
R E S E A R CH A R T I C L E

A hydrologic signature approach to analysing wildfire impacts

on overland flow

L. A. Bolotin | H. McMillan

Department of Geography, San Diego State

University, San Diego, California, USA

Correspondence

H. McMillan, Department of Geography, San

Diego State University, San Diego, CA, USA.

Email: hmcmillan@sdsu.edu

Funding information

National Science Foundation, Grant/Award

Number: 2124923

Abstract

Post-fire flooding and debris flows are often triggered by increased overland flow result-

ing from wildfire impacts on soil infiltration capacity and surface roughness. Increasing

wildfire activity and intensification of precipitation with climate change make improving

understanding of post-fire overland flow a particularly pertinent task. Hydrologic signa-

tures, which are metrics that summarize the hydrologic regime of watersheds using rain-

fall and runoff time series, can be calculated for large samples of watersheds relatively

easily to understand post-fire hydrologic processes. We demonstrate that signatures

designed specifically for overland flow reflect changes to overland flow processes with

wildfire that align with previous case studies on burned watersheds. For example, signa-

tures suggest increases in infiltration-excess overland flow and decrease in saturation-

excess overland flow in the first and second years after wildfire in the majority of water-

sheds examined. We show that climate, watershed and wildfire attributes can predict

either post-fire signatures of overland flow or changes in signature values with wildfire

using machine learning. Normalized difference vegetation index (NDVI), air temperature,

amount of developed/undeveloped land, soil thickness and clay content were the most

used predictors by well-performing machine learning models. Signatures of overland flow

provide a streamlined approach for characterizing and understanding post-fire overland

flow, which is beneficial for watershed managers who must rapidly assess and mitigate

the risk of post-fire hydrologic hazards after wildfire occurs.
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1 | INTRODUCTION

Wildfires followed by extreme rainfall can cause flooding and debris

flows such as the deadly 2018 debris flows in Montecito, California,

United States (Kean et al., 2019). These compound hazards are an

increasing risk as extreme precipitation and wildfire intensify with a

changing climate (Abatzoglou & Williams, 2016; AghaKouchak

et al., 2020; Yin et al., 2018). Post-fire flooding is primarily caused by

overland flow, in which surface runoff occurs due to rainfall intensities

that exceed soil infiltration capacity (infiltration-excess [IE] overland

flow (Horton, 1933)) or rainfall occurring over an already saturated

soil profile (saturation-excess overland flow (Dunne & Black, 1970)).

Wildfire increases watershed susceptibility to overland flow through

several processes including increasing soil hydrophobicity

(DeBano, 2000; DeBano & Krammes, 1966; Doerr et al., 2000), reduc-

ing infiltration capacity (Ebel & Moody, 2017) and removal of biomass

that previously intercepted precipitation or provided water storage

and surface roughness in the litter layer (Leighton-Boyce et al., 2007).
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These impacts on soils can promote IE overland flow and associated

debris flows in burned watersheds (Rengers et al., 2020). Additionally,

runoff from saturated soils can cause post-fire hazards via shallow

landslides (DeBano, 2000; Wall et al., 2020).

The impact of wildfire on surface runoff depends on watershed

characteristics such as dominant vegetation type and antecedent mois-

ture levels (Dick et al., 1997; Stoof et al., 2012). Improving the under-

standing of the process mechanisms, spatial patterns and drivers of

post-fire overland flow would be of significant societal benefit given

precipitation extremes and occurrence and severity of wildfires are

expected to increase with climate change (Wilder et al., 2021; Yin

et al., 2018). When intense precipitation falls on recently burned water-

sheds, runoff-generated debris flows and flooding, which pollutes

freshwater resources and threaten life and property, become a signifi-

cant risk (Basso et al., 2020; Kean et al., 2019; Rengers et al., 2020).

This risk is greatest during the first two years after wildfire (Shakesby &

Doerr, 2006; Stoof et al., 2012). However, hydrologic recovery from

wildfire can take anywhere from a few years to several decades and

varies with watershed characteristics (Wagenbrenner et al., 2021).

Large-sample studies have developed our understanding of the spa-

tial distribution of dominant runoff generation mechanisms across the

United States, including identifying catchments dominated by IE versus

saturation-excess overland flow (Buchanan et al., 2018; Wu et al., 2021).

However, wildfire can shift these dominant runoff generation mecha-

nisms from one process to another, such as from saturation-excess to IE

dominated (Chen et al., 2013). Changes in dominant processes warrant

adapted management practices to mitigate the time-sensitive impacts of

post-fire flooding or debris flows (Rengers et al., 2019) and are thus criti-

cal to understanding at broad spatial scales in wildfire-prone regions. In

this study, we investigated wildfire impacts on dominant overland flow

processes across a dataset of 39 fire-impacted watersheds.

We used hydrologic signatures to quantify changes in the occur-

rence and prevalence of overland flow processes. Hydrologic signatures

are indices calculated from streamflow and occasionally precipitation

time series that quantify aspects of the hydrologic regime of a catch-

ment (Gupta et al., 2008; McMillan, 2021). Signatures can be used as

objective functions in hydrologic models (Shafii & Tolson, 2015) or can

inform decisions about model structure (David et al., 2022) to improve

similarity between simulated and observed runoff patterns. Hydrologic

signatures facilitate further understanding of hydrologic processes

when carefully selected, as different signatures represent the occur-

rence and/or magnitude of specific processes including evapotranspira-

tion, baseflow and overland flow (McMillan, 2020). Signatures of

overland flow have promoted our understanding of this process outside

of post-fire contexts (McMillan, 2020; Wu et al., 2021). Signatures not

specific to overland flow such as runoff ratio have been applied to

understand the timing of hydrologic recovery after wildfire (Hampton &

Basu, 2022; Wagenbrenner et al., 2021; Wilder et al., 2021). However,

overland flow signatures have not previously been used to evaluate

post-fire hydrologic processes. Leveraging these process-specific signa-

tures provides a method for analysing wildfire impacts on potentially

flood-inducing runoff generation without requiring the time-consuming

calibration and running of hydrologic models.

The limited data requirements of hydrologic signatures allow them

to be calculated and automated for many watersheds, which promotes

the feasibility of large-sample studies. The increasing availability of

large-sample hydrometeorological datasets has already facilitated sev-

eral continental-scale studies identifying regional patterns of hydrologic

processes and providing deeper insights into the functionality of hydro-

logic signatures themselves (Addor et al., 2018; McMillan et al., 2022;

Wu et al., 2021). Catchment attributes paired to streamflow sites

(Addor et al., 2017; Wieczorek et al., 2018) can be used to predict

hydrologic signatures and further promote process understanding via

machine learning (ML) approaches. ML models provide predictor vari-

able importance rankings, making them useful for inferring which

attribute(s) contribute most to the accuracy of the streamflow signature

prediction and may thus be drivers or products of different processes

(Addor et al., 2018; Jehn et al., 2020; Wu et al., 2021).

