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ABSTRACT

Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed
coverage using any predictive model, under the assumption that the training and
test data are i.i.d.. Recently, it has been shown that adversarial examples are able to
manipulate conformal methods to construct prediction sets with invalid coverage
rates, as the i.i.d. assumption is violated. To address this issue, a recent work,
Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify
the robustness of conformal prediction methods to adversarial noise. However,
RSCP has two major limitations: (i) its robustness guarantee is flawed when used
in practice and (ii) it tends to produce large uncertainty sets. To address these
limitations, we first propose a novel framework called RSCP+ to provide provable
robustness guarantee in evaluation, which fixes the issues in the original RSCP
method. Next, we propose two novel methods, Post-Training Transformation (PTT)
and Robust Conformal Training (RCT), to effectively reduce prediction set size
with little computation overhead. Experimental results in CIFAR10, CIFAR100,
and ImageNet suggest the baseline method only yields trivial predictions includ-
ing full label set, while our methods could boost the efficiency by up to 4.36×,
5.46×, and 16.9× respectively and provide practical robustness guarantee. Our
codes are available at https://github.com/Trustworthy-ML-Lab/
Provably-Robust-Conformal-Prediction.

1 INTRODUCTION

Conformal prediction (Lei & Wasserman, 2014; Papadopoulos et al., 2002; Vovk et al., 2005) has
been a powerful tool to quantify prediction uncertainties of modern machine learning models. For
classification tasks, given a test input xn+1, it could generate a prediction set C(xn+1) with coverage
guarantee:

P[yn+1 ∈ C(xn+1)] ≥ 1− α, (1)

where yn+1 is the ground truth label and 1 − α is user-specified target coverage. This property is
desirable in safety-critical applications like autonomous vehicles and clinical applications. In general,
it is common to set the coverage probability 1− α to be high, e.g. 90% or 95%, as we would like the
ground truth label to be contained in the prediction set with high probability. It is also desired to have
the smallest possible prediction sets C(xn+1) as they are more informative. In this paper, we use the
term "efficiency" to compare conformal prediction methods: we say a conformal prediction method
is more efficient if the size of the prediction set is smaller.

Despite the power of conformal prediction, recent work (Gendler et al., 2021) showed that conformal
prediction is unfortunately prone to adversarial examples – that is, the coverage guarantee in Eq. (1)
may not hold anymore because adversarial perturbation on test data breaks the i.i.d. assumption and
thus the prediction set constructed by vanilla conformal prediction becomes invalid. To solve this
problem, Gendler et al. (2021) proposes a new technique, named Randomized Smoothed Confor-
mal Prediction (RSCP), which is able to construct new prediction sets Cε(x̃n+1) that is robust to
adversarial examples:

P[yn+1 ∈ Cε(x̃n+1)] ≥ 1− α, (2)

where x̃n+1 denotes a perturbed example that satisfies ‖x̃n+1 − xn+1‖2 ≤ ε and ε > 0 is the
perturbation magnitude. The key idea of RSCP is to modify the vanilla conformal prediction
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Figure 1: An overview of this work: We address two limitations of RSCP (Gendler et al., 2021) by
proposing RSCP+ (Sec. 3) & PTT + RCT (Sec. 4), which enables the first provable and efficient
robust conformal prediction. As we show in the experiments in Sec. 5, our proposed method could
provide useful robust prediction sets information while the baseline failed.

procedure with randomized smoothing (Cohen et al., 2019; Duchi et al., 2012; Salman et al., 2019)
so that the impact of adversarial perturbation could be bounded and compensated.

However, RSCP has two major limitations: (1) the robustness guarantee of RSCP is flawed: RSCP
introduces randomized smoothing to provide robustness guarantee. Unfortunately, the derived
guarantee is invalid when Monte Carlo sampling is used for randomized smoothing, which is how
randomized smoothing is implemented in practice (Cohen et al., 2019). Therefore, their robustness
certification is invalid, despite empirically working well. (2) RSCP has low efficiency: The average
size of prediction sets of RSCP is much larger than the vanilla conformal prediction, as shown in our
experiments (Fig. D.1).

In this paper, we will address these two limitations of RSCP to allow efficient and provably robust
conformal prediction by proposing a new theoretical framework RSCP+ in Sec. 3 to guarantee
robustness, along with two new methods (PTT & RCT) in Sec. 4 to effectively decrease the prediction
set size. We summarize our contributions below:

1. We first identify the major issue of RSCP in robustness certification and address this issue
by proposing a new theoretical framework called RSCP+. The main difference between
RSCP+ and RSCP is that our RSCP+ uses the Monte Carlo estimator directly as the base
score for RSCP, and amends the flaw of RSCP with simple modification on the original
pipeline. To our best knowledge, RSCP+ is the first method to provide practical certified
robustness for conformal prediction.

2. We further propose two methods to improve the efficiency of RSCP+: a scalable, training-
free method called PTT and a general robust conformal training framework called RCT.
Empirical results suggest PTT and RCT are necessary for providing guaranteed robust
prediction sets.

3. We conduct extensive experiments on CIFAR10, CIFAR100 and ImageNet with RSCP+,
PTT and RCT. Results show that without our method the baseline only gives trivial pre-
dictions, which are uninformative and useless. In contrast, our methods provide practical
robustness certification and boost the efficiency of the baseline by up to 4.36× on CIFAR10,
5.46× on CIFAR100, and 16.9× on ImageNet.

2 BACKGROUND AND RELATED WORKS

2.1 CONFORMAL PREDICTION

Suppose D = {(xi, yi)}ni=1 is an i.i.d. dataset, where xi ∈ R
p denotes the features of ith sample and

yi ∈ [K] := {1, . . . ,K} denotes its label. Conformal prediction method divides D into two parts: a
training set Dtrain = {(xi, yi)}mi=1 and a calibration set Dcal = D \Dtrain. The training set Dtrain is

utilized to train a classifier function π̂(x) : Rp → [0, 1]K . Given classifier π̂, a non-conformity score
function S(x, y) : Rp × [K] → R is defined for each class y based on classifier’s prediction π̂(x).
Next, the calibration set Dcal is utilized to calculate threshold τ , which is the (1− α)(1 + 1/|Dcal|)
empirical quantile of calibration scores {S(x, y)}(x,y)∈Dcal

. Given a test sample xn+1, conformal
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prediction construct a prediction set C(xn+1; τ) as:

C(xn+1; τ) = {k ∈ [K] | S(xn+1, k) ≤ τ}, (3)

where
τ = Q1−α({S(x, y)}(x,y)∈Dcal

) (4)

and Qp(Dcal) denote the p(1 + 1/|Dcal|)-th empirical quantile of the calibration scores. In the
remainder of the paper, we may omit the parameter τ and write the prediction set simply as C(x)
when the context is clear. Conformal prediction ensures the coverage guarantee in Eq. (1) by showing
that the score corresponding to the ground truth label is bounded by τ with probability 1 − α, i.e.
P(S(xn+1, yn+1) ≤ τ) ≥ 1− α.

Note that the above conformal prediction pipeline works for any non-conformity score S(x, y),
but the statistical efficiency of conformal prediction is affected by the choice of non-conformity
score. Common non-conformity scores include HPS (Lei et al., 2013; Sadinle et al., 2019) and APS
(Romano et al., 2020):

SHPS(x, y) = 1− π̂y(x), SAPS(x, y) =
∑

y′∈[K]

π̂y′(x)1{π̂y′ (x)>π̂y(x)} + π̂y(x) · u, (5)

where u is a random variable sampled from a uniform distribution over [0, 1].

2.2 RANDOMIZED SMOOTHED CONFORMAL PREDICTION

To ensure the coverage guarantee still holds under adversarial perturbation, Gendler et al. (2021)
proposed Randomized Smoothed Conformal Prediction (RSCP), which defines a new non-conformity

score S̃ that can construct new prediction sets that are robust against adversarial attacks. The key idea

of RSCP is to consider the worst-case scenario that S̃ may be affected by adversarial perturbations:

S̃(x̃n+1, y) ≤ S̃(xn+1, y) +Mε, ∀y ∈ [K], (6)

where xn+1 denotes the clean example, x̃n+1 denotes the perturbed example that satisfies ‖x̃n+1 −
xn+1‖2 ≤ ε and Mε is a non-negative constant. Eq. (6) indicates that the new non-conformity score

S̃ on adversarial examples may be inflated, but fortunately the inflation can be bounded. Therefore,
to ensure the guarantee in Eq. (2) is satisfied, the threshold τ in the new prediction set needs to be
adjusted to τadj defined as τadj = τ +Mε to compensate for potential adversarial perturbations, and
then Cε can be constructed as follows:

Cε(x; τadj) = {k ∈ [K] | S̃(x, k) ≤ τadj}, (7)

where x is any test example. From Eq. (6), the validity of Cε could be verified by following derivation:

yn+1 ∈ C(xn+1) ⇒ S̃(xn+1, yn+1) ≤ τ ⇒ S̃(x̃n+1, yn+1) ≤ τadj ⇒ yn+1 ∈ Cε(x̃n+1). (8)

Thus, the coverage guarantee in Eq. (2) is satisfied. To obtain a valid Mε, Gendler et al. (2021)

proposed to leverage randomized smoothing (Cohen et al., 2019; Duchi et al., 2012) to construct S̃.
Specifically, define

S̃(x, y) = Φ−1 [SRS(x, y)] and SRS(x, y) = Eδ∼N (0,σ2Ip)S(x+ δ, y), (9)

where δ is a Gaussian random variable, σ is the standard deviation of δ which controls the strength of
smoothing, and Φ−1(·) is Gaussian inverse cdf. We call SRS(x, y) the randomized smoothed score
from a base score S(x, y), as SRS(x, y) is the smoothed version of S(x, y) using Gaussian noise on
the input x. Since Φ−1 is defined on the interval [0, 1], the base score S must satisfy S(x, y) ∈ [0, 1].

One nice property from randomized smoothing (Cohen et al., 2019) is that it guarantees that S̃ is

Lipschitz continuous with Lipschitz constant 1
σ , i.e.

|S̃(x̃n+1,yn+1)−S̃(xn+1,yn+1)|
‖x̃n+1−xn+1‖2

≤ 1
σ . Hence, we

have

‖x̃n+1 − xn+1‖2 ≤ ε =⇒ S̃(x̃n+1, yn+1) ≤ S̃(xn+1, yn+1) +
ε

σ
, (10)

which is exactly Eq. (6) with Mε = ε
σ . Therefore, when using S̃ in conformal prediction, the

threshold should be adjusted by:

τadj = τ +
ε

σ
. (11)
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3 CHALLENGE 1: ROBUSTNESS GUARANTEE

In this section, we point out a flaw in the robustness certification of RSCP (Gendler et al., 2021)
and propose a new scheme called RSCP+ to provide provable robustness guarantee in practice. As

we discuss in Sec. 2.2, the key idea of RSCP is introducing a new conformity score S̃ that satisfies
Eq. (10), which gives an upper bound to the impact of adversarial perturbation. However, in practice,

S̃ is intractable due to expectation calculation in SRS. A common practice in randomized smoothing
literature is:

• Step 1: Approximate SRS by Monte Carlo estimator:

ŜRS(x, y) =
1

NMC

NMC∑
i=1

S(x+ δi, y), δi ∼ N (0, σ2Ip). (12)

• Step 2: Bound the estimation error via some concentration inequality.

In RSCP, however, Step 2 is missing, because bounding the error simultaneously on the calibration
set is difficult, as discussed in Appendix A.1. We argue that the missing error bound makes the
robustness guarantee of RSCP invalid in practice.

