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Abstract

Unsupervised lifelong learning refers to the ability to
learn over time while memorizing previous patterns with-
out supervision. Although great progress has been made
in this direction, existing work often assumes strong prior
knowledge about the incoming data (e.g., knowing the class
boundaries), which can be impossible to obtain in complex
and unpredictable environments. In this paper, motivated by
real-world scenarios, we propose a more practical problem
setting called online self-supervised lifelong learning with-
out prior knowledge. The proposed setting is challenging
due to the non-iid and single-pass data, the absence of ex-
ternal supervision, and no prior knowledge. To address the
challenges, we propose Self-Supervised ContrAstive Life-
long LEarning without Prior Knowledge (SCALE) which
can extract and memorize representations on the fly purely
from the data continuum. SCALE is designed around three
major components: a pseudo-supervised contrastive loss, a
self-supervised forgetting loss, and an online memory up-
date for uniform subset selection. All three components
are designed to work collaboratively to maximize learning
performance. We perform comprehensive experiments of
SCALE under iid and four non-iid data streams. The results
show that SCALE outperforms the state-of-the-art algo-
rithm in all settings with improvements up to 3.83%, 2.77%
and 5.86% in terms of kNN accuracy on CIFAR-10, CIFAR-
100, and TinyImageNet datasets. We release the imple-
mentation at https://github.com/Orienfish/
SCALE.

1. Introduction

Lifelong learning, or continual learning, refers to the

ability to continuously learn over time by acquiring new

knowledge and consolidating past experiences. One ma-

jor challenge of lifelong learning is to combat catastrophic
forgetting, i.e., updating the model using new samples de-

grades existing knowledge learned in the past [26, 51].

Existing work has assumed various levels of prior knowl-
edge about the input data stream. Supervised Lifelong

Figure 1. SCALE functions on a self-driving vehicle where

the order of the input image sequence can be unforeseeable due

to environmental or operational factors. SCALE learns self-

supervisedly by contrasting with memory samples. SCALE’s

pseudo-contrastive loss is inspired from the InfoNCE objec-

tive [54]. While SimCLR [15] only uses an augmented sample

and SupCon [40] uses samples with the same label to form a posi-

tive set, to improve similarity within the set, SCALE self-distills a

pseudo-positive set based on pairwise similarity. SCALE does not

rely on any supervision or prior knowledge.

Learning presumes the presence of task and class labels

along with samples [14, 29, 41, 48]. General Continual
Learning or task-free continual learning eliminates the task

labels and boundaries to focus on real-time adaptation to

non-stationary continuum with limited memory, but still us-

ing class labels [6, 9, 44, 78]. Unsupervised Lifelong Learn-
ing completely removes all labels; therefore, the algorithm

needs to distill the knowledge from raw samples or stream-

ing structure on its own [2, 37, 75].

While great progress has been made in lifelong learning,

it is still challenging to deploy the existing algorithms in

the wild to learn over time. One of the reasons is that even

in the pure unsupervised setting, existing works assumed

knowing the class boundary or the total number of classes

in advance [57, 61, 70]. Such prior knowledge greatly eases

the difficulty of learning without forgetting. For example,

if the class boundary is distinct and known, the learning

algorithm can expand the network or create a new mem-

ory buffer whenever detecting a class shift. But these prior
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knowledge is extremely difficult, if not impossible, to obtain

in real-world environments which are complex and unpre-
dictable. Specifically, consider a camera mounted on a ve-

hicle and an application of continuously training an image

classification algorithm as the vehicle moves around (Fig-

ure 1). The sequence of incoming samples depends on the

environment and the trajectory of the vehicle, hence, is very

hard to predict when and how smooth the shift is.

In this paper, to align with the unpredictable real-world

scenarios, we extend the current unsupervised learning set-

ting to a more challenging and practical case: online un-

supervised lifelong learning without prior knowledge. In

particular, we make no assumption on the input streams:

(i) Unlike offline self-supervised learning [11,15], the in-

put data is non-iid and single-pass, i.e., all data sam-

ples appear only once.
(ii) Unlike General Continual Learning [9, 44] and task-

based lifelong learning [24, 31, 46, 49], the class and

task labels are not given (no external supervision).
(iii) Unlike VAE-based design [61] and KMeans-based

progressive clustering [31,69], the task or class bound-

aries and the number of classes are unknown in ad-

vance (no prior knowledge).

