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Abstract

Modern climate projections lack adequate spatial and temporal resolution due to computa-
tional constraints, leading to inaccuracies in representing critical processes like thunderstorms
that occur on the sub-resolution scale. Hybrid methods combining physics with machine
learning (ML) offer faster, higher fidelity climate simulations by outsourcing compute-hungry,
high-resolution simulations to ML emulators. However, these hybrid ML-physics simulations
require domain-specific data and workflows that have been inaccessible to many ML experts.

As an extension of the ClimSim dataset (Yu et al., 2024), we present ClimSim-Online,
which also includes an end-to-end workflow for developing hybrid ML-physics simulators. The
ClimSim dataset includes 5.7 billion pairs of multivariate input/output vectors, capturing the
influence of high-resolution, high-fidelity physics on a host climate simulator’s macro-scale
state.

The dataset is global and spans ten years at a high sampling frequency. We pro-
vide a cross-platform, containerized pipeline to integrate ML models into operational
climate simulators for hybrid testing. We also implement various ML baselines, along-
side a hybrid baseline simulator, to highlight the ML challenges of building stable, skill-
ful emulators. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res')
and code (https://leap-stc.github.io/ClimSim and https://github.com/leap-stc/
climsim-online/) are publicly released to support the development of hybrid ML-physics
and high-fidelity climate simulations.
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1 Introduction

1.1 Overview

Projections from numerical Earth system model simulations are the primary tool informing
climate change policy (Tebaldi et al., 2021). However, current climate simulators poorly
represent clouds and extreme rainfall physics (IPCC, 2021; Sherwood et al., 2020) despite
stretching the limits of the world’s most powerful supercomputers. This is because the
required computational power to simulate Earth system complexity imposes significant
restrictions on the simulations’ spatial resolution (Schneider et al., 2017; Gentine et al., 2021).
Physics occurring on scales smaller than the temporal and/or spatial resolutions of climate
simulations are commonly represented using empirical or physically inspired mathematical
representations called “parameterizations”. Assumptions in these parameterizations often
lead to errors that can grow into inaccuracies in projections of future climates.

Machine learning (ML) is an attractive approach for learning the complex nonlinear
sub-resolution physics—processes (and properties) occurring on scales smaller than typical
climate model resolution—from short, higher fidelity simulations. The implementation of
ML-physics parameterizations has the exciting possibility of resulting in hybrid climate
simulations that are both cheaper and more accurate than current state-of-the-art model
simulations (Gentine et al., 2018; Eyring et al., 2021).

Traditional Earth system models have a typical smallest resolvable scale of 80-200 km in
the horizontal direction (Eyring et al., 2016), equivalent to the size of a typical U.S. county. In
contrast, the community has achieved 1-10 km resolution, global storm-resolving simulators,
though these models are still being tested for their use in long-term climate simulations
and are very computationally demanding (e.g., Taylor et al., 2023; Hohenegger et al., 2023;
Mooers et al., 2023). Accurately representing cloud formation requires a resolution of 100 m
or finer, demanding six orders of magnitude increase in computational power.

ML presents a conceivable solution to sidestep the limitations of classical computing
(Eyring et al., 2021, 2025, accepted, 2024). It enables hybrid-ML climate simulations that
integrate traditional numerical methods—which solve the equations governing large-scale
fluid motions of Earth’s atmosphere—with ML-based parameterizations that emulate the
macro-scale effects of small-scale physics. Instead of relying on heuristic assumptions about
these small-scale processes, ML-based parameterizations learn directly from data generated
by short-duration, high-resolution simulations (Bretherton et al., 2022; Clark et al., 2022a;
Grundner et al., 2022; Sanford et al., 2023b; Gentine et al., 2018; Rasp et al., 2018; Brenowitz
et al., 2020; Han et al., 2020; Ott et al., 2020; Mooers et al., 2021; Wang et al., 2022b; Han
et al., 2023; Iglesias-Suarez et al., 2023; Yuval and O’Gorman, 2020; Yuval et al., 2021; Heuer
et al., 2023; Niu et al., 2024). This task is a nonlinear regression problem: in the climate
simulation, an ML-physics parameterization returns the large-scale outputs—changes in
wind, moisture, or temperature—that occur due to unresolved small-scale (sub-resolution)
physics, given large-scale resolved inputs (e.g., temperature, wind velocity; see Section 4).

While several proofs of concept have emerged in recent years, hybrid-ML climate simu-
lations have yet to be stable and ready for operational use. Obtaining sufficient, complete
training data is a major challenge impeding progress from the ML community. This data
must contain all macro-scale variables that regulate the behavior of subgrid-scale physics
and be compatible with hybrid ML-climate simulations. Addressing this using training data
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from uniformly high-resolution simulations has proven to be very expensive and requires
coarse-graining the high-resolution data, potentially leading to issues when coupled with a
host climate simulation (Ross et al., 2023).

A promising solution is utilizing multi-scale climate (see Section 1.2) simulations to
generate training data. Crucially, these provide a clean interface between the learned high-
resolution physics and the host climate simulator’s macro-scale dynamics (Rasp, 2020). In
theory, this makes hybrid simulations approachable and tractable. In practice, the full
potential of multi-scale simulations remains largely untapped due to a scarcity of existing
datasets, exacerbated by the combination of operational simulation code complexity and the
need for domain expertise in choosing variables. To further complicate matters, the absence
of a straightforward method for testing learned ML emulators in hybrid settings renders the
problem even less approachable.

We introduce ClimSim-Online, the largest and most physically comprehensive dataset and
end-to-end workflow for training and testing ML-based parameterizations of full subgrid-scale
physics (atmospheric storms, clouds, turbulence, rainfall, and radiation) for use in hybrid-ML
climate simulations. The ClimSim dataset (Yu et al., 2024) offers a comprehensive collection
of inputs and outputs from multi-scale climate model simulations. As an extension to the
ClimSim dataset, ClimSim-Online also provides a containerized, end-to-end workflow for
integrating ML models into host climate simulations, facilitating the evaluation of online
performance (see Section 1.2 and 5) in hybrid-ML simulations. This containerized workflow
ensures reproducibility and ease of use, making it accessible to ML researchers without
domain knowledge. ClimSim-Online was prepared by atmospheric scientists, climate model
developers, and ML researchers to lower the entry barrier for ML experts on this important
problem. Our benchmark dataset serves as a foundation for developing robust frameworks that
learn subgrid-scale processes related to cloud physics. This framework enables online coupling
within the host climate model, with the ultimate goal to help improve the performance and
accuracy of climate models used for long-term projections.

