo — fo,lloc < Le. (124)
Denote H,, () :=n~' > }_, fo(X}). Then it follows that, almost surely,
|Hn(0) — Hn(6;)] < Le. (125)

Furthermore, by the hypothesis, || fg|| oo is uniformly bounded by M > 0. It follows that for each 8 € ©, H,,(0) changes
its value at most by M when one of X1, ..., X, is replaced arbitrarily. Therefore by the standard McDirmid’s inequality
(see, Theorem 2.9.1. in (Vershynin, 2018)) and a union bound, with choosing ¢ = 7/(2L), we have

2L diam(®) \” 2
P (|H.(6,)] = n/2) < K <“j7m()> exp <—2"]\22> : (126)

N

(n/2L)
P(H.(0) =m) <
j=1

The above holds foralln > 1,7 > 0,and 8 € ©. O

Next, we recall the classical Berry-Esseen theorem for the rate of convergence of normal approximation for the sum of
independent but not necessarily identically distributed random variables due to Feller.

Theorem D.3 (Berry-Esseen, Feller 68 (Feller, 1968)). Let X1, Xo, ..., X, be independent and not necessarily identically
distributed random variables with zero means and finite variances. Define W = Y_""_| X; and assume that Var(W) = 1.
Let F be the distribution function of W and ® be the standard normal distribution function. Then

|F — @[l <6 (an E[X71(1X;] > 1)] + anE[Xf’l(lXil < 1)]) : (127)

=1 i=1
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Now we prove Theorem D.1. The proof is essentially handling an additional probabilistic perturbation in the proof of
Lemma C.5.

Proof of Theorem D.1. Suppose an n-tuple X = [x1, .. .,X,] of vectors x, in R is observed under the product distribution
oy, @ -+ @ mg, .. Denote @, = (014,...,0,,). Also by the hypothesis, Ly is twice continuously differentiable, so
E[VLy] = VE[Lo] and E[V2Ly] = V?E[Lo] by the dominated convergence theorem.

Fix 6 = (04,...,0,) € © such that ||f; — 0,|| = D forall i = 1,...,n. Then from (116), foralli =1,...,n

C Cc
D——— <||; — 0] <D+ —. 12
\/H_HGL Oi|| < +\/ﬁ (128)

We introduce two random variables that we will bound to be small by using some concentration inequalities:

Tn(a) = \fD <V9,C0(X 7 ) [Vgﬁo(X§ 0*)] ) 0 — 9*> ) (129)
1

(0—0.)7 (VoVorL(X; 0,) — VoVor (E[L(X; 0,)])) (0 — 00). (130)

Since 8 — L(X; 0) is assumed to be three times continuously differentiable, the quantity M in the assertion is well-defined
and is finite. Then using a Taylor expansion, we may write

L(X;0)—L(X;0,)>(VeLl(X;0,),0—0,)+ %(0 — 9*)TV9V9T,C(X; 0.)(6—-6,) (131)
-y — M ”9 %D g — gy, (132)
=1

We will lower bound the first two terms on the right-hand side above. Note that

<Vg£(X; 0*)7 0 — 0*> = [<VBEO(X§0*)a 0 — 0*> [<V9£0(X 0 )7 0 — 0*>]] (133)
+ (VE[Lo(X:6.)], 6 — 8,) + (VR(6.), 6 — 6,) (134)
(g) <V9£0(X; 0*)7 0— 0*> —E [<V9£0(X; 0*)7 0— 0*>] - ||VR(0*)|| ”0 - O*H (135)

Y /mDT,(0) - |VR(®,)] 6 — 6.]|, (136)

where for (a) we use the fact that 0, is a stationary point of E[L((X; )] over ® and Cauchy-Schwarz inequality; for (b) we
used the definition of T, (80).

Next, we turn our attention to the second-order term in the Taylor expansion (131). Recall that from the hypothesis,

E[VeVgrL(X; 0,)] = VoeVgr (E[L(X; 0,)]) = pLyn, (137)
where p > 0 is a constant. It follows that
(0 —60.)"VeVor L(X; 6,)(6 - 6,) (138)
>(0-0.)" [VoVerL(X; 0,) — VeVer (E[L(X; 0.)))] (6 — 6.) + p|6 — 6. (139)
> (10 — 0.1 (Sn(8) + p) (140)

Combining the above inequalities with noting that ||@ — 6,||> = nD?, we obtain

LX;0)-L(X;0,) _ 1 o M(D)
DO s (—VRw*)n +2yap - MP) ) (141)
=1
+ <1(S 0)+2 - L1 (9)) . (142)
g\ o) T /nD' "
=1y
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Note that I; > 0 if

nD?. (143)

M(D
LViD > |[VR(©.)| and EvaD > g>

The former condition holds by the choice of D, and the latter condition holds by the hypothesis. Thus I; > 0.