To address this issue, we propose an elegant and effective approach, RSCP+, to fill in the gap and
provide the guarantee. In particular, the intrinsic difficulty in bounding Monte Carlo error inspires
us to avoid the estimation. Thus, in RSCP+ we propose a new approach to incorporate the Monte

Carlo estimator ŜRS directly as the (non-)conformity score, which could be directly calculated, unlike

SRS. Here, one question may arise is: Can a randomized score (e.g. ŜRS) be applied in conformal
prediction and maintain the coverage guarantee? The answer is yes: as we discuss in Appendix A.2,
many classical (non-)conformity scores (e.g. APS (Romano et al., 2020)) are randomized scores,
and the proofs for them are similar to the deterministic scores, as long as the i.i.d. property between

calibration and test scores is preserved. Therefore, our ŜRS is a legit (non-)conformity score.

The challenge of using ŜRS is to derive an inequality similar to Eq. (10), i.e. connect ŜRS(x̃n+1, y)

and ŜRS(xn+1, y) (the grey dotted line in Fig. 2), so that we can bound the impact from adversarial
noises and compensate for it accordingly. To achieve this, we use SRS as a bridge (as shown in Fig. 2),
and present the result in Theorem 1.

Figure 2: Diagram illustrating our RSCP+. (Left) (1) The dotted line shows our target: bound

Monte-Carlo estimator score ŜRS under perturbation; (2) The orange arrow denotes the bound of the
randomized smoothed score SRS under perturbation, given by (Gendler et al., 2021); (3) The grey
arrows denote Hoeffding’s inequality connecting randomized smoothed score SRS and Monte Carlo

estimator score ŜRS. The target (1) could be derived by (2) + (3). (Right) RSCP+ algorithm.

Theorem 1. Let (xn+1, yn+1) be the clean test sample and x̃n+1 be perturbed input data that
satisfies ‖x̃n+1 − xn+1‖2 ≤ ε. Then, with probability 1− 2β:

ŜRS(x̃n+1, yn+1)− bHoef(β) ≤ Φ
[
Φ−1[ŜRS(xn+1, yn+1) + bHoef(β)] +

ε

σ

]
,

where bHoef(β) =
√

−lnβ
2NMC

, NMC is the number of Monte Carlo examples, Φ is standard Gaussian cdf,

σ is smoothing strength and ŜRS is the Monte Carlo score defined in Eq. (12).
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Proof of Theorem 1. The main idea of the proof is connecting ŜRS(xn+1, yn+1) and

ŜRS(x̃n+1, yn+1) via the corresponding SRS, as shown in Fig. 2. By Hoeffding’s inequality (See
Appendix A.3 for further discussion), we have

SRS(xn+1, yn+1) ≤ ŜRS(xn+1, yn+1) + bHoef(β) (13)

by Eq. (A.8) and

SRS(x̃n+1, yn+1) ≥ ŜRS(x̃n+1, yn+1)− bHoef(β) (14)

by Eq. (A.9), both with probability 1− β. Meanwhile, by plugging in the definition of S̃, Eq. (10) is
equivalent to

Φ−1[SRS(x̃n+1, yn+1)] ≤ Φ−1[SRS(xn+1, yn+1)] +
ε

σ
. (15)

Combining the three inequalities above and applying union bound gives:

SRS(x̃n+1, yn+1) ≤ Φ
[
Φ−1[SRS(xn+1, yn+1)] +

ε

σ

]
Eq. (13)−−−−−−−−−→

with prob. 1 − β
SRS(x̃n+1, yn+1) ≤ Φ

[
Φ−1[ŜRS(xn+1, yn+1) + bHoef] +

ε

σ

]

Eq. (14)−−−−−−−−−→
with prob. 1 − 2β

ŜRS(x̃n+1, yn+1)− bHoef(β) ≤ Φ
[
Φ−1[ŜRS(xn+1, yn+1) + bHoef(β)] +

ε

σ

]
,

(16)

with probability 1− 2β, which proves Theorem 1.

Remark. The bound in Theorem 1 could be further improved using Empirical Bernstein’s inequality
(Maurer & Pontil, 2009). We found in our experiments that the improvement is light on CIFAR10 and
CIFAR100, but could be significant on ImageNet. For more discussion see Appendix A.3.3.

With Theorem 1, we could construct the prediction set accordingly and derive the robustness guarantee
in Corollary 2 in the following.

Corollary 2. (Robustness guarantee for RSCP+) The RSCP+ prediction set

C+
ε (x̃n+1; τMC) =

{
k ∈ [K] | ŜRS(x̃n+1, k)− bHoef(β) ≤ Φ

[
Φ−1[τMC + bHoef(β)] +

ε

σ

]}
(17)

satisfies robust coverage guarantee in Eq. (2), i.e. P(yn+1 ∈ C+
ε (x̃n+1; τMC)) ≥ 1− α. Here, the

threshold τMC is calculated according to Eq. (4) with S = ŜRS and 1− α replaced by 1− α+ 2β,
i.e. τMC = Q1−α+2β({ŜRS(x, y)}(x,y)∈Dcal).

Proof of Corollary 2. Since we have τMC = Q1−α+2β({ŜRS(x, y)}(x,y)∈Dcal
), conformal prediction

guarantees coverage on clean examples:

P[ŜRS(xn+1, yn+1) ≤ τMC] ≥ 1− α+ 2β. (18)

Plug Eq. (18) into Eq. (16) in Theorem 1 and apply union bound, we get

P

{
ŜRS(x̃n+1, yn+1)− bHoef(β) ≤ Φ

[
Φ−1[τMC + bHoef(β)] +

ε

σ

]}
≥ 1− α. (19)

4 CHALLENGE 2: IMPROVING EFFICIENCY

So far, we have modified RSCP to RSCP+ that can provide a certified guarantee in Sec. 3. However,
there exists another challenge – directly applying RSCP+ often leads to trivial prediction sets that
give the entire label set, as shown in our experiment Tabs. 1 and 2. The reason is that RSCP is
conservative: instead of giving an accurate coverage as vanilla CP, RSCP attains a higher coverage
due to its threshold inflation (Eq. (11)), and thus gives a larger prediction set on both clean and
perturbed data. We define conservativeness of RSCP as the increase in the average size of prediction
sets after threshold inflation: see Appendix A.4 where we give a formal definition. Since RSCP+ is
modified from RSCP, it’s expected to inherit the conservativeness, leading to trivial predictions. To
address this challenge and make RSCP+ useful, in this section, we propose to address this problem by
modifying the base score S with two new methods: Post Training Transformation (PTT) and Robust
Conformal Training (RCT).

5
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4.1 POST-TRAINING TRANSFORMATION (PTT)

Intuition. We first start with a quantitative analysis of the conservativeness by threshold inflation.
As an approximation to the conservativeness, we measure the coverage gap between inflated coverage
1− αadj and target coverage 1− α:

αgap = (1− αadj)− (1− α) = α− αadj. (20)

Next, we conduct a theoretical analysis on αgap. Let ΦS̃(t) be the cdf of score S̃(x, y), where
(x, y) ∼ Pxy. For simplicity, suppose ΦS̃(t) is known. Recall that in conformal prediction, the
threshold τ is the minimum value that satisfies the coverage condition:

τ = argmin
t∈R

{
P(x,y)∼Pxy

[S̃(x, y) ≤ t] ≥ (1− α).
}

(21)

Notice that P(x,y)∼Pxy
[S̃(x, y) ≤ t] is exactly ΦS̃(t), we have:

ΦS̃(τ) = 1− α. (22)

Suppose the threshold is inflated as τadj = τ +Mε. Similarly, we could derive 1−αadj = ΦS̃(τadj) =
ΦS̃(τ +Mε) by Eq. (11). Now the coverage gap αgap can be computed as:

αgap = α− αadj = ΦS̃(τ +Mε)− ΦS̃(τ) ≈ Φ′
S̃
(τ) ·Mε (23)

The last step is carried out by the linear approximation of ΦS̃ : g(x+ z)− g(x) ≈ g′(x) · z.

Key idea. Eq. (23) suggests that we could reduce αgap by reducing the slope of ΦS̃ near the

original threshold τ , i.e. Φ′
S(τ). This inspires us to the idea: can we perform a transformation on S̃

to reduce the slope while keeping the information in it? Directly applying transformation on S̃ is not

a valid option because it would break the Lipschitz continuity of S̃ in Eq. (10): for example, applying

a discontinuous function on S̃ may make it discontinuous. However, we could apply a transformation

Q on the base score S, which modifies S̃ indirectly while preserving the continuity, as long as the
transformed score, Q◦S, still lies in the interval [0, 1]. The next question is: how shall we design this
transformation Q? Here, we propose that the desired transformation Q should satisfy the following
two conditions:

1. (Slope reduction) By applying Q, we should reduce the slope Φ′
S̃
(τ), thus decrease the

coverage gap αgap. Since we are operating on base score S, we approximate this condition
by reducing the slope Φ′

S(τ). We give a rigorous theoretical analysis of a synthetic dataset
and an empirical study on real data to justify the effectiveness of this approximation in
Appendices B.6 and B.7, respectively.

2. (Monotonicity) Q should be monotonically non-decreasing. It could be verified that under
this condition, (Q ◦ S) is equivalent to S in vanilla CP (See our proof in Appendix B.5).
Hence, the information in S is kept after transformation Q.

These two conditions ensure that transformation Q could alleviate the conservativeness of RSCP
without losing the information in the original base score. With the above conditions in mind, we
design a two-step transformation Q by composing (I) ranking and (II) Sigmoid transformation on
base score S, denoted as Q = Qsig ◦ Qrank. We describe each transformation below.

Transformation (I): ranking transformation Qrank. The first problem we encounter is that we
have no knowledge about the score distribution ΦS in practice, which makes designing transformation
difficult. To address this problem, we propose a simple data-driven approach called ranking transfor-
mation to turn the unknown distribution ΦS into a uniform distribution. With this, we could design the
following transformations on it and get the analytical form of the final transformed score distribution

ΦQ◦S . For ranking transformation, we sample an i.i.d. holdout set Dholdout = {(xi, yi)}Nholdout

i=1 from
PXY , which is disjoint with the calibration set Dcal. Next, scores {S(x, y)}(x,y)∈Dholdout

are calculated
on the holdout set and the transformation Qrank is defined as:

Qrank(s) =
r
[
s; {S(x, y)}(x,y)∈Dholdout

]
|Dholdout| .

6
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Here, r(x;H) denotes the rank of x in set H , where ties are broken randomly. We want to emphasize
that this rank is calculated on the holdout set Dholdout for both calibration samples and test samples.
We argue that the new score Qrank ◦ S is uniformly distributed,which is a well-known result in
statistics(Kuchibhotla, 2020). See more discussion in Appendix B.3.

Transformation (II): Sigmoid transformation Qsig. After ranking transformation, we get a
uniformly distributed score. The next goal is reducing Φ′

S(τ). For this, we introduce Sigmoid
transformation Qsig. In this step, a sigmoid function φ is applied on S:

Qsig(s) = φ [(s− b)/T ] ,

where b, T are hyper-parameters controlling this transformation. Due to space constraint, we discuss
more details of Sigmoid transformation in Appendix B.4, where we show that the distribution of
transformed score ΦQsig◦Qrank◦S is the inverse of Sigmoid transformation Q−1

sig (Eq. (B.2)), and by

setting b = 1− α and T properly small, the Sigmoid transformation could reduce Φ′
S(τ).

Summary. Combining ranking transformation and sigmoid transformation, we derive a new (non-
)conformity score SPTT:

SPTT(x, y) = (Qsig ◦ Qrank ◦ S)(x, y). (24)

It could be verified that SPTT(x, y) ∈ [0, 1] for any S thanks to the sigmoid function, hence we
could plug in S ← SPTT(x, y) into Eq. (9) as a base score. Additionally, SPTT(x, y) is monotonically
non-decreasing, satisfying the monotonicity condition described at the beginning of this section. We
provide a rigorous theoretical study on PTT over on a synthetic dataset in Appendix B.7. Additionally,
we craft a case in Appendix B.8 where PTT may not improve the efficiency. Despite this theoretical
possibility, we observe that PTT consistently improves over the baseline in experiments.