Additionally, the input stream can have distinct/blurred

class boundaries or an imbalanced class appearance, all of

which are not revealed to the algorithm. Our problem set-

ting reflects the complexity and difficulty of lifelong learn-

ing problems in the real world1.

Recognizing the unique challenges, we propose Self-

Supervised ContrAstive Lifelong LEarning without Prior

Knowledge (SCALE). SCALE is designed around three

major components: a pseudo-supervised contrastive loss for

contrastive learning, a self-supervised forgetting loss for

lifelong learning, and an online memory update for uni-

form subset selection. All components are critical to the

final learning performance: the contrastive loss enhances

the similarity relationship by contrasting with memory sam-

ples, the forgetting loss prevents catastrophic forgetting,

and the memory buffer retains the most “representative”

raw samples within the limited buffer size. Our loss func-

tions utilize pairwise similarity among the feature repre-

sentations, thus eliminating the dependency on labels or

prior knowledge. Moreover, contrastively learned represen-

tations have been shown to be more robust against catas-

trophic forgetting compared to the use of end-to-end cross-

entropy loss [12].

Our contributions can be summarized as follows:

(1) We propose a more practical setting for unsupervised

lifelong learning which assumes that the input data

streams are non-iid and single pass, and no external

supervision or prior knowledge is given.

1In this paper we focus on image classification while the same setup

and methodology can be easily extended to other applications as well.

(2) We design SCALE to extract and memorize knowl-

edge on-the-fly without supervision and prior knowl-

edge. SCALE uses contrastive lifelong learning based

on self-distilled pairwise similarity, along with an on-

line memory update to retain the “representative” raw

samples on imbalanced streams.

(3) We perform comprehensive experiments on five dif-

ferent types of single-pass data stream sampled from

CIFAR-10, CIFAR-100 and TinyImageNet datasets.

SCALE outperforms state-of-the-art algorithms in all

settings.

2. Related Work
Self-Supervised Learning (SSL) has been developed to

learn low-dimensional representations on offline datasets

without class labels, for various downstream tasks. Vari-

ational autoencoder (VAE)-based designs aimed for data

reconstruction assuming various prior models in the latent

space [37,39,52]. Progressive clustering-based methods al-

ternated between network update and clustering for self-

labeling until convergence [10, 11, 13, 30, 62, 76]. Infor-

mation theory-based techniques maximized the mutual in-

formation between representations of augmented samples

to retain invariance and avoid degenerate solutions [8, 22,

34, 36, 45, 80]. Contrastive learning draws closer the aug-

mented representation pairs while pushing away the oth-

ers [15–17, 32, 54]. Recent architecture techniques such as

BYOL, SimSiam and OBoW [18, 25, 27] used asymmetric

networks to prevent learning trivial representations. How-

ever, all the above-mentioned works are designed for offline

iid data and do not address catastrophic forgetting.

Supervised Lifelong Learning has been widely ex-

plored in three lines: dynamic architecture [1,43,55,59,65,

73], regularization [3, 4, 41, 64, 79, 81, 82], and experience

replay using a memory buffer [9,14,19,29,35,48,63,71,74].

Recently, a large amount of effort has been invested in on-

line supervised lifelong learning. Most works used memory

replay, such as Co2L [12], CoPE [20], GMED [38], Dual-

Net [56], ASER [67], SCR [50], OCM [28], ODDL [78],

OCD-Net [44]. Nevertheless, the problem is significantly

simplified with the presence of class labels.

Unsupervised Lifelong learning (ULL) is mostly stud-

ied under offline iid data with multiple passes on the en-

tire dataset during training [2, 37, 75, 77]. In contrast, on-

line ULL is more challenging due to the non-iid and single-

pass data continuum. Lifelong generative models leveraged

mixture generative replay to mitigate catastrophic forget-

ting during online updates [60, 61]. However, these VAE-

based methods were computationally expensive. Many re-

cent works have applied self-supervised knowledge distil-

lation on task-based online ULL. He et al. [31] utilized

pseudo-labels from KMeans clustering to guide knowl-

edge preservation from the previous task. CCSL [46] em-
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Table 1. Comparison of previous work and SCALE (this paper) on assumed prior knowledge.