We now take infimum over all @ = (6,...,6) € O™ such that |0 — 0,|| = D. In the proof of Lemma C.5, we have seen
that the infimum of I; defined above is positive under the hypothesis. Hence it suffices to show that the random variable I
defined above is positive with high probability. To this end, write

f o L> £ £ (S.0,....0 7) . 144
omio Mo 12 2 | poo 16 oo /oD mE o (Sa00)+ 5 (144

16—6.|=D 16—6.]|=D 6—0.]|=D

=:A =:B
Then the last expression in (144) is at least p/8 if A > —p/8 and B > p/4. Thus
. L(X;0) - L(X;6,)
P > p/8 | >P(A>—p/8) +P(B>p/4)—1. 145
o=0"ycer -0 28| ZFAZe8 +REB 2074 (149
106, =D

By the hypothesis, D = O(1) so it is uniformly bounded. Then by the uniform McDirmid’s inequality in Lemma D.2, there
exists constants C’, C" > 0 such that

P(B < p/4) <P inf S,(0,...,0) < —p/4| < DPC exp(—C"n). (146)
16—0.]I=D
Next, we will show the following inequalities: For K = 6D,/ d‘;’/ 2,
(o) vnDp | @ V/nDp K
P(A< —p/8) <P inf T,(0) > < H(rP(z>p /2 X —=E = 147
g e, it Tie) = ) Sy (P22 (VE2)) 1 2 an
16—6.||=D
(e) nD?p? K
< 1 - — 148
_(p+)(exp< i )+\/ﬁ> (148)
(f) C?p? K
< 1 - — 14
_(p+)<exp< 64)+ﬁ>, (149)

where Z ~ N (0, 1) is an independent standard normal random variable. Then the assertion will follow by combining (144),
(145), (146), and (149). Note that (c) in (149) follows from the definition of A in (144). Also, note that (e) is a simple

a2
e" 2 and that v/nD > C. (f) follows from the choice

consequence of the standard Gaussian tail bound P(N(0,1) > z) < poy

of D which yields nD? > C?2.

It remains to verify (d) in (149). To this end, define p x n matrix @Q by letting its ith column Q)[:, ¢] be
QL:vi] =Y VoLo(xi;0:) — E[VoLo(xi; 0:0)] = Vi (150)
i=1

where Y; is defined in the assertion. Note that () has independent mean zero columns and they do not depend on any specific
choice of the running parameter 6. Then we can write

T,(0,...,0) = \/IHZ<Q[:’i]’ H_DG“> (151)
— i - - 9_9* LC/\/E . g 9*_91'*
_<\/ﬁ;Q[., =5 >+\/ﬁ 5 ;<Q[., I, C/\/ﬁ>. (152)
=W;
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It is important to note that the random variables W; do not depend on the specific parameter choice 8, while the first term
in the last expression above does. Such dependence on 6 can be removed by using Cauchy-Schwarz inequality. Namely,
denote Q® :=n=1/23""  Q[k,i] fork =1,...,p. Also noting that ¢/y/n < D, we deduce

1 n 1 n
=7
P
=Dy |Qk|+ Zn. (154)
k=1
Note that foreach k = 1,...,p, Q[k,i] fori = 1,...,n are independent and mean zero random variables with uniformly
bounded variances. Likewise, X; for< = 1,.. ., n are independent and mean zero random variables with uniformly bounded

variances. Hence by union bound,

P (Zn > t) . (155)

p
t
P inf T.00)>t] < P(QF >
oz(a,.l.r.l,a)ee" @)zt < lz ( "o 2\/;5>

[[6—6.||=D

Then by the Berry-Esseen Theorem (Theorem D.3) and the hypothesis,

6 X E[IYil*]  _ 6Dy

Sup]P’Qfl'gz —P(Z<2)< —— < — fork=1,...,p (156)
P (@ <) = v A
6> E|W;? 6D

sup [P (Z, < 2)—P(Z < 2)| < nz’:l I |3]/2 < = (157)

z€R (22i=1 Var(W3)) dy’"/n
Combining with (155) and denoting K = 6D/ d:f/ ?, we obtain

P mf @) >t| <@+ (P(z>-)+ (158)
0=(,..00com "= | = P ~2yp N
l6—0.]l=D

Thus (d) in (149) follows. O

E. BCD algorithm for SMF

In the main text, we introduce the BCD algorithm for SMF-W. When « > 1, the algorithm can be easily extended to the
multi-label setting. Here, K is defined as real-valued x x n matrix such that

K = [h(yl,al), .. .,h(yn,an)] S Rﬁxn

where each h(y, a) denotes

Val(y,a) = h(y,a) = (hy, ..., he) € R®, ;= — g(j)h(a) _ 1l Z(Z’;'(”j), (159)

with a proper score function A(+) in (25).

Below we state the BCD algorithm with adaptive step sizes for SMF-H. The structure of the algorithm is identical to
Algorithm | for SMF-W.
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Algorithm 2 BCD algorithm for SMF-H
1: Input: X € RPX" (Data); X,y € R7*" (Auxiliary covariate); Yigpe € {0, ..., x}1*" (Label);

2: Constraints: Convex subsets C; C RP*X", Cy C R"™"™, C3 C R"**, C; C RIX<
3: Parameters: { > 0 (Tuning parameter); T' € N (number of iterations); (7x.;)k>1,1<i<4 (step-sizes)
4: Initialize W € C;, He Co, B € C3, T' € Cy
5: Fork=1,2,...,T do: (> For a™ see Assumption B.1.)
6: (Update W)
7. Vw/f(Z) + 2¢(WH - X)HT
8:  Choose nk_} > Ly = 2¢||H||3
90 W T, (W =k Vw f(Z))

10  (Update H)

11:  Update activation ay,...,a, and K

122 Vuf(Z)+ BK +26WT(WH — X)

13:  Choose 77;;% > Ly = o™t ||B]]2 + 2¢||W|3

14: H <« e, (H—nr2Vuf(Z))

15:  (Update 3)

16:  Update activation a1, ..., a, and K

17: Vgf(Z) + XKT

18:  Choose 7, 5 > Ls := o [|H]|3

19: H <« I, (B —m;3Vpf(Z))

20:  (Update I')

21:  Update activation a1, ...,a, and K

22: Vrf(Z) + XuK”

23:  Choose 77,2}1 > Ly = o || Xax |3

24: T« ¢, (T —nk:aVrf(2))
25: End for
26: Output: Z = (W, H,3,T)

F. Generalized multinomial logistic regression

In this section, we provide some background on a generalized multinomial logistic regression and record some useful
computations. (See (Bohning, 1992) for backgrounds on multinomial logistic regression.) Without loss of generality, we can

assume that the s + 1 classes are the integers in {0, 1, ..., k}. Say we have training examples (¢(x1),41), - - -, (@(Xn), Yn ),
where

® Xi,...,X,: Input data (e.g., collection of all medical records of each patient)

o ¢ :=p(x1),...,¢, = P(x,) € RP : Features (e.g., some useful information for each patient)

e yi,...,yn € {0,1,...,k}: K+ 1 class labels (e.g., digits from O to 9).

The basic idea of multinomial logistic regression is to model the output y as a discrete random variable Y with probability

mass function p = [pg, p1, . . ., px] that depends on the observed feature ¢(x), score function h : R — R (strictly increasing,
twice differentiable, and h(0) = 1), and a matrix parameter W = [wy, ..., w,] € RP** through the following relation:
1 h((¢(x), w;))

P St P T TR @t wa) o T (1o
That is, given the feature vector ¢»(x), the probability p; of x having label i is proportional to h evaluated at the ‘linear
activation’ (¢(x), w;) with the base category of class 0. Note that using h(x) = exp(x), the above multiclass classification
model reduces to the classical multinomial logistic regression. In this case, the corresponding predictive probability
distribution p is called the softmax distribution with activation a = [ay, ..., a,] with a; = (¢(x), w;) fori =1,... k.
Notice that this model has parameter vectors w1, ..., w, € RP, one for each of the x nonzero class labels.
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Next, we derive the maximum log-likelihood formulation for finding optimal parameter W for the given training set
(¢;,Yi)i=1,...n- Foreach 1 < i < n, define the predictive probability mass function p; = [pio, Pi1, - - - , Dix) using (160)
with ¢(x) replaced by ¢;. We introduce the following matrix notations

1(y1 = 1) 1(y1 = ,K;) D11 Dix
Y = P .=
L(yn=1) -+ Lyn=#r)] Dol o Dnm (161)
€ {(),].}nxH c [07 1}n><n
1 t t t
Bim gta) o b0x)| Wi |wi o ow|.
€ Rpxn € RPx#

Note that the sth row of Y is a zero vector if and only if y, = 0. Similarly, since pso = 1 — (ps1 + -+ + Psk), the
corresponding row of P determines its predictive probability distribution. Then the joint likelihood function of observing

labels (y1, ..., yn) given input data (x1, . ..,X,) under the above probabilistic model is
Ly, yns W) =PY1 =y1,.... Y, =y W) = [ [ (ps;) "= (163)
s=1j=0

Denote wy = 0. Then since 2(0) = 1 by definition, we can conveniently write

h((¢s w;)) ,
Dsi = —= £ fors=1,...,nandj =0,1,...,k. (164)
’ Yoo M(@s, We))
Now we can derive the negative log-likelihood ¢(®, W) := — Y7 _| ;”:0 1(ys = j) log ps; in a matrix form as follows:
(@, W)= log (1 + D h(d(xs), wc>>> =D s = )logh (($(x:), W) (165)
s=1 c=1 s=1 j=0

— (Zlog (1 + Zh((d)(xs),wc)))) —tr (YTh(<I>TW)) : (166)

where tr(-) denotes the trace operator. Then the maximum likelihood estimates W is defined as the minimizer of the above
loss function in W while fixing the feature matrix ®.

Both the maps W +— £(®, W) and ® — ¢(P, W) are convex and we can compute their gradients as well as the Hessian
explicitly as follows. For each y € {0,1,...k}, ¢ € RP, and W € RP**, define vector and matrix functions

W (o, w;)) W (o, w;))

h W) = (h1,...,h)" e R"¥Y b= 1y = ) I 167
(y7¢7 ) ( 1 ) ) S s Iy 1+ Zj:l h(<¢, Wc>) (y ]) h(<¢, W;>) ( )
H(y,(b,W) = (H,Lj) ) c RHX57 (168)
i

v B (owi))1(i=5) W ((wi))h (wi)) oo (W Gew)) (W Uewi))?

H;; = T h((fw.)) (o, h(<¢,wc>]))2 1y =1i=j) ( A e T ) (169)
Foreach W = [wy,...,w,] € RP*# let WY := [wT ... wI]T € RP* denote its vectorization. Note that

E, [y, ¢, W) =0. (170)
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A straightforward computation also shows

Vyeerw) (@, W) = > " h(ys, ¢, W) @ ¢, (171)
s=1
— _ — T
H:= vvec(VV)Vvec(W)Tg(':I)vVV) - ZH(ysv (bs?W) ® ¢s¢s ) (172)
s=1

where ® above denotes the Kronecker product. Recall that the eigenvalues of A ® B, where A and B are two
square matrices, are given by A;u;, where A\; and p; run over all eigenvalues of A and B, respectively. Also, for
two square matrices A, B of the same size, write A < B if vTAv < vTBuw for all unit vectors v. Then denoting
)\Jr ‘= MaXi1<s<n Amax(H(ysa ¢sv W))’

Hx)\") 10¢,0! =1"1e 22" (173)
s=1

Similarly, \"TI ® ®®7 < H, where A\~ denotes the minimum over all )\min(I:I(ys, ¢, W)). Hence we can deduce

A Nin (227) < A (H) < A (H) < N Ao (@27 (174)

There are some particular cases worth noting. First, suppose binary classification case, x = 1. Then the Hessian H above
reduces to

H=> Hii(ys, b, W)h, 0. - (175)
s=1

Second, let h(x) = exp(x) and consider the multinomial logistic regression case. Then h = b’ = h”’ so the above yields
the following concise matrix expression

Vwil(®, W) =®P —-Y) € RP*", Va (2, W)=W(P -Y)T € RP*", (176)
psi(l=ps1)  —PsiPs2 - —DsiPsw
o i: PP ps2(1 '—psz) - PP | 6,67 a7
- —PskPs1 P2 Ps(1 .—pm)
Note that H in this case does not depend on y, for s = 1,...,n. The bounds on the eigenvalues depend on the range of

linear activation (¢,, w;) may take. For instance, if we restrict the norms of the input feature vector ¢; and parameter w,
then we can find a suitable positive uniform lower bound on the eigenvalues of H.