While several post-fire runoff studies acknowledge the influence

of static catchment attributes (e.g. soil type, underlying geology,

topography, etc.) on the changes between pre- and post-fire runoff

processes, detailed analysis of which attributes exert the greatest

influence has often been out of the scope of the research

(Hampton & Basu, 2022; Kean & Staley, 2021). Previous comparisons

of various regression methods using wildfire and watershed attributes

to predict non-overland flow-specific hydrologic signatures have

yielded low correlation coefficients and/or contradictory findings

(Saxe et al., 2018). Focusing on one process such as overland flow

could elucidate the links between these attributes and post-fire

hydrologic response. Predicting changes in signatures of overland flow

and consequently identifying the attributes of fires, climate and

watersheds themselves that play the largest role in determining post-

fire surface runoff behaviour can aid in post-fire watershed manage-

ment across the United States, especially if regional patterns emerge

from the analysis.

Here, we leverage hydrologic signatures specific to overland flow

and use large-sample hydrometeorological datasets to investigate

(1) whether signatures of overland flow change significantly to reflect

shifts in runoff generation mechanisms after wildfire, (2) the timescale

of wildfire impacts on signatures of overland flow and (3) the most

important predictors of post-fire overland flow signatures.

2 | DATA AND METHODS

2.1 | Watershed selection

To improve the generalized process understanding of post-fire over-

land flow, we analysed 39 watersheds with areas ranging from

approximately 13 to 2927 km2 that have been significantly burned by

wildfire or prescribed burns in the United States (Figure 1). A sum-

mary of watershed information is provided in the Supplemental Infor-

mation. We selected watersheds from the Geospatial Attributes of

Gages for Evaluating Streamflow (GAGES-II) dataset (Falcone, 2011).

We excluded watersheds with more than one major dam upstream to

minimize confounding drivers of hydrologic response. We required
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that watersheds had at least 20% of their area forested, assuming for-

ested landscapes experience particularly large hydrologic impacts

from wildfire (Hampton & Basu, 2022). To ensure adequate data to

characterize pre- and post-fire runoff conditions, we required that

watersheds have at least 10 years of streamflow and precipitation

data available both pre- and post-fire. We excluded sites where more

than 10% of this 20-year time series was missing. Despite the large

number of watersheds in the GAGES-II dataset meeting the burned

and forested area requirements (109), these strict requirements for

streamflow data eliminated 64% of eligible sites from the study, with

39 sites meeting all requirements. Previous studies also faced chal-

lenges of limited data availability for either the pre- or post-fire

period, if not both (see the review by Wagenbrenner et al., 2021).

To calculate the proportional burned area of each watershed, we

intersected shapefiles of burn perimeters from the Monitoring Trends

in Burn Severity (MTBS) dataset (Eidenshink et al., 2007) and water-

shed boundaries from GAGES-II. The MTBS dataset provides shape-

files for wildfires and prescribed burns 1000 acres or larger between

1984 and 2020. We filtered the watersheds for those where at least

30% of the watershed was burned within one fire season, including

from multiple fire events. We assumed fire seasons were contained

within calendar years, given that the majority of fire ignition dates

occurred in the summer months (Figure S1). Since MTBS only includes

fires of 1000 acres or larger, some smaller fire-impacted watersheds

were not identified for this study and the impact of fires <1000 acres

in the selected catchments was not considered. If an eligible water-

shed had 30% or more of its area burned multiple times within

10 years of each other, it was excluded, as reburns could confound

the hydrological impacts of the initial fire.

2.2 | Hydrometeorological data

To analyse pre- and post-fire overland flow processes using hydro-

logic signatures, we used streamflow data from the National Water

Information System, accessed through the dataRetrieval package in R

(De Cicco et al., 2018). We used precipitation data from the North

American Land Data Assimilation System (NLDAS) (Xia et al., 2012).

We chose NLDAS for its hourly temporal resolution with data begin-

ning in 1979, making it possible to access rainfall data for a large sam-

ple of watersheds from a single source. We summed hourly rainfall

data into daily values for sites where only daily streamflow data was

available. Area-weighted NLDAS precipitation data was obtained using

wrfhydroSubsetter (github.com/mikejohnson51/wrfhydroSubsetter).

While daily streamflow data can be used successfully for signature

calculation, the short, intense precipitation events that typically cause

post-fire hydrologic hazards call for a finer temporal scale for the data

when available (e.g. hourly or sub-hourly rather than daily) (Kean

et al., 2011). This may be particularly important for smaller watersheds

with shorter times of concentration (Beven, 2020). Comparisons of

hourly and daily overland flow signature values and their agreement

with field observations suggest that hourly data is ideal for calculating

overland flow signatures McMillan et al. (2022); therefore, we priori-

tized using hourly data in any watershed where it was available but

maintained sites with only daily data available. We expect that the

robustness of signature values in smaller watersheds where only daily

data was available will be impacted the most given that smaller water-

sheds have shorter times of concentration and are more dominated

by hillslope processes, which may be obscured in daily data (Robinson

et al., 1995).

2.3 | Hydrologic signatures

We calculated four hydrologic signatures related to the prevalence of

IE and saturation-excess (SE) overland flow to understand whether

signatures of overland flow change significantly after fire in

U.S. watersheds. We calculated the IE Regression and SE Regression

signatures, representing prevalence of IE and SE overland flow,

respectively, using the Toolbox for Streamflow Signatures in

F IGURE 1 Map of study

watersheds (n = 39) included in

the final analysis, including the

distribution of watershed size

and the percent area of each

watershed that was burned in the

fire-years whose effects were

analysed.
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Hydrology (TOSSH) in MATLAB (Gnann et al., 2021) (https://github.

com/TOSSHtoolbox/TOSSH). These signatures were originally devel-

oped by Estrany et al. (2010) to differentiate IE and SE runoff mecha-

nisms for agricultural areas in Mediterranean climate regions. To

calculate the signatures, we used stepwise regression to fit coeffi-

cients a, b in Equations 1 and 2 that relate peak flow magnitude and

total flow volume to normalized predictors X quantifying precipitation

depth, antecedent precipitation and precipitation intensity. IE Regres-

sion is the mean of the coefficients of predictors related to intensity

(a4,5, b4,5) and SE Regression is the mean of the coefficients of predic-

tors related to precipitation depth and antecedent precipitation (a1,2,3,

b1,2,3). In each case, the signature values range from �1 to 1, with

higher values suggesting a prevalence of that mechanism.