Papers Single-pass Non-iid No task labels No class labels

VASE [2], CURL [61], L-VAEGAN [77] × � � �
He et al. [31], CCSL [46], CaSSLe [24], LUMP [49] � � × �

Tiezzi et al. [70], KIERA [57] � � � ×
STAM [68], SCALE (this paper) � � � �

ployed self-supervised contrastive learning for intra- and

inter-task distillation. CaSSLe [24] proposed a general

framework for SSL backbones, which extracted the best

possible representations that are invariant to task shifts.

LUMP [49] mitigated forgetting by interpolating the cur-

rent task’s samples with the finite memory buffer. But all

of these works relied on task boundaries to generate good

results. Tiezzi et al. [70] developed a human-like attention

mechanism for continuous video streams with little super-

vision. KIERA [57] and STAM [68] employed expand-

able memory architecture for single-pass data using online

clustering, novelty detection and memory update. KIERA

required labeled samples in the initial batch of each task

for cluster association. The problem definition of STAM

is most similar to ours. Yet, STAM’s memory architecture

cannot be trained with common optimizers, and thus is lim-

ited in fine-tuning for downstream tasks.

We summarize the existing contributions for online ULL

in Table 1 based on the assumed prior knowledge. The pro-

posed SCALE excels existing works in that SCALE learns

low-dimension representations online without any external

supervision or prior knowledge about task, class or data;

thus, it better adapts unpredictable real-world environments.

3. Online Unsupervised Lifelong Learning
without Prior Knowledge

In this section, we present the online unsupervised life-

long learning problem without prior knowledge. Our setup

is motivated by real-world applications and extended from

previous studies by removing certain assumptions.

Input streams. We assume the data comes in a class- (or

distribution-) incremental manner. Such a setup mimics

continuous and periodic sampling while the surrounding en-

vironment changes over time. Suppose that the input sam-

ples are drawn from a sequence of T classes with each class

corresponding to a unique distribution in
{P1, ...,PT

}
.

The complete input sequence can then be represented as

D =
{D1, ...,DT

}
where Dt denotes a series of nt batches

of samples, i.e., Dt = {Xt
1, ..., X

t
nt
}. With t denoting the

class ID and u representing the batch ID in the current class,

each batch of data Xt
u is a set of samples {xt

1, ...,x
t
|Xt

u|},

where xt
i ∼ Pt(X). In the rest of the paper, we use capital

letters to denote batches and lowercase letters for individual

samples. Each training batch Xt
u ∈ Dt appears once in the

entire stream (single-pass) while the task and class labels

are not revealed. The total number of classes T , the transi-

tion boundaries and the batch numbers nt are not known by

the learning algorithm either. Our goal is to learn a model

that distinguishes classes or distributions
{P1, ...,PT

}
at

any moment throughout the stream, without supervision by

external labels or prior knowledge.

Based on previous problem formulations [57,61,68], five

particular types of input streams are considered: (i) iid data

that is sampled iid from all classes. (ii) Sequential class-in-

cremental stream where the observed classes are balanced

in length and are introduced one-by-one with clear bound-

aries that are not known by the algorithm. (iii) Sequen-

tial class-incremental stream with blurred boundaries. The

boundary is blurred by mixing the samples from two con-

secutive classes, mimicking class shift is smooth and diffi-

cult to detect. (iv) Imbalanced sequential class-incremen-

tal stream uses different batch sizes in each class, mimick-

ing distribution shifts at unpredictable times. (v) Sequen-

tial class-incremental stream with concurrent classes where

more than one class is incrementally introduced at the time.

In this paper two classes are revealed concurrently and Pi

refers to their combined distribution. To aid understanding,

we use a self-driving vehicle with a mounted camera as an

example to visualize all five input streams as shown in Fig-

ure 2.

