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Abstract
Neuron-level interpretations aim to explain net-

work behaviors and properties by investigating

neurons responsive to specific perceptual or struc-

tural input patterns. Although there is emerging

work in the vision and language domains, none

is explored for acoustic models. To bridge the

gap, we introduce AND, the first Audio Network

Dissection framework that automatically estab-

lishes natural language explanations of acous-

tic neurons based on highly-responsive audio.

AND features the use of LLMs to summarize

mutual acoustic features and identities among au-

dio. Extensive experiments are conducted to ver-

ify AND’s precise and informative descriptions.

In addition, we demonstrate a potential use of

AND for audio machine unlearning by conducting

concept-specific pruning based on the generated

descriptions. Finally, we highlight two acoustic

model behaviors with analysis by AND: (i) mod-

els discriminate audio with a combination of basic

acoustic features rather than high-level abstract

concepts; (ii) training strategies affect model be-

haviors and neuron interpretability – supervised

training guides neurons to gradually narrow their

attention, while self-supervised learning encour-

ages neurons to be polysemantic for exploring

high-level features.

1. Introduction
Deep Neural Networks (DNNs) have achieved remarkable

success across various tasks. However, their inherent nature

of high non-linearity poses great challenges in understand-

ing model behaviors and neuron functionalities. To tackle

this longstanding issue, several lines of work have attempted

to acquire deeper knowledge about DNNs, ranging from de-

cision explanation for the input (Simonyan et al., 2013;
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Selvaraju et al., 2017; Chattopadhay et al., 2018), property

observation of layer-wise features (Pasad et al., 2021; 2023),

to neuron-level interpretations (Bau et al., 2017; Hernandez

et al., 2021; Oikarinen & Weng, 2023; Bills et al., 2023; Lee

et al., 2023; Anonymous, 2024; Bai et al., 2024).

Among them, neuron-level interpretation tools automatically

analyze the functionality of the neurons inside a model. One

classical strategy is to examine each neuron’s activation to

inputs with different perceptual, structural, and semantic

patterns (Hernandez et al., 2021; Oikarinen & Weng, 2023;

Kalibhat et al., 2023). Knowing neuron’s responsive fea-

tures brings benefits to understanding fine-grained model

behaviors. For instance, FALCON (Kalibhat et al., 2023)

observes that a group of neurons with varied responsive fea-

tures may together build a more concise and interpretable

feature; MILAN (Hernandez et al., 2021), which explains

neurons with natural language descriptions, finds that visual

neurons in shallow layers requires more adjectives to de-

scribe, and these neurons substantially affect model perfor-

mance. In addition, neuron-level interpretability can also be

applied to tasks that require neuron-level knowledge, such

as LLM factual editing (Meng et al., 2022), anonymized

models auditing and spurious features editing (Hernandez

et al., 2021).

Nevertheless, current neuron-level interpretability frame-

works are all designed for visual (Bau et al., 2017; Her-

nandez et al., 2021; Oikarinen & Weng, 2023; Bai et al.,

2024) and language modalities (Bills et al., 2023; Lee et al.,

2023), rendering them incompatible with acoustic models.

For example, some rely on external vision models such as

image segmentation (Bau et al., 2020) and CLIP (Oikarinen

& Weng, 2023). While sound event detection models (Nam

et al., 2022; Shao et al., 2024) could offer timestamp anno-

tations analogous to pixel-wise image segmentation, current

models suffer from narrow detectable classes due to smaller

dataset scale (Turpault et al., 2019; Serizel et al., 2020).

This limitation also hinders the development of text-audio

constrastive models (Guzhov et al., 2022; Wu* et al., 2023),

causing difficulties for the direct transfer of previous inter-

pretability tools from vision modality to audio modality.

Hence, to fill in the gap, in this paper we present AND,

Our source code is available at https://github.com/Trustworthy-
ML-Lab/Audio Network Dissection
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AND: Audio Network Dissection for Interpreting Deep Acoustic Models

an elegant and effective framework for Audio Network

Dissection using natural language descriptions. AND fea-

tures an LLM-based pipeline, along with three specialized

proposed modules, to capture responsive acoustic features

of neurons in an audio network. The outputs of AND, in-

cluding the closed-set concept, open-set concept, and LLM-

generated summary, serve as mediums to inquire activities

and properties of an audio network. Extensive experiments

are presented in Section 4 to showcase the quality and use-

fulness of AND’s outputs. In particular, in Section 4.1, we

validate the efficacy of closed-concept identification by con-

sidering last-layer network dissection. In Section 4.2, we

provide human evaluation to verify closed-concept identifi-

cation and summary calibration. In Section 4.3, we discuss

the middle-layer concept-specific pruning using AND by

demonstrating a potential use of AND for audio machine

unlearning, achieved by leveraging the open-concept identi-

fication module. Finally, we investigate critical properties of

audio networks with AND in Section 4.4 and Section 4.5. In

particular we analyze feature importance of different acous-

tic features by looking into parts of speech (POS) (Kumar

et al., 2017) in Section 4.4, and argue the influence of dif-

ferent training strategies on neuron and model behaviors in

Section 4.5.

In conclusion, this work’s contributions are threefold:

• We present AND, the first automatic Audio Network

Dissection framework to provide natural language de-

scriptions of acoustic neurons activities. Extensive

experiments are conducted to verify AND’s efficacy.

• We showcase the effect of middle-layer concept-

specific pruning conducted by AND and discuss its

relations to audio machine unlearning as a potential

use case of AND.

• We leverage AND to analyze the feature importance of

different acoustic features and the influence of training

strategy on model behaviors as well as neuron inter-

pretability.

2. Related Work
2.1. Neuron-level Interpretations

Neuron-level Interpretations aim to investigate neurons’ ac-

tivities to acquire fine-grained knowledge of deep networks

as well as high-level network properties by inquiring groups

or layers of neurons. Network Dissection (Bau et al., 2017)

makes the first attempt to analyze visual models’ behaviors

by automatically exploring individual neurons’ functionali-

ties, with a line of follow-up work (Hernandez et al., 2021;

Oikarinen & Weng, 2023; Kalibhat et al., 2023; Anonymous,

2024; Bai et al., 2024). In particular, MILAN (Hernandez

et al., 2021) utilizes LSTMs to directly generate natural lan-

guage descriptions conditioned on a set of patched highly-

activated images. To remove the need of concept labels in

(Bau et al., 2017; Hernandez et al., 2021) and accelerate

the dissection process, CLIP-Dissect (Oikarinen & Weng,

2023) identify neuron concepts by computing similarity be-

tween neuron activations and representative features of open-

vocabulary concept sets through probing dataset and CLIP.