4.2 ROBUST CONFORMAL TRAINING (RCT)

While our proposed PTT provides a training-free approach to improve efficiency, there is another
line of work (Einbinder et al., 2022b; Stutz et al., 2021) studying how to train a better base classifier
for conformal prediction. However, these methods are designed for standard conformal prediction
instead of robust conformal prediction considered in our paper. In this section, we introduce a training
pipeline called RCT, which simulates the RSCP process in training to further improve the efficiency
of robust conformal prediction.

Conformal training. Stutz et al. (2021) proposed a general framework to train a classifier for
conformal prediction. It simulates conformal prediction in training by splitting the training batch
B into a calibration set Bcal and a prediction set Bpred, then performing conformal prediction on

them. The key idea is to use soft surrogate τ soft and c(x, y; τ soft) to approximate the threshold τ and
prediction set C(x; τ), making the pipeline differentiable: τ soft = Qsoft

1−α({Sθ(x, y)}(x,y)∈Bcal
), where

Qsoft
q (H) denotes the q(1 + 1

|H| )-quantile of set H derived by smooth sorting (Blondel et al., 2020;

Cuturi et al., 2019), and c(x, y; τ soft) = φ
[
τ soft−Sθ(x,y)

Ttrain

]
, where φ(z) = 1/(1 + e−z) is the sigmoid

function and temperature Ttrain is a hyper-parameter. We introduce more details in Appendix C.1.

Figure 3: Pipeline of our proposed Robust Conformal Training (RCT) method.
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Incorporating RSCP into training. Inspired by Stutz et al. (2021), we propose to incorporate
RSCP (Gendler et al., 2021) (and of course, RSCP+ since the major steps are the same) into the
training stage as shown in Fig. 3. We adopt soft threshold τ soft and soft prediction c(x, y; τ soft) from

Stutz et al. (2021), and add randomized smoothing S̃ and threshold adjustment τ soft
adj = τ soft + ε

σ to

the pipeline as in RSCP. Next, we need to examine the differentiability of our pipeline. The threshold

adjustment and Gaussian inverse cdf Φ−1 step in the calculation of S̃ is differentiable, but the gradient
of SRS = Eδ∼N (0,σ2Ip)S(x + δ, y) is difficult to evaluate, as the calculation of S(x, y) involves a
deep neural network and expectation. Luckily, several previous works (Salman et al., 2019; Zhai
et al., 2020) have shown that the Monte-Carlo approximation works well in practice:

∇θEδ∼N (0,σ2Ip)S(x+ δ, y) ≈ 1

Ntrain

Ntrain∑
i=1

∇θS(x+ δi, y). (25)

With these approximations, the whole pipeline becomes differentiable and training could be performed
by back-propagation. For the training objective, we can use the same loss function:

L(x, ygt) = Lclass(c(x, y; τ
soft), ygt) + λLsize(c(x, y; τ

soft)), (26)

where classification loss Lclass(c(x, y; τ
soft), ygt) = 1− c(x, ygt; τ

soft), size loss Lsize(c(x, y; τ
soft)) =

max(0,
∑K

y=1 c(x, y; τ
soft) − κ), ygt denotes the ground truth label, c(x, y; τ soft) denotes the soft

prediction introduced in Stutz et al. (2021), κ is a hyper-parameter.

Remark. Since the methods we proposed in Sec. 4 (PTT and RCT) are directly applied to base scores,
they are orthogonal to the RSCP+ we proposed in Sec. 3. That is to say, PTT and RCT not only
work on RSCP+ but also work on original RSCP as well. Nevertheless, we argue that RSCP+ with
PTT/RCT would be more desirable in practice since it provides guaranteed robustness which is the
original purpose of provable robust conformal prediction. Hence, we will focus on this benchmark in
the experiments section in the main text. However, we also provide experiment results on RSCP +
PTT/RCT as an empirical robustness benchmark in Appendix D.2, which shows that our PTT and
RCT are not limited to our RSCP+ scheme.

5 EXPERIMENTS

In this section, we evaluate our methods in Secs. 3 and 4. Experiments are conducted on CIFAR10,
CIFAR100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) and target coverage is set
to 1 − α = 0.9. We choose perturbation magnitude ε = 0.125 on CIFAR10 and CIFAR100 and
ε = 0.25 on ImageNet.

Evaluation metrics and baseline. We present the average size of prediction sets C+
ε (x) as a key

metric, since the robustness is guaranteed by our theoretical results for RSCP+(Corollary 2). For the
baseline, we choose the vanilla method from Gendler et al. (2021), where HPS and APS are directly
applied as the base score without any modifications.

Model. We choose ResNet-110 (He et al., 2016) for CIFAR10 and CIFAR100 and ResNet-50 (He
et al., 2016) for ImageNet. The pre-trained weights are from Cohen et al. (2019) for CIFAR10 and
ImageNet and from Gendler et al. (2021) for CIFAR100.

Hyperparameters. In RSCP+, we choose β = 0.001 and the number of Monte Carlo examples
NMC = 256. For PTT, we choose b = 0.9 and T = 1/400 and we discuss this choice in Appendix B.4.
The size of holdout set |Dholdout| = 500. We discuss more experimental details in Appendix D.

5.1 RESULTS AND DISCUSSION

Tab. 1 and Tab. 2 compare the average size of prediction sets on all three datasets with our
RSCP+ benchmark. Specifically, the first row shows the baseline method using base scores in
Gendler et al. (2021) directly equipped with our RSCP+. Note that the baseline method gives trivial
prediction sets (the prediction set size = total number of class, which is totally uninformative) due
to its conservativeness. Our methods successfully address this problem and provide a meaningful
prediction set with robustness guarantee.
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Base score HPS APS
Method / Dataset CIFAR10 CIFAR100 CIFAR10 CIFAR100
Baseline (Gendler et al., 2021) 10 100 10 100
PTT (Ours) 2.294 26.06 2.685 21.96
PTT+RCT (Ours) 2.294 18.30 2.824 20.01
Improvement over baseline: PTT 4.36× 3.84× 3.72× 4.55×
Improvement over baseline: PTT + RCT 4.36× 5.46× 3.54× 5.00×

Table 1: Average prediction set (C+
ε (x)) size of RSCP+ on CIFAR10 and CIFAR100. For

CIFAR10 and CIFAR100, ε = 0.125 and σ = 0.25. Following Gendler et al. (2021), we take
Nsplit = 50 random splits between calibration set and test set and present the average results (Same
for Tab. 2). We could see that the baseline method only gives trivial predictions containing the whole
label set, while with PTT or PTT + RCT we can give informative and compact predictions.

Method / Base score HPS APS
Baseline (Gendler et al., 2021) 1000 1000
PTT (Ours) 1000 94.66
PTT + Bernstein (Ours) 59.12 70.87
Improvement over baseline: PTT - 10.6×
Improvement over baseline: PTT + Bernstein 16.9× 14.1×

Table 2: Average prediction set (C+
ε (x)) size of RSCP+ on ImageNet. For ImageNet, ε = 0.25

and σ = 0.5. The ImageNet dataset is more challenging and our PTT only works for APS score,
but we find by applying the improvement with Empirical Bernstein’s bound (denoted as "PTT +
Bernstein") we discussed in Appendix A.3.3, we could largely reduce the size of prediction sets.

NMC 256 512 1024 2048 4096
Average size of prediction sets C+

ε (x) 2.294 2.094 1.954 1.867 1.816

Table 3: Average size vs. Number of Monte Carlo samples NMC . The experiment is conducted on
CIFAR10 dataset with PTT method. The base score is HPS. It could be seen that by increasing the
number of Monte Carlo examples, we could further improve the efficiency of RSCP+, at the cost of
higher computational expense.

Why the baseline gives trivial results under RSCP+? The key reason is conservativeness. RSCP is
conservative compared to vanilla conformal prediction, and the challenging task of giving guaranteed
robustness makes the situation worse. The result is that: without the boost of our PTT and RCT
methods, the predictor is so conservative that it gives the whole label set to guarantee robustness,
which is not the goal of users. This again justifies the necessity of our methods.

Impact of number of Monte Carlo samples NMC. In Tab. 3, we study how the number of Monte
Carlo samples (NMC) influences the average size. It could be observed that the average size decreases
as more Monte Carlo samples are taken. This is expected as more Monte Carlo samples reduce the
error and provide a tighter bound in Eqs. (13) and (14). Therefore, a trade-off between prediction set
size and computation cost needs to be considered in practice, since increasing NMC also significantly
boosts the computation requirement.

6 CONCLUSION

This paper studies how to generate prediction sets that are robust to adversarial attacks. We point
out that the previous method RSCP (Gendler et al., 2021) has two major limitations: flawed ro-
bustness certification and low efficiency. We propose a new theoretically sound framework called
RSCP+ which resolves the flaw in RSCP and provides a provable guarantee. We also propose a
training-free and scalable method (PTT) and robust conformal training method (RCT) to significantly
boost the efficiency of RSCP. We have conducted extensive experiments and the empirical results
support our theoretical analysis. Experiments show that the baseline gives trivial prediction sets (all
class labels), while our methods are able to provide meaningful prediction sets that boost the efficiency
of the baseline by up to 4.36× on CIFAR10, 5.46× on CIFAR100, and 16.9× on ImageNet.
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A FURTHER DISCUSSION ON RSCP+ IN SEC 3

A.1 WHY BOUNDING MONTE CARLO ESTIMATION ERROR IS DIFFICULT FOR ORIGINAL

RSCP?

As we discussed in the main text, in the calculation of the conformity score of RSCP, Monte-Carlo
estimation for SRS is required which introduces estimation error. However, in the original work
(Gendler et al., 2021), the error bound for this is not introduced. Below we discuss why this kind of
bound is difficult to be applied in RSCP context.

The main difficulty lies in the threshold calculation step: denote Qp(H) the p(1 + 1/|H|)-empirical

quantile of a set H and recall that τadj = τ + ε
σ = Q1−α({S̃(x, y)}(x,y)∈Dcal

) + ε
σ depends on every

example in the calibration set. This means that to derive a non-trivial bound for τadj, we need to
bound the error on the whole set simultaneously, which is difficult. For example, if there are 10000
samples in the calibration set and each example is bounded with a confidence level of 0.999, then
the confidence level for threshold τadj would be (0.999)10000 ≈ 4.5× 10−5! To obtain a reasonable
confidence level for τadj, practitioners have to use a much smaller calibration set or a much higher
confidence level, which may significantly hurt the performance.

A.2 DOES THE COVERAGE GUARANTEE OF CONFORMAL PREDICTION HOLD FOR

RANDOMIZED SCORES?

In the proof of Corollary 2, we utilize the coverage guarantee of conformal prediction on clean
examples, i.e. Eq. (18). A natural question is, does the coverage guarantee of conformal prediction

still hold when a randomized score (like ŜRS we introduced) is applied?

We argue the answer is yes. Randomized conformity scores have been used in multiple previous
works, e.g. APS by Romano et al. (2020) and RAPS by Angelopoulos et al. (2020). The theory they
presented is slightly different from our case, but the key idea is the same. Below, we present a proof
for Eq. (18) under our settings. Similar results could be found in (Angelopoulos et al., 2020; Romano
et al., 2020).

Lemma A.1. Assume that Dcal = {(xi, yi)}ni=1 is an i.i.d. sampled calibration set, (xn+1, yn+1) is
a test example which is independently sampled from the same distribution. The score of example i is
Si = ŜRS(xi, yi) =

1
NMC

∑NMC
j=1 S(xi + δij , yi), ∀i = 1, 2, · · · , n+ 1, where all Monte-Carlo noises

δij are i.i.d. sampled from N (0, σ2Ip), independent from other variables. Then, {Si}n+1
i=1 are i.i.d.

distributed.

Proof. Note that the randomness of score Si comes from the data (xi, yi) and the Monte-Carlo
noise δij . From our assumption, (xi, yi) are i.i.d. across the calibration set and test sample, and the
noise δij are also drawn i.i.d. independent of other variables. Since Si is a function of (xi, yi) and

{δij}NMC

j=1 , this leads to the conclution that {Si}n+1
i=1 are i.i.d. distributed.

Lemma A.2. Suppose {Si}n+1
i=1 are i.i.d. distributed random variables. τMC is the q(1 + 1/n)-th

empirical quantile of {Si}ni=1, i.e.

τMC = mins
|{i | Si ≤ s}|

n
≥ q(1 +

1

n
).

Then, P(Sn+1 ≤ τMC) ≥ q.

Proof. We define the following indicator variables:

Ii = 1|{j|Si>Sj}|≥�(n+1)q	.

These variables have the following two properties:

1. {Ii}n+1
i=1 are identically distributed. Thus, EI1 = EI2 = · · · = EIn+1. This follows from

the i.i.d. property of {Si}n+1
i=1 and symmetricity.
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2.
∑n+1

i=1 Ii ≤ (n + 1) − �(n + 1)q�. Suppose we order Si from the smallest to the largest:
Sq1 ≤ Sq2 · · · ≤ Sqn+1

. Then, from the definition of Ii, we know that Iq1 , · · · Iq�(n+1)q� = 0

(there could not be �(n+ 1)q� values smaller than them), giving this property.

With these two properties, we could derive

E

n+1∑
i=1

Ii =

n+1∑
i=1

EIi

= (n+ 1)EIn+1 (property 1)

and

E

n+1∑
i=1

Ii ≤ (n+ 1)− �(n+ 1)q� (property 2)

≤ (n+ 1)(1− q).

Hence, EIn+1 ≤ 1− q. From the definition of τMC, we have

|{i | Si ≤ τMC}| ≥ �n(1 + 1

n
)q� = �(n+ 1)q�.

Hence, Sn+1 > τMC indicates |{i | Si < Sn+1}| ≥ �(n+ 1)q�, i.e. In+1 = 1. Therefore,

P(Sn+1 ≤ τMC) = 1− P (Sn+1 > τMC)

≥ 1− P (In+1 = 1)

= 1− EIn+1 ≥ q

gives us the conclusion.

Remark. The i.i.d. condition could be replaced by a weaker condition of exchangeability. From this
lemma, it could be seen that the i.i.d. property of scores is enough for the coverage guarantee of
conformal prediction.

Proposition A.1. Under the conditions of Lemma 1, P[ŜRS(xn+1, yn+1) ≤ τMC] ≥ 1 − α + 2β,
where τMC is the (1− α+ 2β)(1 + 1/n)-th empirical quantile of calibration scores. This is exactly
Eq. (18)

Proof. Let q = 1− α+ 2β. Applying Lemma 1 and 2 gives the result.

A.3 DISCUSSION ON THEOREM 1

In this section, we first introduce two concentration inequalities: Hoeffding’s inequality and Empirical
Bernstein’s inequality (Maurer & Pontil, 2009). Then we explain how to utilize Hoeffding’s inequality
to derive bounds in the proof of Theorem 1, and how we could use Empirical Bernstein’s inequality
to improve the bound.

A.3.1 HOEFFDING’S INEQUALITY AND EMPIRICAL BERNSTEIN’S INEQUALITY

Lemma A.3. (Hoeffding’s Inequality) Let X1, · · · , Xk be i.i.d. random variables bounded by the
interval [0, 1]. Let X = 1

k

∑k
j=1 Xj , then for any t ≥ 0

P(X − EX ≥ t) ≤ e−2kt2 (A.1)

and
P(EX −X ≥ t) ≤ e−2kt2 . (A.2)

Corollary A.4. From Hoeffding’s Inequality, we argue that with probability at least 1− β,

EX −X ≤ bHoef(β) =

√
−logβ

2k
. (A.3)

X − EX ≤ bHoef(β) (A.4)
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Proof. Plugging t = bHoef(β) =
√

−logβ
2k into Eq. (A.2) gives

P(EX −X ≥ bHoef) ≤ β, (A.5)

leading to Eq. (A.3) immediately. Similarly, we could get Eq. (A.4).

Lemma A.5. (Empirical Bernstein Inequality) Under the condition of Lemma A.3, with probability
at least 1− β,

X − EX ≤ bBern(β, V ) =

⎡
⎣
√

2V log 2
β

k
+

7log 2
β

3(k − 1)

⎤
⎦ (A.6)

where V is the sample variance of X1, · · · , Xk, i.e.

V =

∑k
j=1 X

2
j − (

∑k
j=1 Xj)

2

k

k − 1
. (A.7)

A.3.2 APPLYING HOEFFDING’S INEQUALITY TO DERIVE EQ. (13) AND EQ. (14)

With Hoeffding’s inequality, we can prove Eq. (13) and Eq. (14): Let Xi = S(xn+1 + δi, yn+1).

Note that ŜRS(xn+1, yn+1) = 1
NMC

∑NMC

i=1 Xi = X and EX = SRS(xn+1, yn+1), we can apply

Corollary A.4 and get

SRS(xn+1, yn+1)− ŜRS(xn+1, yn+1) ≤ bHoef(β), (A.8)

with probability at least 1− β, which is exactly Eq. (13). Similarly, we could get

SRS(x̃n+1, yn+1) ≥ ŜRS(x̃n+1, yn+1)− bHoef(β) (A.9)

with probability at least 1− β, which is exactly Eq. (14).

A.3.3 USE EMPIRICAL BERNSTEIN’S INEQUALITY TO IMPROVE EQ. (14)

In practice, the predictor takes potentially perturbed input x̃n+1 from the user, then generates a

batch of Gaussian noise and computes corresponding ŜRS. Therefore, we could utilize the variation
information from Monte Carlo samples to improve Eq. (14). Following the recommendation by (Zhai
et al., 2020), we use Empirical Bernstein’s inequality to provide a tighter bound. Below we show the
details.

Let Xi = S(x̃n+1 + δi, yn+1). Note that ŜRS(x̃n+1, yn+1) = 1
NMC

∑NMC

i=1 Xi = X and EX =

SRS(x̃n+1, yn+1), we can apply Lemma A.5 and get

ŜRS(x̃n+1, yn+1)− SRS(x̃n+1, yn+1) ≤ bBern(β, V ), (A.10)

with probability at least 1− β. With this inequality, we can derive Theorem A.6 and Corollary A.7
which are the counterparts of Theorem 1 and Corollary 2.

Theorem A.6. Let (xn+1, yn+1) be the clean test sample and x̃n+1 be perturbed input data that
satisfies ‖x̃n+1 − xn+1‖2 ≤ ε. Then, with probability 1− 2β:

ŜRS(x̃n+1, yn+1)− bBern(β, V ) ≤ Φ
[
Φ−1[ŜRS(xn+1, yn+1) + bHoef(β)] +

ε

σ

]
,

where bHoef(β) =
√

−lnβ
2NMC

, bBern(β, V ) =

[√
2V ln 2

β

NMC
+

7ln 2
β

3(NMC−1)

]
, V is sample variance of ŜRS.

Corollary A.7. Let the prediction set

C+
ε (x̃n+1; τMC) =

{
k ∈ [K] | ŜRS(x̃n+1, k)− bBern(β, V ) ≤ Φ

[
Φ−1[τMC + bHoef(β)] +

ε

σ

]}
, C+

ε (x̃n+1; τMC) satisfies robust coverage guarantee in Eq. (2), i.e. P(yn+1 ∈ C+
ε (x̃n+1; τMC)) ≥

1− α.
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Proof. Replace Eq. (14) with Eq. (A.10), the remaining proofs are the same as the proof of Theorem 1
and Corollary 2.

Compare Corollary 2 and Corollary A.7, we see that with Empirical Bernstein’s inequality, we replace
the bHoef(β) on the left-hand side with bBern(β, V ), which could be computed at test time. It’s natural
to ask if we can also improve Eq. (13) with Empirical Bernstein’s equality. Unfortunately, in practice,
the predictor cannot access xn+1 (the clean example corresponding to the input), hence we could not
do Monte Carlo sampling and calculate variance to use Empirical Bernstein’s equality. Therefore, we
stick to Hoeffding’s inequality for Eq. (13).
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Figure A.1: Density plot of (non)-conformity scores. (Left) The prediction set of RSCP could be
decomposed into two parts: (1) Base part generated by vanilla conformal prediction (|C(x)|, or RSCP
before threshold inflation) and (2) Set inflation by threshold inflation (conservativeness). (Right) By
reshaping the cdf, our method could reduce the second part, even without re-ranking the samples.
This also gives an intuitive motivation for why we want to reduce the slope of cdf near the threshold
(i.e. reduce the density near the threshold).

A.4 MORE DISCUSSION ON CONSERVATIVENESS OF RSCP AND RSCP+

In Section 4, we motivate our PTT methods by discussing the conservativeness of the RSCP method.
In this section, we provide a formal definition of conservativeness of RSCP and RSCP+, and discuss
how our PTT and RCT methods could reduce this conservativeness.

Definition A.1. For a conformal predictor that generates robust prediction set Cε(x), we define its
conservativeness as:

cons. := Ex∼Px
(|Cε(x)| − |C(x)|), (A.11)

where C(x) is the prediction set by vanilla conformal prediction generated with the same conformity
score, and Px is the distribution of clean input x.

Remark. The predictor here could be RSCP or RSCP+. By this definition, conservativeness measures
the increase in the average size of prediction sets, when we try to make the predictor robust to
adversarial perturbations.

With this definition, we could study the efficiency of robust conformal prediction methods by
decomposing the average prediction set size into two parts: (1) The average size of vanilla conformal
predictions C(x), using the same conformity score and (2) the conservativeness. See Fig. A.1 where
we give an intuitive illustration of these two parts. Fig. A.1 also provides an intuitive idea of why we
should reduce the slope of score cdf (i.e. reducing the probability density as shown in the figure) near
the threshold to reduce conservativeness.

Empirical study. We conduct an empirical study into these two parts on the CIFAR10 dataset,
with HPS as the non-conformity score. The results are shown in Tab. A.1. In order to show a
better comparison, we choose the RSCP benchmark because the baseline only gives trivial results
on RSCP+. As shown in the table, our PTT method has a similar average size for the first part but
reduced the conservativeness significantly. This verifies the intuition we get from Fig. A.1.
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Avg. Size of robust
predictions |Cε(x)|

Avg. of vanilla CP with random-
ized smoothing score |C(x)|

cons.

Baseline 2.108 1.482 0.626
PTT 1.779 1.468 0.311
Size reduction 0.329 0.014 0.315

Table A.1: Comparison of conservativeness: Our PTT method largely reduces the conservativeness
of RSCP.

Dataset CIFAR10 CIFAR100 ImageNet
Average size 10 100 1000

Table B.1: Baseline results with holdout set Dholdout added to calibration set.

B FURTHER DISCUSSION ON PTT METHOD IN SEC 4.1

B.1 EXCHANGEBILITY OF RANK-TRANSFORMED SCORES

In the ranking transformation discussed in Sec. 4.1, we introduce the ranking transformation Qrank.
A concern on this transformation will be, since both test scores and calibration scores rely on
this holdout set, would the guarantee of conformal prediction be broken as they are no longer
independent? Here, we show that the guarantee still holds as the ranking transformation keeps
the exchangeability between scores. Denote Pi = Qrank(S(xi, yi)) as the calibration scores and
Pn+1 = Qrank(S(xn+1, yn+1)). We want to show that P1, P2, · · · , Pn+1 are exchangeable. For
any permutation Pi1 , Pi2 , · · · , Pin+1 , consider its pdf, we have

pPi1
,Pi2

,··· ,Pin+1
(t1, t2, · · · , tn+1)

=

∫
pPi1

,Pi2
,··· ,Pin+1

|Dholdout
(t1, t2, · · · , tn+1 | D)pDholdout

(D)dD

=

∫ n+1∏
j=1

pPij
|Dholdout

(tj | D)pDholdout
(D)dD

(Given Dholdout = D, the scores become conditionally i.i.d.)

=

∫ n+1∏
j=1

pPj |Dholdout
(tj | D)pDholdout

(D)dD

=pP1,P2,··· ,Pn+1
(t1, t2, · · · , tn+1).

(B.1)

Thus, after the ranking transformation, the scores are exchangeable, hence satisfy the condition of
conformal prediction.

B.2 CONCERNS ON ADDITIONAL DATA

As we discussed in Sec. 4.1, our PTT method requires an additional holdout set. In order to address
the concern that our PTT benefits from using more data, we added the holdout set to the calibration
set for the baseline method, so that the number of additional data samples will be the same for our
PTT and baseline. With this modification, we found that the baseline still gave a trivial prediction set
with all labels.

B.3 RANKING TRANSFORMATION TURNS SCORE DISTRIBUTION INTO UNIFORM

DISTRIBUTION

Theorem B.8. (Qrank ◦ S)(x, y) is a discrete random variable, which takes values
0, 1

|Dholdout| ,
2

|Dholdout| , · · · , 1 with equal probability.

This result is well-known in statistics and we refer to Corollary 1 in Kuchibhotla (2020) that presented
similar results, and Section 2.4 in Kuchibhotla (2020) for the proof.
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Figure B.1: Comparison of score cdf before(left) and after(right) Sigmoid transformation. The
red dotted line denotes the desired coverage 1 − α. The left figure shows the cdf of uniformly
distributed score S after the ranking transformation. The right figure shows cdf of Qsig(S). We

could see that Sigmoid transformation greatly reduced the slope near threshold τ (τ = Φ−1(1− α),
corresponding to the intersection of the red line and the blue curve).

B.4 DESIGN CHOICE OF SIGMOID TRANSFORMATION

As we discussed in the main text, our goal is to design a monotonically increasing transformation
that reduces the slope Φ′

S(τ). After ranking transformation, the distribution of scores is turned into a
uniform distribution, i.e. ΦQrank◦S(t) = t. Recall that Qsig(s) = φ [(s− b)/T ]. Thus, after applying
our Sigmoid transformation, the cdf becomes

ΦQsig◦Qrank◦S(t) = Q−1
sig (t) (B.2)

and the derivative becomes

Φ′
Qsig◦Qrank◦S(t) = (Q−1

sig )
′(t) =

[
Q′

sig[Q−1
sig (t)]

]−1

(B.3)

The slope at the threshold is

Φ′
Qsig◦Qrank◦S(τ) =

[
Q′

sig[Q−1
sig (τ)]

]−1

=
[Q′

sig(1− α)
]−1

(ΦQsig◦Qrank◦S(τ) = Q−1
sig (τ) = 1− α)

=
1

T
φ′

[
1− α− b

T

]
(Definition of Qsig)

(B.4)

By choosing b = 1−α, the right hand side equals 1
4T . Hence, with T large enough, we could achieve

our goal of reducing Φ′
Qsig◦Qrank◦S(τ) as discussed above.

B.5 DISCUSSION ON MONOTONICITY CONDITION

In Sec. 4.1, we introduced two conditions for our desired transformation. One of these is the
monotonicity condition which requires the transformation to be monotonically increasing. In this
section, we discuss the reason we designed this condition and verify that the PTT we proposed
satisfies this condition.

Monotonicity ensures transformed scores keep the information. By applying the transformation,
we hope the new score could become more robust to adversarial perturbations while maintaining the
performance on clean examples. The monotonicity condition ensures this by the following theorem:

Theorem B.9. For a monotonically non-decreasing transformation Q, the new score Q ◦ S is
equivalent to S in vanilla conformal prediction, i.e. they generate the same prediction set on all
examples.

Proof. Denote the threshold and prediction set generated by original score S as τS and CS(x).
Denote the threshold and prediction set generated by new score Q ◦ S as τQ◦S and CQ◦S(x). From
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the construction of the prediction set in vanilla conformal prediction (Eq. (3)), to show two prediction
sets are identical, we only need to show

S(x, y) ≤ τS ⇐⇒ Q ◦ S(x, y) ≤ τQ◦S (B.5)

Recall that the threshold is calculated as (1 − α)(1 + 1/|Dcal|) empirical quantile of calibration
scores. Suppose for original score S, τS is the conformity score of i-th calibration example, i.e.
τS = S(xi, yi). We argue that τQ◦S is also from i-th calibration example, i.e. τQ◦S = Q ◦ S(xi, yi),
because a monotonically non-decreasing transformation does not change the order of calibration
scores. Then Eq. (B.5) becomes

S(x, y) ≤ S(xi, yi) ⇐⇒ Q ◦ S(x, y) ≤ Q ◦ S(xi, yi) (B.6)

This could be directly derived since Q is monotonically non-decreasing.

PTT satisfies monotonicity condition. In order to verify this, we need to show both Qrank and
Qsig are monotonically non-decreasing. For Qrank, rank function is non-decreasing. For Qsig, the
Sigmoid function φ is non-decreasing, hence Qsig is also non-decreasing for any T > 0.

B.6 EMPIRICAL EVIDENCE FOR COVERAGE GAP REDUCTION BY PTT

In Sec. 4.1, we propose a transformation called PTT which satisfies slope reduction and monotonicity
conditions. In Appendix B.7, we analyze a 1-D synthetic example and theoretically show that our
PTT satisfying the two conditions could alleviate the conservativeness of RSCP. In this section, we
study PTT empirically and show that our PTT satisfying these two conditions could reduce derivative
Φ′

S̃
(τ), thus reduce coverage gap αgap. We apply PTT on the CIFAR10 dataset and compare the

empirical CDF of S̃, as shown in Fig. B.2. To make comparison easier, we present the inverse of cdf.
Note that

Φ′
S(τ) = Φ′

S [Φ
−1
S (1− α)] (ΦS(τ) = 1− α)

= [(Φ−1
S )′(1− α)]−1. (f ′(x) · (f−1)′[f(x)] = 1) (B.7)

Hence, we could compare Φ′
S̃
(τ) by comparing (Φ−1

S )′(1 − α), the derivative of Φ−1

S̃
at target

coverage (1 − α). Higher Φ−1

S̃
(1 − α) means lower Φ′

S̃
(τ). As we could see in Fig. B.2, the

transformed score SPTT has a higher derivative at 1− α = 0.9, thus Φ′
S̃
(τ) is reduced.

(a) APS (b) HPS

Figure B.2: Empirical inverse cdf of S̃ on CIFAR10 test set, with base score HPS and APS. Comparing
two base scores: the original score S and our transformed score SPTT, we see the derivative at
1− α = 0.9 is larger for SPTT, indicating its Φ′

S̃
(τ) is smaller.
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B.7 THEORETICAL ANALYSIS OF PTT ON A 1-D SYNTHETIC DATASET

In Sec. 4.1, we proposed PTT which applies a transformation on the base score to reduce conservative-
ness. In this section, we provide a theoretical analysis of our PTT method. Without any assumption
on the data distribution, the analysis would be difficult. Hence, we construct a 1-D synthetic dataset
and analyze our PTT method on it.

Settings. Consider a 1-D binary classification problem where x ∈ [−0.5, 0.5] and y ∈ {−1, 1}.
Suppose P(y = 1) = P(y = −1) = 0.5 and

x ∼
{
U(−0.5, 0), y = −1;

U(0, 0.5), y = 1.

Assume we use a linear model as the base model, where

π̂(x, y = 1) =

⎧⎨
⎩
x+ 0.5, x ∈ [−0.5, 0.5];

1, x > 0.5;

0, x < −0.5.

and π̂(x, y = −1) = 1− π̂(x, y = 1). We study the HPS score here: SHPS(x, y) = 1− π̂(x, y)

Remark. Note that under this setting the score distribution ΦSHPS
is uniform. The reason is the

ranking transformation Qrank involves a sampling process and makes the analysis difficult. Since
the purpose of introducing Qrank is to make the score uniformly distributed, we directly construct a
uniformly distributed score, so that we can omit Qrank in the following analysis.

Analysis. Note that under this setting, the two classes y = 1 and y = −1 are actually symmetric.
Therefore, in the analysis below, we focus on the class y = −1. Denote hS(x) as the smoothed score
in Eq. (9) for class y = −1 with base score S:

hS(x) � S̃(x, y = −1;σ)

= Φ−1[Eδ∼N (0,σ2) S(x+ δ, y = −1)] (B.8)

In this case, we could derive a close form expression for αgap, Φ′
S̃
(τ) and average size.

Theorem B.10. For any monotonically non-decreasing base score S, the coverage gap αgap is

αgap = α+ΦS̃(τadj)− 1.

The average size is

E(x,y)∼Pxy
|Cε(x)|

=

{
2h−1

S (τadj) + 1, τadj ∈ (hS(−0.5), hS(0.5));

2, τadj ∈ [hS(0.5),∞).

The derivative is Φ′
S̃
(τ) = 2

h′
S(−α

2 ) .

We defer the proof to Appendix B.7.1. With Theorem B.10, we could study how our transformation
could help reduce average size. For S = SHPS, we have SHPS(x, y = −1) = 1 − π̂(x, y =
−1) = π̂(x, y = 1) and we could derive hSHPS

(x) and h′
SHPS

(x) by Eq. (9). Next, we consider

applying our transformation Q on HPS. Under simplifying assumptions, we get: hSPTT
(x) = x+0.5−b

σ

and h′
SPTT

(x) = 1
σ . For more details on our assumptions and the derivation process, please see

Appendix B.7.1. Notice that both SHPS and our transformed score SPTT is monotonically increasing.
Thus, we could apply Theorem B.10 by plugging in corresponding S and derive the metrics we are
interested in. We show results for different σ in Tab. B.2.

Conclusions By this example, we could see

1. The coverage gap αgap reflects the conservativeness of RSCP. As we could see in Tab. B.2,
αgap is a good indicator of conservativeness of predictor. By reducing αgap, we could make
the average size smaller.

22



Published as a conference paper at ICLR 2024

2. Φ′
S̃
(τ) ·Mε is a good approximation for αgap. In this case, Mε =

ε
σ . From Tab. B.2, we

could see that αgap ≈ Φ′
S̃
(τ) · ε

σ , except for some cases where αgap is upper-bounded by

10% (because αgap ≤ α). This supports our linear approximation in Eq. (23).

3. Our PTT could reduce the derivative Φ′
S̃
(τ). Therefore, PTT is able to reduce the

coverage gap αgap and improve efficiency.

4. By applying the Sigmoid transformation, the score converges to optimal score when
T → 0. See Appendix B.7.2 for formal statement and proof.

σ2 Base
Score

Φ′
S̃
(τ)· εσ αgap Avg. Size Conservativeness

0.01
SHPS 0.07916 7.98% 0.98 0.08
SPTT 0.02 2.00% 0.92(-6.12%) 0.02

0.001
SHPS 0.2503 10.00% 1.15 0.25
SPTT 0.02 2.00% 0.92(-20.00%) 0.02

0.0001
SHPS 0.7916 10.00% 1.62 0.72
SPTT 0.02 2.00% 0.92(-43.21%) 0.02

Table B.2: Results for the 1-D synthetic example, comparing HPS SHPS and our transformed score
SPTT. ε is set to 0.01 for all cases. The improvement relative to the baseline is shown in parentheses.
From the results, it could be seen that our transformation consistently reduce αgap and average set
size for different σ.

B.7.1 PROOFS

In this section, we discuss the details of the illustrative example. First, we present the derivation of
Theorem B.10. Then we discuss how we apply Theorem B.10 to calculate metrics in Tab. B.2 for
HPS SHPS and our transformed score SPTT.

Proof of Theorem B.10. Recall that hS(x) � S̃(x, y = −1;σ).

Lemma B.11. If base score S is monotonically non-decreasing w.r.t. x, the hS(x) is monotonically
non-decreasing w.r.t. x.

Proof. Suppose we have x1 ≤ x2. From the monotonicity of S and the fact that the smoothing
operation Eδ∼N (0,σ2) as well as Φ−1 preserve the monotonicity, we have

S(x1 + δ, y = −1) ≤ S(x2 + δ, y = −1), ∀δ ∈ R

=⇒Eδ∼N (0,σ2) [S(x1 + δ, y = −1)] ≤ Eδ∼N (0,σ2) [S(x2 + δ, y = −1)]

=⇒hS(x1) ≤ hS(x2). (B.9)

Lemma B.12. For any monotonically non-decreasing base score S, the cdf function of S̃ is:

ΦS̃(t) =

⎧⎨
⎩
0, t ∈ (−∞, hS(−0.5)];

2h−1
S (t) + 1, t ∈ (hS(−0.5), hS(0));

1, t ∈ [hS(0),∞).

(B.10)

Proof.

ΦS̃(t) = P(S̃ ≤ t)

= P(S̃(x, y = −1;σ) ≤ t | y = −1) (Symmetricity)

= P(hS(x) ≤ t | y = −1)

= P(x ≤ h−1
S (t) | y = −1) (Monotonicity of h(x))

=

⎧⎨
⎩
0, t ∈ (−∞, hS(−0.5)];

2h−1
S (t) + 1, t ∈ (hS(−0.5), hS(0));

1, t ∈ [hS(0),∞).

(Distribution of x) (B.11a)
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With Lemmas B.11 and B.12, we can prove following results:

Theorem B.10. For any monotonically non-decreasing base score S, the coverage gap αgap is
αgap = α+ΦS̃(τadj)− 1.

The average size is
E(x,y)∼Pxy

|Cε(x)|

=

{
2h−1

S (τadj) + 1, τadj ∈ (hS(−0.5), hS(0.5));

2, τadj ∈ [hS(0.5),∞).

The derivative is Φ′
S̃
(τ) = 2

h′
S(−α

2 ) .

Proof. By Eq. (22) and Lemma B.12 and note that 0 < 1− α < 1, we have

ΦS̃(τ) = 1− α = 2h−1
S (τ) + 1, (B.12)

which gives:

τ = hS(−α

2
). (B.13)

The coverage gap αgap:

αgap = α− αadj

= α− P(x,y)∼Pxy
(−1 /∈ Cε(x) | y = −1) (Symmetricity)

= α− P[S̃(x, y = −1) > τadj | y = −1]

= α+ΦS̃(τadj)− 1 (B.14)

and the average size E(x,y)∼Pxy
|Cε(x)| can be calculated as:

E(x,y)∼Pxy
|Cε(x)|

= P(−1 ∈ Cε(x)) + P(1 ∈ Cε(x))

= 2P(hS(x) ≤ τadj)

= 2P(x ≤ h−1
S (τadj))

=

{
2h−1

S (τadj) + 1, τadj ∈ (hS(−0.5), hS(0.5));

2, τadj ∈ [hS(0.5),∞).

(B.15)

By Eqs. (B.12) and (B.13), the derivative can also be computed as

Φ′
S̃
(τ) = 2(h−1

S )′(τ)

=
2

h′
S(−α

2 )
. (B.16a)

Eq. (B.16a) is derived by the derivative of the inverse function:

[f−1](z) =
1

f ′[f−1(z)]
. (B.17)

Derivation of Tab. B.2. With Theorem B.10, we could study related metrics for HPS SHPS and our
transformed score SPTT, only need to calculate hS(x) and h′

S(x). By Eq. (9), we derive:

hSHPS
(x) = S̃HPS(x, y = −1;σ)

= Φ−1
[
Eδ∼N (0,σ2) SHPS(x+ δ, y = −1)

]
= Φ−1

[
1√
2πσ2

∫
π̂(x+ δ, y = 1)e−

δ2

2σ2 dδ

]

= Φ−1

{
σ√
2π

[
e

−(x+0.5)2

2σ2 − e
−(x−0.5)2

2σ2

]

+ (x+ 0.5)

[
Φ(

0.5− x

σ
)− Φ(

−0.5− x

σ
)

]
+Φ(

x− 0.5

σ
)

}
(B.18)
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h′
SHPS

(x) could be computed by the chain rule:

h′
SHPS

(x)

=
d

dx

{
Φ−1

[
Eδ∼N (0,σ2) SHPS(x+ δ, y = −1)

]}
= (Φ−1)′

[
Eδ∼N (0,σ2) SHPS(x+ δ, y = −1)

] ·
Eδ∼N (0,σ2)

[
d

dx
SHPS(x+ δ, y = −1)

]
= (Φ−1)′

[
Eδ∼N (0,σ2) SHPS(x+ δ, y = −1)

] ·
Eδ∼N (0,σ2)

[
1{−0.5≤x+δ≤0.5}

]
(B.19)

Note that HPS satisfies the monotonicity condition, hence we could apply Theorem B.10
and Lemma B.12 by plugging in h = hSHPS

(x). Next, we consider how to apply our transformation
Q on HPS. In order to simplify the analysis, we make two assumptions:

1. We skip the ranking transformation which involves sampling a holdout set, therefore
SPTT = Qsig ◦ S. We argue that in this case the HPS is already uniformly distributed and the
ranking step is not necessary.

2. In the sigmoid transformation, where Qsig ◦ S = φ(S−b
T ), we let T → 0. For the sigmoid

function,

φ(x) =
1

1 + e−x
=

{
1, x → ∞ (T → 0, S > b);

0, x → −∞ (T → 0, S < b).
(B.20)

Therefore, by taking the limit T → 0, the transformed score SPTT could be written as:

SPTT(x, y) =

{
0, SHPS(x, y) ≤ b,

1, SHPS(x, y) > b.
(B.21)

With these assumptions, we could apply Eq. (9), which gives:

hSPTT
(x) = S̃PTT(x, y = −1;σ)

= Φ−1[Eδ∼N (0,σ2)SPTT(x+ δ, y = −1)]

= Φ−1[Eδ∼N (0,σ2)1{π̂(x+δ,y=1)≥b}]

= Φ−1[Eδ∼N (0,σ2)1{δ≥b−x−0.5}]

= Φ−1[Φ(−b− x− 0.5

σ
)]

=
x+ 0.5− b

σ
(B.22)

and

h′
SPTT

(x) =
1

σ
. (B.23)

Similar to SHPS, SPTT is also monotonically increasing, thus we can apply Theorem B.10
and Lemma B.12 to get the results.

B.7.2 OPTIMALITY OF OUR PTT

Below we show that in this case, our transformed score could achieve the smallest derivative Φ′
S̃
(τ)

among all the base scores S with the same threshold τ .

Theorem B.13. Among all monotonically increasing scores S with the same threshold τ and 0 ≤
S(t, y = −1) ≤ 1, Φ′

S̃
(τ) is minimized by S(t; y = −1) = sgn(t+ α

2 ), where sgn(x) = 1{x ≥ 0}
is the sign function.
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Proof. From Theorem B.10, we could see that Φ′
S̃
(τ) = 2

h′
S(−α

2 ) . Hence, minimizing Φ′
S̃
(τ) is

equivalent to maximizing h′
S(−α

2 ). From definition of h, we have

d

dx
hS(x) =

d

dx
Φ−1[Eδ∼N (0,σ2) S(x+ δ, y = −1)]

=
1

Φ′ [Φ−1[Eδ∼N (0,σ2) S(x+ δ, y = −1)]
]

· d

dx
Eδ∼N (0,σ2) S(x+ δ, y = −1). (Chain rule, derivative of inverse function)

(B.24)

The second term

d

dx
Eδ∼N (0,σ2) S(x+ δ, y = −1)

=
d

dx

1√
2πσ2

∫
R

e−
δ2

2σ2 S(x+ δ, y = −1)dδ

=
d

dx

1√
2πσ2

∫
R

e−
(x−t)2

2σ2 S(t, y = −1)dt (Let t = x+ δ)

=
1√
2πσ2

∫
R

d

dx
e−

(x−t)2

2σ2 S(t, y = −1)dt

=
1√
2πσ2

∫
R

t− x

σ2
e−

(x−t)2

2σ2 S(t, y = −1)dt

=
1√
2πσ2

[∫ x

−∞

t− x

σ2
e−

(x−t)2

2σ2 S(t, y = −1)dt+

∫ ∞

x

t− x

σ2
e−

(x−t)2

2σ2 S(t, y = −1)dt

]

≤ 1√
2πσ2

[
0 +

∫ ∞

x

t− x

σ2
e−

(x−t)2

2σ2 dt

]
(0 ≤ S(t, y = −1) ≤ 1)

(B.25)

Note that the equality holds when S(t, y = −1) = sgn(t− x). Plug in x = −α
2 , we get

h′
S(−

α

2
) =

d
dxEδ∼N (0,σ2) S(−α

2 + δ, y = −1)

Φ′ [Φ−1[Eδ∼N (0,σ2) S(−α
2 + δ, y = −1)]

] .
=

d
dxEδ∼N (0,σ2) S(−α

2 + δ, y = −1)

Φ′ [hS(−α
2 )
] . (B.26)

Recall that τ = hS(−α
2 ). (Eq. (B.13)), the denominator is just Φ′(τ), which is a constant given τ .

The numerator is maximized by S(t, y = −1) = sgn(t+ α
2 ), giving the conclusion.

Remark. Note that the optimal base score is attained by applying our transformation on the HPS
score, with b = 1−α

2 and T → 0, as in Eq. (B.20). This supports the asymptotic optimality of our
transformation.

B.8 CASE STUDY: POTENTIAL FAILURE MODE OF PTT

A natural question would be: when will the PTT fail to boost the efficiency? Here, we provide a
special case where PTT will fail to boost efficiency. Suppose the data distribution is the same as we
defined in the settings part of Appendix B.7. For the base score, let

Sb(x, y = −1) =

⎧⎨
⎩
0.5 + o(1), x ≤ −0.5;

x+ 0.5, x ∈ (−0.5, 0.5);

0.5− o(1), x ≥ 0.5,

(B.27)

and Sb(x, y = 1) = 1−Sb(x, y = −1). That is to say, the conformity score is slightly in favor of the
wrong class when x /∈ (−0.5, 0.5). Here, we introduce an ignorable small deviation (o(1)) so that
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the score will be above(below) the PTT threshold b for x ≤ −0.5 and x ≥ 0.5. Let 1− α = b = 0.5,
by Eq. (B.21), the PTT score will be

SPTT =

{
1, x ∈ (−∞,−0.5] ∪ [0, 0.5);

0, x ∈ (−0.5, 0) ∪ [0.5,∞).
(B.28)

Similar to Appendix B.7.1, we could derive the smoothed scores:

hSb
(x) = S̃b(x, y = −1)

= Φ−1

{
σ√
2π

[
e

−(x+0.5)2

2σ2 − e
−(x−0.5)2

2σ2

]

+ (x+ 0.5)

[
Φ(

0.5− x

σ
)− Φ(

−0.5− x

σ
)

]
+

1

2
Φ(

x− 0.5

σ
) +

1

2
Φ(

−x− 0.5

σ
)

}
,

(B.29)
and

hSPTT
(x) = S̃PTT(x, y = −1)

= Φ−1[Eδ∼N (0,σ2)1{x+δ≤−0.5} + 1{0≤x+δ≤0.5}]

= Φ−1[Eδ∼N (0,σ2)1{δ≤−x−0.5} + 1{−x≤δ≤−x+0.5}]

= Φ−1

[
Φ(

−x− 0.5

σ
) + Φ(

−x+ 0.5

σ
)− Φ(

−x

σ
)

]
Since the scores are no longer monotonically increasing, we cannot directly apply Theorem B.10
to get a closed-form solution. However, we could numerically calculate the CDF ΦS̃ , threshold τ
and the average size Cε(x) as we know the smoothed score function. We choose the inflation level
ε
σ = 0.01 across experiments, and report the results in Tab. B.3. The results show that for σ = 0.3,
the PTT method is worse than the original score. This indicates that theoretically, for a specific base
score, the PTT method could amplify the error and produce a larger set.
However, this kind of failure mode is not observed in our experiments in Sec. 5. We argue that despite
being theoretically possible, the failure case shown in this section requires (1) a carefully designed
base score and (2) a specific choice of 1− α and σ. Hence, the chance that it happens in practice is
rare.

σ Base
Score

τ Avg. Size Conservativeness

0.1
Sb -0.620 0.512 0.012
SPTT -1.245 0.504 0.004

0.2
Sb -0.464 0.529 0.029
SPTT -0.536 0.511 0.011

0.3
Sb -0.302 0.525 0.025
SPTT -0.169 0.529 0.029

Table B.3: Results for the failure case study. Note that the average size increased after PTT when
σ = 0.3.
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(a) Smoothed score S̃. (b) CDF of smoothed score ΦS̃ .

Figure B.3: Comparison between original score Sb and PTT score SPTT when σ = 0.3. (Left)
Smoothed scores. (Right) CDF of smoothed scores. The red dotted line denotes the coverage level
1−α = 0.5. The intersection between the dotted line and the CDF curve is the threshold τ . From the
figure, we could intuitively see that the CDF of the PTT score has a larger derivative at the threshold.

C FURTHER DISCUSSION ON ROBUST CONFORMAL TRAINING IN SEC 4.2

C.1 DETAILS OF CONFORMAL TRAINING (STUTZ ET AL., 2021)

Conformal training (Stutz et al., 2021) simulates calibration and prediction process on mini-batches
during training. In training, each batch B is split into two subsets: calibration set Bcal and prediction
set Bpred. The threshold τ is calculated based on Bcal, and the prediction sets C(x; τ) are generated
for samples in Bpred. Under this setting, S is a function of trainable parameters θ. To emphasize this,
we denote the base score as Sθ(x, y) in this section. In order to perform back-propagation to update
θ, Stutz et al. (2021) proposed to calculate soft threshold τ soft and soft prediction set c(x, y; τ soft) as
differentiable approxiamation of threshold τ and prediction set C(x). We discuss the details next.

Soft threshold τ soft The calculation of threshold τ involves calculating a specific quantile of a
given set, which is not differentiable. To address this problem, smooth sorting methods (Blondel
et al., 2020; Cuturi et al., 2019) are utilized to get a smoothed version of quantile:

τ soft = Qsoft
1−α({Sθ(x, y)}(x,y)∈Bcal

), (C.1)

where Qsoft
q (H) denotes the q(1 + 1

|H| )-quantile of set H derived by smooth sorting.

Soft prediction set c(x, y; τ soft) In the prediction stage, Stutz et al. (2021) introduced a class-wise
prediction function c(x, y) ∈ [0, 1] which represents the probability that label y is included in the
prediction set of x. The prediction set could now be represented as the collection of class-wise
predictions: C(x) = {y ∈ [K] | c(x, y)}. Using this notation, the vanilla conformal prediction
(Angelopoulos et al., 2020) could be expressed as:

chard(x, y; τ) =

{
1, Sθ(x, y) ≤ τ ;

0, Sθ(x, y) > τ.

which requires to perform hard-thresholding w.r.t. threshold τ . Stutz et al. (2021) proposed to replace
chard by a smooth version:

c(x, y; τ soft) = φ

[
τ soft − Sθ(x, y)

Ttrain

]
, (C.2)

where φ(z) = 1/(1 + e−z) is the sigmoid function and temperature Ttrain is a hyper-parameter.
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C.2 DETAILS OF ROBUST CONFORMAL TRAINING (RCT)

In this section, we discuss some design details of Robust Conformal Training (RCT). We first
introduce some problems suggested by Stutz et al. (2021) and show how we avoid those problems.

Different from the conformal prediction method we introduce in Sec. 2.1, Stutz et al. (2021) used
a slightly different convention, where C(X; τ ′) = {k ∈ [K] | S′(x, y) ≥ τ ′} and threshold τ ′ is
calculated as the α(1 + 1/|Dcal|)-quantile of calibration scores. For example, S′(x, y) = π̂y(x)
for THR (Sadinle et al., 2019) and S′(x, y) = log π̂y(x) for THRLP. We argue that these two
conventions are actually equivalent. Let S(x, y) = −S′(x, y) and τ = −τ ′, we see now τ is the
(1 − α)(1 + 1/|Dcal|)-quantile of calibration scores and C(X; τ) = {k ∈ [K] | S(X, k) ≤ τ},
which is consistent with the notations we introduce. For the consistency of notations, we make some
modifications to the notations in Stutz et al. (2021) by swapping their signs in the rest of this section.

Regarding the choice of (non)-conformity score for training, Stutz et al. (2021) mentioned a gradient
diminishing problem when using THR: STHR = −π̂y(x). Thus, they proposed to add a logarithm
function to mitigate this problem, i.e. using THRLP: STHRLP = − log π̂y(x). However, this choice
doesn’t work when we try to incorporate RSCP into the scheme: RSCP requires the base score
to take value in [0, 1], which is not true for STHR and STHRLP. To solve this problem, we choose
HPS as the base score: since the difference between HPS and THR is only a constant, these two
scores are actually equivalent in the context of conformal training (Stutz et al., 2021). HPS takes
value in the interval [0, 1], which satisfies the requirement of RSCP. A potential problem with this
choice is: as suggested by Stutz et al. (2021), using HPS as the base score would cause gradient
diminishing. Fortunately, we observe that the Gaussian inverse cdf step Φ−1 plays a similar role to
the logarithm function in Stutz et al. (2021), which alleviates the diminishing gradient problem and
leads to successful training.
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D EXPERIMENTAL DETAILS AND EXTENSIVE STUDIES IN SEC 5

In this section, we discuss more details of our experiments in Sec. 5, and provide extensive empirical
studies on the RSCP+ and PTT / RCT methods we proposed.

D.1 EXPERIMENTAL DETAILS

Robust conformal training. For robust conformal training, as Stutz et al. (2021) suggested, we
freeze the backbone of the base model and train the last linear layer after randomly reinitializing it.
Regarding the base score for training, see Appendix C.2 which discusses our choice. For CIFAR10
and CIFAR100, standard data augmentation is applied which includes random flips and crops. In
training, we use SGD with momentum 0.9 and Nesterov gradient. Weight decay is set to 0.0005. We
finetune the model for Nepoch = 150 epochs and scale the learning rate down by 0.1 at epoch 60, 90
and 120. In Eq. (25), we choose Ntrain = 8. For other hyper-parameters, see Tab. D.1.

Dataset Batch size Learning rate Ttrain in Sec. 4.2 Size weight κ in Eq. (26)
CIFAR10 500 0.05 0.1 1 1
CIFAR100 100 0.005 1 0.01 1

Table D.1: Hyperparameters setting for robust conformal training on CIFAR10 and CIFAR100.

Dataset split For RCT training, the training set of CIAFR10 and CIFAR100 is utilized. For
evaluation, we split the validation set into three subsets: Dholdout for ranking transformation in
Sec. 4.1, Dcal for calibration, and Dtest for evaluation of results. For the size of each subset, please
refer to Tab. D.2. We want to point out one thing that in all experiments we employ the random
calibration-test split suggested by Gendler et al. (2021). That means we fix training set Dtrain and
holdout set Dholdout, while randomly split the remaining data into Dcal and Dtest for Nsplit = 50 times.
For each random split, calibration is performed on Dcal, and prediction results are evaluated on Dtest.
For a fair comparison, we add the holdout set to the calibration set for the baseline method (i.e.
calibration is performed on Dholdout ∪Dcal), as they do not need this holdout set. All the metrics we
present are the average of Nsplit = 50 experiments.

Dataset training holdout calibration test
CIFAR10 50000 500 4750 4750
CIFAR100 50000 500 4750 4750
ImageNet - 500 24750 24750

Table D.2: Spilt of each dataset. Note that on ImageNet we only experiment PTT method which is
training-free, therefore, the training set for ImageNet is omitted.

D.2 EMPIRICAL RESULTS ON RSCP BENCHMARK

In this section, we present experiment results under the original RSCP benchmark (Gendler et al.,
2021). As we point out in the main text, their approach is flawed in robustness guarantee, but
it still serves as a simple empirical benchmark. For empirical robustness with RSCP, we follow
the evaluation of Gendler et al. (2021) which uses SmoothAdv (Salman et al., 2019) to generate
adversarial examples and examines the coverage and average size on these examples.

Results. The results are shown in Tabs. D.3 and D.4. First, we could see that all methods achieve
coverage above 1− α = 90% under SmoothAdv attack, suggesting that our methods preserve the
empirical robustness of Gendler et al. (2021). Compared with the baseline, our methods are closer to
vanilla CP and have a smaller coverage gap αgap. Next, focusing on average prediction set size, which
is the key metric evaluating the efficiency of conformal prediction, our methods provide reduction up
to 31.12%, 25.80%, and 48.80% on CIFAR10, CIFAR100, and ImageNet respectively. Note that our
PTT method provides the first result on the ImageNet dataset to improve the size of robust conformal
prediction without training. The conformal training methods in prior work (Einbinder et al., 2022b;
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Figure D.1: Comparison of vanilla conformal prediction (Vanilla CP) (Romano et al., 2020), vanilla
RSCP (Gendler et al., 2021) and our proposed method PTT + RCT with RSCP on (a) coverage
guarantees and (b) average prediction set size on CIFAR10. Our methods achieve better (smaller)
average set size than RSCP while satisfying coverage guarantees on the adversarial test set. Note that
Vanilla CP does not achieve the desired 90% coverage guarantees on the adversarial test set. The
non-conformity score applied here is APS (Romano et al., 2020).

CIFAR10 CIFAR100
APS HPS APS HPS

Method Coverage Average size ↓ Coverage Average size ↓ Coverage Average size ↓ Coverage Average size ↓
Baseline 95.68% 2.751 93.54% 2.108 93.53% 16.19 93.43% 14.30
(Gendler et al., 2021)

PTT (Ours) 92.06% 2.202 (-19.96%) 90.90% 1.779 (-15.61%) 91.26% 12.78 (-21.06%) 90.87% 10.78 (-24.62%)
PTT + RCT (Ours) 91.15% 1.895 (-31.12%) 91.19% 1.864 (-11.57%) 91.07% 12.32 (-23.88%) 90.83% 10.61 (-25.80%)

Table D.3: Coverage and average size on CIFAR 10 and CIFAR 100 with RSCP. Results are
presented on adversarial examples generated by SmoothAdv(Salman et al., 2019) with magnitude
ε = 0.125. The target coverage is 1 − α = 0.9 and the smoothing strength σ = 0.25. The
improvement relative to the baseline is shown in parentheses and the best results are bold. Our
method consistently gives prediction sets with smaller sizes, and it can be seen that the robustness of
RSCP holds empirically.

APS HPS
Method Coverage Average size ↓ Coverage Average size ↓
Baseline(Gendler et al., 2021) 95.36% 51.72 94.12% 16.64
PTT (Ours) 91.17% 30.20 (-41.61%) 90.53% 8.52 (-48.80%)

Table D.4: Coverage and average set size results for ImageNet with RSCP. Results are presented
on adversarial example with magnitude ε = 0.25, target coverage 1 − α = 0.9 and σ = 0.5. The
improvement relative to the baseline is shown in parentheses.

Stutz et al., 2021) require training, which might be costly when the base model is large and does not
scale to larger datasets like ImageNet.

RSCP RSCP+
ε 0.125 0.25 0.5 0.125 0.25 0.5
Baseline 2.108 3.303 5.759 10 10 10
PTT 1.779 2.578 4.222 2.152 3.269 5.559
PTT+RCT 1.864 2.642 4.245 2.152 3.413 5.603

Table D.5: Average size for different ε on CIFAR10 dataset, with RSCP and RSCP+. Our
methods consistently improve over the baseline.
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RSCP RSCP+
σ 0.125 0.25 0.5 1 0.125 0.25 0.5 1
Baseline 1.999 2.108 2.573 3.78 10 10 10 10
PTT 1.622 1.779 2.244 3.434 3.341 2.152 2.916 4.663
PTT+RCT 1.705 1.864 2.296 3.473 3.282 2.152 3.059 4.735

Table D.6: Average size for different σ on CIFAR10 dataset, with RSCP and RSCP+. Our
methods consistently improve over the baseline.

D.3 EXPERIMENTS WITH DIFFERENT ε AND σ.

In this section, we extend our experiment on the CIFAR10 dataset to different ε and σ. We conduct
experiments under two settings: (1) We fixed ε

σ = 1
2 , and used ε = 0.125, 0.25, 0.5. The results are in

Tab. D.5 (2) We fixed ε = 0.125 and tried σ = 0.125, 0.25, 0.5, 1. The results are in Tab. D.6. Both
experiments are carried out on the CIFAR10 dataset with HPS score. For the RSCP+ benchmark, we
apply the Empirical Bernstein’s improvement introduced in Appendix A.3.3. Other hyperparameters
are the same as the experiments we present in Sec. 5. From Tabs. D.5 and D.6, we could see that our
methods consistently give a smaller average size, compared with the baseline (Gendler et al., 2021).
This supports our claim that our methods could improve the efficiency, for both RSCP and RSCP+.

D.4 ABALATION STUDY

In this section, we study the necessity of robust conformal training introduced in Sec. 4.2 by comparing
it with Conformal Training (ConfTr)(Stutz et al., 2021). The experiments are carried out using the
original RSCP benchmark, so we introduce RSCP (Gendler et al., 2021) as a baseline. As illustrated
in Tab. D.7, ConfTr generates up to 66.08% larger prediction set than no conformal training, which is
undesired, while with our RCT, we can reduce the size up to 17.52%, which supports the necessity of
our RCT method. The reason may be that conformal training is not specifically crafted for randomized
smoothing.

APS HPS
Training Method Coverage Average size ↓ Coverage Average size ↓
Baseline(Cohen et al., 2019) 95.68% 2.751 93.54% 2.108
ConfTr(Stutz et al., 2021) 90.21% 3.509 (+27.55%) 90.39% 3.501 (+66.08%)
RCT (Ours) 93.15% 2.269 (-17.52%) 91.25% 1.929 (-8.49%)

Table D.7: Ablation study: We compare our robust conformal prediction (RCT) with conformal
training (ConfTr) (Stutz et al., 2021) on CIFAR10 dataset. It could be seen that applying ConfTr to
train a base classifier for RSCP results in performance even worse than the baseline which uses the
original weights by Cohen et al. (2019), supporting the necessity of our method.

D.5 STANDARD DEVIATION OF EXPERIMENT RESULTS

In this section, we present the standard deviation of our experiment results.

Base score HPS APS
Dataset CIFAR10 CIFAR100 CIFAR10 CIFAR100
Baseline (Gendler et al., 2021) 10 100 10 100
PTT (Ours) 2.294 ± 0.051 26.06 ± 15.48 2.685 ± 0.037 21.96 ± 1.055
PTT+RCT (Ours) 2.294 ± 0.051 18.30 ± 1.08 2.824 ± 0.047 20.01 ± 0.94

Table D.8: Average size of RSCP+ on CIFAR10 and CIFAR100. with standard deviation. For
CIFAR10 and CIFAR100, ε = 0.125 and σ = 0.25. For the large standard deviation with PTT on
CIFAR10 using HPS as a base score, the reason is the predictor gives a trivial prediction during 50
tests. We argue that the probability is small and could be alleviated by applying RCT or increasing
the number of Monte Carlo samples.
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Base score HPS APS
Baseline (Gendler et al., 2021) 1000 1000
PTT (Ours) 1000 ± 0 94.66 ± 130.97
PTT + Bernstein (Ours) 59.12 ± 135.87 70.87 ± 3.69

Table D.9: Average size of RSCP+ on ImageNet. with standard deviation. For ImageNet, ε = 0.25
and σ = 0.5. Some entries in the table have large standard deviations. The reason is the predictor
gives a trivial prediction during 50 tests. We argue that the probability is small and could be alleviated
by increasing the number of Monte Carlo samples.

APS HPS
Method Coverage Average size ↓ Coverage Average size ↓
Baseline 95.68% ± 0.30% 2.751 ± 0.031 93.54% ± 0.48% 2.108 ± 0.036
(Gendler et al., 2021)

PTT (Ours) 92.06% ± 0.40% 2.202 ± 0.029 90.90% ± 0.61% 1.779 ± 0.029
PTT + RCT (Ours) 91.15% ± 0.48% 1.895 ± 0.033 91.19% ± 0.51% 1.864 ± 0.027

Table D.10: Coverage and average size on CIFAR 10 with RSCP with standard deviation.

APS HPS
Method Coverage Average size ↓ Coverage Average size ↓
Baseline 93.53% ± 0.44% 16.19 ± 0.47 93.43% ± 0.47% 14.30 ± 0.43
(Gendler et al., 2021)

PTT (Ours) 91.26% ± 0.55% 12.78 ± 0.34 90.87% ± 0.61% 10.78 ± 0.36
PTT + RCT (Ours) 91.07% ± 0.59% 12.32 ± 0.38 90.83% ± 0.58% 10.61 ± 0.32

Table D.11: Coverage and average size on CIFAR 100 with RSCP with standard deviation.

APS HPS
Method Coverage Average size ↓ Coverage Average size ↓
Baseline 95.36% ± 0.14% 51.72 ± 0.819 94.12% ± 0.21% 16.64 ± 0.387
(Gendler et al., 2021)
PTT (Ours) 91.17% ± 0.19% 30.20 ± 0.609 90.53% ± 0.23% 8.52 ± 0.175

Table D.12: Coverage and average set size results for ImageNet with RSCP with standard deviation.

D.6 EXTENDED STUDY ON THE IMPACT OF NMC

NMC 128 256 512 1024
CIFAR100 39.95 26.06 13.60 12.43
ImageNet 1000 59.12 19.68 10.34

Table D.13: Average size vs. Number of Monte Carlo samples NMC . The experiment is conducted
with PTT method. The base score is HPS. It could be seen that by increasing the number of
Monte Carlo examples, we could further improve the efficiency of RSCP+, at the cost of higher
computational expense.

In Sec. 5, we study the impact of the number of Monte Carlo samples NMC on RSCP+ on the
CIFAR10 dataset. In this section, we extend the study to CIFAR100 and ImageNet. As shown in
Tab. D.13, the average size could be reduced by increasing the number of Monte Carlo examples.
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D.7 IMPACT OF T

In this section, we conduct an empirical study on the impact of hyperparameter T in PTT. We choose
the CIFAR10 dataset with HPS as the base score. The results are shown in Fig. D.2. It could be seen
that when choosing T large enough, our method is not sensitive to the choice of T .

Figure D.2: Average size of prediction set vs. different T .
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D.8 COMPUTATIONAL OVERHEAD OF OUR METHODS

In this section, we discuss the computational overhead of our methods, PTT and RCT. The overhead
could be divided into two parts: training cost and test-time cost.

Training cost. Our PTT method is training-free, hence it doesn’t introduce any cost for training.
For RCT, we compare the training time of RCT and ConfTr (Stutz et al., 2021) on the CIFAR10
dataset. For both of the methods, the last linear layer is finetuned for Nepoch = 150 epochs on 2
NVIDIA V100 GPUs. RCT takes around 95 minutes while ConfTr takes around 50 minutes. We
argue that this computational overhead stems from randomized smoothing: training base model for
randomized smoothing requires sampling a batch of examples for each training example (Cohen
et al., 2019; Salman et al., 2019; Zhai et al., 2020), which significantly increases the computational
expanse.

Test-time cost. During test time, our RCT method is equivalent to vanilla RSCP (Gendler et al.,
2021). No additional expense is needed. For PTT, since a transformation is applied on base score S
at test time, there would be a computational overhead: see Fig. D.3. Diving deeper into each step,

Figure D.3: Score computation time for each test example on CIFAR10 dataset. Comparing vanilla
RSCP (RSCP) and RSCP with our training-free transformation (ours), it could be seen that the
computational overhead is about 10%. Note that our robust conformal training method does not
introduce additional computational cost at the test stage. The experiment is performed on 2 NVIDIA
V100 GPU.

we could see that the computational cost for each example is Θ(NMCK log |Dholdout|) for ranking
transformation and Θ(NMCK) for sigmoid transformation. Therefore, the overall cost would be
Θ(NMCK log |Dholdout|). We emphasize that this cost does not scale with the cost of the base model,
which is desirable because it enables users to employ arbitrarily large base models without increasing
the computational overhead of PTT.
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E OTHER RELATED WORKS IN ROBUST CONFORMAL PREDICTION

Besides Gendler et al. (2021), there are other related works that studied robust conformal prediction
(Einbinder et al., 2022a; Ghosh et al., 2023; Bastani et al., 2022). Bastani et al. (2022) focused
on an online setting where the defender could interact with the attacker and collect information on
adversarial distribution from history inputs, which is different from our setting which assumes the
defender does not have information on the distribution of adversarial noises, except the assumption
that they have limited norm. Ghosh et al. (2023) studied probabilistically robust conformal prediction.
Formally, they studied the following guarantee:

PX,Y,δ{yn+1 ∈ C(x̃n+1 = xn+1 + δ)} ≥ 1− α. (E.1)

As Ghosh et al. (2023) pointed out, this could be regarded as a relaxed version of the adversarial
robust coverage guarantee defined in Eq. (2): probabilistically robust conformal prediction provides a
guarantee for perturbation δ following a specific distribution, while our RSCP+ provide adversarial
robustness guarantee for any perturbation that satisfies ‖δ‖2 ≤ ε.
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F TABLE OF SYMBOLS

Symbol Description
C(x) Prediction set of input x
(xn+1, yn+1) Test input and corresponding label
Pxy Joint distribution of input x and label y
x̃n+1 Perturbed test input
1− α Target level of coverage
ε Magnitude of adversarial noise
Cε(x) RSCP prediction set with noise level ε
Dtrain Training dataset
Dcal Calibration dataset
π̂ Probability output of classifier
S (Non-)conformity score function

S̃ Randomized smoothed score defined by RSCP (Gendler et al., 2021)
τ Threshold of vanilla conformal prediction
τadj Adjusted threshold introduced by RSCP (Gendler et al., 2021)
Φ Cumulative density function of standard Gaussian distribution
SRS Randomized smoothed score defined in Eq. (9)

ŜRS Monte Carlo estimator for SRS

σ Smoothing strength of randomized smoothing
Qp(H) The p(1 + 1/|H|)-empirical quantile of a set H
C+

ε (x) Prediction set of RSCP+ with noise level ε
αgap Coverage gap introduced by RSCP (Gendler et al., 2021)

ΦS̃ Cumulative density function of S̃
Q Transformation on base conformity score
Ntrain Number of Monte-Carlo examples used in RCT
NMC Number of Monte-Carlo examples in calibration and test stages
Nsplit Number of random calibration-test split in evaluation
b, T Hyper-parameters of Sigmoid transformation

Table F.1: Symbol table
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