LogQMax ¼ a1X1þa2X2þa3X3þa4X4þa5X5 ð1Þ

LogQQuickvol ¼ b1X1þb2X2þb3X3þb4X4þb5X5 ð2Þ

where QMax is the maximum hourly event discharge (mm/h) and

Qquickvol is the total event quickflow volume (mm), X1 is the total event

precipitation (mm), X2 and X3 are the sum of 3-day and 5-day anteced-

ent precipitation respectively (mm), X4 is the mean event precipitation

intensity (mm/h) and X5 is the maximum event precipitation intensity

(mm/h). X1-5 are normalized to have a mean of 0 and a standard devia-

tion of 1 before use.

These signatures require initial processing to divide the rainfall

and flow time series into individual storm events. TOSSH provides an

event separation algorithm to characterize events into instances of

>2 mm/h or 10 mm/day of rainfall. The events are separated by dry

periods of at least 12 h and end 5 days after rainfall ceases. We main-

tained these default parameter values for the separation algorithm for

all watersheds, though they are customizable. We filled missing values

in the time series with NaN so they would be ignored by the TOSSH

event separation algorithm. TOSSH also provides code for general

streamflow indices like runoff ratio, which we calculated on an annual

basis to identify and disqualify watersheds with potentially erroneous

data or confounding impacts on hydrology. For example, site USGS-

13239000 (North Fork Payette River at Mccall, ID), which had one

major upstream dam control located immediately above the stream-

gage at a reservoir outlet, had a runoff ratio >1. This site was excluded

from further analysis. TOSSH includes code for additional signatures

to identify thresholds of precipitation required for generating overland

flow, but in this study, we focus on signatures representing an overall

prevalence of IE and SE overland flow.

The IE Correlation and SE Correlation signatures, like IE Regres-

sion and SE Regression, represent the prevalence of IE and SE over-

land flow, respectively. IE Correlation and SE Correlation were

developed by Wu et al. (2021) to differentiate IE and SE runoff mech-

anisms for U.S. watersheds and were calculated using a modified ver-

sion of code shared by the authors. IE Correlation is the Spearman

correlation coefficient between event runoff ratio (total event quick-

flow volume (mm) divided by total event precipitation (mm)) and mean

event precipitation intensity (mm/h). SE Correlation is the Spearman

correlation coefficient between event runoff ratio and total event pre-

cipitation (mm). The signature values range from �1 to 1, with higher

values suggesting a prevalence of that runoff mechanism. The code

was adapted to apply the TOSSH event separation algorithm, and

therefore use the same quickflow events as those considered by the

TOSSH signatures. The main difference between the event separation

methods by Wu et al. (2021) and from TOSSH is that Wu et al. (2021)

filtered for only the largest quickflow events. Using the same event

separation algorithm for all signatures made them directly comparable.

Calculating multiple signatures related to the same hydrologic pro-

cesses and determining the similarities or differences in their values

helps assess the robustness of the signatures for analysis of overland

flow in a post-fire context. We calculated the signatures for the

10-year period prior to the ignition date of the first fire in the fire-year

considered in each watershed, and for the 1-, 2-, 3-, 5- and 10-year

periods after the ignition date of the last fire in that fire-year. We

used the ignition date to mark both the end of the pre-fire period and

the beginning of the post-fire period because ‘fire-out’ or contain-

ment dates were not available from MTBS for the majority of fires. In

a few relatively arid watersheds, signatures for short timeperiods were

calculated based on less than 10 quickflow events (7 and 5 sites for 1-

and 2-year post-fire signature values, respectively). We included these

sites in the analysis given the limited eligible sites meeting the require-

ments for streamflow time series availability; however, it should be

noted that signatures calculated on watersheds with so few events

may not be as robust as signatures calculated for watersheds with

more frequent quickflow events.

2.4 | Analysis of post-fire change in hydrologic

signatures

To determine wildfire impacts on signature values, we calculated the

absolute difference between signature values for the 10-year pre-fire

period and the 1-, 2-, 3-, 5- and 10-year post-fire periods. For each sig-

nature, we determined the statistical significance of changes in the dis-

tribution of values across all sites between the 10-year pre-fire period

and each post-fire period using the nonparametric Kolmogorov–

Smirnov (K–S) test. The greatest vertical distance between the empiri-

cal cumulative distribution functions (CDFs) of pre- and post-fire signa-

ture values was quantified with the D-statistic, which has a value

between 0 and 1. Higher values suggest a greater difference between

the two distributions. We considered the two distributions to be statis-

tically significantly different if the p-value was less than 0.05.

The signatures in Section 2.3 were calculated by McMillan et al.

(2022) and Wu et al. (2021) for 546 and 432 watersheds, respectively,

from the CAMELS dataset (Newman et al., 2015). We determined the

percentile of the pre- and post-fire signature values for the 39 water-

sheds in this study (and thus the change in percentile with wildfire) in

the distributions of values determined by McMillan et al. (2022) and

Wu et al. (2021). This provided context for how significantly signature

values changed from the pre- to post-fire period in comparison to typ-

ical values in U.S. watersheds.
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In the highly variable Mediterranean climate of the southwestern

U.S., drought or extreme precipitation events can explain much of the

variation in hydrologic response after fire (Tomkins et al., 2008). Since

watersheds in this study burned at various times between 1994 and

2011, we did not expect to see uniform changes in signature values

due to differences in precipitation intensity or volume between the

TABLE 1 Summary of attribute data used in the random forest.

Attribute name Citation or data source Details

Wildfire

% Watershed burned Calculated from MTBS and GAGES-II -

Difference-normalized Burn Ratio using the

Thermal Band (dNBRT, proxy for Burn Severity)

Landsat 5 TM Collection 1 Tier 1

32-Day NBRT Composite; images

courtesy of the U.S. Geological

Survey

30-m spatial resolution; subtracted the minimum

post-fire NBRT value from the averaged 10-year

pre-fire NBRT value

NBRT = Near-Infrared � (Mid-Infrared � Thermal)/

Near-Infrared + (Mid-Infrared � Thermal)

Soils

Avg Ksat (saturated hydraulic conductivity) Buchanan et al. (2018) (obtained

directly from authors)

90-m spatial resolution

Sand, silt, and clay content (%) Wieczorek et al. (2018) 100-m spatial resolution resampled to 30-m

Soil thickness

Avg bulk density

Organic matter (OM) content

Topography

Basin area Wieczorek et al. (2018) 30-m digital elevation model

Avg basin slope

Avg stream slope

Avg basin elevation

Climate

Avg aridity index Calculated from NLDAS, Xia et al.