1.2 Concepts and Terminology from Earth Science

Convection Parameterization: In atmospheric science, “convection” refers to storm cloud
and rain development, as well as the associated small-scale (100s m to <10km) turbulent
air motions. Convective parameterizations represent the combined effects of these processes,
such as the vertical transport of heat, moisture, and momentum within the atmosphere, and
condensational heating and drying, on the temporal and spatial scale of the host climate
model (Emanuel, 1994; Randall, 2012; Siebesma et al., 2020). Stochastic parameterizations
represent sub-resolution (“sub-grid scale” in the terminology of Earth science) effects as
stochastic processes, dependent on grid-scale variable inputs (Lin and Neelin, 2000; Neelin
et al., 2008) to capture variations arising from sub-grid scale dynamics.

Multi-Scale Climate Simulations: Multi-scale climate simulation is a technique that
represents convection without a convective parameterization by deploying a smaller-scale,
high-resolution cloud-resolving simulator nested within each host grid column of a climate
simulator (Grabowski and Smolarkiewicz, 1999; Benedict and Randall, 2009; Randall, 2013;
Hannah et al., 2020; Norman et al., 2022). The smaller-scale simulator explicitly resolves
the detailed behavior of clouds and their turbulent motions at both a higher spatial and
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temporal resolution than the host climate model. This improves the accuracy of the host
simulations but comes at a high computational cost (Randall et al., 2003; Khairoutdinov et al.,
2008). The time-integrated and horizontally averaged influence of the resolved convection
is fed upscale to the host climate model and is the target of hybrid ML-climate simulation
approaches.

Significance of Precipitation Processes for Climate Impacts: In climate simula-
tions, changes in precipitation with climate change are a particularly important issue. The
frequency of extreme precipitation events increases with climate change (Pall et al., 2007;
Guerreiro et al., 2018; Neelin et al., 2022; Seneviratne et al., 2021; Mooers et al., 2022), with
corresponding societal impacts (Davenport et al., 2021). Current climate models agree on the
direction of this change but exhibit a large spread in the quantitative rate of increase with
climate change (Pendergrass and Hartmann, 2014; Martinez-Villalobos and Neelin, 2023;
Seneviratne et al., 2021).

Offline Training vs. Online Evaluation: In this manuscript, we define “offline
training” as the traditional supervised learning task, where a regression or generative machine
learning (ML) model is trained to map input features to target features. Offline metrics
(Section 4.3) assess how well an ML model performs this mapping for samples at each
individual location and time step, using a fixed dataset.

On the other hand, “Online evaluation” has domain-specific meaning in our context,
and refers to evaluating the performance of the hybrid climate simulator in which many
instances of its embedded high resolution physics solver are replaced with copies of a
trained ML parameterization that is then allowed to feed back with resolved planetary scale
climate dynamics. That is, the evaluation data changes dynamically. This involves assessing
how accurately the hybrid simulation can replicate climate statistics, such as yearly-mean
atmospheric states, compared to a pure physical climate simulation (see Section 5.2 for more
online evaluation metrics).

2 Related Work

Several benchmark datasets have been developed to facilitate Al tasks in weather and
climate. For example, the European Center for Medium-Range Weather Forecasts (ECMWF)
reanalysis vb (ERAS5, Hersbach et al., 2020) is a comprehensive dataset of global weather from
1940 to present. WeatherBench 2 benchmark dataset provides data specifically designed for
training and evaluating data-driven weather forecasting models, focusing on global, medium
range (1-15days) prediction Rasp et al. (2024). ClimateBench (Watson-Parris et al., 2022)
was designed for emulators that produce annual mean global predictions of temperature and
precipitation given greenhouse gas concentrations and emissions. ClimateBench is limited to
data from a single climate model. In contrast, ClimateSet (Kaltenborn et al., 2023) expands
ClimateBench by offering a large-scale dataset with inputs and outputs from 36 climate
models. ClimART (Cachay et al., 2021) was designed for the development of radiative energy
transfer parameterization emulators for use in weather and climate modeling. Section 7 in
the SI documented more climate or weather related benchmark datasets.

However, ClimSim is unique for its focus on learning ML parameterizations which can be
used in hybrid climate simulations. Unlike other datasets, ClimSim is designed to capture the
nonlinear effects of clouds, rain, storms, and radiation at kilometer scales. It provides a end-
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to-end framework to emulate an embedded component—the cloud-resolving simulator—in
multi-scale climate simulators and to evaluate the resulting hybrid climate simulations.

There have been several recent efforts to produce hybrid-ML models learning from multi-
scale climate simulations, analogous to ClimSim (Gentine et al., 2018; Rasp et al., 2018;
Han et al., 2020; Ott et al., 2020; Mooers et al., 2021; Wang et al., 2022b; Lin et al., 2023;
Iglesias-Suarez et al., 2023; Han et al., 2023). Most of these focused on simple aquaplanets
(Gentine et al., 2018; Rasp et al., 2018; Han et al., 2020; Ott et al., 2020; Lin et al., 2023;
Iglesias-Suarez et al., 2023), while simulations that included real geography (Mooers et al.,
2021; Wang et al., 2022b; Han et al., 2023; Heuer et al., 2023) did not include enough variables
for complete land-surface coupling, to our knowledge. Most examine simple multi-layer
perceptrons, except for Han et al. (2020); Wang et al. (2022b); Han et al. (2023), who used a
ResNet architecture, and Behrens et al. (2024), who used a variational encoder-decoder that
accounts for stochasticity. Although hybrid testing in real-geography settings is error-prone,
several studies (Wang et al., 2022b; Han et al., 2023; Kochkov et al., 2023) have demonstrated
some hybrid stability. Compressing input data to avoid causal confounders may improve
online accuracy (Iglesias-Suarez et al., 2023; Kiithbacher et al., 2024), and methods have been
developed to enforce physical constraints (Beucler et al., 2021; Reed et al., 2023).

Compared to the training data used above, ClimSim’s comprehensive variable coverage
is unprecedented, including all variables needed to be coupled to a land system simulator
and to enforce physical constraints. Its availability across coarse-resolution, high-resolution,
aquaplanet and real-geography use cases is also new to the community. Successful ML
innovations with ClimSim can have a downstream impact since it is based on state-of-the-art
multi-scale climate model simulations that are actively supported by a mission agency (U.S.
Department of Energy).

In non-multi-scale settings, an important body of related work (Bretherton et al., 2022;
Clark et al., 2022a; Kwa et al., 2023; Sanford et al., 2023b) has made exciting progress
on using analogous hybrid ML approaches to reduce biases in uniform resolution climate
simulations, including in an operational climate code with land coupling and online stability
(Yuval and O’Gorman, 2020; Yuval et al., 2021) (see Supplementary Information; SI). Other
related work includes full model emulation (FME) for short-term weather prediction (Pathak
et al., 2022; Bonev et al., 2023; Lam et al., 2022) and for long-term climate simulation
(Watt-Meyer et al., 2023). While ClimSim is focused on hybrid-ML climate simulations and
we do not demonstrate FME baselines, ClimSim contains full atmospheric state variable
samplings well suited for the FME task.

