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A hydrologic signature approach to analysing wildfire impacts
on overland flow
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Post-fire flooding and debris flows are often triggered by increased overland flow result-
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ing from wildfire impacts on soil infiltration capacity and surface roughness. Increasing
wildfire activity and intensification of precipitation with climate change make improving

understanding of post-fire overland flow a particularly pertinent task. Hydrologic signa-
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tures, which are metrics that summarize the hydrologic regime of watersheds using rain-
fall and runoff time series, can be calculated for large samples of watersheds relatively
easily to understand post-fire hydrologic processes. We demonstrate that signatures
designed specifically for overland flow reflect changes to overland flow processes with
wildfire that align with previous case studies on burned watersheds. For example, signa-
tures suggest increases in infiltration-excess overland flow and decrease in saturation-
excess overland flow in the first and second years after wildfire in the majority of water-
sheds examined. We show that climate, watershed and wildfire attributes can predict
either post-fire signatures of overland flow or changes in signature values with wildfire
using machine learning. Normalized difference vegetation index (NDVI), air temperature,
amount of developed/undeveloped land, soil thickness and clay content were the most
used predictors by well-performing machine learning models. Signatures of overland flow
provide a streamlined approach for characterizing and understanding post-fire overland
flow, which is beneficial for watershed managers who must rapidly assess and mitigate

the risk of post-fire hydrologic hazards after wildfire occurs.
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1 | INTRODUCTION

that exceed soil infiltration capacity (infiltration-excess [IE] overland

flow (Horton, 1933)) or rainfall occurring over an already saturated

Wildfires followed by extreme rainfall can cause flooding and debris
flows such as the deadly 2018 debris flows in Montecito, California,
United States (Kean et al., 2019). These compound hazards are an
increasing risk as extreme precipitation and wildfire intensify with a
changing climate (Abatzoglou & Williams, 2016; AghaKouchak
et al.,, 2020; Yin et al., 2018). Post-fire flooding is primarily caused by

overland flow, in which surface runoff occurs due to rainfall intensities

soil profile (saturation-excess overland flow (Dunne & Black, 1970)).
Wildfire increases watershed susceptibility to overland flow through
several processes increasing  soil  hydrophobicity
(DeBano, 2000; DeBano & Krammes, 1966; Doerr et al., 2000), reduc-
ing infiltration capacity (Ebel & Moody, 2017) and removal of biomass

including

that previously intercepted precipitation or provided water storage
and surface roughness in the litter layer (Leighton-Boyce et al., 2007).
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These impacts on soils can promote IE overland flow and associated
debris flows in burned watersheds (Rengers et al., 2020). Additionally,
runoff from saturated soils can cause post-fire hazards via shallow
landslides (DeBano, 2000; Wall et al., 2020).

The impact of wildfire on surface runoff depends on watershed
characteristics such as dominant vegetation type and antecedent mois-
ture levels (Dick et al., 1997; Stoof et al., 2012). Improving the under-
standing of the process mechanisms, spatial patterns and drivers of
post-fire overland flow would be of significant societal benefit given
precipitation extremes and occurrence and severity of wildfires are
expected to increase with climate change (Wilder et al, 2021; Yin
et al.,, 2018). When intense precipitation falls on recently burned water-
sheds, runoff-generated debris flows and flooding, which pollutes
freshwater resources and threaten life and property, become a signifi-
cant risk (Basso et al., 2020; Kean et al., 2019; Rengers et al., 2020).
This risk is greatest during the first two years after wildfire (Shakesby &
Doerr, 2006; Stoof et al., 2012). However, hydrologic recovery from
wildfire can take anywhere from a few years to several decades and
varies with watershed characteristics (Wagenbrenner et al., 2021).

Large-sample studies have developed our understanding of the spa-
tial distribution of dominant runoff generation mechanisms across the
United States, including identifying catchments dominated by IE versus
saturation-excess overland flow (Buchanan et al.,, 2018; Wu et al., 2021).
However, wildfire can shift these dominant runoff generation mecha-
nisms from one process to another, such as from saturation-excess to |1E
dominated (Chen et al., 2013). Changes in dominant processes warrant
adapted management practices to mitigate the time-sensitive impacts of
post-fire flooding or debris flows (Rengers et al., 2019) and are thus criti-
cal to understanding at broad spatial scales in wildfire-prone regions. In
this study, we investigated wildfire impacts on dominant overland flow
processes across a dataset of 39 fire-impacted watersheds.

We used hydrologic signatures to quantify changes in the occur-
rence and prevalence of overland flow processes. Hydrologic signatures
are indices calculated from streamflow and occasionally precipitation
time series that quantify aspects of the hydrologic regime of a catch-
ment (Gupta et al., 2008; McMillan, 2021). Signatures can be used as
objective functions in hydrologic models (Shafii & Tolson, 2015) or can
inform decisions about model structure (David et al., 2022) to improve
similarity between simulated and observed runoff patterns. Hydrologic
signatures facilitate further understanding of hydrologic processes
when carefully selected, as different signatures represent the occur-
rence and/or magnitude of specific processes including evapotranspira-
tion, baseflow and overland flow (McMillan, 2020). Signatures of
overland flow have promoted our understanding of this process outside
of post-fire contexts (McMillan, 2020; Wu et al., 2021). Signatures not
specific to overland flow such as runoff ratio have been applied to
understand the timing of hydrologic recovery after wildfire (Hampton &
Basu, 2022; Wagenbrenner et al., 2021; Wilder et al., 2021). However,
overland flow signatures have not previously been used to evaluate
post-fire hydrologic processes. Leveraging these process-specific signa-
tures provides a method for analysing wildfire impacts on potentially
flood-inducing runoff generation without requiring the time-consuming

calibration and running of hydrologic models.

The limited data requirements of hydrologic signatures allow them
to be calculated and automated for many watersheds, which promotes
the feasibility of large-sample studies. The increasing availability of
large-sample hydrometeorological datasets has already facilitated sev-
eral continental-scale studies identifying regional patterns of hydrologic
processes and providing deeper insights into the functionality of hydro-
logic signatures themselves (Addor et al., 2018; McMillan et al., 2022;
Wu et al., 2021). Catchment attributes paired to streamflow sites
(Addor et al., 2017; Wieczorek et al., 2018) can be used to predict
hydrologic signatures and further promote process understanding via
machine learning (ML) approaches. ML models provide predictor vari-
able importance rankings, making them useful for inferring which
attribute(s) contribute most to the accuracy of the streamflow signature
prediction and may thus be drivers or products of different processes
(Addor et al., 2018; Jehn et al., 2020; Wu et al., 2021).

While several post-fire runoff studies acknowledge the influence
of static catchment attributes (e.g. soil type, underlying geology,
topography, etc.) on the changes between pre- and post-fire runoff
processes, detailed analysis of which attributes exert the greatest
influence has often been out of the scope of the research
(Hampton & Basu, 2022; Kean & Staley, 2021). Previous comparisons
of various regression methods using wildfire and watershed attributes
to predict non-overland flow-specific hydrologic signatures have
yielded low correlation coefficients and/or contradictory findings
(Saxe et al., 2018). Focusing on one process such as overland flow
could elucidate the links between these attributes and post-fire
hydrologic response. Predicting changes in signatures of overland flow
and consequently identifying the attributes of fires, climate and
watersheds themselves that play the largest role in determining post-
fire surface runoff behaviour can aid in post-fire watershed manage-
ment across the United States, especially if regional patterns emerge
from the analysis.

Here, we leverage hydrologic signatures specific to overland flow
and use large-sample hydrometeorological datasets to investigate
(1) whether signatures of overland flow change significantly to reflect
shifts in runoff generation mechanisms after wildfire, (2) the timescale
of wildfire impacts on signatures of overland flow and (3) the most

important predictors of post-fire overland flow signatures.

2 | DATA AND METHODS

21 | Watershed selection

To improve the generalized process understanding of post-fire over-
land flow, we analysed 39 watersheds with areas ranging from
approximately 13 to 2927 km? that have been significantly burned by
wildfire or prescribed burns in the United States (Figure 1). A sum-
mary of watershed information is provided in the Supplemental Infor-
mation. We selected watersheds from the Geospatial Attributes of
Gages for Evaluating Streamflow (GAGES-II) dataset (Falcone, 2011).
We excluded watersheds with more than one major dam upstream to

minimize confounding drivers of hydrologic response. We required
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that watersheds had at least 20% of their area forested, assuming for-
ested landscapes experience particularly large hydrologic impacts
from wildfire (Hampton & Basu, 2022). To ensure adequate data to
characterize pre- and post-fire runoff conditions, we required that
watersheds have at least 10 years of streamflow and precipitation
data available both pre- and post-fire. We excluded sites where more
than 10% of this 20-year time series was missing. Despite the large
number of watersheds in the GAGES-II dataset meeting the burned
and forested area requirements (109), these strict requirements for
streamflow data eliminated 64% of eligible sites from the study, with
39 sites meeting all requirements. Previous studies also faced chal-
lenges of limited data availability for either the pre- or post-fire
period, if not both (see the review by Wagenbrenner et al., 2021).

To calculate the proportional burned area of each watershed, we
intersected shapefiles of burn perimeters from the Monitoring Trends
in Burn Severity (MTBS) dataset (Eidenshink et al., 2007) and water-
shed boundaries from GAGES-Il. The MTBS dataset provides shape-
files for wildfires and prescribed burns 1000 acres or larger between
1984 and 2020. We filtered the watersheds for those where at least
30% of the watershed was burned within one fire season, including
from multiple fire events. We assumed fire seasons were contained
within calendar years, given that the majority of fire ignition dates
occurred in the summer months (Figure S1). Since MTBS only includes
fires of 1000 acres or larger, some smaller fire-impacted watersheds
were not identified for this study and the impact of fires <1000 acres
in the selected catchments was not considered. If an eligible water-
shed had 30% or more of its area burned multiple times within
10 years of each other, it was excluded, as reburns could confound

the hydrological impacts of the initial fire.