(2012)

1/8� spatial resolution; averaged over the 10-years

pre- and post-fire (20 years total)

Avg precipitation Wieczorek et al. (2018) Averaged from 1971 to 2000

Avg relative humidity Averaged from 1961 to 1990

Avg temperature Averaged from 1971 to 2000

Avg potential evapotranspiration Averaged from 1971 to 2000

Avg precipitation falling as snow (%) Averaged from 1905 to 2002

Land cover

Land cover (developed land, open water,

undeveloped land, forested land) (%)

Wieczorek et al. (2018) 30-m spatial resolution; Paired sites with data for the

closest available pre-fire-year to the year of each fire

onset year

Pre-fire normalized difference vegetation index

(NDVI)

Landsat 5 TM Collection 1 Tier 1

32-Day NDVI Composite and Landsat

8 Collection 1 Tier 1 32-Day NDVI

Composite; images courtesy of the

U.S. Geological Survey

30-m spatial resolution; averaged for the 10-year

pre-fire period

NDVI = (Near-Infrared � Red)/(Near-Infrared

+ Red)

Lithology

Geologic K2O, CaO, Fe2O3, MgO, P2O5, S, SiO2 in

surface or near-surface geology (%)

Wieczorek et al. (2018) 1-km spatial resolution

Geologic strength

Hydraulic conductivity

Permeability

Hydrology

Avg depth to water table Wieczorek et al. (2018) -

Stream density -

Note: Values represent the accumulated upstream area of each study site, and climate values are mean annual values. Avg = mean value.
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pre- and post-fire period. Nevertheless, we used a distribution com-

parison approach to evaluate potential differences between precipita-

tion in the pre- and post-fire periods. We plotted the CDF of

(1) maximum hourly precipitation intensity per day (mm/hour) and 2)

total daily precipitation (mm/day) for each site, comparing the 10-year

pre-fire with 2-year and 10-year post-fire distributions. We calculated

the maximum difference between the two distributions for each site

for both precipitation depth and intensity. This provided context as to

whether changes may have been considerably impacted by precipita-

tion anomalies rather than just by wildfire.

To understand how long wildfire impacts on overland flow signa-

tures last, we compared the distributions of absolute change in hydro-

logic signature values between pre-fire and post-fire periods of varying

lengths (1-, 2-, 3-, 5- and 10-years post-fire) in all watersheds. We

observed which post-fire period(s) experienced the greatest changes

compared to pre-fire conditions and whether the distributions recov-

ered to pre-fire conditions during the 10-year post-fire period.

2.5 | Analysis of predictors of post-fire

overland flow

We used an ML approach to investigate which wildfire, climate and

physiographic catchment attributes were associated with changes in

overland flow mechanisms with wildfire, as evidenced by hydrologic

signatures. We created random forest (RF) regression models for each

signature to predict (1) 10-year pre-fire signatures, (2) 10-year post-

fire signatures, (3) the absolute difference between 10-year pre-fire

signatures and 10-year post-fire signatures, (4) 2-year post-fire signa-

tures and (5) the absolute difference between 10-year pre-fire

signatures and 2-year post-fire signatures. These target variables were

chosen to determine whether these signatures can be predicted out-

side a post-fire context (hence the prediction of pre-fire values) and

to provide insight into drivers of post-fire overland flow in the short-

and long-term. We trained and ran the models using the randomForest

package in R (Liaw & Wiener, 2002). The predictor variables and their

sources are summarized in Table 1. We excluded predictors related to

fire (percent of watershed burned and burn severity) from the models

predicting pre-fire signature values since these predictors were not

relevant to the unburned hydrologic condition. We recognize that

large-domain gridded datasets as used here have varying and

unknown uncertainty in their variables (Gupta et al., 2014). For

example, as discussed by Beck et al. (2015), the limited quality and

consistency of globally available datasets such as those for geology

and soil characteristics may weaken relationships with streamflow

characteristics, even where the processes controlled by these physical

characteristics are well-accepted. In this study, we used predictor vari-

ables that are available across the United States from authoritative

sources such as the U.S. Geological Survey (Wieczorek et al., 2018),

although typically no uncertainty estimates are available for these var-

iables. This method allows us to use a single data source for all water-

sheds in the study and allows our approach to be replicable for other

large-sample studies.

To determine a reduced set of predictors and address multicolli-

nearity, we identified all predictor pairs with a Spearman correlation

coefficient of j0.85j or higher and selected one attribute from each

pair of highly correlated attributes. For example, the average air tem-

perature was highly correlated with the average potential evapotrans-

piration and percent of precipitation falling as snow, so only the

average air temperature was retained. We used the caret package in R

(Kuhn, 2008), to conduct recursive feature selection, identifying the

most important predictors that can produce a simplified model with

comparable performance to one with all the predictors. We excluded

three watersheds from this portion of the analysis due to missing data

for one or more predictors. Since we used one value per watershed

for each model, sample sizes for the RFs were relatively small (n = 36)

and results were dependent on the random sample of watersheds

used to create a training dataset. Therefore, we ran an ensemble of

100 RF models with different initializations and randomly sampled

training datasets for each signature.

Each model was trained on 3/4 of the watersheds and tested on

the remaining 1/4. We evaluated model performance using R2 values to

quantify the proportion of variance explained by the predictors. We

used two methods to determine which predictor variables were most

valuable in predicting overland flow signatures. First, we counted how

many of the 100 RF ensemble members used each predictor variable

for each signature. Then, we calculated an average value for the vari-

able importance (increase in mean squared error or IncMSE, which is

the loss in model accuracy if the values of a given predictor are per-

muted) for each predictor across all runs where that predictor was

used. Both approaches provided rankings for which predictors were

most important for estimating signatures of overland flow or changes

to these signatures with wildfire.

3 | RESULTS

3.1 | Changes in hydrologic signatures with

wildfire

We determined the absolute difference between pre- and post-fire

signature values to understand changes with wildfire. The absolute

differences between the signature values for 10 years pre-fire and the

2 and 10 years post-fire, respectively, are demonstrated in Figure 2.

When considering changes between 10 years pre-fire and 2 years

post-fire, 56% of sites experienced increases in IE Regression, 15%

experienced no change and 28% experienced a decrease. For SE

Regression, 82% of sites experienced decreases, one site experienced

no change and 15% of sites experienced increases. Approximately half

of the sites experienced increases in the IE Correlation and SE Corre-

lation signatures (51% and 49%, respectively), while the remaining

sites experienced decreases.

Patterns of change between 10 years pre-fire and 10 years post-

fire were similar to those comparing the 10-year pre-fire and 2-year

post-fire period, but the magnitude of changes was dampened in

some watersheds. For IE Regression 10 years post-fire, 49% of sites
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experienced increases, 13% had no change and 38% experienced

decreases. 62% of sites experienced decreases in SE Regression, 67%

experienced decreases in SE Correlation, 69% experienced decreases

in IE Correlation and the remainder of sites experienced increases in

these signatures. In some cases, watersheds where signature values

increased in the short-term post-fire period exhibited decreases when

F IGURE 2 Plots showing absolute change between 10-year pre-fire and 2-year post-fire signature values (top row) and 10-year pre-fire and

10-year post-fire signature values (bottom row). The y-axis is ordered by the percentage of the watershed that was burned, with higher

percentages at the top. Gage ID's in bold indicate sites with daily rather than hourly data.
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a longer post-fire period was considered, or vice-versa (7 watersheds

for IE Regression, 12 for SE Regression, 14 for IE Correlation and

12 for SE Correlation).

We expected to find higher values for signatures related to IE over-

land flow following wildfire, suggesting a higher prevalence of

IE processes. Consequently, we expected to find lower values for SE

processes (Liu et al., 2021). Changes in the IE Regression and

SE Regression signatures followed these expected patterns, especially in

the 2-year post-fire period with similar but less uniform trends in the

10-year post-fire period. The IE Correlation and SE Correlation signa-

tures, which are also supposed to indicate the prevalence of infiltration-

and saturation-excess processes, respectively, did not show the same

clear trends 2 years post-fire but decreased for most watersheds in the

10-year post-fire period. In some cases, signatures designed for the

same process (IE Regression and IE Correlation for IE overland flow, SE

Regression and SE Correlation for SE overland flow) changed in contra-

dictory directions in the same watershed for the same post-fire period.

We used K–S tests comparing the distributions of 10-year pre-

fire signature values with distributions of 1-, 2-, 3-, 5- and 10-year

post-fire values to assess the statistical significance of signature

changes with wildfire. The K–S tests produced significant p-values

(<0.05) for the pre-fire versus 1- and 2-year post-fire comparison of

SE Regression and for the 2-year post-fire comparison of IE Regres-

sion (Figure 3). The tests produced D-statistics of 0.46 or lower.

While the K–S tests determined the statistical significance of

changes in signature values with wildfire, comparison to signature

values for watersheds across the United States provided context for

the hydrological significance of changes. The change in percentile

between 10-year pre-fire and 2-year post-fire signatures in a distribu-

tion of signature values for hundreds of U.S. watersheds is shown in

Figure 4. For the IE Regression, SE Regression and IE Correlation sig-

natures, the changes were often more considerable when contextual-

ized in a national sample of values than when taken at face value. For

example, a 0.32 absolute increase in IE Regression from 10 years pre-

fire to 2 years post-fire at Gage ID 5 (USGS-09484000, Sabino Creek

Near Tucson, AZ) was a change from the 8.6th percentile to the

85.3rd percentile in a national distribution of long-term signature

values.

3.1.1 | Impacts of Precipitation Variability

on Post-fire Signatures

We compared precipitation amount and intensity in the pre- and

post-fire period to assess whether wildfire impacts on signatures of

overland flow may be indiscernible from impacts of precipitation vari-

ability. The largest distance between the CDFs comparing 10-year

pre- and post-fire precipitation was 0.18 for daily maximum

F IGURE 3 (a) Example Kolmogorov–Smirnov (K–S) test results showing statistically significant changes in a comparison of the distributions of

10-year pre-fire signatures with 2-year post-fire signatures across all sites. (b) Summary of all K–S test results.
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precipitation intensity (mm/h) and 0.19 for total daily precipitation

depth (mm/day) at Gage ID 6 (USGS-13310700, S. Fork Salmon River

Near Krassel Ranger Station, Idaho). The largest distance between the

CDFs comparing 10-year pre- and 2-year post-fire precipitation was

0.19 for daily maximum precipitation intensity (mm/h) and 0.18 for

total daily precipitation depth (mm/day) at Gage ID 22 (USGS-

11381500, Mill Creek Near Los Molinos, California). For context, the

largest distance between two CDFs we could expect is 1. Graphical

comparison of the CDFs demonstrates that even in these cases with

the largest distances between curves, the distributions mostly overlap

(Figure S2). The sections of the CDFs where the two distributions

diverge most are not at the highest precipitation depths or intensities

in the investigated watersheds. In most watersheds, we do not expect

that a very small number of exceptionally high volume or intensity

precipitation events in the pre- or post-fire period would substantially

impact signature values. Potential exceptions to this would be

instances where signatures are calculated for short time periods (1 or

2 years) in arid regions that have few rainfall-runoff events overall.

Given the small differences observed between pre- and post-fire pre-

cipitation characteristics, we conclude that differences between pre-

and post-fire signatures of overland flow can be attributed to wildfire

impacts over climate variability.

3.2 | Timescales of recovery from wildfire impacts

on overland flow signatures

We investigated changes in signatures of overland flow for various

periods of time after wildfire to understand the timing of recovery of

hydrologic processes after burning. When considering the change in

signature values from 10 years pre-fire to 1, 2, 3, 5 and 10 years post-

fire, changes were largest 1–2 years after wildfire. Regardless of

whether signature values increased or decreased post-fire, they grad-

ually recovered back to near pre-fire values throughout the 10-year

F IGURE 4 Dumbbell plots showing change in percentile (from a distribution of long-term signature values calculated for a large sample of

watersheds in the contiguous U.S. (CONUS)) between 10-year pre-fire and 2-year post-fire signature values. The y-axis is ordered by the

percentage of the watershed that was burned, with higher percentages at the top. Gage ID's in bold indicate sites with daily rather than

hourly data.
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post-fire period (Figure 5). IE Regression values were generally higher

in the 1–2-year post-fire period, but the median absolute change

value returns close to 0 (no change) when considering longer post-fire

periods. The temporal patterns for IE Correlation generally follow that

of IE Regression but reflect a wider range of absolute change values,

especially in the negative direction (more sites showed decreases in

this signature compared to IE Regression) one-year post-fire. The SE

Regression signature shows an overall decrease with a wildfire that

returns toward pre-fire conditions over time, whereas the SE Correla-

tion shows an increase with a wildfire that decreases toward pre-fire

levels over time.

3.3 | Predicting overland flow signatures post-fire

RF models successfully predicted either the change in signatures with

wildfire or the pre- and post-fire signature values, depending on the

signature. The R2 values for the testing data set from the ensemble of

100 RF models for the IE Regression, IE Correlation, SE Correlation

and SE Regression signatures are summarized in Table 2. Except for IE

Regression, all pre-fire signatures were predicted with an ensemble

median R2 value of 0.45 and up to 0.59 for SE Correlation. Predictions

of fire-impacted IE Regression and SE Regression had the highest per-

formance in ensembles predicting the difference between 10-year

pre-fire and 2-year post-fire values, with a median R2 of 0.26 and 0.5,

respectively. R2 values for models predicting IE Regression were

always low compared to other signatures. SE Regression also had rela-

tively high R2 values for models predicting 10-year pre-fire and

10-year post-fire signatures (median R2 of 0.49 and 0.42, respec-

tively). Post-fire models for IE Correlation and SE Correlation had very

low R2 values when predicting the difference between 10-year pre-

fire signatures and 10- or 2-year post-fire signatures, but R2 values

were higher when predicting 10-year post-fire values (median R2 of

0.52 and 0.57, respectively). These results demonstrate that post-fire

overland flow signatures (e.g. short or long-term post-fire signatures,

changes in signatures with wildfire) can be predicted with sufficient

performance.

We determined the most important variables for predicting

signatures or changes in signatures with wildfire. The rankings of

how many of the 100 ensemble RF models used each predictor in

the modelling scenarios with the highest R2 values (namely, predic-

tions of 2-year post-fire IE Correlation and SE Correlation and the

difference between pre-fire and 2-year post-fire IE Regression and

SE Regression) are shown in Figure 6. The results for the average

increase in MSE (IncMSE) when each predictor was permuted pro-

duced similar results for top predictors, therefore only the number

of ensemble members using each predictor is presented here. Nor-

malized difference vegetation index (NDVI) was in the top five pre-

dictors for each signature when predicting post-fire signature

values, but not when predicting the change in signature values

from pre-fire conditions. Average air temperature was a top pre-

dictor in the highest performing ensemble for each signature

(10-year post-fire SE Correlation and IE Correlation and difference

between 10-year pre-fire and 2-year post-fire IE Regression and

SE Regression). Top predictors specific to IE Regression and SE

Regression include the amount of developed/undeveloped land,

basin and stream slope and soil layer thickness. Geologic strength,

which is related to erodibility, was also frequently an important

predictor for SE Regression. Clay content, soil saturated hydraulic

conductivity and geologic permeability were important predictors

in the models predicting post-fire SE Correlation and IE Correla-

tion, which performed better than models predicting changes in

these signatures with wildfire. The attributes related to fire (per-

cent of the watershed burned and burn severity) were not of par-

ticularly high importance in any of the RF ensembles with high

average R2 values.

F IGURE 5 Boxplots showing the distribution of absolute change (post-fire value � pre-fire value) in signature values from 10 years pre-fire

to 1, 2, 3, 5, and 10 years post-fire for the 39 study watersheds, where a value of 0 suggests no change, above 0 suggests an increase after

wildfire, and below 0 suggests a decrease after wildfire.
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4 | DISCUSSION

The increases in IE Regression 2 years post-fire in the majority of sites

align with previous observations of reduced soil infiltration capacity

and reduced surface roughness after wildfire, all of which can contrib-

ute to flashier flow from increased surface runoff (Doerr et al., 2000;

Ebel & Moody, 2016; Leighton-Boyce et al., 2007; Liu et al., 2021).

These decreases in infiltration may also impact the ability of the soil

profile to become saturated, which could explain the associated

decrease in SE Regression and thus SE overland flow.

Studies of post-fire overland flow often focus on changes in infil-

tration in burned watersheds rather than saturation (e.g. Chen

et al., 2013; DeBano, 2000; Ebel & Moody, 2017), though Holden

et al. (2015) found that after prescribed fire in blanket peatlands,

warmer soil temperatures and associated increased evapotranspira-

tion led to deeper water tables. This reduced the prevalence of SE

overland flow, especially shortly after burning. Scott and Van Wyk

(1990) categorized overland flow occurring from hydrophobic layers

below burn piles as SE. In post-fire soils with a shallow hydrophobic

layer, the difference between IE and SE can become blurred. The

hydrophobic layer can shorten the saturable depth of the soil profile,

which would require less rainfall to produce SE overland flow. Con-

versely, the reduced infiltration capacity of hydrophobic soils (Ebel &

Moody, 2017) could lend this phenomenon to being categorized as

IE. In any case, the impacts of fire-induced hydrophobic soils on infil-

tration tend to be most prevalent during initial post-fire stages when

the soil is the driest (DeBano, 2000), further supporting our finding

that changes in overland flow were most pronounced 1–2 years after

burning.

Our finding that IE overland flow signatures increase most in the

first two years post-fire agrees with previous studies investigating

the timescales of post-fire flooding and debris flows (Shakesby &

Doerr, 2006; Stoof et al., 2012). The risk of post-fire hydrologic

hazards tends to decrease after two years as vegetation regrows and

soils re-stabilize (Cannon et al., 2008; Kean et al., 2011; Rengers

et al., 2020). Nevertheless, wildfires can have varying impacts on soil

infiltration (DeBano & Krammes, 1966) and indeed there were water-

sheds in our study that experienced little-to-no change or experienced

decreased values for IE-related signatures. In terms of runoff response

to hydrophobic soils, DeBano and Krammes (1966) suggest that a

degree of inherent hydrophobicity in soils makes further fire-induced

hydrophobicity and associated decreases in infiltration more likely. A

lack of inherent water repellency could explain small or non-existent

increases in IE processes in some watersheds. This study demon-

strates the utility of overland flow signatures for characterizing wild-

fire impacts on potential flood- or debris-flow-inducing surface runoff

with relatively few parameters compared to modelling approaches. As

future wildfires occur and streamflow is continuously measured at

existing streamgages, signatures can be readily applied to understand

the mechanisms of post-fire overland flow and assess hydrologic

change and recovery.

The K–S tests suggest that pre- and post-fire distributions were

mostly not statistically significantly different from each other regard-

less of the length of the post-fire period considered, except for com-

parisons between the pre-fire and 1 and 2-year post-fire SE

Regression and 2-year post-fire IE Regression. The reason that IE

Regression is more significantly affected after the second year post-

fire, while SE Regression is impacted similarly for years 1 and 2, may

be that short-term signatures (1- and 2-years post-fire) are calculated

on a smaller number of events than longer-term signatures. It is thus

possible that in a typical watershed from our dataset, there were

insufficient events in the 1-year post-fire period with the precipitation

intensity characteristics of high IE overland flow events to give signifi-

cant values for the IE Regression signature. We ran the K–S tests with

a sample size of 39 values for the pre- and post-fire period, but a

larger sample size could aid in identifying changes with a wildfire that

TABLE 2 Mean and median of the R2

values for the 100 random forests run for

the IE Regression, IE Correlation, SE

Correlation, and SE Regression

signatures.