3 ClimSim Dataset

Dataset Overview: ClimSim is designed to facilitate the development of ML parameteriza-
tions for hybrid climate simulations. The dataset includes inputs 2 € R% (with d; — 124 for
standard inputs and d; = 617 for expanded inputs) representing the local vertical structure
of macro-scale state variables and boundary conditions, and targets y € R% (with d, =
128 for standard targets and d, = 368 for expanded targets) representing tendencies due to
unresolved processes and surface fluxes for surface coupling. Generated using the E3SM-
MMF multi-scale climate simulator over 10 simulated years, the dataset comprises 5.7 billion
high-resolution samples (41.2TB) and 100 million low-resolution samples (744GB). Data is
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Figure 1: The spatially-local version of ClimSim that our baselines are scored on. A spatially-

global version of the problem that expands to the full list of variables would be
useful to try.
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split into training/validation (first 8 years) and test (last 2 years) sets, ensuring no temporal
overlap. Offline training involves learning an ML parameterization by mapping inputs to
targets for each sample (an atmospheric column at a single timestep). ClimSim-Online
provides an accessible end-to-end workflow to integrate a trained ML parameterization into
a host climate simulator to perform hybrid simulations. Climate statistics in these hybrid
simulations are evaluated against those from pure physical E3SM-MMF simulations.

Experiment Outline: ClimSim presents a regression problem with mapping from a
multivariate input vector, with inputs z € R% of size d; — 124 and targets y € R% of size d,
= 128 (Figure 1). The input represents the local vertical structure (in horizontal location and
time) of macro-scale state variables in a multi-scale climate simulator before any adjustments
from sub-grid scale convection and radiation are made. The input also includes concatenated
scalars containing boundary conditions of incoming radiation at the top of the atmospheric
column and land surface model constraints at its base. The target vector contains the
tendencies of the same state variables representing the impact of unresolved processes (e.g.,
redistribution of water, related phase changes, and radiative heating due to convection).
The output vector represents the horizontally averaged change in atmospheric state after
the computationally demanding subcycling of nested simulators. The ultimate goal is to
outsource these physics to ML by mapping inputs to targets at comparable fidelity. The target
vector includes scalar fields and fluxes from the bottom of the atmospheric column expected
by the land surface model component that it must couple to; land-atmosphere coupling is
crucial to predicting regional water cycle dynamics (Fischer et al., 2007; Seneviratne et al.,
2010). Importantly, ClimSim also includes the option for expanded inputs x € R% of size d;
— 617 and targets y € R% of size d, = 368, which we demonstrate in one of our experiments.

Dataset Collection: We ran the E3SM-MMF multi-scale climate simulator (Hannah
et al., 2020; Norman et al., 2022; Hannah et al., 2022, 2021), using multiple NVIDIA A100
GPUs for a total of ~ 9,800 GPU-hours. We saved instantaneous values from every grid
column of the atmospheric state before and after high-resolution calculations occurred,
isolating state updates due to explicitly-resolved moist convection, boundary layer turbulence,
and radiation; details of the E3SM-MMF climate simulator configuration can be found in
SI. These data were saved at 20-minute intervals (i.e., the time step of the host climate
model) for 10 simulated years (excluding one-month spinup), resulting in 5.7 billion samples
for the high-resolution simulation that uses an unstructured “cubed-sphere" horizontal grid
with 21,600 grid columns spanning the globe. This grid yields an approzrimate horizontal
grid spacing of 1.5°, but unlike a traditional climate model that maps points across the
sphere using two dimensions aligned with cardinal north/south and east/west directions,
unstructured grids use a single dimension to organize the horizontal location of points. The
atmospheric columns at each location and time are treated as independent samples. Thus,
the total number of samples can be understood by considering that atmospheric columns at
each location and time are treated as independent samples, such that 5.7 billion ~ 21,600
horizontal locations per time step x 72-time steps per simulated day x 3,650 simulated
days). It is important to note that each sample retains a 1D structure corresponding to the
vertical variation across 60 levels.

We also ran two additional simulations with approximately ten times less horizontal
resolution, with only 384 grid columns spanning the globe, resulting in 100 million samples
for each simulation. These low-resolution options allow for fast prototyping of ML models
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due to smaller training data volumes and less geographic complexity. One low-resolution
simulation uses an “aquaplanet” configuration, i.e., a lower boundary condition of specified
sea surface temperature, invariant in the longitudinal dimension with no seasonal cycle.
This is the simplest prototyping dataset, removing variance associated with continents and
time-varying boundary conditions. The total data volume is 41.2TB for the high-resolution
dataset and 744GB for each of the low-resolution datasets.

The input and output variables in this dataset were selected based on the design of
E3SM-MMF. We have included all variables involved in the interface between the host climate
simulator and the embedded cloud-resolving simulators. Specifically, the input variables are
macro-state variables calculated by the host climate simulator and passed to the embedded
cloud-resolving simulators. The output variables comprise the subgrid physics tendencies,
which are simulated by the embedded simulators based on these macro-state inputs. This
setup defines the pairing of input and output variables.

Locality vs. Nonlocality: A spatially-global version of the problem could be of
practical use for improving ML via helpful spatial context (Wang et al., 2022a; Liitjens
et al., 2022). In this case, information from other grid columns across the globe is taken
into account. Thus, the problem becomes a 2D — 2D regressions task with inputs z € R%
of maximum size d; = 617 x 21,600 (grid columns) and targets, y € R%, of maximum size
d, = 368 x 21,600. Here, the second dimension represents the unstructured "cubed-sphere"
computational mesh used by the climate model, which projects a cube onto the sphere,
effectively avoiding the polar singularity problems associated with regular Cartesian grids
(Ronchi et al., 1996; Hannah et al., 2022). Further details about the climate simulator
configuration, simulations, and data, including complete variable lists, can be found in SI.

Dataset Interface: Raw model outputs emerge from the climate simulator as standard
NetCDF files, which can be easily parsed in any language. Each timestep yields files
containing input and target vectors separately, resulting in a total of 525,600 files for each of
the three datasets. To prevent redundancy, variable metadata and grid information were
saved separately.