2.2 | Hydrometeorological data

To analyse pre- and post-fire overland flow processes using hydro-

logic signatures, we used streamflow data from the National Water
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Information System, accessed through the dataRetrieval package in R
(De Cicco et al., 2018). We used precipitation data from the North
American Land Data Assimilation System (NLDAS) (Xia et al., 2012).
We chose NLDAS for its hourly temporal resolution with data begin-
ning in 1979, making it possible to access rainfall data for a large sam-
ple of watersheds from a single source. We summed hourly rainfall
data into daily values for sites where only daily streamflow data was
available. Area-weighted NLDAS precipitation data was obtained using
wrfhydroSubsetter

While daily streamflow data can be used successfully for signature

(github.com/mikejohnson51/wrfhydroSubsetter).

calculation, the short, intense precipitation events that typically cause
post-fire hydrologic hazards call for a finer temporal scale for the data
when available (e.g. hourly or sub-hourly rather than daily) (Kean
et al., 2011). This may be particularly important for smaller watersheds
with shorter times of concentration (Beven, 2020). Comparisons of
hourly and daily overland flow signature values and their agreement
with field observations suggest that hourly data is ideal for calculating
overland flow signatures McMillan et al. (2022); therefore, we priori-
tized using hourly data in any watershed where it was available but
maintained sites with only daily data available. We expect that the
robustness of signature values in smaller watersheds where only daily
data was available will be impacted the most given that smaller water-
sheds have shorter times of concentration and are more dominated
by hillslope processes, which may be obscured in daily data (Robinson
etal, 1995).

2.3 | Hydrologic signatures

We calculated four hydrologic signatures related to the prevalence of
IE and saturation-excess (SE) overland flow to understand whether
signatures of overland flow change significantly after fire in
U.S. watersheds. We calculated the IE Regression and SE Regression
signatures, representing prevalence of |IE and SE overland flow,

respectively, using the Toolbox for Streamflow Signatures in
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Hydrology (TOSSH) in MATLAB (Gnann et al., 2021) (https://github.
com/TOSSHtoolbox/TOSSH). These signatures were originally devel-
oped by Estrany et al. (2010) to differentiate IE and SE runoff mecha-
nisms for agricultural areas in Mediterranean climate regions. To
calculate the signatures, we used stepwise regression to fit coeffi-
cients a, b in Equations 1 and 2 that relate peak flow magnitude and
total flow volume to normalized predictors X quantifying precipitation
depth, antecedent precipitation and precipitation intensity. IE Regres-
sion is the mean of the coefficients of predictors related to intensity
(as,s, bss) and SE Regression is the mean of the coefficients of predic-
tors related to precipitation depth and antecedent precipitation (a4, 3,
b123). In each case, the signature values range from —1 to 1, with
higher values suggesting a prevalence of that mechanism.

Log Qmax = a1X1 +a2Xz +a3X3 +as X4 +asXs (1)

Log Qquickvol = b1X1 +b2X2 +b3X3 4 baXs + bsXs (2)

where Qumax is the maximum hourly event discharge (mm/h) and
Qquickvol is the total event quickflow volume (mm), X; is the total event
precipitation (mm), X, and X3 are the sum of 3-day and 5-day anteced-
ent precipitation respectively (mm), X, is the mean event precipitation
intensity (mm/h) and X5 is the maximum event precipitation intensity
(mm/h). X1_5 are normalized to have a mean of O and a standard devia-
tion of 1 before use.

These signatures require initial processing to divide the rainfall
and flow time series into individual storm events. TOSSH provides an
event separation algorithm to characterize events into instances of
>2 mm/h or 10 mm/day of rainfall. The events are separated by dry
periods of at least 12 h and end 5 days after rainfall ceases. We main-
tained these default parameter values for the separation algorithm for
all watersheds, though they are customizable. We filled missing values
in the time series with NaN so they would be ignored by the TOSSH
event separation algorithm. TOSSH also provides code for general
streamflow indices like runoff ratio, which we calculated on an annual
basis to identify and disqualify watersheds with potentially erroneous
data or confounding impacts on hydrology. For example, site USGS-
13239000 (North Fork Payette River at Mccall, ID), which had one
major upstream dam control located immediately above the stream-
gage at a reservoir outlet, had a runoff ratio >1. This site was excluded
from further analysis. TOSSH includes code for additional signatures
to identify thresholds of precipitation required for generating overland
flow, but in this study, we focus on signatures representing an overall
prevalence of |IE and SE overland flow.

The IE Correlation and SE Correlation signatures, like IE Regres-
sion and SE Regression, represent the prevalence of IE and SE over-
land flow, respectively. IE Correlation and SE Correlation were
developed by Wu et al. (2021) to differentiate IE and SE runoff mech-
anisms for U.S. watersheds and were calculated using a modified ver-
sion of code shared by the authors. |E Correlation is the Spearman
correlation coefficient between event runoff ratio (total event quick-
flow volume (mm) divided by total event precipitation (mm)) and mean

event precipitation intensity (mm/h). SE Correlation is the Spearman

correlation coefficient between event runoff ratio and total event pre-
cipitation (mm). The signature values range from —1 to 1, with higher
values suggesting a prevalence of that runoff mechanism. The code
was adapted to apply the TOSSH event separation algorithm, and
therefore use the same quickflow events as those considered by the
TOSSH signatures. The main difference between the event separation
methods by Wu et al. (2021) and from TOSSH is that Wu et al. (2021)
filtered for only the largest quickflow events. Using the same event
separation algorithm for all signatures made them directly comparable.
Calculating multiple signatures related to the same hydrologic pro-
cesses and determining the similarities or differences in their values
helps assess the robustness of the signatures for analysis of overland
flow in a post-fire context. We calculated the signatures for the
10-year period prior to the ignition date of the first fire in the fire-year
considered in each watershed, and for the 1-, 2-, 3-, 5- and 10-year
periods after the ignition date of the last fire in that fire-year. We
used the ignition date to mark both the end of the pre-fire period and
the beginning of the post-fire period because ‘fire-out’ or contain-
ment dates were not available from MTBS for the majority of fires. In
a few relatively arid watersheds, signatures for short timeperiods were
calculated based on less than 10 quickflow events (7 and 5 sites for 1-
and 2-year post-fire signature values, respectively). We included these
sites in the analysis given the limited eligible sites meeting the require-
ments for streamflow time series availability; however, it should be
noted that signatures calculated on watersheds with so few events
may not be as robust as signatures calculated for watersheds with

more frequent quickflow events.

2.4 | Analysis of post-fire change in hydrologic
signatures

To determine wildfire impacts on signature values, we calculated the
absolute difference between signature values for the 10-year pre-fire
period and the 1-, 2-, 3-, 5- and 10-year post-fire periods. For each sig-
nature, we determined the statistical significance of changes in the dis-
tribution of values across all sites between the 10-year pre-fire period
and each post-fire period using the nonparametric Kolmogorov-
Smirnov (K-S) test. The greatest vertical distance between the empiri-
cal cumulative distribution functions (CDFs) of pre- and post-fire signa-
ture values was quantified with the D-statistic, which has a value
between 0 and 1. Higher values suggest a greater difference between
the two distributions. We considered the two distributions to be statis-
tically significantly different if the p-value was less than 0.05.

The signatures in Section 2.3 were calculated by McMillan et al.
(2022) and Wu et al. (2021) for 546 and 432 watersheds, respectively,
from the CAMELS dataset (Newman et al., 2015). We determined the
percentile of the pre- and post-fire signature values for the 39 water-
sheds in this study (and thus the change in percentile with wildfire) in
the distributions of values determined by McMillan et al. (2022) and
Wau et al. (2021). This provided context for how significantly signature
values changed from the pre- to post-fire period in comparison to typ-

ical values in U.S. watersheds.
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TABLE 1

Attribute name
Wildfire
% Watershed burned

Difference-normalized Burn Ratio using the
Thermal Band (ANBRT, proxy for Burn Severity)

Soils

Avg K., (saturated hydraulic conductivity)

Sand, silt, and clay content (%)

Soil thickness

Avg bulk density

Organic matter (OM) content
Topography

Basin area

Avg basin slope

Avg stream slope

Avg basin elevation
Climate

Avg aridity index

Avg precipitation

Avg relative humidity

Avg temperature

Avg potential evapotranspiration

Avg precipitation falling as snow (%)
Land cover

Land cover (developed land, open water,
undeveloped land, forested land) (%)

Pre-fire normalized difference vegetation index
(NDVI)

Lithology

Geologic K,0, Ca0, Fe,03, MgO, P,0s, S, SiO, in
surface or near-surface geology (%)

Geologic strength
Hydraulic conductivity
Permeability

Hydrology
Avg depth to water table

Stream density

Summary of attribute data used in the random forest.