Training and evaluation protocol. The training and eval-

uation setup is similar to [61, 68] and is detailed in Fig-

ure 2. The model is a representation mapping function

to a low-dimensional feature space, i.e., fθ : X → Z
where θ represents learnable parameters and Z refers to

the low-dimensional feature space. The training proceeds

self-supervisedly based on the feature representation batch

Zt
u = fθt

u
(Xt

u). As for evaluation, we periodically test

the frozen model θtu on a separate dataset E = {(xj , yj)}
as the training progresses. We randomly sample an equal

amount of labeled samples from each class possibly seen in{P1, ...,PT
}

and add them to E . Thus even when the class

has not shown up in the sequence, it is always included in

E . For each testing sample (xj , yj) ∈ E , we first compute

the learned latent representations zj = fθt
u
(xj). We then

apply a classifier g : Z → Y on zj to generate the pre-

dicted labels ŷj . The classifier g can be unsupervised or su-

pervised to evaluate different aspects of the representation

learning ability. Following previous protocols [61, 68], we

use spectral clustering, an unsupervised clustering method,
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Figure 2. The training and evaluation setup of online ULL taking the self-driving vehicle as an example. The input samples are from

classes of vehicles, stop signs, pedestrians and traffic cones. We consider five typical input streams of iid, sequential classes, sequential

classes with blurred boundaries, imbalanced sequential classes, and sequential classes with concurrent class appearance. Each training step

updates the model self-supervisedly based on the feature representations, while periodic evaluation is triggered on a separate evaluation

dataset using supervised or unsupervised classifiers on the learned feature representations.

and employ unsupervised clustering accuracy (ACC) as the

accuracy metric. ACC is defined as the best accuracy among

all possible assignments between clusters and target labels:

ACC = max
ψ

∑|E|
j=1 1 {yj = ψ(ŷj)}

|E| . (1)

Here, the predicted label ŷj is the cluster assignment to sam-

ple xj , ψ ranges over all possible one-to-one mappings be-

tween ŷj and yj . For supervised classification, we employ

k-Nearest Neighbor (kNN) classifier.

Challenges. The major difference between our online un-

supervised lifelong learning and previous problems is the

prior assumptions about the input stream. Online ULL is

more challenging than previous ULL problems as shown in

Table 1 from three aspects:

(C1) The non-iid and single-pass input data streams re-

quire online knowledge distillation, which is largely

different from offline self-supervised learning with

iid data and multi-pass training [11, 15, 80].

(C2) The lack of task or class labels differs our online

ULL from General Continual Learning (with class

labels) [9, 44] and task-based lifelong learning (with

task labels) [24, 31, 46, 49]. The model must distill

the knowledge from the stream on its own without

external supervision.

(C3) The absence of prior knowledge. Existing ULL

methods rely on class boundaries [24, 31, 46, 49] or

maintain and update class prototypes after detecting

a shift [57, 61]. However, these approaches do not

apply when there is no prior knowledge, especially

with smooth transitions, imbalanced streams or si-

multaneous classes as in our online ULL.

4. The Design of SCALE
To address the above challenges of online ULL, we pro-

pose SCALE, an unsupervised lifelong learning method

that can learn over time without prior knowledge. An

overview of SCALE is shown in Figure 3. SCALE is

designed around three major components (shown in yel-

low boxes): a pseudo-supervised contrastive loss, a self-

supervised forgetting loss, and an online memory update

module that emphasizes uniform subset selection. By com-

bining stored memory samples with the streaming samples

during learning, SCALE addresses challenge (C1). Sec-

ondly, SCALE uses the newly proposed pseudo-supervised

contrastive learning paradigm that distills the relationship

among samples via pairwise similarity. Pseudo-supervised

distillation works without task or class labels thus handles

challenge (C2). Learning from pairwise similarity does not

depend on class boundaries or the number of classes, there-

fore SCALE responds to challenge (C3).

We emphasize that all components are carefully de-

signed to work collaboratively and maximize learning per-

formance: the contrastive loss is responsible for extract-

ing the similarity relationship by contrasting with memory

samples, the forgetting loss retains the similarity knowl-

edge thus prevents catastrophic forgetting, finally the online

memory update maintains a memory buffer with represen-

tative raw samples in the past. We record the raw input

samples rather than feature representations in the memory

buffer because feature representations might change during

training. The quality or the “representativeness” of mem-

ory samples can significantly affect learning performance,

as demonstrated by our results in the evaluation section.

Figure 3 shows the pipeline of SCALE in detail. Mem-

ory buffer is assumed to have maximum size of M , and the

stored memory samples are represented by {ei}Mi=1. Each

streaming batch Xt
u with batch size of n = |Xt

u| is stacked

with a randomly sampled subset of m memory samples to

form a combined batch {xi}m+n
i=1 as input to SCALE. We

apply double-view augmentation to the stacked data and

obtain {x̃i}2(m+n)
i=1 where x̃2k−1, x̃2k denote two randomly

augmented samples from xk. The augmented samples are

fed into the representation learning model fθ to obtain

normalized low-dimensional features z̃i = fθ(x̃i), ∀i ∈
{1, ..., 2(m+ n)}. SCALE distills pairwise similarity from
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Figure 3. The pipeline of SCALE is designed around three major components depicted by yellow boxes. The right-hand portion in orange

includes the operations related to self-supervised contrastive and lifelong learning. The left-hand portion in green contains the procedures

related to online memory update. SCALE requires careful design for all three components to distill and memorize knowledge on the fly.

{z̃i}2(m+n)
i=1 , which are then used to compute the pseudo-

supervised contrastive and forgetting losses to update the

current model θtu. On the other hand, online memory up-

date takes previous memory buffer {ei}Mi=1 and the stream-

ing batch Xt
u as input, selects a subset of M samples to

store in the updated memory buffer. We discuss the details

below.

4.1. Pseudo-Supervised Contrastive Loss and Self-
Supervised Forgetting Loss

The loss function of SCALE has two terms: a novel

pseudo-supervised contrastive loss Lcont for learning rep-

resentations and a self-supervised forgetting loss Lforget for

preserving knowledge:

L = Lcont + λ · Lforget. (2)

A hyperparameter λ is used to balance the two losses. Both

loss functions rely on pairwise similarity hence do not need

prior knowledge and adapt to a variety of streams.

Pseudo-Supervised Contrastive Loss. Our contrastive

loss is inspired from the InfoNCE objective [54] which en-

hances the similarity between positive pairs over negative

pairs in the feature space. SimCLR [15] and SupCon [40]

are the typical offline contrastive learning techniques using

InfoNCE loss. Different from SimCLR (treats only the aug-

mented pair as positive, unsupervised) and SupCon (forms

the positive set based on labels, supervised), SCALE es-

tablishes a pseudo-positive set based on pairwise similar-

ity. Given a feature representation z̃i, its pseudo-positive

pair z̃j is selected from the self-distilled pseudo-positive set

Γi. Negative pairs are all non-identical representations in

the augmented batch {z̃i}2(m+n)
i=1 . Formally, the pseudo-

supervised contrastive loss is defined as:

Lcont =

2n∑

i=1

−1

|Γi|
∑

j∈Γi

log
exp(z̃i · z̃j/τ)∑2(m+n)

k=1,k �=i exp(z̃i · z̃k/τ)
, (3)

where τ > 0 is a temperature hyperparameter. Note, that

all memory samples only act as negative contrasting pairs

to avoid overfitting. Without task or class labels, SCALE

distills the pairwise similarity pij and forms the pseudo-

positive set as:

Γi = {j ∈ {1, ..., 2n} | j �= i, pij > μ} , (4)

where pij (defined later) indicates the pairwise similarity

among feature representations and μ > 0 is a hyperpa-

rameter as similarity threshold. Our contrastive loss is

unique and different from traditional contrastive loss func-

tions [15,32,40] due to the self-distilled pseudo-positive set

Γi, which maximizes the effectiveness of unsupervised rep-

resentation learning in an online setting.

Self-Supervised Forgetting Loss. To combat catastrophic

forgetting, we construct a self-supervised forgetting loss

based on the KL divergence of the similarity distribution:

Lforget =

2(m+n)∑

i=1

2(m+n)∑

j=1,j �=i

−pij · log pij

ppastij

, (5)

where pij , p
past
ij are the pairwise similarity among feature

representations {z̃i}2(m+n)
i=1 and

{
z̃pasti

}2(m+n)

i=1
, which are

mapped by the model θtu and frozen model θtu−1. To form

a valid distribution, we enforce the pairwise similarity of

a given instance to sum to one:
∑2(m+n)

j=1,j �=i pij = 1, ∀i ∈
{1, ..., 2(m+ n)}. The same rule applies to ppastij . In

SCALE, the learned knowledge is stored by pairwise sim-

ilarity. Hence penalizing the KL divergence of pairwise

similarity distribution from a past model can prevent catas-

trophic updates. As we are not aware of class or task bound-

aries, we use the frozen model from the previous batch.