The raw tensors from the climate simulations are initially either 2D or 3D, depending on
the variable. For 2D tensors, the dimensions represent time and horizontal location. While
these variables actually depend on three physical dimensions (time and 2D space), since each
location on the sphere is indexed along a single axis due to the climate model’s unstructured
horizontal grid, the apparent dimensionality is lower. Such variables include solar insolation,
snow depth over land, surface energy fluxes, and surface precipitation rate. 3D tensors
include the additional dimension representing altitude relative to the Earth’s surface for
height-varying state variables like temperature, humidity, and wind vector components.
Separate files are used to store each timestep and variable. ClimSim includes a total of 24
2D variables and 10 3D variables (see Table 1 in SI).

Dataset Split: The 10-year datasets are divided into the following splits: (a) a training
and validation set spanning the first 8 years (0001-02 to 0009-01; YYYY-MM), excluding
the first simulated month for numerical spin-up, and (b) a test set spanning the remaining
two years (i.e., 0009-03 to 0011-02). A one-month gap is intentionally introduced between
the two sets to prevent test set contamination via temporal correlation. Both sets are stored
separately in our data repositories.
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It’s important to note that optimizing offline metrics does not necessarily lead to opti-
mized online performance (Ott et al., 2020; Wang et al., 2022b). Small prediction errors
at each time step can accumulate over time, potentially causing biases or drifts of the
atmospheric states in the hybrid simulation when compared to a purely physical reference
simulation. These accumulated errors can arise from the high degrees of freedom of the host
model interacting with imperfections of its embedded ML parameterization. Among other
conceivable pathologies, this interaction may lead to out-of-sample atmospheric states that
further degrade ML predictions and destabilize the hybrid simulation, potentially causing
model blowup.

Energy use: The computing and energy costs of generating ClimSim could be viewed as
wasteful and having a negative consequence for society through associated emissions (Luccioni
and Hernandez-Garcia, 2023). We emphasize that while it can appear large, the compute
used is actually orders of magnitude less than what is consumed by operational climate
prediction. Associated emissions are minimized given that our E3SM-MMF simulations were
performed on energy-efficient GPU hardware. The cost must also be weighed against the
potential social benefit of mitigating future energy consumption by eliminating end users’
need for costly physics-based multi-scale climate simulations. Meanwhile, a large consortium
of interested parties has helped agree on this dataset to help ensure it is not wasted.

4 Offline Experiments

To guide ML practitioners using ClimSim, we provide an example ML workflow using the
low-resolution, real-geography dataset to train ML models to predict target outputs from
the provided inputs. All but one of our baselines focuses on emulating the subset of total
available input and target variables illustrated in Figure 1, with the following inputs z € R%
of size d; = 124, and targets y € R% of size d, = 128 (Figure 1, Table 1), chosen for its
similarity to recent attempts in the literature.

Input Size Target Size
Temperature [K] 60  Heating tendency, dT'/dt [K/s] 60
Specific humidity [kg/kg] 60  Moistening tendency, dg/dt [kg/kg/s] 60
Surface pressure [Pal 1 Net surface shortwave flux, NETSW [W /m?| 1
Insolation [W/m?] 1 Downward surface longwave flux, FLWDS [W/m?| 1
Surface latent heat flux [W/m?]| 1 Snow rate, PRECSC [m/s] 1
Surface sensible heat flux [W/m?| 1 Rain rate, PRECC [m/s] 1
Visible direct solar flux, SOLS [W /m?| 1
Near-IR direct solar flux, SOLL [W/m?] 1
Visible diffused solar flux, SOLSD [W/m?] 1
Near-IR diffused solar flux, SOLLD [W/m?]| 1

Table 1: The subset of input and target variables used in most of our experiments (Figure 1).
Dimension length 60 corresponds to the total number of vertical levels (discretized
altitudes) of the climate simulator.
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Training/Validation Split: We divide the 8-year training/validation set into the first 7
years (i.e., 0001-02 to 0008-01 in the raw filenames’ “year-month” notation) for training and
the subsequent 1 year (0008-02 to 0009-01) for validation. This split was chosen somewhat
arbitrarily, and we encourage users of this dataset to consider alternative splits. However, it
is crucial to ensure that the validation period is separate from the training period by at least
one month to avoid contamination due to temporal autocorrelation in the atmosphere.

Preprocessing Workflow: Our preprocessing steps were (1) downsample in time
by using every Tth sample, (2) collapse horizontal location and time into a single sample
dimension, (3) normalize variables by subtracting the mean and dividing by the range, with
these statistics calculated separately at each of the 60 vertical levels for the four variables
with vertical dependence, and (4) concatenate variables into multi-variate input and output
vectors for each sample (Figure 1). The heating tendency target d7'/dt (i.e., time rate of
temperature 7') was calculated from the raw climate simulator output as (Toper — Thefore )/ Al,
where At (= 1200 s) is the climate simulator’s known macro-scale timestep. Likewise,
the moisture tendency was calculated by taking the difference of humidity state variables
recorded before versus after the convection and radiation calculations. This target variable
transformation (i.e., state to tendency) is done to compare our baseline models’ performance
to that of previously published models that reported errors of emulated tendencies (Mooers
et al., 2021; Behrens et al., 2022). Additionally, this transformation implicitly normalizes
the target variables, leading to better convergence properties for ML algorithms. Given
the domain-specific nature of the preprocessing workflow, we provide scripts in the GitHub
repository for workflow reproduction.

4.1 Baseline Architectures

Six baseline models used in our experiment are briefly described here. Refer to SI for further
details.

Convolutional Neural Network (CNN) uses a 1D ResNet-style network. Each
ResNet block contains two 1D convolutional layers and a skip connection. CNNs can learn
spatial structure and have outperformed MLP and graph-based networks (Cachay et al.,
2021). The inputs and outputs for the CNN are stacked in the channel dimensions, such that
the mapping is 60 x 6 — 60 x 10. Accordingly, global variables have been repeated along
the vertical dimension.

Encoder-Decoder (ED) consists of an Encoder and a Decoder with 6 fully-connected
hidden layers each (Behrens et al., 2022). The Encoder condenses the original dimensionality
of the input variables down to only 5 nodes inside the latent space. This enhances the inter-
pretability of ED and makes the model beneficial for advanced postprocessing of multivariate
climate data (Behrens et al., 2022; Mooers et al., 2023).

Heteroskedastic Regression (HSR) predicts a separate mean and standard deviation
for each output variable, using a regularized MLP (Wong-Toi et al., 2023).

Multi-layer Perceptron (MLP) is a fully connected, feed-forward neural network.
The MLP architecture used for our experiments is optimized via an extensive hyperparameter
search with 8,257 trials.

Randomized Prior Network (RPN) is an ensemble model (Osband et al., 2018).
Each member of the RPN is built as the sum of a trainable and a non-trainable (so-called

10
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“prior”) surrogate model; we used MLP for simplicity. Multiple replicas of the networks
are constructed by independent and random sampling of both trainable and non-trainable
parameters (Yang et al., 2022; Bhouri et al., 2023a). RPNs also resort to data bootstrapping
(e.g., subsampling and randomization) in order to mitigate the uncertainty collapse of the
ensemble method when tested beyond the training data points (Bhouri et al., 2023a).