Citation or data source

Calculated from MTBS and GAGES-II

Landsat 5 TM Collection 1 Tier 1
32-Day NBRT Composite; images
courtesy of the U.S. Geological
Survey

Buchanan et al. (2018) (obtained
directly from authors)

Wieczorek et al. (2018)

Wieczorek et al. (2018)

Calculated from NLDAS, Xia et al.
(2012)

Wieczorek et al. (2018)

Wieczorek et al. (2018)

Landsat 5 TM Collection 1 Tier 1
32-Day NDVI Composite and Landsat
8 Collection 1 Tier 1 32-Day NDVI
Composite; images courtesy of the
U.S. Geological Survey

Wieczorek et al. (2018)

Wieczorek et al. (2018)

Details

30-m spatial resolution; subtracted the minimum
post-fire NBRT value from the averaged 10-year
pre-fire NBRT value

NBRT = Near-Infrared — (Mid-Infrared x Thermal)/
Near-Infrared + (Mid-Infrared x Thermal)

90-m spatial resolution

100-m spatial resolution resampled to 30-m

30-m digital elevation model

1/8° spatial resolution; averaged over the 10-years
pre- and post-fire (20 years total)

Averaged from 1971 to 2000
Averaged from 1961 to 1990
Averaged from 1971 to 2000
Averaged from 1971 to 2000
Averaged from 1905 to 2002

30-m spatial resolution; Paired sites with data for the
closest available pre-fire-year to the year of each fire
onset year

30-m spatial resolution; averaged for the 10-year
pre-fire period

NDVI = (Near-Infrared — Red)/(Near-Infrared

+ Red)

1-km spatial resolution

Note: Values represent the accumulated upstream area of each study site, and climate values are mean annual values. Avg = mean value.

In the highly variable Mediterranean climate of the southwestern
U.S., drought or extreme precipitation events can explain much of the

variation in hydrologic response after fire (Tomkins et al., 2008). Since

watersheds in this study burned at various times between 1994 and
2011, we did not expect to see uniform changes in signature values

due to differences in precipitation intensity or volume between the
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pre- and post-fire period. Nevertheless, we used a distribution com-
parison approach to evaluate potential differences between precipita-
tion in the pre- and post-fire periods. We plotted the CDF of
(1) maximum hourly precipitation intensity per day (mm/hour) and 2)
total daily precipitation (mm/day) for each site, comparing the 10-year
pre-fire with 2-year and 10-year post-fire distributions. We calculated
the maximum difference between the two distributions for each site
for both precipitation depth and intensity. This provided context as to
whether changes may have been considerably impacted by precipita-
tion anomalies rather than just by wildfire.

To understand how long wildfire impacts on overland flow signa-
tures last, we compared the distributions of absolute change in hydro-
logic signature values between pre-fire and post-fire periods of varying
lengths (1-, 2-, 3-, 5- and 10-years post-fire) in all watersheds. We
observed which post-fire period(s) experienced the greatest changes
compared to pre-fire conditions and whether the distributions recov-

ered to pre-fire conditions during the 10-year post-fire period.

2.5 | Analysis of predictors of post-fire
overland flow

We used an ML approach to investigate which wildfire, climate and
physiographic catchment attributes were associated with changes in
overland flow mechanisms with wildfire, as evidenced by hydrologic
signatures. We created random forest (RF) regression models for each
signature to predict (1) 10-year pre-fire signatures, (2) 10-year post-
fire signatures, (3) the absolute difference between 10-year pre-fire
signatures and 10-year post-fire signatures, (4) 2-year post-fire signa-
tures and (5) the absolute difference between 10-year pre-fire
signatures and 2-year post-fire signatures. These target variables were
chosen to determine whether these signatures can be predicted out-
side a post-fire context (hence the prediction of pre-fire values) and
to provide insight into drivers of post-fire overland flow in the short-
and long-term. We trained and ran the models using the randomForest
package in R (Liaw & Wiener, 2002). The predictor variables and their
sources are summarized in Table 1. We excluded predictors related to
fire (percent of watershed burned and burn severity) from the models
predicting pre-fire signature values since these predictors were not
relevant to the unburned hydrologic condition. We recognize that
large-domain gridded datasets as used here have varying and
unknown uncertainty in their variables (Gupta et al., 2014). For
example, as discussed by Beck et al. (2015), the limited quality and
consistency of globally available datasets such as those for geology
and soil characteristics may weaken relationships with streamflow
characteristics, even where the processes controlled by these physical
characteristics are well-accepted. In this study, we used predictor vari-
ables that are available across the United States from authoritative
sources such as the U.S. Geological Survey (Wieczorek et al., 2018),
although typically no uncertainty estimates are available for these var-
iables. This method allows us to use a single data source for all water-
sheds in the study and allows our approach to be replicable for other

large-sample studies.

To determine a reduced set of predictors and address multicolli-
nearity, we identified all predictor pairs with a Spearman correlation
coefficient of |0.85| or higher and selected one attribute from each
pair of highly correlated attributes. For example, the average air tem-
perature was highly correlated with the average potential evapotrans-
piration and percent of precipitation falling as snow, so only the
average air temperature was retained. We used the caret package in R
(Kuhn, 2008), to conduct recursive feature selection, identifying the
most important predictors that can produce a simplified model with
comparable performance to one with all the predictors. We excluded
three watersheds from this portion of the analysis due to missing data
for one or more predictors. Since we used one value per watershed
for each model, sample sizes for the RFs were relatively small (n = 36)
and results were dependent on the random sample of watersheds
used to create a training dataset. Therefore, we ran an ensemble of
100 RF models with different initializations and randomly sampled
training datasets for each signature.

Each model was trained on % of the watersheds and tested on
the remaining Y. We evaluated model performance using R? values to
quantify the proportion of variance explained by the predictors. We
used two methods to determine which predictor variables were most
valuable in predicting overland flow signatures. First, we counted how
many of the 100 RF ensemble members used each predictor variable
for each signature. Then, we calculated an average value for the vari-
able importance (increase in mean squared error or IncMSE, which is
the loss in model accuracy if the values of a given predictor are per-
muted) for each predictor across all runs where that predictor was
used. Both approaches provided rankings for which predictors were
most important for estimating signatures of overland flow or changes

to these signatures with wildfire.

3 | RESULTS

31 |
wildfire

Changes in hydrologic signatures with

We determined the absolute difference between pre- and post-fire
signature values to understand changes with wildfire. The absolute
differences between the signature values for 10 years pre-fire and the
2 and 10 years post-fire, respectively, are demonstrated in Figure 2.
When considering changes between 10 years pre-fire and 2 years
post-fire, 56% of sites experienced increases in IE Regression, 15%
experienced no change and 28% experienced a decrease. For SE
Regression, 82% of sites experienced decreases, one site experienced
no change and 15% of sites experienced increases. Approximately half
of the sites experienced increases in the IE Correlation and SE Corre-
lation signatures (51% and 49%, respectively), while the remaining
sites experienced decreases.

Patterns of change between 10 years pre-fire and 10 years post-
fire were similar to those comparing the 10-year pre-fire and 2-year
post-fire period, but the magnitude of changes was dampened in

some watersheds. For IE Regression 10 years post-fire, 49% of sites
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FIGURE 2 Plots showing absolute change between 10-year pre-fire and 2-year post-fire signature values (top row) and 10-year pre-fire and
10-year post-fire signature values (bottom row). The y-axis is ordered by the percentage of the watershed that was burned, with higher

percentages at the top. Gage ID's in bold indicate sites with daily rather than hourly data.

experienced increases, 13% had no change and 38% experienced
decreases. 62% of sites experienced decreases in SE Regression, 67%

experienced decreases in SE Correlation, 69% experienced decreases

in IE Correlation and the remainder of sites experienced increases in
these signatures. In some cases, watersheds where signature values

increased in the short-term post-fire period exhibited decreases when
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(a) Example Kolmogorov-Smirnov (K-S) test results showing statistically significant changes in a comparison of the distributions of

10-year pre-fire signatures with 2-year post-fire signatures across all sites. (b) Summary of all K-S test results.

a longer post-fire period was considered, or vice-versa (7 watersheds
for IE Regression, 12 for SE Regression, 14 for IE Correlation and
12 for SE Correlation).

We expected to find higher values for signatures related to IE over-
land flow following wildfire, suggesting a higher prevalence of
IE processes. Consequently, we expected to find lower values for SE
processes (Liu et al, 2021). Changes in the IE Regression and
SE Regression signatures followed these expected patterns, especially in
the 2-year post-fire period with similar but less uniform trends in the
10-year post-fire period. The IE Correlation and SE Correlation signa-
tures, which are also supposed to indicate the prevalence of infiltration-
and saturation-excess processes, respectively, did not show the same
clear trends 2 years post-fire but decreased for most watersheds in the
10-year post-fire period. In some cases, signatures designed for the
same process (IE Regression and IE Correlation for IE overland flow, SE
Regression and SE Correlation for SE overland flow) changed in contra-
dictory directions in the same watershed for the same post-fire period.

We used K-S tests comparing the distributions of 10-year pre-
fire signature values with distributions of 1-, 2-, 3-, 5- and 10-year
post-fire values to assess the statistical significance of signature
changes with wildfire. The K-S tests produced significant p-values
(<0.05) for the pre-fire versus 1- and 2-year post-fire comparison of
SE Regression and for the 2-year post-fire comparison of IE Regres-

sion (Figure 3). The tests produced D-statistics of 0.46 or lower.

While the K-S tests determined the statistical significance of
changes in signature values with wildfire, comparison to signature
values for watersheds across the United States provided context for
the hydrological significance of changes. The change in percentile
between 10-year pre-fire and 2-year post-fire signatures in a distribu-
tion of signature values for hundreds of U.S. watersheds is shown in
Figure 4. For the IE Regression, SE Regression and IE Correlation sig-
natures, the changes were often more considerable when contextual-
ized in a national sample of values than when taken at face value. For
example, a 0.32 absolute increase in IE Regression from 10 years pre-
fire to 2 years post-fire at Gage ID 5 (USGS-09484000, Sabino Creek
Near Tucson, AZ) was a change from the 8.6th percentile to the
85.3rd percentile in a national distribution of long-term signature

values.