FALCON (Kalibhat et al., 2023) identifies critical concepts

by scoring nouns, verbs and adjectives in predefined image

descriptions of highly-activated images. Additionally, lowly-

activated images are also utilized to address spurious and

vague concepts, with overlapping concepts between the two

sets being removed. Recently, LLM-based open-domain

automatic description generation (Anonymous, 2024; Bai

et al., 2024) is also proposed for interpreting visual mod-

els. Besides dissecting vision networks, there has being

growing interest to interpret LLMs (Meng et al., 2022; Bills

et al., 2023; Lee et al., 2023). ROME (Meng et al., 2022)

employs causal mediation analysis (CMA) to locate neu-

rons influential to specific factual knowledge. (Bills et al.,

2023) proposes to use LLMs to generate the explanations

for each neuron in language models and assess dissecting

qualities. (Lee et al., 2023) further improves (Bills et al.,

2023) by proposing efficient prompting techniques to obtain

high quality neuron descriptions at lower computation cost.

2.2. Audio and Speech Network Interpretability

Previous efforts for interpreting audio and speech mod-

els primarily focus on input-specific explanations (Mishra

et al., 2017; Becker et al., 2018) and layer-wise analy-

sis (Pasad et al., 2021; 2023; Li et al., 2023). The for-

mer utilizes local interpretability tools, such as local inter-

pretable model-agnostic explanations (LIME) (Ribeiro et al.,

2016) and layer-wise relevance propagation (LRP) (Bach

et al., 2015) to visualize models’ attention to the MFCC

or mel-spectrogram of a specific audio. The latter, mostly

conducted on self-supervised learning (SSL) speech models,

examines the acoustic, phonetic, and word-level properties

encoded in the representations of each transformer layer by

correlation-based analysis. Specifically, it is found that mod-

els pretrained with hidden discrete units prediction, such

as HuBERT (Hsu et al., 2021) and WavLM (Chen et al.,

2022), learn to encode richer phonetic and word informa-

tion in deeper transformer layers (Pasad et al., 2023). While

layer-wise findings provide reliable guidance for utilizing

the embeddings of pretrained SSL models to downstream

speech tasks, they provide limited utility for neuron-level

tasks, such as model editing and unlearning. On the other

hand, previous work (Kumar et al., 2017) have pointed out

relations between acoustic concepts and natural languages,

with a large set of audio concepts such as “glass breaking”

and “sound of honking cars” exploited through a designed

2



AND: Audio Network Dissection for Interpreting Deep Acoustic Models
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Figure 1. The proposed framework of AND. Taking concept set Dc, probing dataset Dp, and target network F (·) as inputs, AND employs

a coarse-to-fine LLM-based pipeline to analyze each neuron’s highly-responsive acoustic concepts by three specialized modules: (A)

closed-concept identification, (B) summary calibration, and (C) open-concept identification. Closed-ended concept Cclosed-set, calibrated

summary Sc
h, and open-ended concept Copen-set are generated as outputs of AND.

pipeline including techniques such as part-of-speech (POS)

tagging. Inspired by this, in contrast to existing research,

we propose the first neuron-level description-based inter-

pretability tool, AND, to understand audio network behav-

iors from a more fine-grained aspect but with informative

natural language descriptions. Our framework is elegant

and instructive, as described in Section 3 and verified in Sec-

tion 4 with extensive experiments.

3. Audio Network Dissection (AND)
3.1. Framework Overview

Inputs and Outputs As shown in Figure 1, AND takes a

target network F (·), a predefined concept set Dc, |Dc| =
M , with concepts c1, . . . , cM , and a probing dataset Dp,

|Dp| = N , with audio clips a1, . . . , aN , as inputs. AND
then dissects neurons by observing and summarizing the

shared acoustic properties and identities among top-K
highly-activated audio. We design an LLM-based pipeline

with three specialized modules in AND: (A) closed-concept

identification, (B) summary calibration, and (C) open-

concept identification. AND provides 3 types of output

corresponding to each module: a set of closed-set concepts

Cclosed-set selected out of Dc, a natural language summary

Sc
h describing commonalities among highly-activated audio,

and a set of open-set concepts Copen-set acquired from Sc
h. A

dissection example of AND is provided in Appendix B.

Pipeline AND leverages closed-concept identification,

summary calibration, and open-concept identification

(marked as Module A, Module B, and Module C in Fig-

ure 1), to acquire closed-concept Cclosed-set, summary Sc
h,

and open-concept Copen-set. Inputs of the three modules are

acquired from concept set Dc, probing dataset Dp, and tar-

get network F (·), which are three original inputs of AND.

Specifically, closed-concept identification (module A) takes

Dc, activation vector u = [u1, . . . , uN ]T , and descriptions

Dd = {d1, . . . , dN} as inputs, where di is the open-domain

description of audio ai generated by an audio captioning

model; ui is the activation value of interested neuron on

audio ai. Closed-concept identification generates Cclosed-set

as the output. Summary calibration (module B) takes Sh

and Sl as inputs, which are summaries of top-K highly-

activated and lowly-activated audio, with calibrated sum-

mary Sc
h being the output. The retrieval of highly-activated

and lowly-activated audio is achieved by querying Dd based

on the values in u. Finally, Sc
h serves as inputs for open-

concept identification (module C) to extract critical concepts

as Copen-set. We elaborate each module in Section 3.3-3.5

respectively, with detailed illustration in Figure 2.

3.2. Input Preprocessing for Each Module

This section describes the preprocessing of AND’s inputs to

generate inputs for three specialized modules. In particular

we discuss the generation of Dd, Sh, and Sl.

To obtain caption Dd of audio clips in Dp, we adopt

SALMONN (Tang et al., 2024) as the open-domain audio

captioning model. We feed each audio ai into SALMONN
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(a) Illustration of closed-concept identi-
fication. Audio are represented as its de-
scriptions rather than waveform feature
embeddings in CLAP (Wu* et al., 2023).
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(b) Illustration of summary calibration and open-concept identification. Pairwise sentence
similarity between sentences of Sh and Sl is computed to remove homogeneous concepts
and generate calibrated summary Sc

h. Critical concepts in Sc
h are captured by filtering out

concepts unrelated to acoustics (e.g. ”running”). Adjectives are used as an example here.

Figure 2. Detailed illustration of AND’s three specialized modules: (A) closed-concept identification, (B) summary calibration, and (C)

open-concept identification.

to acquire di, forming Dd = {d1, . . . , dN}. For Sh and Sl,

given an acoustic neuron f(·) in F (·), ui = f(ai) is the

activation value of the neuron for the audio clip ai. It is the

descriptions of audio with top-K highest and lowest activa-

tion values that constitute the high-activation descriptions

Ih:

Ih = {di | ui is of top-K highest value in u},
and the low-activation descriptions Il:

Il = {di | ui is of top-K lowest value in u}.
Ih and Il are subsequently used to generate the summary

Sh and Sl by instructing Llama-2-chat-13B (Touvron et al.,

2023) to summarize and list down the commonalities among

these audio descriptions in the set. The generated Dd, Sh,

and Sl serve as inputs for implementing closed-concept

identification (module A), summary calibration (module

B), and open-concept identification (module C), which are

detailed in Section 3.3, Section 3.4, and Section 3.5.