Note, that a similar distillation loss is used in [12, 31, 46]

but for supervised or task-based lifelong learning.

Pairwise Similarity. Pairwise similarity is the key of

SCALE hence picking the suitable metric is of critical im-

portance. An appropriate pairwise similarity metric should
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(i) consider the global distribution of all streaming and

memory samples, and (ii) sum to one for a given instance

as required by the forgetting loss. We adopt the symmetric

SNE similarity metric from t-distributed stochastic neigh-

bor embedding (t-SNE), which was originally proposed to

visualize high-dimensional data by approximating the sim-

ilarity probability distribution [72]:

pij =
pj|i + pi|j

2
, pj|i =

exp(z̃j · z̃i/κ)∑2(m+n)
k=1,k �=i exp(z̃k · z̃i/κ)

, (6)

where κ > 0 is a temperature hyperparameter. Since the

form of Equation (6) is similar to Equation (3), in prac-

tice, the computation can be reused to improve efficiency.

The symmetric SNE similarity captures the global similar-

ity distribution among all features without using supervision

or prior knowledge.

4.2. Online Memory Update

The goal of online memory update is to retain the most

“representative” raw samples from historical streams to ob-

tain the best outcome in contrastive learning. One major

challenge is that the input streams are non-iid and pos-

sibly imbalanced. Existing work has proposed various

memory update strategies to extract the most informational

samples, e.g., analyzing interference or gradients informa-

tion [5, 7, 19, 38, 67]. However, most previous works rely

on class labels thus are not applicable in online ULL. With-

out labels and prior knowledge, we cannot make any as-

sumption (for example, clusters) on the manifold of the fea-

ture representations that are fed to memory update. Purush-

walkam et al. [58] were the first to bring up a similar prob-

lem setting and proposed minimum redundancy (MinRed)

memory update, prioritizing dissimilar samples without

considering the global distribution. Unlike MinRed, we

propose to perform distribution-aware uniform subset sam-

pling for memory update.

The input to memory update is the imbalanced combined

batch {xi}M+n
i=1 of the previous memory buffer {ei}Mi=1 and

streaming batch Xt
u. We first map the raw samples to the

feature space, i.e., zi = fθ(xi), ∀i ∈ {1, ...,M + n}. Then

we select a subset of M samples from {zi}M+n
i=1 and store

the corresponding raw samples in the limited-size mem-

ory buffer, while discard the rest. Aiming at extracting

the representative samples from non-iid streams without su-

pervision, SCALE employs the Part and Select Algorithm

(PSA) [66] for uniform subset selection. PSA first performs

M partition steps which divide all samples into M subsets,

then picks one sample from each subset. Each step parti-

tions the existing set with the greatest dissimilarity among

its members, thus PSA selects a subset of samples with uni-

form distribution in the spanned feature space. To the best

of the authors’ knowledge, this is the first time using uni-

form subset selection in lifelong learning problems.

5. Evaluation
5.1. Experimental Setup

Datasets: We construct the online single-pass data

streams from CIFAR-10 (10 classes) [53], CIFAR-100 (20

coarse classes) [42] and a subset of TinyImageNet (10

classes) [21]. For each dataset, we construct five types of

streams: iid, sequential classes (seq), sequential classes

with blurred boundaries (seq-bl), sequential classes with

imbalance lengths (seq-im), and sequential classes with

concurrent classes (seq-cc).

Networks: For all datasets, we apply ResNet-18 [33] with

a feature space dimension of 512.

Baselines. Since SCALE uses an InfoNCE-based loss, we

compare with SimCLR [15] and SupCon [40] and the fol-

lowing lifelong learning baselines using SimCLR as back-

bone:

• From the group of supervised lifelong learning, we se-

lect PNN [65], SI [81] and DER [9] with necessary

modifications for online ULL.
• For task-based ULL, we use the source code of

CaSSLe [24] after removing the task labels.
• Finally, we also compare with STAM [68], using their

original data loader and parameters, and LUMP [49].

We did not compare with VAE-based methods such as [37,

61] since they are reported to scale poorly on medium to

large image datasets [23].

Metrics. We use spectral clustering with T as the number

of clusters and compute the ACC. kNN classifier is used to

evaluate the supervised accuracy with k = 50.