3.1.1 | Impacts of Precipitation Variability
on Post-fire Signatures

We compared precipitation amount and intensity in the pre- and
post-fire period to assess whether wildfire impacts on signatures of
overland flow may be indiscernible from impacts of precipitation vari-
ability. The largest distance between the CDFs comparing 10-year
pre- and post-fire precipitation was 0.18 for daily maximum
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FIGURE 4 Dumbbell plots showing change in percentile (from a distribution of long-term signature values calculated for a large sample of
watersheds in the contiguous U.S. (CONUS)) between 10-year pre-fire and 2-year post-fire signature values. The y-axis is ordered by the
percentage of the watershed that was burned, with higher percentages at the top. Gage ID's in bold indicate sites with daily rather than

hourly data.

precipitation intensity (mm/h) and 0.19 for total daily precipitation
depth (mm/day) at Gage ID 6 (USGS-13310700, S. Fork Salmon River
Near Krassel Ranger Station, Idaho). The largest distance between the
CDFs comparing 10-year pre- and 2-year post-fire precipitation was
0.19 for daily maximum precipitation intensity (mm/h) and 0.18 for
total daily precipitation depth (mm/day) at Gage ID 22 (USGS-
11381500, Mill Creek Near Los Molinos, California). For context, the
largest distance between two CDFs we could expect is 1. Graphical
comparison of the CDFs demonstrates that even in these cases with
the largest distances between curves, the distributions mostly overlap
(Figure S2). The sections of the CDFs where the two distributions
diverge most are not at the highest precipitation depths or intensities
in the investigated watersheds. In most watersheds, we do not expect
that a very small number of exceptionally high volume or intensity
precipitation events in the pre- or post-fire period would substantially
impact signature values. Potential exceptions to this would be

instances where signatures are calculated for short time periods (1 or

2 years) in arid regions that have few rainfall-runoff events overall.
Given the small differences observed between pre- and post-fire pre-
cipitation characteristics, we conclude that differences between pre-
and post-fire signatures of overland flow can be attributed to wildfire

impacts over climate variability.

3.2 | Timescales of recovery from wildfire impacts
on overland flow signatures

We investigated changes in signatures of overland flow for various
periods of time after wildfire to understand the timing of recovery of
hydrologic processes after burning. When considering the change in
signature values from 10 years pre-fire to 1, 2, 3, 5 and 10 years post-
fire, changes were largest 1-2 years after wildfire. Regardless of
whether signature values increased or decreased post-fire, they grad-

ually recovered back to near pre-fire values throughout the 10-year
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FIGURE 5 Boxplots showing the distribution of absolute change (post-fire value — pre-fire value) in signature values from 10 years pre-fire

to 1, 2, 3, 5, and 10 years post-fire for the 39 study watersheds, where a value of O suggests no change, above 0 suggests an increase after

wildfire, and below O suggests a decrease after wildfire.

post-fire period (Figure 5). IE Regression values were generally higher
in the 1-2-year post-fire period, but the median absolute change
value returns close to O (no change) when considering longer post-fire
periods. The temporal patterns for IE Correlation generally follow that
of IE Regression but reflect a wider range of absolute change values,
especially in the negative direction (more sites showed decreases in
this signature compared to |IE Regression) one-year post-fire. The SE
Regression signature shows an overall decrease with a wildfire that
returns toward pre-fire conditions over time, whereas the SE Correla-
tion shows an increase with a wildfire that decreases toward pre-fire

levels over time.

3.3 | Predicting overland flow signatures post-fire

RF models successfully predicted either the change in signatures with
wildfire or the pre- and post-fire signature values, depending on the
signature. The R2 values for the testing data set from the ensemble of
100 RF models for the IE Regression, IE Correlation, SE Correlation
and SE Regression signatures are summarized in Table 2. Except for IE
Regression, all pre-fire signatures were predicted with an ensemble
median R? value of 0.45 and up to 0.59 for SE Correlation. Predictions
of fire-impacted |IE Regression and SE Regression had the highest per-
formance in ensembles predicting the difference between 10-year
pre-fire and 2-year post-fire values, with a median R? of 0.26 and 0.5,
respectively. R? values for models predicting |IE Regression were
always low compared to other signatures. SE Regression also had rela-
tively high R? values for models predicting 10-year pre-fire and
10-year post-fire signatures (median R? of 0.49 and 0.42, respec-
tively). Post-fire models for IE Correlation and SE Correlation had very
low R? values when predicting the difference between 10-year pre-
fire signatures and 10- or 2-year post-fire signatures, but R? values

were higher when predicting 10-year post-fire values (median R? of

0.52 and 0.57, respectively). These results demonstrate that post-fire
overland flow signatures (e.g. short or long-term post-fire signatures,
changes in signatures with wildfire) can be predicted with sufficient
performance.

We determined the most important variables for predicting
signatures or changes in signatures with wildfire. The rankings of
how many of the 100 ensemble RF models used each predictor in
the modelling scenarios with the highest R? values (namely, predic-
tions of 2-year post-fire IE Correlation and SE Correlation and the
difference between pre-fire and 2-year post-fire IE Regression and
SE Regression) are shown in Figure 6. The results for the average
increase in MSE (IncMSE) when each predictor was permuted pro-
duced similar results for top predictors, therefore only the number
of ensemble members using each predictor is presented here. Nor-
malized difference vegetation index (NDVI) was in the top five pre-
dictors for each signature when predicting post-fire signature
values, but not when predicting the change in signature values
from pre-fire conditions. Average air temperature was a top pre-
dictor in the highest performing ensemble for each signature
(10-year post-fire SE Correlation and IE Correlation and difference
between 10-year pre-fire and 2-year post-fire IE Regression and
SE Regression). Top predictors specific to |IE Regression and SE
Regression include the amount of developed/undeveloped land,
basin and stream slope and soil layer thickness. Geologic strength,
which is related to erodibility, was also frequently an important
predictor for SE Regression. Clay content, soil saturated hydraulic
conductivity and geologic permeability were important predictors
in the models predicting post-fire SE Correlation and IE Correla-
tion, which performed better than models predicting changes in
these signatures with wildfire. The attributes related to fire (per-
cent of the watershed burned and burn severity) were not of par-
ticularly high importance in any of the RF ensembles with high

average R? values.
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TABLE 2 Mean and median of the R?
values for the 100 random forests run for
the |IE Regression, IE Correlation, SE

|IE Regression

10 years pre-fire

IE Correlation SE Correlation SE Regression

Correlation, and SE Regression Mean R? 0.12 0.45 0.58 0.49
signatures. Median R? 0.12 0.45 0.59 0.49
10 years pre-fire vs. 10 years post-fire
Mean R? -0.02 -0.04 0.04 0.13
Median R? -0.01 —0.04 0.06 0.12
10 years post-fire
Mean R? 0.15 0.52 0.55 0.43
Median R? 0.18 0.52 0.57 0.42
10 years pre-fire vs. 2 years post-fire
Mean R? 0.25 —0.04 —0.04 0.49
Median R? 0.26 —0.05 —0.06 0.50
2 years post-fire
Mean R? 0.13 0.39 043 0.34
Median R? 0.15 0.46 0.52 0.35

4 | DISCUSSION

The increases in IE Regression 2 years post-fire in the majority of sites
align with previous observations of reduced soil infiltration capacity
and reduced surface roughness after wildfire, all of which can contrib-
ute to flashier flow from increased surface runoff (Doerr et al., 2000;
Ebel & Moody, 2016; Leighton-Boyce et al., 2007; Liu et al., 2021).
These decreases in infiltration may also impact the ability of the soil
profile to become saturated, which could explain the associated
decrease in SE Regression and thus SE overland flow.

Studies of post-fire overland flow often focus on changes in infil-
tration in burned watersheds rather than saturation (e.g. Chen
et al, 2013; DeBano, 2000; Ebel & Moody, 2017), though Holden
et al. (2015) found that after prescribed fire in blanket peatlands,
warmer soil temperatures and associated increased evapotranspira-
tion led to deeper water tables. This reduced the prevalence of SE
overland flow, especially shortly after burning. Scott and Van Wyk
(1990) categorized overland flow occurring from hydrophobic layers
below burn piles as SE. In post-fire soils with a shallow hydrophobic
layer, the difference between IE and SE can become blurred. The
hydrophobic layer can shorten the saturable depth of the soil profile,
which would require less rainfall to produce SE overland flow. Con-
versely, the reduced infiltration capacity of hydrophobic soils (Ebel &
Moody, 2017) could lend this phenomenon to being categorized as
IE. In any case, the impacts of fire-induced hydrophobic soils on infil-
tration tend to be most prevalent during initial post-fire stages when
the soil is the driest (DeBano, 2000), further supporting our finding
that changes in overland flow were most pronounced 1-2 years after
burning.