Conditional Variational Autoencoder (cVAE) uses amortized variational inference
to fit a deep generative model that is conditioned on the input and can produce samples
from a complex predictive distribution.

2 2
Variable ‘ MAE [W/m?] ‘ R
‘ CNN ED HSR MLP RPN c¢VAE ‘ CNN ED HSR MLP RPN c¢VAE
dT/dt 2.585 2.864 2.845 2.683 2.685 2.732 | 0.627  0.542 0.568  0.589  0.617  0.590
dg/dt 4.401 4.673 4.784 4.495 4.592 4.680

NETSW 18.85 14.968 19.82 13.36 18.88 19.73 | 0.944  0.980  0.959 0.983 0.968  0.957
FLWDS 8.598  6.894 6.267 5.224 6.018 6.588 | 0.828  0.802  0.904 0.924 0.912 0.883
PRECSC | 3.364 3.046 3.511 2.684 3.328 3.322 - - - - - -

PRECC 37.83 37250 42.38 34.33 37.46 38.81 | 0.077 -17.909 -68.35 -38.69 -67.94 -0.926
SOLS 10.83 8554 11.31 7.971 1036 1094 | 0.927  0.960 0.929 0.961 0.943 0.929
SOLL 13.15 10.924 13.60 10.30 12.96 13.46 | 0.916 0945 0916 0.948 0.928 0.915
SOLSD 5.817  5.075 6.331 4.533 ©5.846 6.159 | 0.927  0.951 0.923 0.956 0.940 0.921
SOLLD 5.679 5136  6.215 4.806 5.702 6.066 | 0.813  0.857  0.797 0.866 0.837  0.796

Table 2: MAE and R? for target variables averaged globally and temporally (from 0009-03 to
0011-02). Variables include heating tendency (d71'/dt), moistening tendency (dq/dt),
net surface shortwave flux (NETSW), downward surface longwave flux (FLWDS),
snow rate (PRECSC), rain rate (PRECC), visible direct solar flux (SOLS), near-IR
direct solar flux (SOLL), visible diffused solar flux (SOLSD), and near-IR diffused
solar flux (SOLLD). Units of non-energy flux variables are converted to a common
energy unit, W/m?. Best model performance for each variable is bolded. For dq/dt
and PRECSC, global mean R? is not an ideal evaluation metric and not reported
due to negligible variability in dg/dt in the upper atmosphere and PRECSC in the
tropics in the dataset.

4.2 Offline Skill Boost from Expanding Features and Targets

We performed an ablation of our best-performing MLP baseline to demonstrate the added
value of the expanded inputs and targets available in ClimSim, i.e., using inputs x of size
d; = 617 and targets y € R% of size d, = 368; see Table 1 in SI for the full list of variables.
We use the same transformation described in our preprocessing workflow to compute and
add condensate (cloud liquid and cloud ice) and momentum (zonal and meridional winds)
tendencies to the target vector. We conducted this ablation study with both the low-resolution
and the high-resolution datasets (see Section 3.1 in SI for further details regarding these
MLP variants). For common elements of the target vector, using all available variables
leads to a uniform improvement in prediction accuracy, especially for precipitation, in both
resolutions (Figures SI7, SI8 and Table SI4). The larger errors (e.g., MAE and RMSE)
observed in the high-resolution emulators are anticipated due to the increased variance
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of higher-resolution data. Nevertheless, the similarity of their R? values to those of the
corresponding low-resolution emulators confirms their adequate performance.

4.3 Evaluation Metrics

Our evaluation metrics are computed separately for each variable in the output vector.
The mean absolute error (MAE) and the coefficient of determination (R?) are calculated
independently at each horizontal and vertical location and then averaged horizontally and
vertically to produce the summary statistics in Figure 2. For the vertically-varying fields,
we first form a mass-weighting and then convert moistening and heating tendencies into
common energy units in Watts per square meter as in Beucler et al. (2024). We also report
continuous ranked probability scores (CRPS) for all considered models in SI.

4.4 Baseline Model Results

Figure 2 summarizes the error characteristics. Whereas heating and moistening rates have
comparable global mean MAE, behind a common background vertical structure (Figure 2
b,c) the coefficient of determination R? (d,e) reveals that certain architectures (RPN, HSR,
cVAE, CNN) consistently perform better in the upper atmosphere (model level < 30) whereas
the highly optimized MLP model outperforms in the lower atmosphere (model level > 30)
and therefore the global mean (Table 2). For the global mean MAE, we see the largest
averaged errors for PRECC and NETSW (mean MAE > 15 W/m?, Figure 2 and Table 2),
where MLP clearly has the best skill compared to all other benchmark models. For the other
variables, the global mean MAE is considerably smaller, and the skill of the benchmarks
model appears to be more similar in absolute numbers. While for the global mean R? we
find the lowest measurable performance for dT/dt and PRECC (mean R? < 0.7) and in
these cases, CNN gives the most skillful predictions. The other variables have larger R? of
order 0.8 or higher, which suggests that these quantities are easier to deep-learn (Table 2).
For dq/dt and PRECSC global mean R? is not an ideal evaluation metric due to negligible
variability in dq/dt in the upper atmosphere and for PRECSC in the tropics in the dataset
(Table 2).

Additional tables and figures that reveal the geographic and vertical structure of these
errors, fit quality, and analysis of stochastic metrics are included in SI (Sections 4.3, 8.1, and
8.2 in SI).

4.5 Physics-Informed Guidance to Improve Generalizability and Online
Performance

Physical Constraints: Mass and energy conservation are important criteria for Earth
system simulation. If these terms are not conserved, errors in estimating sea level rise or
temperature change over time may become as large as the signals we hope to measure.
Enforcing conservation on the learned quantities helps constrain results to be physically
plausible and reduce the potential for errors accumulating over long time scales. In addition to
conservation laws, we demonstrate in Section 5.4 that implementing cloud physics constraints
can optimize online error and improve the stability of hybrid simulations. We discuss how to
implement a range of conservation and cloud physics constraints, as well as enforce additional
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Figure 2: (a) Summary, where dT'/dt and dg/dt are the tendencies of temperature and
specific humidity, respectively, and were vertically integrated with mass weighting.
(b,c) retain the vertical structure of MAE and (d,e) R?. Error bars and grey
shadings show the the 5- to 95-percentile range of MLP. Refer to Table 1 for
variable definitions.

constraints, such as non-negativity for precipitation, condensate, and moisture variables, in
the SIL.