Implementation details of SCALE and baselines are pre-

sented in the Appendix. All memory methods use a buffer

of size M = 1280. The size of the sampled memory batch

is m = 128, which is the same as the size of the streaming

batch n. For the similarity threshold, we use an adaptive

threshold of mean + μ(max − mean) where mean and

max are the mean and max pairwise similarity in pij . With

an adaptive threshold, we alleviate the effects of variations

in absolute similarity. SCALE employs the Stochastic Gra-

dient Descent optimizer with a learning rate of 0.03.

5.2. Accuracy Results

Final Accuracy. The final ACC and kNN accuracy on all

datasets and all data streams are reported in Figure 4. Both

mean and standard deviation of the accuracy are reported

after 3 random trials. ACC values are generally lower than

their kNN counterparts. It should be noted that SCALE out-

performs all state-of-the-art ULL algorithms on almost all

streaming patterns, both in terms of ACC and kNN accu-

racy. In all settings in CIFAR-10, SCALE improves 1.69-

4.62% on ACC and 1.32-3.83% on kNN comparing with the

best performed baseline. For CIFAR-100, SCALE achieves

improvements of up to 2.15% regarding ACC and 2.77%

2489



(a) CIFAR-10 iid (b) CIFAR-10 seq (c) CIFAR-10 seq-bl (d) CIFAR-10 seq-im (e) CIFAR-10 seq-cc

(f) CIFAR-100 iid (g) CIFAR-100 seq (h) CIFAR-100 seq-bl (i) CIFAR-100 seq-im (j) CIFAR-100 seq-cc

(k) TinyImageNet iid (l) TinyImageNet seq (m) TinyImageNet seq-bl (n) TinyImageNet seq-im (o) TinyImageNet seq-cc

Figure 4. SCALE improves kNN accuracy over the best state-of-the-art baseline by up to 3.83%, 2.77% and 5.86% kNN on CIFAR-
10, CIFAR-100 and TinyImageNet datasets. The figures show final accuracy results on five different streams sampled from CIFAR-10

(first row), CIFAR-100 (second row) and TinyImageNet (third row) datasets. For each data stream setting, the left figure displays ACC

while the right figure shows the kNN accuracy at the end of the stream. The red dashed line depicts the ACC or kNN accuracy of SupCon.

regarding kNN comparing with the best baseline. For Tiny-

ImageNet, SCALE enhances 0.2-3.33% on ACC and 2.53-

5.86% on kNN accuracy over the best baseline. Out of

all data streams, iid and seq-cc streams are easier to learn

while the single-class sequential streams are more challeng-

ing and result in lower accuracy. Our results demonstrate

the strong adaptability of SCALE which does not require

any prior knowledge about the data stream.

Baseline Performances. SimCLR produces low accuracy

as it is originally designed for offline unsupervised repre-

sentation learning with multiple epochs. Interestingly, the

supervised contrastive learning baseline, SupCon (shown

by red dashed line in Figure 4), does not always result in

superior accuracy and can be attributed to overfitting on

the limited memory buffer. Such result aligns with the re-

cent findings that self-supervisedly learned representations

are more robust than supervised counterparts under non-iid
streams [24, 47]. Among the techniques adapted from su-

pervised lifelong learning, DER achieves relatively good re-

sults on all datasets but is still not comparable with SCALE.

The recently proposed ULL module, CaSSLe , significantly

relies on task boundary knowledge to preserve the classifi-

cation semantics from previous tasks, thus showing poor re-

sults in our online ULL setup. LUMP utilizes a mixup data

augmentation technique and may not work well for certain

image datasets. STAM outperforms the rest of the baselines.

However, STAM utilizes a unique memory architecture and

cannot be fine-tuned for downstream tasks.

Accuracy Curve. To examine the dynamics of online learn-

ing, we summarize the kNN accuracy curves during training

on blurred sequential CIFAR-10 and CIFAR-100 streams in

Figure 5 (more results in the Appendix). We can observe

that SCALE enjoys gradually increasing kNN accuracy as

we introduce new classes, which demonstrates SCALE’s

ability to consistently learn new knowledge while consol-

idating past information, all without supervision or prior

knowledge. Most baselines are subject to collapse or forget-

ting, and are not able to distill or remember the knowledge

in online ULL. The expandable-memory baseline STAM is

incapable of learning without effective novelty detection.