Our finding that IE overland flow signatures increase most in the
first two years post-fire agrees with previous studies investigating
the timescales of post-fire flooding and debris flows (Shakesby &
Doerr, 2006; Stoof et al., 2012). The risk of post-fire hydrologic

hazards tends to decrease after two years as vegetation regrows and
soils re-stabilize (Cannon et al., 2008; Kean et al., 2011; Rengers
et al., 2020). Nevertheless, wildfires can have varying impacts on soil
infiltration (DeBano & Krammes, 1966) and indeed there were water-
sheds in our study that experienced little-to-no change or experienced
decreased values for |E-related signatures. In terms of runoff response
to hydrophobic soils, DeBano and Krammes (1966) suggest that a
degree of inherent hydrophobicity in soils makes further fire-induced
hydrophobicity and associated decreases in infiltration more likely. A
lack of inherent water repellency could explain small or non-existent
increases in |IE processes in some watersheds. This study demon-
strates the utility of overland flow signatures for characterizing wild-
fire impacts on potential flood- or debris-flow-inducing surface runoff
with relatively few parameters compared to modelling approaches. As
future wildfires occur and streamflow is continuously measured at
existing streamgages, signatures can be readily applied to understand
the mechanisms of post-fire overland flow and assess hydrologic
change and recovery.

The K-S tests suggest that pre- and post-fire distributions were
mostly not statistically significantly different from each other regard-
less of the length of the post-fire period considered, except for com-
parisons between the pre-fire and 1 and 2-year post-fire SE
Regression and 2-year post-fire |IE Regression. The reason that IE
Regression is more significantly affected after the second year post-
fire, while SE Regression is impacted similarly for years 1 and 2, may
be that short-term signatures (1- and 2-years post-fire) are calculated
on a smaller number of events than longer-term signatures. It is thus
possible that in a typical watershed from our dataset, there were
insufficient events in the 1-year post-fire period with the precipitation
intensity characteristics of high IE overland flow events to give signifi-
cant values for the IE Regression signature. We ran the K-S tests with
a sample size of 39 values for the pre- and post-fire period, but a

larger sample size could aid in identifying changes with a wildfire that
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FIGURE 6 Bar plots representing the number of random forest models out of the 100 run for each signature in which each predictor variable
was used. Predictors whose average increase in mean squared error (IncMSE) across the 100 random forest models was negative were excluded

from plots and assumed to be relatively unimportant.

are more statistically significant. However, we showed that the post-
fire shifts in overland flow in the study watersheds were hydrologically
significant, by contextualizing pre- and post-fire signature values in the
distribution of signature values from a large, diverse sample of
U.S. watersheds calculated by McMillan et al. (2022) and Wu et al.
(2021). In some cases, seemingly small changes in signature values with
wildfire were associated with large changes in percentile in the distribu-
tion of signature values for catchments across the United States. This
suggests that watersheds are hydrologically similar to very different
watersheds in their post-fire period from the watersheds they were

hydrologically similar to in their unburned condition. Understanding

these changes is crucial for adapting watershed management practices
when faced with the potential risk of post-fire flooding or runoff-
induced debris flows (Rengers et al., 2019).

41 | Comparison of hydrologic signatures

The signatures used in this study are based on regressions or correla-
tions between event precipitation intensity or volume and streamflow
statistics. Despite being designed for the same overland flow processes

(IE Regression and IE Correlation for IE and SE Regression and SE

9SUAOIT SuOWWOD) IANear) d[qedtdde ay) £q pauIIA0S JIe SIONIE Y 3SN JO SN 10] AIRIGIT SUI[UQ AJ[IA UO (SUONIPUOI-PUB-SULIDY WO AI[1m " ATRIqI[aut[uo//:sdny) suonipuo) pue swd ], 3y 39S *[+z0z/80/1] uo A1eiqry auruQ AdMia ‘S1zS1°dAu/z001°01/10p/wod K[’ Kreiqijauruo//:sdny woiy papeo[umod ‘9 ‘70T ‘S8016601



BOLOTIN and McMILLAN

Wl LEY 13 of 18

Correlation for SE), the signatures designed by Wu et al. (2021) did not
show changes in the post-fire period as clearly as the signatures from
TOSSH. Wu et al. (2021) suggest that correlations between rainfall
depth/intensity and runoff coefficient in IE Correlation and SE Correla-
tion may be weaker than expected due to oversimplification of spatially
variable rainfall by catchment-averaged rainfall values. We would
expect this same issue to apply to the |IE Regression and SE Regression
signatures, though these generally produced a greater response for the
same rainfall-runoff events. The regression producing the IE Regression
and SE Regression signatures includes additional predictors of event
precipitation volume or maximum intensity, such as antecedent precipi-
tation and event average precipitation intensity (Estrany et al., 2010).
These predictors potentially strengthen relationships with runoff
response. The IE Regression and SE Regression signatures also regress
predictors against both quickflow volume and peak flow, which may
provide stronger relationships with event precipitation characteristics
than runoff coefficient. McMillan et al. (2023) warn that signatures
designed for particular climates may not function as expected in other
climates and that the grid size of products like NLDAS-2 may result in
inaccurate precipitation totals in small watersheds. Future investigation
of why these signatures yield different results despite their similar
regression-based methodologies is recommended.

Previous work suggests that the IE Regression and SE Regression
signatures were designed for a semi-arid Mediterranean climate and
may not function as expected in other climates McMillan et al. (2022).
Approximately 1/4 of the watersheds studied receive >30% of annual
precipitation as snow, which is not accounted for in the hydrologic
signatures as implemented here, yet snowmelt as an antecedent mois-
ture source can impact streamflow response at the event scale
(Hammond & Kampf, 2020). Burned areas show impacts to snow
accumulation and accelerated snowmelt after wildfire (Gleason
et al., 2019; Kampf et al., 2022) and snowmelt can generate both satu-
ration and IE as flowpaths converge within the snowpack (Webb
et al., 2022). The missing representation of snowmelt could explain
some of the variability in our signature values. In future work, incorpo-
rating the output from a snowmelt model in addition to event precipi-
tation characteristics as signature inputs could help account for the
role snowpack plays in determining surface water input, an approach
that was used in a study of baseflow and storage signatures by
(Wlostowski et al., 2021). The changes in values for the hydrologic sig-
natures with wildfire aligned with our expectations. Nevertheless, it
would be valuable to complement this study's large-sample approach
with a small-sample, case study approach comparing signatures to
field observations or model outputs of overland flow in burned water-
sheds in various climates, including those with significant snowfall.
This would provide additional confidence that these signatures accu-

rately represent overland flow processes.

4.2 | Regional patterns in signature changes

To identify regional patterns of signature changes, we mapped the

short-term post-fire changes in signature values (Figure 7). The most

extreme changes in values for all signatures except IE Correlation
occurred in the southwestern United States, with high increases in IE
overland flow and decreases in SE overland flow in this region. The
finding that most study sites experienced increased IE and decreased
SE overland flow after wildfire according to hydrologic signatures
could be biased by the high concentration of sites in this region.
Despite being geographically isolated from most of the study
sites, watersheds in Florida and New Jersey did not show particularly
distinct patterns, exhibiting relatively moderate changes in all signa-
tures short-term after wildfire. Two of the watersheds located in Flor-
ida (Gage IDs 23 and 28, USGS-02330400 and USGS-02366996)
experienced prescribed burns as opposed to wildfires, which typically
burn at lower severities and are more spatially discontinuous than
wildfires (Lucas-Borja et al., 2019). The signatures may reflect that
these aspects of prescribed burning can reduce fire impacts on runoff
generation by easing fire impacts on soil infiltration capacity, espe-

cially during low-intensity rainfall events (Lucas-Borja et al., 2019).

4.3 | Relevant predictors of post-fire signatures
of overland flow

We show that climate, physiographic and wildfire attributes can pre-
dict post-fire hydrologic signatures of overland flow or changes to
these signatures with burning. The distributions of signature values
became less variable 10 years post-fire compared to the distributions
2 years post-fire, so it is reasonable that 10-year post-fire values were
predicted more accurately than 2-year post-fire values. The SE Corre-
lation and IE Correlation did not change as much as the IE Regression
and SE Regression signatures (see Figure 2), which may explain the
similar R? values for these signatures regardless of whether the pre-
or post-fire values were predicted. With a larger training dataset, pre-
dictions of 2-year post-fire signatures or changes between 10-year
pre-fire and 2-year post-fire signatures could be further improved.
This would be a valuable contribution, given this is the post-fire period
in which watershed managers most need to assess or predict the risk
of post-fire hydrologic hazards.

Predictors related to wildfire (percent of the watershed burned
and burn severity) in the RF models were not among the most used
predictors for estimating post-fire signatures or changes in signatures
with wildfire. These findings differ from Wilder et al. (2021) and Saxe
et al. (2018), who both found the burned area to be an important pre-
dictor of post-fire hydrologic behaviour in RF regression models. Low
correlations have been found between post-fire hydrologic response
and predictor variables for watersheds with relatively small percent-
ages of area burned (Saxe et al., 2018.) Our relatively high threshold
of required burned area (30%) could have preemptively accounted for
the importance of burned area for identifying a hydrologic response in
burned watersheds, leading to low importance of this variable accord-
ing to the RF models. Wildfire impacts on soil infiltration, which gov-
erns IE processes, are related to burn severity (Moody et al., 2016);
however, results presented here and in Wilder et al. (2021) do not

suggest that burn severity is a particularly important predictor of
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FIGURE 7 Maps of the absolute differences between 10-year pre-fire and 2-year post-fire signature values for the 39 study watersheds.
Scales vary by signature, where blue represents larger decreases in signature value after wildfire and red represents larger increases in signature

values after wildfire.

hydrologic response. This result may be sensitive to methodology
when classifying burn severities. The most useful predictors of post-
fire signatures or changes to signatures with wildfire, such as aridity
index, NDVI, watershed slope and soil erodibility (geologic strength),
echo previous findings related to overall streamflow response (Saxe
et al.,, 2018).