3.3. Module A: Closed-Concept Identification

Closed-concept identification takes concept set Dc =
{c1, . . . , cM}, set of descriptions Dd = {d1, . . . , dN}, and

activation vector u as inputs. The output is a concept

Cclosed-set from Dc to label the interested neuron, similar

to CLIP-Dissect’s spirits. Note that the term ”closed-set”

is due to pre-defined concept set, but it can be an open

vocabulary set as needed.

For each concept ci, AND generates the representative fea-

ture vector vci , where [vci ]j = c̃i · d̃j , j = 1, . . . , N , as

shown in Figure 2a. CLIP’s text encoder Etext(·) is used to

encode concept ci into c̃i and descriptions dj into d̃j . That

is, c̃i = Etext(ci) and d̃j = Etext(dj). Then, a similar-

ity function Sim(·), such as cosine similarity or weighted

pointwise mutual information (WPMI), is applied to mea-

sure the similarity between u and vci . The concept with

the highest similarity score is considered the most-matched

closed-set concept, denoted as Cclosed-set. We refer to this

proposed approach as the description-based (DB) method.

In addition to DB, we present two straightforward alternative

approaches than Figure 2a to achieve closed-concept identi-

fication. The first idea is using in-context learning (ICL) to

query the LLM to directly select a concept from Dc that best

matches information in the calibrated summary Sc
h. We pro-

vide the instruction and examples for ICL in Appendix A.3

The second solution is to adopt a text-audio contrastive

learning model, such as CLAP, and perform cross-modal

retrieval as CLIP-Dissect (Oikarinen & Weng, 2023) does

but in a text-audio-based (TAB) manner. Notably, the TAB

method can be considered as the variant of CLIP-Dissect for

the acoustic model. Performance comparisons of ICL, DB,

and TAB methods are presented in Section 4.1 and Table 2.

3.4. Module B: Summary Calibration

As shown in Figure 2b, the summary calibration module

takes high-activation summary Sh and low-activation sum-

mary Sl as inputs. Sl is used to filter out spurious concepts

that are ambiguous or hallucinating in Sh. For instance,

in scenarios where all audio in Dp contain no noise, Sh

and Sl would hold sentences emphasizing the clarity of

sound. We then remove this redundant information in Sh.

In the calibration process, for each mentioned point p in
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Sh, we compute the cosine similarity between its sentence

feature (Reimers & Gurevych, 2019) and those in Sl. If the

similarity value between p and any point in Sl exceeds a

predefined threshold t, we discard p. The calibrated Sh is

the output of this module, denoted as Sc
h.

3.5. Module C: Open-Concept Identification

As illustrated in Figure 2b, the open-concept identification

takes calibrated summary Sc
h as the input and extracts open-

set concept Copen-set. Then naming of “open-set” is because

Copen-set is derived from the open-domain summary Sc
h.

Open-concept identification aims to identify critical con-

cepts that are related to acoustics. This is implemented by

applying designed filtering to Sc
h. Using adjectives as an

example, we first apply POS tagging to draw out all adjec-

tives from Sc
h, while some may be irrelevant to acoustics

such as the word “running”. Second, we leverage rule-

based and LLM-based filtering to remove trivial adjectives.

The former eliminates common stop words, while the latter

queries Llama-2-chat-13B to determine whether the adjec-

tive describes acoustic properties. For LLM-based filtering,

a designed hard prompt is used1. The resulting filtered

set Copen-set comprises sound-related concepts, reflecting

shared acoustic properties among top-K highly-activated

audio. Figure 3 displays the distribution of top-10 most

common adjectives for all linear layer neurons within an

Audio Spectrogram Transformer (AST) (Gong et al., 2021)

trained on the ESC50 (Piczak, 2015) dataset. More results

are in Appendix D.

Figure 3. Counting of adjectives for AST’s all linear layer neurons

generated by open-concept identification module. We show the

top-10 most-used adjectives here.

1In practice, after applying POS tagging to all neurons’ cali-
brated summaries, AND forms a universal set of adjectives. Llama-
2-chat-13B is then used to examine adjectives in the set to prevent
repeated queries to the same words.

4. Experiments
Overview This section aims to verify the dissection qual-

ity of AND and investigate acoustic model behaviors us-

ing AND. First, we validate the dissection quality of AND
in Section 4.1 before diving into model analysis. Following

CLIP-Dissect, Section 4.1 measures last layer dissection ac-

curacy as an indicator of the interpretation quality of AND’s

closed-concept identification module (module A) because

neurons in the output layer have 1-1 corresponding with

classes in the training dataset and thus can serve as ground-

truth. In Section 4.2, we conduct a human evaluation to

assess AND’s performance on middle-layer neurons with

model-unseen concepts. Also ,we provide qualitative results

in Appendix B.

Next, we verify Copen-set from module C as well as introduce

a use case of AND regarding machine unlearning (Golatkar

et al., 2020; Nguyen et al., 2022; Zhang et al., 2022) in Sec-

tion 4.3. Notably, classical strategies for machine unlearning

involve ablating individual neurons that are influential to the

target concept (Pochinkov & Schoots, 2024). While there

exist works focusing on unlearning vision and language

models (Meng et al., 2022; Gandikota et al., 2023; Zhang

et al., 2023), audio machine unlearning remains relatively

underexplored. To achieve this challenging task, we con-

sider linguistically parsing each neuron’s Sc
h generated by

AND’s module B and leverage acquired Copen-set to conduct

neuron pruning based on a given target concept. More con-

cretely, we prune all of the neurons dissected with the target

concept and examine audio models’ perception abilities to-

wards both related and unrelated concepts after ablation.

Results are reported in Section 4.3.

Finally, Section 4.4 and Section 4.5 are analyses and find-

ings of acoustic model behaviors using AND. In Section 4.4,

we follow MILAN’s experimental settings but on acoustic

networks with AND to investigate how it is different from

or the same as vision network’s observations discovered in

MILAN. In Section 4.5, we analyze neuron polysemantic-

ity (uninterpretability) (Mu & Andreas, 2020; Oikarinen &

Weng, 2023; Bills et al., 2023), i.e., neurons’ diverse atten-

tion to seemingly unrelated features, affected by network

training strategies.

For experiments in Section 4.1- Section 4.5, we utilize the

ESC50 (Piczak, 2015) as Dp and consider all its 50 audio

classes as Dc. The only exception is that we use open-ended

acoustic concept set proposed by Kumar et al. (2017) as Dc

in Section 4.2. For the target networks F (·), as shown

in Table 1, we select the Audio Spectrum Transformer

(AST) (Gong et al., 2021) and BEATs (Chen et al., 2023).