Stochasticity and Memory: The results of the embedded convection calculations
regulating d, are chaotic and thus worthy of stochastic architectures, as in our RPN, HSR,
and ¢VAE baselines. These solutions are likewise sensitive to sub-grid initial state variables
from an interior nested spatial dimension that has not been included in our data.

Temporal Locality: Incorporating the previous timesteps’ target or feature in the input
vector inflation could be beneficial as it captures some information about this convective
memory and utilizes temporal autocorrelations present in atmospheric data. This approach
has been explored in previous studies (Han et al., 2020; Wang et al., 2022b; Han et al., 2023;
Behrens et al., 2024) and has been integrated into our model for online testing (see Section 5
in the main text and Section 6.3.3 in the SI).

Causal Pruning: A systematic and quantitative pruning of the input vector based on
objectively assessed causal relationships to subsets of the target vector has been proposed
as an attractive preprocessing strategy, as it helps remove spurious correlations due to
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confounding variables and optimize the ML algorithm (Iglesias-Suarez et al., 2023; Kiihbacher
et al., 2024).

Normalization: Normalization that goes beyond removing vertical structure could be
strategic, such as removing the geographic mean (e.g., latitudinal, land /sea structure) or
composite seasonal variances (e.g., local smoothed annual cycle) present in the data. For
variables exhibiting exponential variation and approaching zero at the highest level (e.g.,
metrics of moisture), log-normalization might be beneficial.

Expanded Resolution and Complete Inputs and Outputs: Our baseline models
have focused on the low-resolution dataset, for ease of data volume, and using only a subset of
the available inputs and outputs. This illustrates the essence of the ML challenge. However,
we show in our ablation study, using MLPs, that including all input variables generally
yields an improved reproduction of the target variables in both the low-resolution and the
high-resolution datasets (Figures SI7 and SI8 and Table SI4). Accordingly, we encourage
users who discover competitive fits in this approachable limit to expand to all inputs/outputs
in the high-resolution, real-geography dataset, for which successful fits become operationally
relevant.

Further ML Approaches: Recent methods to capture multi-scale processes using
neural operators that learn in a discretization-invariant manner and can predict at higher
resolutions than available during training time (Li et al., 2021) may be attractive. Their
performance can be further enhanced by incorporating physics-informed losses at a higher
resolution than available training data (Li et al., 2023). Ideas on ML modeling for sub-
grid closures from adjacent fields like turbulent flow physics and reactive flows can also be
leveraged for developing architectures with an inductive bias for known priors (Ling et al.,
2016), easing prediction of stiff non-linear behavior (MacArt et al., 2021; Xing et al., 2021;
Brenner et al., 2019), generative modeling with physical constraints (Subramaniam et al.,
2020; Kim et al., 2019) and for interpretability of the final trained models (MacArt et al.,
2021).

5 Hybrid Testing and Online Performance Evaluation

The primary objective of evaluating a machine learning model within hybrid climate sim-
ulations is to measure the online error (Rasp et al., 2018; Wang et al., 2022b; Kochkov
et al., 2023; Sanford et al., 2023a). This error assesses how well the hybrid simulation, which
integrates the ML model with the rest of the climate simulator, reproduces the statistics of the
original high-fidelity climate simulation. Optimizing offline metrics does not necessarily lead
to optimized online performance (Ott et al., 2020; Wang et al., 2022b), as small prediction
errors at each time step can accumulate over year-long climate simulations (26,280 timesteps
per simulated year). In this section, we describe how to integrate the ML model into the
climate model and the process for evaluating the online performance of the hybrid ML-physics
climate simulations. We also provide a case study from Hu et al. (2024) illustrating our
experience in improving the online performance of the hybrid simulation. In this online task,
the ML models predict the expanded targets y € R% of size d, = 368, similar to baseline
models with expanded features and target (Section 4.2) (tendencies of temperature, moisture,
cloud water, cloud ice, zonal wind and meridional wind, in addition to precipitation and
radiative fluxes at the surface, see Table 1 in the SI). These expanded targets ensure that
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the ML model predicts all the necessary variables to update the atmospheric state and drive
the rest of the climate simulator, thereby enabling complete coupling.

5.1 Software to Integrate ML Models into Physical Climate Simulations

Pytorch-Fortran Coupling: The original climate model, the E3SM-MMF multi-scale
climate model (see Section 1.1 in SI for more details), is written in object-oriented, MPI-
decomposed Fortran. To integrate a Python-based ML model into the climate model and
replace the learned code subregion, we implemented a coupling workflow using an open-source
library called Pytorch-Fortran (Alexeev, 2023). This library simplifies the integration of
PyTorch models with Fortran-based climate simulators and specifically supports TorchScript
models. It provides straightforward interfaces for loading ML models, processing Fortran
tensors in a zero-copy fashion, and performing efficient batch inference.

TorchScript: To utilize the PyTorch-Fortran bindings, it is necessary to first serialize
PyTorch models using TorchScript (Contributors, 2024). TorchScript models can operate
independently of Python and support flexible architecture design. Converting a PyTorch
model into TorchScript is straightforward, as TorchScript is compatible with most PyTorch
functions and many Python built-ins. Section 6.1 in the SI provides detailed instructions on
writing PyTorch models that can be converted into TorchScript. We also include example code
for converting a PyTorch model into TorchScript. Although we use the TorchScript interface
in PyTorch-Fortran for best performance, PyTorch-Fortran also supports spawning a Python
interpreter and run any Python code using other ML packages (e.g., JAX, scikit-learn, and
TensorFlow), provided the input and output interface of the Python code is torch.Tensor.

Cross-Platform Containerized Hybrid Testing Workflow: Building flexible
couplers to foster the progress from skillful ML parameterizations into skillful hybrid ML-
Physics climate simulators is vital for the ML and climate community. Unfortunately, the
complexity and nuance involved in performing climate simulations has meant many wasted
graduate student hours and a dearth of online error results in the hybrid simulation literature
(Lin et al., 2023). We have implemented the first end-to-end containerized workflow for this
purpose, enabling ML models to be integrated into our climate simulator for online testing.
This container can be deployed on multiple platforms, including Linux-based laptops or
workstations, high-performance computing (HPC) clusters, and cloud-based virtual machines.
Once the container is set up, users can easily launch hybrid simulations by providing the
trained ML model in TorchScript format and reproduce the results shown in Figure 3.

5.2 Metrics for Evaluating Online Errors in Hybrid Climate Simulations

Root Mean Square Error: Our online evaluation metrics are computed separately for
each variable in the hybrid simulations. For a given month, the root mean square error
(RMSE) for each variable is calculated as follows:

where:
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e S, is the number of samples (each horizontal grid cell at a given time is one sample)
across the entire globe,

e ¢, represents the values from the hybrid simulation averaged over the entire month,
e y,, represents the values from the reference simulation averaged over the entire month,

® wi,ws,...,ws, are weights that sum to 1 and are proportional to the air mass in each
grid cell.

Zonal Mean Bias: Additionally, we evaluate the multi-year (26,280 timesteps per year)
zonal mean bias, which measures the average difference between the hybrid simulation and
the reference simulation across key atmospheric variables, such as temperature, moisture,
wind, and cloud liquid and ice water. The zonal mean bias is derived by comparing variables
averaged over time and longitudes. For a more detailed illustration of the zonal mean bias
results, please refer to Section 6.4 in the SI.

5.3 Experiment Setup for Hybrid Online Testing

The initial architecture we used for testing the online performance was the MLP model
described in Section 4. However, as we will show in the next section, the hybrid simulations
with the MLP model were unstable and exhibited large online errors. The online failure of the
MLP model motivated us to explore more expressive architectures to achieve stable hybrid
simulations. Hu et al. (2024) explored a U-Net architecture, which is effective at capturing
the atmospheric vertical structure and is also recommended by Heuer et al. (2023). This
U-Net architecture achieved stable hybrid simulations with satisfying online performance
(see Section 5.4 and see Section 6.4 in the SI).

Here, we use the experiments and results from Hu et al. (2024) to illustrate the online
evaluation process and highlight experiences and key factors for optimizing online performance.
Three architecture designs are evaluated: a baseline MLP architecture, and two U-Net
architectures with expanded input features that include information from previous time steps.
One of the U-Net models further incorporates additional cloud physics constraints to enhance
performance. It is worth noting that these MLP and U-Net models are trained with different
input/output normalization strategies than those used in the baseline models in Section 4
Hu et al. (2024).

To account for the variability in online performance not fully captured by offline skill, we
tested three different checkpoints for each model. These checkpoints were obtained using
varying loss functions and learning rate schedules, as different configurations were found to
lead to differing online stability and error, even with similar offline performance (Lin et al.,
2023).

Each checkpoint was used to run a one-year hybrid simulation with the same initial
conditions. We evaluated the monthly RMSE evolution throughout the year compared to
the reference E3SM-MMF simulation. Additionally, to estimate the inherent unpredictability
of the atmospheric system, we ran three additional pure physical simulations with the same
initial conditions. These pure physical simulations were implemented using parallel reductions
and atomic operations that prevent bitwise reproducibility (see Section 6.3.5 in the SI). The
accumulation of these rounding errors over time can lead to variations in the climate model
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outcomes, mimicking the chaotic nature of the atmosphere. These simulations serve as a
baseline for the atmospheric unpredictability.

For more details on model architectures, hyperparameters, input variables, and cloud
physics constraints, please refer to Section 6.3 in the SI.

5.4 Results of Online Performance Testing
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Figure 3: (a) Offline R? scores across various variables for MLP, U-Net, and U-Net with

physics constraints. Variables are the full target variables listed in Table S1,
including temperature tendency (Cfi—:tp), water vapor tendency (d(?tv), liquid cloud
dgc ), ice cloud mixing ratio tendency (dgi
dency (%), meridional wind tendency (%), and eight flux variables. (b,c) Online
monthly and globally averaged (both horizontally and vertically and weighted by
mass in each grid) RMSE of temperature (K) and moisture (g/kg) over a one-year
period, comparing baseline MLLP, U-Net, and U-Net with physics constraints mod-
els against the reference E3SM-MMF simulation. Atmospheric unpredictability
(black dashed lines) is estimated by running the reference E3SM-MMF simulations
multiple times with the same initial condition while allowing for the chaotic growth

of the random rounding errors.

mixing ratio tendency ( ), zonal wind ten-

Summary of Online Error and Offline Skill: Figure 3 summarizes the online error
for the one-year hybrid simulations along with the offline skill changes across our model
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choices. The hybrid simulations with the baseline MLP models were unstable, with all three
instances crashing within the first two months of the simulations. In contrast, the more
expressive U-Net architecture, which includes additional inputs from previous time steps,
improved the R? score across all vertical levels and variables. In our case, this enhanced offline
skill also translated to better online performance. The U-Net architecture allowed for more
stable hybrid simulations, with all the U-Net simulations completing the full year. During
the first month before the MLP simulations crashed, these U-Net simulations demonstrated
significantly lower first-month RMSE for climatological temperature and moisture compared
to the hybrid simulations that used the MLP models without the additional previous-time
inputs.

Impact of Cloud Physics Constraints: Incorporating cloud physics constraints
significantly improved stability and reduced error growth in the hybrid simulations. Without
these constraints, the U-Net models developed increasing errors after a few months, leading
to unrealistic cloud formations not represented in the training data, which potentially
contributed to higher error growth (see Hu et al. (2024) for more details). The cloud
physics constraints mitigated this issue by ensuring clouds formed appropriately relative to
temperature, such as preventing liquid clouds at very low temperatures where condensate
should be frozen.

Achieving State of the Art for Hybrid Error: With these constraints, the online
RMSE stabilized after an initial rise within the first two months. The global temperature
RMSE remained around 2K, and the global moisture RMSE stayed below 1 g/kg, during
the entire span of the one-year simulations (red lines in Figure 3). In the SI, we show that
the U-Net model with cloud physics constraints can integrate stably for at least five years,
maintaining a tropospheric zonal mean temperature bias below 2K and a moisture bias below
1 g/kg. While there is still room for improvement, these magnitudes outperform the state
of the art results of (Han et al., 2023) within the context of analogous multi-scale hybrid
climate simulations, despite our having included the full complexity of interactive condensate
coupling and inclusion of radiative transfer within the full-physics ML parameterization,
which was sidestepped in that work. A caveat in this comparison is that the work of (Han
et al., 2023) used a higher resolution host climate model that has higher intrinsic variance,
as well as a different software version for the multi-scale climate simulator.

Beyond the context of the multiscale modeling framework, other state-of-the-art hybrid
ML-physics climate simulators include those by Kochkov et al. (2023) and Sanford et al.
(2023a) demonstrate additional metrics of hybrid model performance. For example,Sanford
et al. (2023a) reported a pattern RMSE of 1.2K for the annual mean temperature climatology
at 200 hPa and 850 hPa and 2 mm for precipitable water compared to their reference
dataset using a coarse-grained high-resolution global storm-resolving model. Sanford et al.
(2023a) also showed an annual-mean zonal mean temperature bias below 1K over most of the
troposphere and a zonal mean moisture bias within 0.8 g/kg. Kochkov et al. (2023) reported
an annual-mean temperature RMSE of 0.61K at 850 hPa and 1.05K at 200 hPa, and an
RMSE of 1.09 mm for annual precipitable water against their reference ERA5 dataset. It is
also worth noting that such error metrics tend to be a function of climate model resolution
and thus cannot be directly compared between these studies; the resolution in our hybrid
model is approximately 10°, which is much lower than the 2° used by Sanford et al. (2023a)
and the 1.4° used by Kochkov et al. (2023).
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Further optimizing the remaining non-differentiable online bias is challenging and worthy
of community effort. We discuss potential methods to optimize these online bias in Section
6.5 of the SI.