NDVI quantifies photosynthetically active and transpiring vegeta-
tion and is related to canopy leaf area index (Cihlar et al., 1991). Vege-
tation intercepts water and stores and slows surface runoff by
providing roughness in the litter layer (Leighton-Boyce et al., 2007).
Therefore, it is reasonable that the pre-fire amount of photosynthesiz-
ing vegetation would be important for estimating overland flow. Cal-
culation of a dynamic NDVI value quantifying loss of

photosynthetically active vegetation with wildfire or short-term post-

fire NDVI was complicated by seasonal dynamics of this index due to
plant phenology (Cihlar et al., 1991) and noise in the LANDSAT time
series. This may explain why NDVI was not found to be an important
predictor for changes in signatures with wildfire but was useful for
predicting the pre-/post-fire values themselves. Average air tempera-
ture was included as a predictor in lieu of multiple correlated predic-
tors generally related to climate. Climate influences vegetation and
soil conditions that determine post-fire streamflow response (e.g. soil
hydrophobicity, surface sealing and direct exposure to rainfall)
(Hallema et al., 2017).

Maps of the catchment attributes most used by the best RF
ensembles for each signature (see models included in Table 2) in
Figure S3 show that the spatial variability in some of these attributes

aligns with the spatial patterns of watersheds that experienced the
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greatest change in overland flow signatures with wildfire. In
Figures S4-S8, we show scatter plots of the top three predictors
in each RF model, against signature values for 10 years pre-fire, 2 and
10 years post-fire and signature change from 10 years pre-fire to
2 years post-fire or 10 years post-fire. Together, these results contex-
tualize the directionality of relationships between the catchment attri-
butes and post-fire signatures or signature changes with wildfire from
the RF analysis. For example, stream density is relatively high in
southwestern watersheds where IE Regression exhibited the greatest
increases and SE Regression exhibited the greatest decreases two
years post-fire. Overland flow can quickly develop in small, steep
watersheds with high drainage densities (Baker, 1977), making these
watersheds more reactive to precipitation amount and intensity in a
post-fire context (Cannon et al., 2008). Several of the variables we
found to be most useful for predicting post-fire overland flow signa-
tures agree with the literature, yet the robustness of these conclu-
sions would benefit from future work determining the most reliable
overland flow signatures for a post-fire context.

5 | CONCLUSIONS

We demonstrated the utility of hydrologic signatures of overland flow
for investigating post-fire overland flow processes. Some signatures
showed increased IE processes and decreased SE processes after
wildfire, especially in the first 2 years post-fire, for 56% and 82% of
the 39 watersheds in this study, respectively. These increases in |IE
processes may make watersheds vulnerable to runoff-induced post-
fire debris flows that threaten humans, water quality and infrastruc-
ture. However, there was some disagreement among signatures that
theoretically represent the same process and further work to identify
robust signatures of overland flow for investigating post-fire pro-
cesses is recommended. While changes in signatures with wildfire
were not statistically significant across all watersheds, they were
hydrologically significant compared to signature values from a large
national sample of watersheds. We demonstrate that post-fire signa-
tures of overland flow or changes in these signatures from pre-fire
conditions after burning can be predicted sufficiently using attributes
related to watersheds, climate and wildfires. IE Regression was the
hardest signature to predict. NDVI, air temperature, amount of devel-
oped/undeveloped land and soil thickness and clay content were the
most used predictors by well-performing RF models. The mean and
median R? values were highest for RF ensembles predicting short-
term change in |IE Regression and SE Regression with wildfire or pre-
dicting long-term post-fire IE Correlation and SE Correlation.
Watersheds in this study were highly concentrated in the arid and
semi-arid southwestern United States. Consequently, future work to
build a larger, more diverse training dataset of burned watersheds and
their attributes for ML models predicting signatures is recommended.
This will promote differentiation between regionally specific versus
widespread patterns in post-fire signatures of overland flow. Given
the high occurrence of large wildfires in the western United States in
recent years (Goss et al, 2020; Keeley & Syphard, 2021), future

studies may further advance efforts to predict changes in overland
flow signatures with wildfire with additional data. Improving these
predictions would aid watershed managers in post-fire flooding and
debris-flow hazard mitigation by further elucidating the drivers and
temporal dynamics of post-fire overland flow.

Signatures of overland flow provide a relatively streamlined
method for assessing and monitoring wildfire impacts on overland
flow, which can benefit rapid post-fire hydrologic hazard assessment
and response planning. The results and methodology presented here
demonstrate the utility of hydrologic signatures for improving a gen-
eralized understanding of post-fire overland flow processes with
potential application to prediction in ungauged or recently burned
basins.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 2124923. We thank Dr. Trent Biggs and
Dr. Alicia Kinoshita for their feedback on the text and methods,
Dr. Dan Sousa for advice on remote sensing methods, Mallorie Honey
and Margot Mattson for help obtaining satellite imagery and Donny

Kim for help obtaining precipitation data.

DATA AVAILABILITY STATEMENT

Data produced and used in this study is publicly available, aside from
that which was obtained directly from the authors of other studies or
from publicly available resources (see Table 2). Files containing the
results of this study are available at 10.5281/zenodo0.10607977.

ORCID

L. A. Bolotin "2 https://orcid.org/0000-0002-0295-9544
H. McMillan "= https://orcid.org/0000-0002-9330-9730
REFERENCES

Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate
change on wildfire across western US forests. Proceedings of the
National Academy of Sciences, 113(42), 11770-11775. https://doi.org/
10.1073/pnas.1607171113

Addor, N., Nearing, G., Prieto, C., Newman, A. J,, Le Vine, N., & Clark, M. P.
(2018). A ranking of hydrological signatures based on their predictabil-
ity in space. Water Resources Research, 54(11), 8792-8812. https://
doi.org/10.1029/2018WR022606

Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. (2017). The
CAMELS data set: Catchment attributes and meteorology for large-
sample studies. Hydrology and Earth System Sciences, 21(10), 5293-
5313.

AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I.,
Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., &
Sadegh, M. (2020). Climate extremes and compound hazards in a
warming world. Annual Review of Earth and Planetary Sciences, 48(1),
519-548. https://doi.org/10.1146/annurev-earth-071719-055228

Baker, V. R. (1977). Stream-channel response to floods, with examples from
central Texas. Geological Society of America Bulletin, 88(8), 1057. https://
doi.org/10.1130/0016-7606(1977)88<1057:SRTFWE>2.0.CO;2

Basso, M., Vieira, D. C. S., Ramos, T. B., & Mateus, M. (2020). Assessing
the adequacy of SWAT model to simulate postfire effects on the
watershed hydrological regime and water quality. Land Degradation &
Development, 31(5), 619-631. https://doi.org/10.1002/Idr.3476

ASUADIT suowwo)) dAnea1) d[qeorjdde ayy £q pauraA03 oI SA[ONIR YO SN JO I[N 10] ATeIqIT dUHUQ AI[IAN UO (SUONIPUOD-PUB-SULIA)/ WO I[1M’ A1RIqI[duI[U0//:5d1Y) SUONIPUOD) puB SWIA, 31 39S “[$70T/80/1T] U0 Areiqry autuQ A1 ‘G161 dAU/z001°01/10p/wod Kapim Kreiqrpaurjuoy//:sdny woiy papeo[umo( ‘9 ‘470z ‘S8016601



16 of 18 Wl LEY

BOLOTIN and McMILLAN

Beck, H. E., De Roo, A., & Van Dijk, A. I. J. M. (2015). Global maps of
streamflow characteristics based on observations from several thou-
sand catchments. Journal of Hydrometeorology, 16(4), 1478-1501.
https://doi.org/10.1175/JHM-D-14-0155.1

Beven, K. J. (2020). A history of the concept of time of concentration.
Hydrology and Earth System Sciences, 24(5), 2655-2670. https://doi.
org/10.5194/hess-24-2655-2020

Buchanan, B., Auerbach, D. A., Knighton, J., Evensen, D., Fuka, D. R,
Easton, Z., Wieczorek, M., Archibald, J. A., McWilliams, B., & Walter, T.
(2018). Estimating dominant runoff modes across the conterminous
United States. Hydrological Processes, 32(26), 3881-3890. https://doi.
org/10.1002/hyp.13296

Cannon, S. H., Gartner, J. E., Wilson, R. C.,, Bowers, J. C,, & Laber, J. L.
(2008). Storm rainfall conditions for floods and debris flows from
recently burned areas in southwestern Colorado and southern Califor-
nia. Geomorphology, 96(3-4), 250-269. https://doi.org/10.1016/j.
geomorph.2007.03.019

Chen, L., Berli, M., & Chief, K. (2013). examining modeling approaches for
the rainfall-runoff process in wildfire-affected watersheds: Using san
dimas experimental forest. JAWRA Journal of the American Water
Resources Association, 49(4), 851-866. https://doi.org/10.1111/jawr.
12043

Cihlar, J., Laurent, L. S., & Dyer, J. A. (1991). Relation between the
normalized difference vegetation index and ecological variables.
Remote Sensing of Environment, 35(2-3), 279-298. https://doi.org/10.
1016/0034-4257(91)90018-2

David, P. C., Chaffe, P. L. B., Chagas, V. B. P., Dal Molin, M., Oliveira, D. Y.,
Klein, A. H. F., & Fenicia, F. (2022). Correspondence between model
structures and hydrological signatures: A large-sample case study
using 508 Brazilian catchments. Water Resources Research, 58(3),
€2021WR030619. https://doi.org/10.1029/2021WR030619