BEATs is an SSL audio model pretrained with Masked Au-

dio Modeling (MLM) (Chen et al., 2023), which allows

us to use either by finetuning the whole model (BEATs-

finetuned) or training only the last linear layer (BEATs-
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Table 1. Training settings of audio models used in the experiments.

AST BEATs-finetuned BEATs-frozen

Pretraining on Audioset Supervised (all layers) Self-supervised (all layers) Self-supervised (all layers)

Fine-tuning on ESC50 Supervised (all layers) Supervised (all layers) Supervised (final linear layer)

Table 2. Last layer network dissection accuracy of AST, BEATs-frozen, and BEATs-finetuned on the ESC50 dataset, with the highest

performance marked in bold. As discussed in Section 3.3, ICL refers to querying LLM to choose a best-matched concept for the summary,

and TAB/DB refers to the text-audio-based/description-based method. DB achieves the best results among all metrics and models.

Model AST BEATs-finetuned BEATs-frozen

Method Top-1 Acc Top-5 Acc Cos Top-1 Acc Top-5 Acc Cos Top-1 Acc Top-5 Acc Cos

AND (module A: ICL) 72.0 60.0 0.83 52.0 56.0 0.68 16.0 16.0 0.37
AND (module A: TAB) 96.0 100.0 0.98 74.0 92.0 0.82 46.0 72.0 0.60
AND (module A: DB) 100.0 100.0 1.00 76.0 100.0 0.83 58.0 82.0 0.69

frozen). We adopt both versions. These target networks

are trained on the ESC50, achieving testing accuracies of

95.0% for AST, 89.75% for BEATs-finetuned, and 84.75%

for BEATs-frozen, respectively.

4.1. Evaluation by Last Layer Dissection

Experimental Settings We evaluate ICL, DB, and TAB

methods for closed-concept identification (module A), as

discussed in Section 3.3. For the ICL-based approach, we

utilize ICL to query Llama-2-chat-13B to select one class

from the given concept set that best matches the calibrated

summary, with some hand-crafted examples provided. For

TAB, we use CLAP to extract audio features in Dp and

concept features in Dc. For DB, we use CLIP to extract

concept/description features.

We consider five similarity functions: cosine similarity,

cubed cosine similarity, rank reorder, WPMI, and softW-

PMI, as discussed in CLIP-Dissect (Oikarinen & Weng,

2023) and label-free concept bottleneck models (Oikarinen

et al., 2023). Each method’s best performance among the

five functions is presented, with detailed results provided

in Appendix E. We report the top-1 and top-5 classifica-

tion accuracy as well as the CLIP-based cosine similarity

between the predicted concept and corresponding ground-

truth class for each final-layer neuron.

Results Table 2 demonstrates DB’s superiority compared

with ICL and TAB across all three target models. Partic-

ularly, perfect dissection results are achieved on the AST.

On BEATs-frozen, DB outperforms TAB by 12% in top-1

accuracy and 10% in top-5 accuracy. This underscores the

advantages of similarity calculation within the text feature

space, as proposed in DB to generate audio descriptions,

mitigating potential imperfections in cross-modal feature

projection between audio and text features that might arise

from CLAP as in TAB.

Notably, the dissection accuracy typically decreases as the

classification ability of the target models on the probing

dataset declines. For instance, DB’s top-1 accuracy drops

from 100.0% to 76.0% and 58.0%, corresponding to testing

accuracies of 95.0%, 89.75%, and 84.75% for AST, BEATs-

finetuned, and BEATs-frozen, respectively. This decline is

attributed to incorrect activation values (logits) of the output

layer neurons for misclassified samples, which in turn leads

to erroneous calculation of the similarity function. However,

despite this decrease, DB still consistently outperforms ICL

and TAB in all metrics.

4.2. Human Evaluation

Experimental Settings This section evaluates AND on

middle-layer neurons with model-unseen concepts. Specif-

ically, we replace Dc with a large-scale acoustic concept

set proposed by Kumar et al. (2017) to evaluate the quality

of the calibrated summary Sc
h from module B and the con-

cept identified by DB and TAB in module A. Evaluating the

middle-layer interpretation is challenging due to the lack of

intrinsic labels for neurons in middle layers, driving us to

conduct human evaluation. Following MILAN (Hernandez

et al., 2021) and CLIP-Dissect (Oikarinen & Weng, 2023),

we ask human annotators to write summaries for top-K
high-activated audio as well as score the description gen-

erated by AND. Notably, previous data collected through

small-scale experiments on Amazon Mechanical Turk are

not satisfying despite providing instructions and examples.

This is probably due to considerable challenges for peo-

ple to precisely describe potential acoustic characteristics

among a group of audio in natural language. As the middle-
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layer assessment requires professional writers, we turn to

author-based experiments. For transparency and fairness,

the human study results and the associated audio clips are

provided in our code repository for the reader’s reference.

We assess the dissection quality of 10 randomly selected

neurons per layer in AST, with a total of 120 neurons se-

lected. We as the human evaluators to (1) score whether

the produced description matches the highly activated audio

samples and (2) write the shared properties of highly acti-

vated audio samples. For each sampled neuron, five highly

activated audio clips are given. For (1), We rate the quality

of AND’s description on a scale of 1 to 5, with 1 being

strongly disagree and 5 being strongly agree, in response

to the question, “Does the given description accurately de-

scribe most of these audio clips?” For (2), the collected

summaries are evaluated through the semantic similarity

(e.g. cos similarity or BERTScore (Zhang et al., 2020)) with

descriptions from AND.

Results Firstly, scores across neurons are averaged to serve

as a performance indicator. Second, we evaluate AND by

computing cos similarity and BERTScore on the generated

description, aiming to compare the acoustic similarity be-

tween the human-written summaries and descriptions. Re-

sults are shown in Table 3. Calibrated summaries Sc
h from

module B achieve the highest quality among all methods,

reflecting the effectiveness of open-domain interpretation.

Table 3. Results of human evaluation to measure AND’s capability

of dissecting middle-layer neurons. Rating is the mean of scores

(1-5) across neurons. Cos similarity and BERTScore are computed

between AND’s descriptions and human’s written descriptions.

Rating Cos BERTScore

AND (Moduel A: TAB) 2.73 0.24 0.42

AND (Module A: DB) 3.24 0.57 0.45

AND (Module B: SUM) 3.49 0.72 0.46

4.3. Use Case: Audio Machine Unlearning

Experimental Settings We observe models’ change of

confidence for samples in the ESC50 testing set after neuron

ablation. For instance, upon choosing the class “water drops”

as the target concept, we prune out all neurons dissected

to have “water drops” as their responsive features. Then,

samples of all 50 classes in the ESC50 testing set, such as

“pouring water” and “cow”, are fed to the pruned network

to observe the change of logits. This process is repeated 50

times by using each of ESC50’s classes as the target concept,

and the values of confidence change on the target concept

and non-target concepts are averaged.