5.3. Ablation Studies
Loss Functions. We experiment with various combina-

tions of contrastive loss and forgetting loss on the sequen-
tial streams, as shown in Table 2. Even with a replay buffer,

SimCLR and SupCon do not lead to satisfying results on on-

line ULL. Co2L [12] is a supervised lifelong learning base-

line using constrastive and forgetting losses. For fair com-

parison, we remove its dependence on class labels. With the

pseudo-supervised contrastive loss, SCALE gains 1.55% in
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Figure 5. The average kNN accuracy during training on the

blurred sequential streams sampled from CIFAR-10 (left) and

CIFAR-100 (right) datasets. Each training trial contains 10k train-

ing steps while each class spans 1k steps.

Table 2. Average final kNN accuracy on the sequential streams,

under different combinations of loss functions.

Contrast Loss Forget Loss CIFAR-10 TinyImageNet

SimCLR [15] × 18.84 18.13

SupCon [40] × 23.83 15.67

Co2L [12] � 30.63 30.80

SCALE × 30.45 30.40

SCALE � 32.18 31.33

Table 3. Average final kNN accuracy on the imbalanced sequen-
tial streams using different memory update policies in SCALE.

Memory update CIFAR-10 CIFAR-100 TinyImageNet

w/ label 32.41 21.21 27.73

random 29.80 20.10 23.67

KMeans 31.59 22.15 29.07

MinRed [58] 23.66 19.75 25.13

PSA (this paper) 32.21 23.16 31.33

terms of kNN accuracy on CIFAR-10 compared to Co2L

with a traditional contrastive loss. With the forgetting loss,

SCALE gets 1.78% kNN accuracy gain on CIFAR-10.

Memory Update Policies. We experiment with SCALE

on the imbalanced sequential stream with different mem-

ory update policies and summarize the results in Table 3.

With the distribution-aware uniform PSA memory up-

date, SCALE surpasses the rest unsupervised strategies.

KMeans-based memory selection does not lead to the best

result on sequential streams as the representations are not

separable. MinRed [58] prioritizes dissimilar samples re-

gardless of global distribution, thus leads to biased selection

and degraded performance on imbalanced data. All compo-

nents of SCALE are necessary for the best overall learning

performance.

5.4. Hyperparameters

We experiment with the important parameters in

SCALE. The weight balancing coefficient λ plays an im-

portant role in the balance between pseudo-contrastive loss

and self-supervised forgetting loss in SCALE. The accuracy

Figure 6. Hyperparameters experiments on CIFAR-10 streams un-

der various λ (left) and u (right).

on various CIFAR-10 streams after 3 random trials, under

various λ, are plotted in Figure 6 (left). In most settings,

λ = 0.1 produces the best results. A smaller λ places less

weight on the forgetting loss thus leads to forgetting; con-

versely, a larger λ may over-emphasize the memorizing ef-

fect and prevent learning meaningful representations.

The threshold u is critical in defining the pseudo-positive

set. The accuracy after 3 random trials on CIFAR-10

streams are shown in Figure 6 (right). The sensitivity to

threshold on iid and sequential streams is different. For

iid streams, each incoming batch contains diverse samples

from all classes. A higher threshold improves performance

by restricting the pseudo-positive set to near-by samples

that are more likely to belong to one class. For sequen-

tial streams, as the samples from the same batch are from

the same class, a positive but lower threshold helps filter

sufficiently similar samples into the pseudo-positive set, to

boost learning outcome.

6. Conclusion

Existing works in unsupervised lifelong learning assume

various prior knowledge thus are not applicable for learn-

ing in the wild. In this paper, we propose the online un-

supervised lifelong learning problem without prior knowl-

edge that (i) accepts non-iid, non-stationary and single-

pass streams, (ii) does not rely on external supervision,

and (iii) does not assume prior knowledge. We pro-

pose SCALE, a self-supervised contrastive lifelong learn-

ing technique based on pairwise similarity. SCALE uses a

pseudo-supervised contrastive loss for representation learn-

ing, a self-supervised forgetting loss to avoid catastrophic

forgetting, and an online memory update for uniform sub-

set selection. Experiments demonstrate that SCALE im-

proves kNN accuracy over the best state-of-the-art baseline

by up to 3.83%, 2.77% and 5.86% on all non-iid CIFAR-10,

CIFAR-100 and TinyImageNet streams.
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