IE Regression IE Correlation SE Correlation SE Regression

10 years pre-fire

Mean R2 0.12 0.45 0.58 0.49

Median R2 0.12 0.45 0.59 0.49

10 years pre-fire vs. 10 years post-fire

Mean R2 �0.02 �0.04 0.04 0.13

Median R2 �0.01 �0.04 0.06 0.12

10 years post-fire

Mean R2 0.15 0.52 0.55 0.43

Median R2 0.18 0.52 0.57 0.42

10 years pre-fire vs. 2 years post-fire

Mean R2 0.25 �0.04 �0.04 0.49

Median R2 0.26 �0.05 �0.06 0.50

2 years post-fire

Mean R2 0.13 0.39 0.43 0.34

Median R2 0.15 0.46 0.52 0.35
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are more statistically significant. However, we showed that the post-

fire shifts in overland flow in the study watersheds were hydrologically

significant, by contextualizing pre- and post-fire signature values in the

distribution of signature values from a large, diverse sample of

U.S. watersheds calculated by McMillan et al. (2022) and Wu et al.

(2021). In some cases, seemingly small changes in signature values with

wildfire were associated with large changes in percentile in the distribu-

tion of signature values for catchments across the United States. This

suggests that watersheds are hydrologically similar to very different

watersheds in their post-fire period from the watersheds they were

hydrologically similar to in their unburned condition. Understanding

these changes is crucial for adapting watershed management practices

when faced with the potential risk of post-fire flooding or runoff-

induced debris flows (Rengers et al., 2019).

4.1 | Comparison of hydrologic signatures

The signatures used in this study are based on regressions or correla-

tions between event precipitation intensity or volume and streamflow

statistics. Despite being designed for the same overland flow processes

(IE Regression and IE Correlation for IE and SE Regression and SE

F IGURE 6 Bar plots representing the number of random forest models out of the 100 run for each signature in which each predictor variable

was used. Predictors whose average increase in mean squared error (IncMSE) across the 100 random forest models was negative were excluded

from plots and assumed to be relatively unimportant.
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Correlation for SE), the signatures designed by Wu et al. (2021) did not

show changes in the post-fire period as clearly as the signatures from

TOSSH. Wu et al. (2021) suggest that correlations between rainfall

depth/intensity and runoff coefficient in IE Correlation and SE Correla-

tion may be weaker than expected due to oversimplification of spatially

variable rainfall by catchment-averaged rainfall values. We would

expect this same issue to apply to the IE Regression and SE Regression

signatures, though these generally produced a greater response for the

same rainfall-runoff events. The regression producing the IE Regression

and SE Regression signatures includes additional predictors of event

precipitation volume or maximum intensity, such as antecedent precipi-

tation and event average precipitation intensity (Estrany et al., 2010).

These predictors potentially strengthen relationships with runoff

response. The IE Regression and SE Regression signatures also regress

predictors against both quickflow volume and peak flow, which may

provide stronger relationships with event precipitation characteristics

than runoff coefficient. McMillan et al. (2023) warn that signatures

designed for particular climates may not function as expected in other

climates and that the grid size of products like NLDAS-2 may result in

inaccurate precipitation totals in small watersheds. Future investigation

of why these signatures yield different results despite their similar

regression-based methodologies is recommended.

Previous work suggests that the IE Regression and SE Regression

signatures were designed for a semi-arid Mediterranean climate and

may not function as expected in other climates McMillan et al. (2022).

Approximately 1/4 of the watersheds studied receive >30% of annual

precipitation as snow, which is not accounted for in the hydrologic

signatures as implemented here, yet snowmelt as an antecedent mois-

ture source can impact streamflow response at the event scale

(Hammond & Kampf, 2020). Burned areas show impacts to snow

accumulation and accelerated snowmelt after wildfire (Gleason

et al., 2019; Kampf et al., 2022) and snowmelt can generate both satu-

ration and IE as flowpaths converge within the snowpack (Webb

et al., 2022). The missing representation of snowmelt could explain

some of the variability in our signature values. In future work, incorpo-

rating the output from a snowmelt model in addition to event precipi-

tation characteristics as signature inputs could help account for the

role snowpack plays in determining surface water input, an approach

that was used in a study of baseflow and storage signatures by

(Wlostowski et al., 2021). The changes in values for the hydrologic sig-

natures with wildfire aligned with our expectations. Nevertheless, it

would be valuable to complement this study's large-sample approach

with a small-sample, case study approach comparing signatures to

field observations or model outputs of overland flow in burned water-

sheds in various climates, including those with significant snowfall.

This would provide additional confidence that these signatures accu-

rately represent overland flow processes.

4.2 | Regional patterns in signature changes

To identify regional patterns of signature changes, we mapped the

short-term post-fire changes in signature values (Figure 7). The most

extreme changes in values for all signatures except IE Correlation

occurred in the southwestern United States, with high increases in IE

overland flow and decreases in SE overland flow in this region. The

finding that most study sites experienced increased IE and decreased

SE overland flow after wildfire according to hydrologic signatures

could be biased by the high concentration of sites in this region.

Despite being geographically isolated from most of the study

sites, watersheds in Florida and New Jersey did not show particularly

distinct patterns, exhibiting relatively moderate changes in all signa-

tures short-term after wildfire. Two of the watersheds located in Flor-

ida (Gage IDs 23 and 28, USGS-02330400 and USGS-02366996)

experienced prescribed burns as opposed to wildfires, which typically

burn at lower severities and are more spatially discontinuous than

wildfires (Lucas-Borja et al., 2019). The signatures may reflect that

these aspects of prescribed burning can reduce fire impacts on runoff

generation by easing fire impacts on soil infiltration capacity, espe-

cially during low-intensity rainfall events (Lucas-Borja et al., 2019).