6 Limitations and Other Applications

Idealizations: A limitation of the multi-scale climate simulator used to produce ClimSim
(E3SM-MMF) is that it assumes scale separation, i.e., that convection can be represented
as laterally periodic within the grid size of the host simulator, and neglects sub-grid scale
representations of topographic and land-surface variability. The configuration of the multi-
scale climate simulator used to make ClimSim also has no atmosphere-ocean coupling and
ignores the radiative effects of aerosols. These are essential for simulating important climate
phenomena like El Nino and the influence of aerosols on cloud properties, which are critical
for realistic future climate projections. Despite these simplifications, the data adequately
capture many historically challenging aspects of the ML parameterization problem, such
as stochasticity, and complex nonlinear interactions across radiation, microphysics, and
turbulence.

Hybrid testing: To maximize simplicity and scalability, our containerized pipeline for
evaluating hybrid error uses a very low resolution hybrid climate simulation that can run on
just a single cloud compute node and even a personal laptop, and our evaluation protocol
contains only minimum viable integrative statistics of hybrid climate simulation errors. As
methods to reliably achieve hybrid skill mature, this pipeline should be expanded. First, in
its computational ambition, towards multi-node cloud-compatible configurations compatible
with a full-resolution hybrid simulation. Second, to more fully evaluate a resulting historical
simulation or a simulation under Atmospheric Modelling Intercomparison Project conditions
(AMIP, Gates et al., 1999) with a hybrid model with Earth observations. Testing large
ensembles launched from multiple initial conditions as in Kochkov et al. (2023) would be
beneficial. Implementing diagnostics of the tendencies predicted by the ML versus physics
model, while each is alternately coupled to the host dynamics, would be strategic as was found
useful for making progress on microphysics ML parameterization in Perkins et al. (2024).
Finally, as hybrid simulators stabilize and begin to produce reasonable time-mean climate
statistics, their variability behind the mean state becomes important to validate, such as by
measuring intrinsic cyclogenesis frequency (Kochkov et al., 2023). Community-developed
open-source diagnostic tools such as the Earth System Model Evaluation Tool (Eyring et al.,
2020) and the Model Diagnostics Task Force Framework (Neelin et al., 2023) facilitate the
evaluation of climate simulations compared to observations and traditional climate models.

Stochasticity: One open problem that the dataset may allow assessing is understanding
the role of stochasticity in hybrid-ML simulation. While primarily used as a dataset for
regression it would be also interesting to assess and understand the degree to which different
variables are better modeled as stochastic or deterministic, or if the dataset gives rise to
heavy-tailed or even multi-modal conditional distributions that are important to capture.
To date, these questions have been raised based on physical conjectures (e.g., Lin and
Neelin, 2003) but remain to be addressed in the ML-based parameterization literature. For
instance, precipitation distributions have long tails that are projected to lengthen under
global climate change (O’Gorman, 2015; Neelin et al., 2022)—and will thus tend to generate
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out-of-distribution extremes. ClimSim could help construct optimal architectures to capture
precipitation tails and other impactful climate variables such as surface temperature, and
could be easily extended to a distributional regression benchmark.

Interpretability: This dataset could also be utilized to discover physically interpretable
models for atmospheric convection, radiation, boundary layer turbulence, and microphysics.
A possible workflow would apply dimensionality reduction techniques to identify domi-
nant predictors and vertical variations, followed by symbolic regression to recover analytic
expressions (Zanna and Bolton, 2020; Grundner et al., 2023).

Generalizability: Although the impacts of global climate change and inter-annual
variability are absent in this initial version of ClimSim, important questions surrounding
climate-convection interactions can begin to be addressed. One strategy would involve
partitioning the data such that the emulator is trained on cold columns, but validated on
warm columns, where warmth could be measured by surface temperatures, as in Beucler
et al. (2024). However, the results from this approach may also reflect the dependence of
convection on the geographical distribution of surface temperatures in the current climate
and should be interpreted with caution. To optimally engage ML researchers in solving the
climate generalization problem, a multi-climate extension of ClimSim should be developed
that includes physical simulations that samples future climate states and more internal
variability.

7 Conclusion and Future Work

We introduce ClimSim-Online, the most physically comprehensive dataset and framework
yet published for training and testing ML-based parameterizations of atmospheric storms,
clouds, turbulence, rainfall, and radiation for use in hybrid-ML climate simulations. It
contains all inputs and outputs necessary for online coupling in a full-complexity multi-scale
climate model. Additionally, it provides a containerized pipeline to integrate ML models into
climate models, allowing for the evaluation of online performance in hybrid-ML climate model
simulations. This containerized approach ensures reproducibility and accessibility, making
it user-friendly for ML researchers without domain expertise and, unlike typical climate
simulations, compatible with commonly available cloud and local computing environments.
We conduct a series of experiments on a subset of these variables that demonstrate the
degree to which climate data scientists have been able to fit the deterministic and stochastic
components in the dataset. We also provide a hybrid-ML baseline model to showcase one
example of improving the hybrid stability and online error, along with initial metrics for
assessing it. This demonstrates how ClimSim-Online can be an operational pipeline to
explore capabilities of novel models from the ML community in climate science.

We hope ML community engagement in ClimSim will advance fundamental ML method-
ology and clarify the path to producing increasingly skillful subgrid-scale physics parame-
terizations that can be reliably used for operational climate simulation (Eyring et al., 2025,
accepted). To facilitate two-way communications between ML practitioners and climate sci-
entists, we incorporate many desired characteristics for an ideal benchmark dataset suggested
in Ebert-Uphoff et al. (2017); Dueben et al. (2022). Such interdisciplinary collaboration
will open up an exciting future in which the computational limits that currently constrain
climate simulation can be reconsidered. We are already encouraged by several thousand
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global participants in a Kaggle ML competition based on the ClimSim dataset that has
attracted users from diverse domains and fostered innovation in the offline problem Lin et al.
(2024).

We plan to soon extend the ClimSim dataset to include a sampling of multiple future
climate states Clark et al. (2022b); Bhouri et al. (2023b). We hope the lessons learned from
our focus on multi-scale atmospheric simulations will apply to other sub-fields of Earth
System Science, where computational constraints currently hinder explicit representations of
more complex systems.
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