De Cicco, L. A, Hirsch, R. M., Lorenz, D., Watkins, D., & Johnson, M.
(2018). DataRetrieval [Computer software]. U.S. Geological Survey.
https://doi.org/10.5066/P9X4L3GE

DeBano, L. F. (2000). The role of fire and soil heating on water repellency
in wildland environments: A review. Journal of Hydrology, 231-232,
195-206. https://doi.org/10.1016/S0022-1694(00)00194-3

DeBano, L. F., & Krammes, J. S. (1966). Water repellent soils and their rela-
tion to wildfire temperatures. International Association of Scientific
Hydrology. Bulletin, 11(2), 14-19. https://doi.org/10.1080/02626
666609493457

Dick, G. S., Anderson, R. S., & Sampson, D. E. (1997). Controls on flash
flood magnitude and hydrograph shape, Upper Blue Hills badlands,
Utah. Geology, 25(1), 45. https://doi.org/10.1130/0091-7613(1997)
025<0045:COFFMA>2.3.CO;2

Doerr, S. H., Shakesby, R. A., & Walsh, R. P. D. (2000). Soil water repel-
lency: Its causes, characteristics and hydro-geomorphological signifi-
cance. Earth-Science Reviews, 51(1-4), 33-65. https://doi.org/10.
1016/50012-8252(00)00011-8

Dunne, T., & Black, R. D. (1970). Partial area contributions to storm runoff
in a small new england watershed. Water Resources Research, 6(5),
1296-1311. https://doi.org/10.1029/WR006i005p01296

Ebel, B. A., & Moody, J. A. (2017). Synthesis of soil-hydraulic prop-
erties and infiltration timescales in wildfire-affected soils: Synthe-
sis of soil-hydraulic properties in wildfire-affected soils.
Hydrological Processes, 31(2), 324-340. https://doi.org/10.1002/
hyp.10998

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.-L., Quayle, B., & Howard, S.
(2007). A project for monitoring trends in burn severity. Fire Ecology,
3(1), 3-21. https://doi.org/10.4996/fireecology.0301003

Estrany, J., Garcia, C., & Batalla, R. J. (2010). Hydrological response
of a small mediterranean agricultural catchment. Journal of
Hydrology, 380(1-2), 180-190. https://doi.org/10.1016/j.jhydrol.
2009.10.035

Falcone, J. A. (2011). GAGES-II: Geospatial attributes of gages for evaluat-
ing streamflow, USGS Publications Warehouse. https://doi.org/10.
3133/70046617

Gleason, K. E., McConnell, J. R, Arienzo, M. M., Chellman, N., &
Calvin, W. M. (2019). Four-fold increase in solar forcing on
snow in western U.S. burned forests since 1999. Nature Commu-
nications,  10(1), 2026. https://doi.org/10.1038/s41467-019-
09935-y

Gnann, S. J., Coxon, G., Woods, R. A., Howden, N. J. K., & McMillan, H. K.
(2021). TOSSH: A toolbox for streamflow signatures in hydrology.
Environmental Modelling & Software, 138, 104983. https://doi.org/10.
1016/j.envsoft.2021.104983

Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A,
Williams, A. P., & Diffenbaugh, N. S. (2020). Climate change is increas-
ing the likelihood of extreme autumn wildfire conditions across Cali-
fornia. Environmental Research Letters, 15(9), 094016. https://doi.org/
10.1088/1748-9326/ab83a7

Gupta, H. V., Perrin, C., Bloschl, G., Montanari, A., Kumar, R., Clark, M., &
Andréassian, V. (2014). Large-sample hydrology: A need to balance
depth with breadth. Hydrology and Earth System Sciences, 18(2), 463-
477. https://doi.org/10.5194/hess-18-463-2014

Gupta, H. V., Wagener, T., & Liu, Y. (2008). Reconciling theory with obser-
vations: Elements of a diagnostic approach to model evaluation.
Hydrological Processes, 22(18), 3802-3813. https://doi.org/10.1002/
hyp.6989

Hallema, D. W., Sun, G., Bladon, K. D., Norman, S. P., Caldwell, P. V.,
Liu, Y., & McNulty, S. G. (2017). Regional patterns of postwildfire
streamflow response in the Western United States: The importance of
scale-specific connectivity. Hydrological Processes, 31(14), 2582-2598.
https://doi.org/10.1002/hyp.11208

Hammond, J. C., & Kampf, S. K. (2020). Subannual streamflow responses
to rainfall and snowmelt inputs in snow-dominated watersheds of the
Western United States. Water Resources Research, 56(4),
e2019WR026132. https://doi.org/10.1029/2019WR026132

Hampton, T. B., & Basu, N. B. (2022). A novel Budyko-based approach to
quantify post-forest-fire streamflow response and recovery time-
scales. Journal of Hydrology, 608, 127685. https://doi.org/10.1016/j.
jhydrol.2022.127685

Holden, J., Palmer, S. M. Johnston, K., Wearing, C., Irvine, B., &
Brown, L. E. (2015). Impact of prescribed burning on blanket peat
hydrology. Water Resources Research, 51(8), 6472-6484. https://doi.
org/10.1002/2014WR016782

Horton, R. E. (1933). The Réle of infiltration in the hydrologic cycle. Trans-
actions of the American Geophysical Union, 14(1), 446-460. https://doi.
org/10.1029/TR014i001p00446

Jehn, F. U, Bestian, K., Breuer, L., Kraft, P., & Houska, T. (2020). Using
hydrological and climatic catchment clusters to explore drivers of
catchment behavior. Hydrology and Earth System Sciences, 24(3),
1081-1100. https://doi.org/10.5194/hess-24-1081-2020

Kampf, S. K., McGrath, D., Sears, M. G., Fassnacht, S. R., Kiewiet, L., &
Hammond, J. C. (2022). Increasing wildfire impacts on snowpack in the
western US. Proceedings of the National Academy of Sciences, 119(39),
€2200333119.

Kean, J. W., & Staley, D. M. (2021). Forecasting the frequency and mag-
nitude of postfire debris flows across Southern California. Earth's
Future, 9(3), €2020EF001735. https://doi.org/10.1029/2020EFO
01735

Kean, J. W,, Staley, D. M., & Cannon, S. H. (2011). In situ measurements of
post-fire debris flows in southern California: Comparisons of the tim-
ing and magnitude of 24 debris-flow events with rainfall and soil mois-
ture conditions. Journal of Geophysical Research, 116(F4), FO4019.
https://doi.org/10.1029/2011JF002005

Kean, J. W,, Staley, D. M., Lancaster, J. T., Rengers, F. K., Swanson, B. J.,
Coe, J. A, Hernandez, J. L, Sigman, A. J, Allstadt, K. E, &

ASUADIT suowwo)) dAnea1) d[qeorjdde ayy £q pauraA03 oI SA[ONIR YO SN JO I[N 10] ATeIqIT dUHUQ AI[IAN UO (SUONIPUOD-PUB-SULIA)/ WO I[1M’ A1RIqI[duI[U0//:5d1Y) SUONIPUOD) puB SWIA, 31 39S “[$70T/80/1T] U0 Areiqry autuQ A1 ‘G161 dAU/z001°01/10p/wod Kapim Kreiqrpaurjuoy//:sdny woiy papeo[umo( ‘9 ‘470z ‘S8016601



BOLOTIN and McMILLAN

Wl LEY 17 of 18

Lindsay, D. N. (2019). Inundation, flow dynamics, and damage in the
9 January 2018 Montecito debris-flow event, California, USA: Oppor-
tunities and challenges for post-wildfire risk assessment. Geosphere,
15(4), 1140-1163. https://doi.org/10.1130/GES02048.1

Keeley, J. E., & Syphard, A. D. (2021). Large California wildfires: 2020 fires
in historical context. Fire Ecology, 17(1), 22. https://doi.org/10.1186/
s42408-021-00110-7

Kuhn, M. (2008). Building predictive models in R using the caret package.
Journal of Statistical Software, 28(5), 1-26. https://doi.org/10.18637/
jss.v028.i05

Leighton-Boyce, G., Doerr, S. H., Shakesby, R. A,, & Walsh, R. P. D. (2007).
Quantifying the impact of soil water repellency on overland flow gen-
eration and erosion: A new approach using rainfall simulation and wet-
ting agent onin situ soil. Hydrological Processes, 21(17), 2337-2345.
https://doi.org/10.1002/hyp.6744

Liaw, A., & Wiener, M. (2002). Classification and Regression by random-
Forest. R News, 2(3), 18-22.