4.3 | Relevant predictors of post-fire signatures

of overland flow

We show that climate, physiographic and wildfire attributes can pre-

dict post-fire hydrologic signatures of overland flow or changes to

these signatures with burning. The distributions of signature values

became less variable 10 years post-fire compared to the distributions

2 years post-fire, so it is reasonable that 10-year post-fire values were

predicted more accurately than 2-year post-fire values. The SE Corre-

lation and IE Correlation did not change as much as the IE Regression

and SE Regression signatures (see Figure 2), which may explain the

similar R2 values for these signatures regardless of whether the pre-

or post-fire values were predicted. With a larger training dataset, pre-

dictions of 2-year post-fire signatures or changes between 10-year

pre-fire and 2-year post-fire signatures could be further improved.

This would be a valuable contribution, given this is the post-fire period

in which watershed managers most need to assess or predict the risk

of post-fire hydrologic hazards.

Predictors related to wildfire (percent of the watershed burned

and burn severity) in the RF models were not among the most used

predictors for estimating post-fire signatures or changes in signatures

with wildfire. These findings differ from Wilder et al. (2021) and Saxe

et al. (2018), who both found the burned area to be an important pre-

dictor of post-fire hydrologic behaviour in RF regression models. Low

correlations have been found between post-fire hydrologic response

and predictor variables for watersheds with relatively small percent-

ages of area burned (Saxe et al., 2018.) Our relatively high threshold

of required burned area (30%) could have preemptively accounted for

the importance of burned area for identifying a hydrologic response in

burned watersheds, leading to low importance of this variable accord-

ing to the RF models. Wildfire impacts on soil infiltration, which gov-

erns IE processes, are related to burn severity (Moody et al., 2016);

however, results presented here and in Wilder et al. (2021) do not

suggest that burn severity is a particularly important predictor of
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hydrologic response. This result may be sensitive to methodology

when classifying burn severities. The most useful predictors of post-

fire signatures or changes to signatures with wildfire, such as aridity

index, NDVI, watershed slope and soil erodibility (geologic strength),

echo previous findings related to overall streamflow response (Saxe

et al., 2018).

NDVI quantifies photosynthetically active and transpiring vegeta-

tion and is related to canopy leaf area index (Cihlar et al., 1991). Vege-

tation intercepts water and stores and slows surface runoff by

providing roughness in the litter layer (Leighton-Boyce et al., 2007).

Therefore, it is reasonable that the pre-fire amount of photosynthesiz-

ing vegetation would be important for estimating overland flow. Cal-

culation of a dynamic NDVI value quantifying loss of

photosynthetically active vegetation with wildfire or short-term post-

fire NDVI was complicated by seasonal dynamics of this index due to

plant phenology (Cihlar et al., 1991) and noise in the LANDSAT time

series. This may explain why NDVI was not found to be an important

predictor for changes in signatures with wildfire but was useful for

predicting the pre-/post-fire values themselves. Average air tempera-

ture was included as a predictor in lieu of multiple correlated predic-

tors generally related to climate. Climate influences vegetation and

soil conditions that determine post-fire streamflow response (e.g. soil

hydrophobicity, surface sealing and direct exposure to rainfall)

(Hallema et al., 2017).

Maps of the catchment attributes most used by the best RF

ensembles for each signature (see models included in Table 2) in

Figure S3 show that the spatial variability in some of these attributes

aligns with the spatial patterns of watersheds that experienced the

F IGURE 7 Maps of the absolute differences between 10-year pre-fire and 2-year post-fire signature values for the 39 study watersheds.

Scales vary by signature, where blue represents larger decreases in signature value after wildfire and red represents larger increases in signature

values after wildfire.
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greatest change in overland flow signatures with wildfire. In

Figures S4–S8, we show scatter plots of the top three predictors

in each RF model, against signature values for 10 years pre-fire, 2 and

10 years post-fire and signature change from 10 years pre-fire to

2 years post-fire or 10 years post-fire. Together, these results contex-

tualize the directionality of relationships between the catchment attri-

butes and post-fire signatures or signature changes with wildfire from

the RF analysis. For example, stream density is relatively high in

southwestern watersheds where IE Regression exhibited the greatest

increases and SE Regression exhibited the greatest decreases two

years post-fire. Overland flow can quickly develop in small, steep

watersheds with high drainage densities (Baker, 1977), making these

watersheds more reactive to precipitation amount and intensity in a

post-fire context (Cannon et al., 2008). Several of the variables we

found to be most useful for predicting post-fire overland flow signa-

tures agree with the literature, yet the robustness of these conclu-

sions would benefit from future work determining the most reliable

overland flow signatures for a post-fire context.

5 | CONCLUSIONS

We demonstrated the utility of hydrologic signatures of overland flow

for investigating post-fire overland flow processes. Some signatures

showed increased IE processes and decreased SE processes after

wildfire, especially in the first 2 years post-fire, for 56% and 82% of

the 39 watersheds in this study, respectively. These increases in IE

processes may make watersheds vulnerable to runoff-induced post-

fire debris flows that threaten humans, water quality and infrastruc-

ture. However, there was some disagreement among signatures that

theoretically represent the same process and further work to identify

robust signatures of overland flow for investigating post-fire pro-

cesses is recommended. While changes in signatures with wildfire

were not statistically significant across all watersheds, they were

hydrologically significant compared to signature values from a large

national sample of watersheds. We demonstrate that post-fire signa-

tures of overland flow or changes in these signatures from pre-fire

conditions after burning can be predicted sufficiently using attributes

related to watersheds, climate and wildfires. IE Regression was the

hardest signature to predict. NDVI, air temperature, amount of devel-

oped/undeveloped land and soil thickness and clay content were the

most used predictors by well-performing RF models. The mean and

median R2 values were highest for RF ensembles predicting short-

term change in IE Regression and SE Regression with wildfire or pre-

dicting long-term post-fire IE Correlation and SE Correlation.

Watersheds in this study were highly concentrated in the arid and

semi-arid southwestern United States. Consequently, future work to

build a larger, more diverse training dataset of burned watersheds and

their attributes for ML models predicting signatures is recommended.

This will promote differentiation between regionally specific versus

widespread patterns in post-fire signatures of overland flow. Given

the high occurrence of large wildfires in the western United States in

recent years (Goss et al., 2020; Keeley & Syphard, 2021), future

studies may further advance efforts to predict changes in overland

flow signatures with wildfire with additional data. Improving these

predictions would aid watershed managers in post-fire flooding and

debris-flow hazard mitigation by further elucidating the drivers and

temporal dynamics of post-fire overland flow.

Signatures of overland flow provide a relatively streamlined

method for assessing and monitoring wildfire impacts on overland

flow, which can benefit rapid post-fire hydrologic hazard assessment

and response planning. The results and methodology presented here

demonstrate the utility of hydrologic signatures for improving a gen-

eralized understanding of post-fire overland flow processes with

potential application to prediction in ungauged or recently burned

basins.
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