Lemma F.1 (Lemma B.1 in (Lee et al., 2023)). Suppose h(-) = exp(-). Then

. . min eXp(<¢s’ W1>)
Amin (H(¢57W)) 2 1Sish (1437, exp({¢,, we)))?

Amax (H(¢., W)) < max exp((¢s, Wi)) (1 2 Y ex o We ) (179)
( (&, ))_1§i§n (1+Z:Zlexp(<¢5,wc>))2 - Cz:; p((9. )

) (178)

F.1. Additional Figures
G. Experimental details

All numerical experiments were performed on a workstation with Xeon Gold 6248R @ 3.00GHz CPU, 512GM of RAM,
and two RTX A6000 GPUs.
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Figure 6. (a,b) Plots of training loss for Algorithms 1 and 2 vs. elapsed time at different £ values. (¢) Comparison of convergence speed
between BCD and its neural implementation ran on GPU at & = 0.1, with shaded regions indicating one standard deviation across 10
runs.

G.1. Experiments on semi-synthetic MNIST dataset

We follow the experimental setting in (Lee et al., 2023) for the semi-synthetic MNIST dataset. For the reader’s convenience,
we give details here. Denote p = 282 = 784, n = 500, r = 2, and k = 1. First, we randomly select 10 images each from
digits "2’ and ’5’. Vectorizing each image as a column in p = 784 dimension, we obtain a true factor matrix for features
Wie,x € RP*". Similarly, we randomly sample 10 images of each from digits *4” and *7’ and obtain the true factor matrix
of labels We v € RP*". Next, we sample a code matrix Hy,e € R"*"™ whose entries are i.i.d. with the uniform distribution
U(]0,1]). Then the ‘pre-feature’ matrix X, € RP*"™ of vectorized synthetic images is generated by Wye x Hie. The
feature matrix X, € RP*™ is then generated by adding an independent Gaussian noise €; ~ N (0, 01,,) to the jth column
of X for j = 1,...,n, with 0 = 0.5. We generate the binary label matrix Y = [y1, ..., yn] € {0, 1}} X" (recall k = 1) as

-1

follows: Each entry y; is an independent Bernoulli variable with probability p; = (1 +exp(— ﬂae’YWEUC’YXda[a[:, z])) ,
where By y = [1, —1]. No auxiliary features were used for the semi-synthetic dataset (i.e., ¢ = 0).

G.2. Experiments on the Job postings dataset

Next, we provide detailed information about the dataset used in our study (Laboratory of Information and Communication
Systems, 2016). The dataset consists of 17,880 job postings, encompassing 15 variables that include binary values,
categorical variables, and textual information in the form of job descriptions. Within the dataset, 17,014 postings (95.1%)
are classified as genuine job postings, while 866 postings (4.84%) are identified as fraudulent. This highlights a considerable
class imbalance, with a significantly larger number of genuine postings compared to fraudulent ones. In our analysis, we
designated fake job postings as positive examples and true job postings as negative examples.

In our experiments, we represented each job posting as a p = 2480 dimensional word frequency vector derived from its job
description. This vector was augmented with ¢ = 72 auxiliary features, encompassing binary and categorical variables.
These features include indicators specifying whether a job posting includes a company logo or if the advertised job is located
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in the United States. To compute the word frequency vectors, we represented the job description variable as a term/document
frequency matrix, applying Term Frequency-Inverse Document Frequency (TF-IDF) normalization (Pedregosa et al., 2011).
This normalization method assigns lower importance to common words appearing in all documents and considers words
specific to particular documents as more significant. In our analysis, we focused on the 2,480 most frequent words for
further investigation. Due to the high imbalance, the accuracy of classification can be trivially high (e.g., by classifying
everything to be negative), and hence achieving a high F-score is of importance.

37