Liu, T., McGuire, L. A, Wei, H., Rengers, F. K, Gupta, H., Ji, L, &
Goodrich, D. C. (2021). The timing and magnitude of changes to Hor-
tonian overland flow at the watershed scale during the post-fire recov-
ery process. Hydrological Processes, 35(5), e14208. https://doi.org/10.
1002/hyp.14208

Lucas-Borja, M. E,, PIaza—AIvarez, P. A, Gonzalez-Romero, J., Sagra, J.,
Alfaro-Sanchez, R., Zema, D. A., Moya, D., & De Las Heras, J. (2019).
Short-term effects of prescribed burning in Mediterranean pine plan-
tations on surface runoff, soil erosion and water quality of runoff. Sci-
ence of the Total Environment, 674, 615-622. https://doi.org/10.1016/
j.scitotenv.2019.04.114

McMillan, H. (2020). Linking hydrologic signatures to hydrologic pro-
cesses: A review. Hydrological Processes, 34(6), 1393-1409. https://
doi.org/10.1002/hyp.13632

McMillan, H., Coxon, G., Araki, R., Salwey, S., Kelleher, C., Zheng, Y.,
Knoben, W., Gnann, S., Seibert, J., & Bolotin, L. (2023). When good sig-
natures go bad: Applying hydrologic signatures in large sample studies.
Hydrological Processes, 37(9), e14987. https://doi.org/10.1002/hyp.
14987

McMillan, H. K. (2021). A review of hydrologic signatures and their appli-
cations. WIREs Water, 8(1), €1499. https://doi.org/10.1002/wat2.
1499

McMillan, H. K., Gnann, S. J., & Araki, R. (2022). Large scale evaluation of
relationships between hydrologic signatures and processes. Water
Resources Research, 58(6), €2021WR031751. https://doi.org/10.
1029/2021WR031751

Moody, J. A, Ebel, B. A., Nyman, P., Martin, D. A,, Stoof, C., & McKinley, R.
(2016). Relations between soil hydraulic properties and burn severity.
International Journal of Wildland Fire, 25(3), 279. https://doi.org/10.
1071/WF14062

Newman, A. J.,, Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A,,
Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., &
Duan, Q. (2015). Development of a large-sample watershed-scale
hydrometeorological data set for the contiguous USA: Data set char-
acteristics and assessment of regional variability in hydrologic model
performance. Hydrology and Earth System Sciences, 19(1), 209-223.
https://doi.org/10.5194/hess-19-209-2015

Rengers, F. K., McGuire, L. A,, Kean, J. W,, Staley, D. M., & Youberg, A. M.
(2019). Progress in simplifying hydrologic model parameterization for
broad applications to post-wildfire flooding and debris-flow hazards.
Earth Surface Processes and Landforms, 44(15), 3078-3092. https://
doi.org/10.1002/esp.4697

Rengers, F. K., McGuire, L. A.,, Oakley, N. S., Kean, J. W., Staley, D. M., &
Tang, H. (2020). Landslides after wildfire: Initiation, magnitude, and
mobility. Landslides, 17(11), 2631-2641. https://doi.org/10.1007/
5$10346-020-01506-3

Robinson, J. S., Sivapalan, M., & Snell, J. D. (1995). On the relative
roles of hillslope processes, channel routing, and network geomor-
phology in the hydrologic response of natural catchments. Water
Resources Research, 31(12), 3089-3101. https://doi.org/10.1029/
95WR01948

Saxe, S., Hogue, T. S., & Hay, L. (2018). Characterization and evaluation of
controls on post-fire streamflow response across western US water-
sheds. Hydrology and Earth System Sciences, 22(2), 1221-1237.
https://doi.org/10.5194/hess-22-1221-2018

Scott, D. F., & Van Wyk, D. B. (1990). The effects of wildfire on soil wetta-
bility and hydrological behaviour of an afforested catchment. Journal
of Hydrology, 121(1-4), 239-256. https://doi.org/10.1016/0022-
1694(90)90234-0

Shafii, M., & Tolson, B. A. (2015). Optimizing hydrological consistency
by incorporating hydrological signatures into model calibration
objectives: Hydrological consistency optimization. Water Resources
Research, 51(5), 3796-3814. https://doi.org/10.1002/2014WR01
6520

Shakesby, R., & Doerr, S. (2006). Wildfire as a hydrological and geomor-
phological agent. Earth-Science Reviews, 74(3-4), 269-307. https://
doi.org/10.1016/j.earscirev.2005.10.006

Stoof, C. R., Vervoort, R. W, Iwema, J, Van Den Elsen, E.,
Ferreira, A. J. D., & Ritsema, C. J. (2012). Hydrological response of a
small catchment burned by experimental fire. Hydrology and Earth Sys-
tem Sciences, 16(2), 267-285. https://doi.org/10.5194/hess-16-267-
2012

Tomkins, K. M., Humphreys, G. S., Gero, A. F., Shakesby, R. A., Doerr, S. H.,
Wallbrink, P. J., & Blake, W. H. (2008). Postwildfire hydrological
response in an El Nifio-Southern Oscillation-dominated environment.
Journal of Geophysical Research, 113(F2), F02023. https://doi.org/10.
1029/2007JF000853

Wagenbrenner, J. W., Ebel, B. A,, Bladon, K. D., & Kinoshita, A. M. (2021).
Post-wildfire hydrologic recovery in Mediterranean climates: A sys-
tematic review and case study to identify current knowledge and
opportunities. Journal of Hydrology, 602, 126772. https://doi.org/10.
1016/j.jhydrol.2021.126772

Wall, S. A., Roering, J. J., & Rengers, F. K. (2020). Runoff-initiated post-fire
debris flow Western Cascades, Oregon. Landslides, 17(7), 1649-1661.
https://doi.org/10.1007/5s10346-020-01376-9

Webb, R. W., Musselman, K. N., Ciafone, S., Hale, K. E., & Molotch, N. P.
(2022). Extending the vadose zone: Characterizing the role of snow
for liquid water storage and transmission in streamflow generation.
Hydrological Processes, 36(3), e14541. https://doi.org/10.1002/hyp.
14541

Wieczorek, M. E., Jackson, S. E., & Schwarz, G. E. (2018). Select
Attributes for NHDPlus Version 2.1 Reach Catchments and Modified
Network Routed Upstream Watersheds for the Conterminous
United States [Data set]. U.S. Geological Survey. https://doi.org/
10.5066/F7765D7V

Wilder, B. A, Lancaster, J. T., Cafferata, P. H., Coe, D. B. R,, Swanson, B. J.,
Lindsay, D. N., Short, W. R., & Kinoshita, A. M. (2021). An analytical
solution for rapidly predicting post-fire peak streamflow for small
watersheds in southern California. Hydrological Processes, 35(1),
e13976. https://doi.org/10.1002/hyp.13976

Wilostowski, A. N., Molotch, N., Anderson, S. P., Brantley, S. L.,
Chorover, J., Dralle, D., Kumar, P., Li, L., Lohse, K. A,, Mallard, J. M.,
Mclintosh, J. C., Murphy, S. F., Parrish, E., Safeeq, M., Seyfried, M.,
Shi, Y., & Harman, C. (2021). Signatures of hydrologic function
across the critical zone observatory network. Water Resources
Research, 57(3), €2019WRO026635. https://doi.org/10.1029/2019
WR026635

Wau, S., Zhao, J., Wang, H., & Sivapalan, M. (2021). Regional patterns and
physical controls of streamflow generation across the conterminous

ASUADIT suowwo)) dAnea1) d[qeorjdde ayy £q pauraA03 oI SA[ONIR YO SN JO I[N 10] ATeIqIT dUHUQ AI[IAN UO (SUONIPUOD-PUB-SULIA)/ WO I[1M’ A1RIqI[duI[U0//:5d1Y) SUONIPUOD) puB SWIA, 31 39S “[$70T/80/1T] U0 Areiqry autuQ A1 ‘G161 dAU/z001°01/10p/wod Kapim Kreiqrpaurjuoy//:sdny woiy papeo[umo( ‘9 ‘470z ‘S8016601



18 of 18 Wl LEY

BOLOTIN and McMILLAN

United States. Water Resources Research, 57(6), e2020WR028086.
https://doi.org/10.1029/2020WR028086

Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C.,
Wei, H., Meng, J., Livheh, B., Duan, Q., & Lohmann, D. (2012). Continen-
tal-scale water and energy flux analysis and validation for North American
Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation
of model-simulated streamflow. Journal of Geophysical Research: Atmo-
spheres, 117(D3), D03109. https://doi.org/10.1029/2011JD016051

Yin, J., Gentine, P., Zhou, S., Sullivan, S. C., Wang, R., Zhang, Y., & Guo, S.
(2018). Large increase in global storm runoff extremes driven by cli-
mate and anthropogenic changes. Nature Communications, 9(1), 4389.
https://doi.org/10.1038/s41467-018-06765-2

SUPPORTING INFORMATION
Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Bolotin, L. A., & McMillan, H. (2024).
A hydrologic signature approach to analysing wildfire impacts
on overland flow. Hydrological Processes, 38(6), €15215.
https://doi.org/10.1002/hyp.15215

ASUADIT suowwo)) dAnea1) d[qeorjdde ayy £q pauraA03 oI SA[ONIR YO SN JO I[N 10] ATeIqIT dUHUQ AI[IAN UO (SUONIPUOD-PUB-SULIA)/ WO I[1M’ A1RIqI[duI[U0//:5d1Y) SUONIPUOD) puB SWIA, 31 39S “[$70T/80/1T] U0 Areiqry autuQ A1 ‘G161 dAU/z001°01/10p/wod Kapim Kreiqrpaurjuoy//:sdny woiy papeo[umo( ‘9 ‘470z ‘S8016601



	A hydrologic signature approach to analysing wildfire impacts on overland flow
	1  INTRODUCTION
	2  DATA AND METHODS
	2.1  Watershed selection
	2.2  Hydrometeorological data
	2.3  Hydrologic signatures
	2.4  Analysis of post-fire change in hydrologic signatures
	2.5  Analysis of predictors of post-fire overland flow

	3  RESULTS
	3.1  Changes in hydrologic signatures with wildfire
	3.1.1  Impacts of Precipitation Variability on Post-fire Signatures

	3.2  Timescales of recovery from wildfire impacts on overland flow signatures
	3.3  Predicting overland flow signatures post-fire

	4  DISCUSSION
	4.1  Comparison of hydrologic signatures
	4.2  Regional patterns in signature changes
	4.3  Relevant predictors of post-fire signatures of overland flow

	5  CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES


