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Abstract
Modern climate projections lack adequate spatial and temporal resolution due to computa-
tional constraints, leading to inaccuracies in representing critical processes like thunderstorms
that occur on the sub-resolution scale. Hybrid methods combining physics with machine
learning (ML) offer faster, higher fidelity climate simulations by outsourcing compute-hungry,
high-resolution simulations to ML emulators. However, these hybrid ML-physics simulations
require domain-specific data and workflows that have been inaccessible to many ML experts.

As an extension of the ClimSim dataset (Yu et al., 2024), we present ClimSim-Online,
which also includes an end-to-end workflow for developing hybrid ML-physics simulators. The
ClimSim dataset includes 5.7 billion pairs of multivariate input/output vectors, capturing the
influence of high-resolution, high-fidelity physics on a host climate simulator’s macro-scale
state.

The dataset is global and spans ten years at a high sampling frequency. We pro-
vide a cross-platform, containerized pipeline to integrate ML models into operational
climate simulators for hybrid testing. We also implement various ML baselines, along-
side a hybrid baseline simulator, to highlight the ML challenges of building stable, skill-
ful emulators. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res1)
and code (https://leap-stc.github.io/ClimSim and https://github.com/leap-stc/
climsim-online/) are publicly released to support the development of hybrid ML-physics
and high-fidelity climate simulations.
Keywords: Multi-Scale Dataset, Machine Learning Benchmark, Climate Emulation,
Hybrid ML-physics Climate Simulation, End-to-End Workflow
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1 Introduction

1.1 Overview

Projections from numerical Earth system model simulations are the primary tool informing
climate change policy (Tebaldi et al., 2021). However, current climate simulators poorly
represent clouds and extreme rainfall physics (IPCC, 2021; Sherwood et al., 2020) despite
stretching the limits of the world’s most powerful supercomputers. This is because the
required computational power to simulate Earth system complexity imposes significant
restrictions on the simulations’ spatial resolution (Schneider et al., 2017; Gentine et al., 2021).
Physics occurring on scales smaller than the temporal and/or spatial resolutions of climate
simulations are commonly represented using empirical or physically inspired mathematical
representations called “parameterizations”. Assumptions in these parameterizations often
lead to errors that can grow into inaccuracies in projections of future climates.

Machine learning (ML) is an attractive approach for learning the complex nonlinear
sub-resolution physics—processes (and properties) occurring on scales smaller than typical
climate model resolution—from short, higher fidelity simulations. The implementation of
ML-physics parameterizations has the exciting possibility of resulting in hybrid climate
simulations that are both cheaper and more accurate than current state-of-the-art model
simulations (Gentine et al., 2018; Eyring et al., 2021).

Traditional Earth system models have a typical smallest resolvable scale of 80–200 km in
the horizontal direction (Eyring et al., 2016), equivalent to the size of a typical U.S. county. In
contrast, the community has achieved 1-10 km resolution, global storm-resolving simulators,
though these models are still being tested for their use in long-term climate simulations
and are very computationally demanding (e.g., Taylor et al., 2023; Hohenegger et al., 2023;
Mooers et al., 2023). Accurately representing cloud formation requires a resolution of 100 m
or finer, demanding six orders of magnitude increase in computational power.

ML presents a conceivable solution to sidestep the limitations of classical computing
(Eyring et al., 2021, 2025, accepted, 2024). It enables hybrid-ML climate simulations that
integrate traditional numerical methods—which solve the equations governing large-scale
fluid motions of Earth’s atmosphere—with ML-based parameterizations that emulate the
macro-scale effects of small-scale physics. Instead of relying on heuristic assumptions about
these small-scale processes, ML-based parameterizations learn directly from data generated
by short-duration, high-resolution simulations (Bretherton et al., 2022; Clark et al., 2022a;
Grundner et al., 2022; Sanford et al., 2023b; Gentine et al., 2018; Rasp et al., 2018; Brenowitz
et al., 2020; Han et al., 2020; Ott et al., 2020; Mooers et al., 2021; Wang et al., 2022b; Han
et al., 2023; Iglesias-Suarez et al., 2023; Yuval and O’Gorman, 2020; Yuval et al., 2021; Heuer
et al., 2023; Niu et al., 2024). This task is a nonlinear regression problem: in the climate
simulation, an ML-physics parameterization returns the large-scale outputs—changes in
wind, moisture, or temperature—that occur due to unresolved small-scale (sub-resolution)
physics, given large-scale resolved inputs (e.g., temperature, wind velocity; see Section 4).