There are several intuitive strategies to determine whether

a neuron is relevant to the target concept. First method is

to extract non-trivial open-domain entities in Sc
h as Copen-set

(module C). If Copen-set includes the target concept, we mask

out this neuron. We refer to this method as open-concept

pruning (OCP). The second method is using closed-set con-

cept Cclosed-set. Similarly, if the target concept is included

in Cclosed-set, we mask out this neuron. To align the prun-

ing numbers between open-concept pruning and closed-

concept pruning, we select the top-3 most matched concepts

when constructing Cclosed-set, i.e., Cclosed-set contains three

most matched concepts drawn from Dc. Notably, ICL, DB,

and TAB in module A are all potential options to construct

Cclosed-set, as discussed in Section 4.1. Since DB and TAB

are considerably better than ICL for last-layer dissection,

we adopt DB and TAB in this experiment.

Results The effects of ablating neurons are displayed in Ta-

ble 4. Results show that OCP based on module C is most

efficient in middle-layer concept pruning. Although one-

pass pruning may incur backup neurons in the network to

show up and complement the pruned ability (McGrath et al.,

2023), OCP still imposes considerable effects on models’

perceptions of the target concept. Specifically, for AST,

the classification confidence drop of the target concept is

higher than that of non-target concepts, with a gap of 3.9

achieved. This trend is also observed in BEATs-finetuned

and BEATs-frozen. Notably, BEATs-frozen, whose model

weights are from SSL pretraining, is much more robust to

pruning. This may indicate the diverse attention of SSL pre-

trained neurons with stronger “backup” abilities (McGrath

et al., 2023) compared with models trained in a supervised

manner. Figure 10 in Appendix F illustrates the change of

confidence with “water drops” as the target concept, BEATs-

finetuned as the target network, and OCP as the ablating

strategy. After pruning, BEATs-finetuned’s classification

abilities on water-related concepts, such as “toilet flush”

and “pouring water”, are heavily affected, with a smaller

influence on other unrelated concepts.

4.4. Analyzing Acoustic Feature Importance

Experimental Settings Similar to MILAN (Hernandez

et al., 2021), we linguistically parse descriptions to fine-

grained information and investigate factors influencing

model performance by neuron ablation with certain criteria.

Among all linear layer neurons of AST, we prune r% neu-

rons with the highest number of nouns, adjectives, verbs,

prepositions, and the longest calibrated summary, where r
is a parameter. Second, we categorize adjectives into two

groups: basic adjectives and high-level adjectives. The for-

mer comprises “high-pitched”, “high-quality”, “clear”, and

“loud”, which are common in generated descriptions and

depict fundamental acoustic features such as frequency and

amplitude. We group all the remaining adjectives as high-

level ones with more abstract concepts such as “dramatic”

and “repetitive”. We again ablate neurons based on either

the number of basic adjectives or high-level adjectives in

7
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Table 4. Averaged change of confidence after neuron ablation, with each class being the target concept. Avg, ΔA, and ΔR refer to the

averaged pruned numbers of neurons, confidence change on ablating class samples, and confidence change on remaining class samples,

respectively. OCP refers to open-concept pruning by leveraging Copen-set.

Model AST BEATs-finetuned BEATs-frozen

Method Avg ΔA ΔR ΔA - ΔR ↑ Avg ΔA ΔR ΔA - ΔR ↑ Avg ΔA ΔR ΔA - ΔR ↑
Random baseline 3000 -13.52 -13.48 0.04 3000 -0.55 -0.55 0.00 3000 -0.72 -0.73 -0.01
AND (module A: TAB) 3317 -4.19 -4.03 0.16 2765 -0.50 -0.49 0.01 2765 -0.42 -0.51 -0.09
AND (module A: DB) 3317 -7.18 -7.41 -0.23 2765 -0.53 -0.57 -0.04 2765 -0.48 -0.58 -0.10
AND (module C: OCP) 2808 -10.73 -6.83 3.90 2677 -2.00 -0.51 1.49 2906 -0.65 -0.55 0.10

(a) Ablating neurons with the highest
number of POS and longest summary.

(b) Ablating neurons with the highest
number of basic and high-level adjectives.

(c) Ablating neurons if a certain basic ad-
jective is contained in Copen-set.

Figure 4. Feature importance analysis of AST on ESC50, measured by module C in AND. The x-axis is the percentage of ablated linear

layer neurons, and the y-axis is the testing performance on ESC50 after pruning.

their summaries. Finally, we study the individual role of

four basic adjectives. For each adjective, we prune a neuron

if it is in Copen-set. If the number of neurons meeting the

criterion exceeds r% of the total neurons, we conduct ran-

dom pruning among them. Experiments are conducted three

times under three different random seeds and the numbers

are averaged.

Results Our observations in acoustic neurons diverge from

MILAN’s findings in visual neurons, which observe that

visual neurons with more adjectives in the descriptions are

more influential to model performance. As shown in Fig-

ure 4a, pruning neurons with most adjectives does not nec-

essarily lead to a more significant performance drop. While

pruning nouns exhibits a higher impact than random prun-

ing for 4%, 6%, and 8% neurons, it falls short for 2% and

10%. When further categorizing adjectives into basic and

high-level ones, as illustrated in Figure 4b, we find that

basic adjectives are consistently more influential than high-

level ones, with up to over 10% performance difference for

the case of 10% pruning. Moreover, pruning basic adjec-

tives incurs a slightly larger performance drop than random

pruning, except for the 2% case. This may indicate that

acoustics are identified more with its fundamental features

rather than abstract concepts such as repetitiveness and emo-

tions, which is intuitive especially when the models are

supervisedly trained to classify audio entities, such as AST

on ESC50. Further examinations on the four individuals

discover much smaller pruning effects for ablating neurons

with a specific basic adjective, as shown in Figure 4c. Com-

paring the results in Figure 4b, we conclude that models

distinguish audio more based on a combination of basic

acoustic features rather than individual ones or high-level

concepts, particularly for the task of entity classification.

As shown in Figure 5, we also compute the averaged number

of adjectives per linear layer neuron for each transformer

block as in MILAN. In particular, we analyze AST, BEATs-

finetuned, and BEATs-frozen, corresponding to three differ-

ent training strategies: supervised training, SSL pretraining

with whole-model supervised finetuning, and SSL pretrain-

ing with final layer finetuning. We observed that AST’s

attention to different acoustic features, represented as ad-

jectives, narrows down in deeper transformer blocks. This

trend is analogous to MILAN’s observation for supervised

ResNet18 on ImageNet. However, when considering SSL

pretraining, the diverse-to-accordant trend is mitigated, as

evidenced by the case of BEATs-finetuned. Moreover, for

BEATs-frozen, all transformer layers exhibit the same level

of attention to adjectives, and the overall numbers are lower.
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Figure 5. Number of averaged adjectives per neuron in different

transformer blocks of AST, BEATs-finetuned, and BEATs-frozen.

This suggests a potential effect of training strategies on

model behaviors. Neurons in BEATs-frozen are more di-

verse and do not represent mutually similar concepts. While

the supervised training leads to a more capable yet conver-

gent neuron layout. Further discussions on the effects of

training strategies are in Section 4.5.

4.5. Training Strategy Affects Neuron Interpretability

Experimental Settings Pseudo code for the proposed

pipeline is displayed in Appendix G.1. We first pretrain

a K-means model K(·) with sentences of audio descriptions

di for each audio ai in Dp. Number of clusters is set to

11, decided by the elbow method (Thorndike, 1953). Then,

for an interested neuron f(·), we acquire its Sh and project

sentences of each description to the 11 groups using K(·).
We say a description is related to a cluster if at least one

sentence within the description belongs to that cluster. If

at least τ descriptions are related to the same cluster, i.e.,

descriptions of highly-activated audio share common infor-

mation, we label the neuron as “interpretable”. Otherwise, it

is regarded as “uninterpretable”. τ is a parameter. Higher τ
denotes a stricter criterion. The semantics of found clusters

are discussed in Appendix G.2.

Results The percentages of uninterpretable neurons for

each transformer block of three models are illustrated in Fig-

ure 6, with τ = 4. AST demonstrates a decrease in the

percentage of uninterpretable neurons from shallow to deep

transformer blocks. Neurons in shallow layers are more

diverse and gradually concentrate on certain concepts in

deeper layers, with more overlapped information among

highly-activated audio, to conduct the classification task.

On the other hand, BEATs-frozen has consistent percent-

ages of unexplainable neurons among all layers. From the

scale of individual neurons, this manifests the effect of SSL

pretraining on diversifying models’ abilities. When finetun-

ing the entire model, as in BEATs-finetuned, the supervi-

Figure 6. Percentage of uninterpretable neurons in different trans-

former blocks of AST, BEATs-finetuned, and BEATs-frozen. More

results are provided in Appendix G.

sion attempts to guide the model to converge its attention

in deeper layers by narrowing neurons’ responsive features.

This finding links to the previously reported attentive overfit-

ting of supervised models (Zagoruyko & Komodakis, 2017;

Ericsson et al., 2021), which SSL networks are less vulner-

able to (Ericsson et al., 2021). While previous discussions

on attentive overfitting typically rely on observing perfor-

mance metrics or using input-specific interpretation tools

like Grad-cam (Selvaraju et al., 2017), we provide neuron-

level explanations for this phenomenon using AND. Finally,

this is also related to the averaged number of adjectives

per neuron in Figure 5, showing that a decrease in acoustic

features extracted from natural language descriptions may

represent a narrowed neuron polysemanticity. Figures under

different top-K and τ are presented in Appendix G.3, with

similar trends observed. Similar experiments but adopting

GTZAN Music Genre (Tzanetakis & Cook, 2002) as the

probing and training dataset are presented in Appendix G.4.

5. Conclusion
In this work, we have introduced AND, the first Audio

Network Dissection framework, which applies an LLM-

based pipeline incorporated with three specialized modules

to identify the responsive features of acoustic neurons. Ex-

tensive experiments are conducted to verify AND’s dissec-

tion quality and discover acoustic model behaviors using

AND. Specifically, last layer dissection and human evalu-

ation demonstrate AND’s high-quality dissection. Second,

we examine the effect of concept-specific pruning conducted

using AND and discuss its potential use case of model un-

learning. Third, we investigate the roles of acoustic features

in the model’s perception ability and make a comparison

with previous observations in the vision domain. Finally,

we discuss the impact of different training strategies on

neuron-level model behaviors, where the results align with

the analyses of acoustic features.
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A. Implementation Details
A.1. Audio Captioning Model

To obtain natural language descriptions of audio, we utilize SALMONN (Tang et al., 2024), which is a pre-trained LLM-

based multi-task audio model. One of SALMONN’s pretraining tasks is audio captioning, endowing it with remarkable

open-domain audio captioning abilities. Following its official guidance, we use the prompt “Please describe the audio in
detail.” and employ SALMONN-13B. As SALMONN is newly proposed, its implementation requires further refinement,

notably in the absence of batch inference capabilities. Captioning the entire ESC50 dataset takes approximately 40 hours on

an NVIDIA-A6000 GPU, with batch size set to be 1. There might be a substantial efficiency gain once batch inference is

available.

A.2. Large Language Model

We adopt Llama-2-chat-13B (Touvron et al., 2023) for all LLM-related experiments. The vllm package (Kwon et al., 2023)

is employed to boost the inference efficiency, which integrates efficient attention mechanism and other speed-up techniques

to create a memory-efficient LLM inference engine. The summarization process for all linear layers in AST and BEATs

takes around 12 and 10 hours respectively on an NVIDIA RTX A6000 GPU. This includes generating summaries for both

highly and lowly activated samples.

For the description summarization, we instruct the LLM with prompt “Here are descriptions of some audio clips. Please
summarize these descriptions by identifying their commonalities.” to ask LLM for summarization. Additionally, the

LLM-based non-acoustic-word filtering is conducted with prompt “Can the adjective be used to describe the tone, emotion,
or acoustic features of audio, music, or any other form of sound? Answer yes or no and give the reason.”.
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A.3. Instruction and Examples of In-context Learning

In Section 3.3, we introduce a method called ICL in AND’s module A, which uses LLM to interpret the calibrated summary

Sh
c and then explain neurons in target model F (·). This method is built upon in-context learning, enabling LLM to select a

concept Cclose-set from Dc as output. We have experimented with 1-shot and 2-shot learning. The instructions and examples

used are provided in Table 5.

Table 5. Instruction and examples used in ICL (module A in AND).

Instruction You have a set of object classnames:

[concept set Dc]

The following is a description about some audio clips. Based on the description, select a classname out of

the above classnames that matches the description most.

Example 1 Description: The audio features a car meowing: All of the clips contain the sound of a cat meowing. Loud

sound: These clips are all of loud sound but with varying degrees of intensity. Repetitive barking: Clips 1

and 4 are repetitive, with the cat meowing multiple times in each clip. Poor audio quality: All clips have

poor audio quality, with either distortion, muffling, or apparent background noises.

Response: We know these clips are about the class “cat” in the concept set. We can get this answer since the

description mentions All of the clips contain the sound of a cat meowing.

Answer: cat

Example 2 Description: They all feature a person snoring loudly. The snoring starts off slow and gets louder over time.