While several proofs of concept have emerged in recent years, hybrid-ML climate simu-
lations have yet to be stable and ready for operational use. Obtaining sufficient, complete
training data is a major challenge impeding progress from the ML community. This data
must contain all macro-scale variables that regulate the behavior of subgrid-scale physics
and be compatible with hybrid ML-climate simulations. Addressing this using training data
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from uniformly high-resolution simulations has proven to be very expensive and requires
coarse-graining the high-resolution data, potentially leading to issues when coupled with a
host climate simulation (Ross et al., 2023).

A promising solution is utilizing multi-scale climate (see Section 1.2) simulations to
generate training data. Crucially, these provide a clean interface between the learned high-
resolution physics and the host climate simulator’s macro-scale dynamics (Rasp, 2020). In
theory, this makes hybrid simulations approachable and tractable. In practice, the full
potential of multi-scale simulations remains largely untapped due to a scarcity of existing
datasets, exacerbated by the combination of operational simulation code complexity and the
need for domain expertise in choosing variables. To further complicate matters, the absence
of a straightforward method for testing learned ML emulators in hybrid settings renders the
problem even less approachable.

We introduce ClimSim-Online, the largest and most physically comprehensive dataset and
end-to-end workflow for training and testing ML-based parameterizations of full subgrid-scale
physics (atmospheric storms, clouds, turbulence, rainfall, and radiation) for use in hybrid-ML
climate simulations. The ClimSim dataset (Yu et al., 2024) offers a comprehensive collection
of inputs and outputs from multi-scale climate model simulations. As an extension to the
ClimSim dataset, ClimSim-Online also provides a containerized, end-to-end workflow for
integrating ML models into host climate simulations, facilitating the evaluation of online
performance (see Section 1.2 and 5) in hybrid-ML simulations. This containerized workflow
ensures reproducibility and ease of use, making it accessible to ML researchers without
domain knowledge. ClimSim-Online was prepared by atmospheric scientists, climate model
developers, and ML researchers to lower the entry barrier for ML experts on this important
problem. Our benchmark dataset serves as a foundation for developing robust frameworks that
learn subgrid-scale processes related to cloud physics. This framework enables online coupling
within the host climate model, with the ultimate goal to help improve the performance and
accuracy of climate models used for long-term projections.

1.2 Concepts and Terminology from Earth Science

Convection Parameterization: In atmospheric science, “convection” refers to storm cloud
and rain development, as well as the associated small-scale (100s m to <10km) turbulent
air motions. Convective parameterizations represent the combined effects of these processes,
such as the vertical transport of heat, moisture, and momentum within the atmosphere, and
condensational heating and drying, on the temporal and spatial scale of the host climate
model (Emanuel, 1994; Randall, 2012; Siebesma et al., 2020). Stochastic parameterizations
represent sub-resolution (“sub-grid scale” in the terminology of Earth science) effects as
stochastic processes, dependent on grid-scale variable inputs (Lin and Neelin, 2000; Neelin
et al., 2008) to capture variations arising from sub-grid scale dynamics.

Multi-Scale Climate Simulations: Multi-scale climate simulation is a technique that
represents convection without a convective parameterization by deploying a smaller-scale,
high-resolution cloud-resolving simulator nested within each host grid column of a climate
simulator (Grabowski and Smolarkiewicz, 1999; Benedict and Randall, 2009; Randall, 2013;
Hannah et al., 2020; Norman et al., 2022). The smaller-scale simulator explicitly resolves
the detailed behavior of clouds and their turbulent motions at both a higher spatial and
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temporal resolution than the host climate model. This improves the accuracy of the host
simulations but comes at a high computational cost (Randall et al., 2003; Khairoutdinov et al.,
2008). The time-integrated and horizontally averaged influence of the resolved convection
is fed upscale to the host climate model and is the target of hybrid ML-climate simulation
approaches.