The audio is recorded in mono. There are no other sounds in the background. The snoring is described as

loud and intense. The audio clips differ in the following ways. The first clip features a man snoring, while

the second and fourth clips feature a person snoring (gender not specified). The third clip features a zombie

growling and snarling, while the other clips only feature snoring. The third clip is described as scary and

creepy, while the other clips are not. The third clip is intended for use in a horror movie or zombie video

game, while the other clips do not have specific intended uses stated. The third clip is of poor quality, while

the other clips are not specified as such.

Response: Based on the description, the most suitable classname for the audio clips would be “snoring”

or “zombie growling and snarling”. Both of these classnames match the description of loud sounds with a

strong emotional impact, specifically fear and terror. But “zombie growling and snarling” is not in the given

classname set. So the answer is “snoring”

Answer: snoring

A.4. Others

For the CLIP model, we employ ViT-B/32. For the CLAP model, we utilize the 630k-audioset-best version. To capture the

representation of textual artifacts in AND, we use all-MiniLM-L12-v2 pre-trained model provided by Reimers & Gurevych

(2019). For all experiments, we use K = 5 to select top-K highly/lowly activated samples, t = 0.7 to remove similar

sentences in summary calibration module.
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B. Qualitative Results
B.1. Dissection Pipeline

We provide an example to illustrate the pipeline in Figure 7. We randomly select a neuron from the first transformer encoder’s

output layer in AST with its corresponding top-5 highly and lowly activated audio samples. We highlight the predicted

audio source with bold font and similar concepts with the same text color. SALMONN is shown to yield high-quality

descriptions that capture correct audio sound source and its detailed acoustic properties for both top-5 highly and lowly

activated audio samples. Llama-2-chat subsequently identifies mutual information among these textual representations.

Notably, Llama-2-chat tends to produce some greeting messages due to its training objective, we remove these meaningless

contents by rule-based filtering. Then, summary calibration utilizes summary of lowly-activated samples to adjust summary

of highly-activated samples. For instance, the property “no background noise” is removed due to its presence in both

summaries. Finally, the calibrated summary of highly-activated samples serves as the output.

B.2. Outputs from Different Modules in AND

To make things clear, we randomly select some neurons in AST, using module A and B of AND to generate dissection

descriptions. The results are shown in Table 6. We adopt ESC50 (Piczak, 2015) as probing dataset Dp, and the open-domain

acoustic concept set proposed by Kumar et al. (2017) as Dc here.
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Figure 7. The pipeline of AND’s module B. Texts with the same color means they refer to the same concept or property. In this example, a

property “no background noise” is removed during calibration because it appears in both summaries.
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Table 6. Outputs from different modules in AND

Top-5 highly activated

audio label

AND (Module A: TAB) AND (Module A: DB) AND (Module B: SUM)

• church bells

• clock alarm

• clapping

• door wood creaks

• clapping

steam rushing bell-ringers crucifying 1. All of the clips are recordings of

sounds: The first clip is a recording of

a bell ringing, the second is an alarm

clock ringing, the third is a frog croak-

ing, and the fourth is a recording of a

group of people clapping.

2. High quality recordings: All of the

clips are of high quality, meaning they

are clear and well-recorded.

3. Loud and clear sounds: Each of the

clips features loud and clear sounds that

are easy to hear.

4. Gradual increase in volume: Three of

the clips (the alarm clock, the frog, and

the group of people clapping) feature a

gradual increase in volume over time.

5. Potential use in video games or

movies: All of the clips could be used as

sound effects in video games or movies,

based on their descriptions.

• glass breaking

• water drops

• glass breaking

• mouse click

• glass breaking

ribbon being glass chattering 1. Loud and intense sounds: All of

the audio clips feature loud and intense

sounds, which suggests that they may

be used to create a sense of drama or

urgency in a video or film.

2. High-pitched sounds: Four of the five

audio clips feature high-pitched sounds,

which could be used to create a sense of

tension or excitement.

3. Breaking or tapping sounds: Three of

the audio clips feature sounds of break-

ing or tapping, which could be used to

create a sense of impact or action in a

video or film.

4. Mono audio: Three of the audio clips

are mono, which means they have a sin-

gle audio channel and may be used to

create a more intimate or focused sound.

5. Short duration: Four of the audio

clips are short, lasting only a few sec-

onds, which could be used to create a

quick impact or effect in a video or film.

Overall, these commonalities suggest

that the audio clips could be used to cre-

ate a sense of drama, tension, or action

in a video or film, and could be par-

ticularly effective when used in quick

succession or in combination with other

audio or visual elements.
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C. Middle Layer Analysis from Basic Acoustic Properties
We measure the basic acoustic features of the top-K highly-activated audio for each neuron in the AST, with “loud” and

“high-pitched” adopted. Firstly, we group the neurons based on whether their Copen-set include the word “loud”. There are

22612 and 32734 neurons dissected with and without this word respectively. Then, the averaged waveform amplitude

of top-K highly-activated audio for each neuron is calculated. As shown in Figure 8a, highly-activated audio of “loud”

neurons typically have larger sounds. On the other hand, we use median frequency (MDF) as a measure of audio’s

representative frequency. As shown in Figure 8b, neurons dissected with the word “high-pitched” tend to be more responsive

to high-frequency audio. While the trend is not as significant as the case of “loud” due to this indirect measure of overall

frequency.

(a) Amplitude. (b) MDF.

Figure 8. The averaged waveform amplitude and the median frequency (MDF) of top-K highly-activated audio for all neurons in the AST.

D. Adjective Distribution of Different Target Networks
Figure 9 displays the distribution of top-20 most common adjectives of all neurons in AST, BEATs-finetuned, and BEATs-

frozen on the ESC50, extracted from Copen-set. Several common words, such as “loud” and “high-pitched”, can be observed

across models. We provide an analysis on neuron’s properties with respect to these two words as examples in Appendix C.

(a) AST. (b) BEATs-finetuned. (c) BEATs-frozen.

Figure 9. The distribution of top-20 most common adjectives across all linear layer neurons in AST, BEATs-finetuned, and BEATs-frozen

on the ESC50. These adjectives are extracted from Copen-set
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E. Detailed Results of Last Layer Dissection
Table 7 presents detailed results of experiments in Section 4.1. In particular, we evaluate ICL, TAB, and DB of module A on

five similarity functions on AST, BEATs-finetuned, and BEATs-frozen. Each method’s performance is considered the best

result achieved among all similarity functions and is reported in Table 2.

Table 7. Last layer dissection accuracy of ICL, TAB, and DB of module A on AST, BEATs-frozen, and BEATs-finetuned when adopting

five different similarity functions.

cos similarity cos similarity cubed rank reorder wpmi soft wpmi

Model AST

AND (Module A: ICL) 72 / 60 / 0.83

AND (Module A: TAB) 2 / 16 / 0.23 92 / 98 / 0.97 84 / 92 / 0.91 96 / 100 / 0.98 96 / 98 / 0.98

AND (Module A: DB) 80 / 82 / 0.85 100 / 100 / 1.00 86 / 100 / 0.93 88 / 100 / 0.95 2 / 10 / 0.24

Model BEATs-finetuned

AND (Module A: ICL) 52 / 56 / 0.68

AND (Module A: TAB) 50 / 80 / 0.64 66 / 94 / 0.77 52 / 80 / 0.67 68 / 94 / 0.77 74 / 92 / 0.82

AND (Module A: DB) 76 / 100 / 0.83 74 / 96 / 0.82 56 / 90 / 0.71 62 / 94 / 0.75 2 / 10 / 0.23

Model BEATs-frozen

AND (Module A: ICL) 16 / 16 / 0.37

AND (Module A: TAB) 14 / 34 / 0.35 38 / 76 / 0.56 18 / 48 / 0.42 46 / 72 / 0.60 42 / 80 / 0.60

AND (Module A: DB) 58 / 82 / 0.69 46 / 82 / 0.62 36 / 72 / 0.56 34 / 68 / 0.53 2 / 10 / 0.23

F. Audio Machine Unlearning Example
In Section 4.3, we discuss the potential use case for audio machine unlearning by AND. We provide an example in Figure 10.

When we use OCP (module C) to prune out neurons in BEATs-finetuned associated with “water drops”, the classification

abilities of BEATs-finetuned on water-related concepts, such as “toilet flush” and “pouring water”, are heavily affected, with

a smaller influence on other unrelated concepts.

Figure 10. Change of model confidence when neurons associated with “water drops” are ablated. Confidence in recognizing water-related

audio (with class names labeled in red) decreases, while other sounds are not significantly affected.
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G. Neuron Interpretability
G.1. Algorithm

Algorithm 1 GET-UNINTERPRETABLE-NEURONS
1: Input: Probing dataset Dp, target network F (·), threshold τ
2: Initialize sentence pool S, interpreatable neuron pool Ni, and uninterpreatable neuron pool Nu to be empty

3: for description di ∈ Dp do
4: for sentence sj ∈ di do
5: Add sj to S
6: end for
7: end for
8: Train a K-means model K(·) with S
9: for neuron f(·) ∈ F (·) do

10: Get Sh = d1, . . . , dk of f(·)
11: for di ∈ Sh do
12: Initialize an empty multiset Ci

13: for sj ∈ di do
14: Add K(sj) to Ci

15: end for
16: end for
17: if |⋂k

i=1 Ci| ≥ τ then
18: Add f(·) into Ni

19: else
20: Add f(·) into Nu

21: end if
22: end for
23: return Ni, Nu
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G.2. Clusters in ESC50

After applying K-means clustering, audio captions Dd generated by SALMONN (Tang et al., 2024) are categorized into 11

distinct groups. To delve into the underlying mechanism, we leverage wordcloud package (Oesper et al., 2011) to visualize

word distribution of these groups, as presented in Table 8. The wordclouds are generated based on the word frequency

within each cluster’s corpus: the more frequently a word appears, the larger its font size. The numbers following the cluster

id refer to the count of audio captions / sentences in the corresponding group.

For instance, cluster 1 exhibits a strong association with repetitive and high-pitched sounds, such as clock alarm, ringing,

and bell. Cluster 2 encompasses various words related to traffic noise, such as engine, motorcycle, track. These wordcloud

illustrations vividly depict the effectiveness and rationality of the clustering process.

Cluster 1 (119 / 565) Cluster 2 (144 / 722)

Cluster 3 (424 / 636) Cluster 4 (819 / 1207) Cluster 5 (493 / 1449)

Cluster 6 (532 / 651) Cluster 7 (91 / 582) Cluster 8 (357 / 977)

Cluster 9 (891 / 2084) Cluster 10 (43 / 235) Cluster 11 (281 / 747)

Table 8. Wordclouds of different clusters. The numbers in parentheses refers to the count of audio descriptions / sentences in this cluster.
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G.3. Measuring Neuron Interpretability under different τ and top-K

In AND, a threshold τ introduced in Section 4.5 is used to help determine the polysemanticity of neurons. Also, there are

some uncertainties about whether selecting top-K highly activated samples causes different trends. Hence, this section

conducts further experiments to evaluate the impact of varying τ and top-K. The results are shown in Figure 11, Figure 12,

and Figure 13, with top-5, top-10, and top-20 samples selected, respectively. Although the percentage of polysemantic

neurons varies with different τ and top-K values, consistent trends as in Section 4.5 are observed.

(a) AST, τ = 3 (b) BEATs-finetuned, τ = 3 (c) BEATs-frozen, τ = 3

(d) AST, τ = 4 (e) BEATs-finetuned, τ = 4 (f) BEATs-frozen, τ = 4

(g) AST, τ = 5 (h) BEATs-finetuned, τ = 5 (i) BEATs-frozen, τ = 5

Figure 11. Percentage of polysemantic neurons when adopting τ = 3, 4, 5 and top-K = 5
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(a) AST, τ = 6 (b) BEATs-finetuned, τ = 6 (c) BEATs-frozen, τ = 6

(d) AST, τ = 8 (e) BEATs-finetuned, τ = 8 (f) BEATs-frozen, τ = 8

(g) AST, τ = 10 (h) BEATs-finetuned, τ = 10 (i) BEATs-frozen, τ = 10

Figure 12. Percentage of polysemantic neurons when adopting τ = 6, 8, 10 and top-K = 10.
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(a) AST, τ = 12 (b) BEATs-finetuned, τ = 12 (c) BEATs-frozen, τ = 12

(d) AST, τ = 16 (e) BEATs-finetuned, τ = 16 (f) BEATs-frozen, τ = 16

(g) AST, τ = 20 (h) BEATs-finetuned, τ = 20 (i) BEATs-frozen, τ = 20

Figure 13. Percentage of polysemantic neurons when adopting τ = 12, 16, 20 and top-K = 20.
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G.4. Neuron Interpretability under Different Training Strategies - GTZAN Music Genre

This section conducts the neuron interpretability experiments as in Section 4.5 but adopts GTZAN Music Genre (Tzanetakis

& Cook, 2002) dataset as the probing dataset and training dataset of AST, BEATs-finetuned, and BEATs-frozen. The results

are shown in Figure 14. Since the GTZAN Music Genre is a simpler dataset with only 10 classes, neuron behaviors are

more explainable when responding to samples in this dataset, with no more than 20% neurons classified as “uninterpretable”

for τ = 4. Strengthening the criterion to τ = 5 produces a clearer trend, with BERTs-frozen being always diverse, and AST

being gradually concentrating, coinciding with the findings on the ESC50 dataset.

(a) τ = 3 (b) τ = 4 (c) τ = 5

Figure 14. Percentage of polysemantic neurons when adopting τ = 3, 4, 5 and top-K = 5, with GTZAN Music Genre being the training

dataset and probing dataset of AST, BEATs-finetuned, and BEATs-frozen.
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