Significance of Precipitation Processes for Climate Impacts: In climate simula-
tions, changes in precipitation with climate change are a particularly important issue. The
frequency of extreme precipitation events increases with climate change (Pall et al., 2007;
Guerreiro et al., 2018; Neelin et al., 2022; Seneviratne et al., 2021; Mooers et al., 2022), with
corresponding societal impacts (Davenport et al., 2021). Current climate models agree on the
direction of this change but exhibit a large spread in the quantitative rate of increase with
climate change (Pendergrass and Hartmann, 2014; Martinez-Villalobos and Neelin, 2023;
Seneviratne et al., 2021).

Offline Training vs. Online Evaluation: In this manuscript, we define “offline
training” as the traditional supervised learning task, where a regression or generative machine
learning (ML) model is trained to map input features to target features. Offline metrics
(Section 4.3) assess how well an ML model performs this mapping for samples at each
individual location and time step, using a fixed dataset.

On the other hand, “Online evaluation” has domain-specific meaning in our context,
and refers to evaluating the performance of the hybrid climate simulator in which many
instances of its embedded high resolution physics solver are replaced with copies of a
trained ML parameterization that is then allowed to feed back with resolved planetary scale
climate dynamics. That is, the evaluation data changes dynamically. This involves assessing
how accurately the hybrid simulation can replicate climate statistics, such as yearly-mean
atmospheric states, compared to a pure physical climate simulation (see Section 5.2 for more
online evaluation metrics).

2 Related Work

Several benchmark datasets have been developed to facilitate AI tasks in weather and
climate. For example, the European Center for Medium-Range Weather Forecasts (ECMWF)
reanalysis v5 (ERA5, Hersbach et al., 2020) is a comprehensive dataset of global weather from
1940 to present. WeatherBench 2 benchmark dataset provides data specifically designed for
training and evaluating data-driven weather forecasting models, focusing on global, medium
range (1-15days) prediction Rasp et al. (2024). ClimateBench (Watson-Parris et al., 2022)
was designed for emulators that produce annual mean global predictions of temperature and
precipitation given greenhouse gas concentrations and emissions. ClimateBench is limited to
data from a single climate model. In contrast, ClimateSet (Kaltenborn et al., 2023) expands
ClimateBench by offering a large-scale dataset with inputs and outputs from 36 climate
models. ClimART (Cachay et al., 2021) was designed for the development of radiative energy
transfer parameterization emulators for use in weather and climate modeling. Section 7 in
the SI documented more climate or weather related benchmark datasets.

However, ClimSim is unique for its focus on learning ML parameterizations which can be
used in hybrid climate simulations. Unlike other datasets, ClimSim is designed to capture the
nonlinear effects of clouds, rain, storms, and radiation at kilometer scales. It provides a end-
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to-end framework to emulate an embedded component—the cloud-resolving simulator—in
multi-scale climate simulators and to evaluate the resulting hybrid climate simulations.

There have been several recent efforts to produce hybrid-ML models learning from multi-
scale climate simulations, analogous to ClimSim (Gentine et al., 2018; Rasp et al., 2018;
Han et al., 2020; Ott et al., 2020; Mooers et al., 2021; Wang et al., 2022b; Lin et al., 2023;
Iglesias-Suarez et al., 2023; Han et al., 2023). Most of these focused on simple aquaplanets
(Gentine et al., 2018; Rasp et al., 2018; Han et al., 2020; Ott et al., 2020; Lin et al., 2023;
Iglesias-Suarez et al., 2023), while simulations that included real geography (Mooers et al.,
2021; Wang et al., 2022b; Han et al., 2023; Heuer et al., 2023) did not include enough variables
for complete land-surface coupling, to our knowledge. Most examine simple multi-layer
perceptrons, except for Han et al. (2020); Wang et al. (2022b); Han et al. (2023), who used a
ResNet architecture, and Behrens et al. (2024), who used a variational encoder-decoder that
accounts for stochasticity. Although hybrid testing in real-geography settings is error-prone,
several studies (Wang et al., 2022b; Han et al., 2023; Kochkov et al., 2023) have demonstrated
some hybrid stability. Compressing input data to avoid causal confounders may improve
online accuracy (Iglesias-Suarez et al., 2023; Kühbacher et al., 2024), and methods have been
developed to enforce physical constraints (Beucler et al., 2021; Reed et al., 2023).

Compared to the training data used above, ClimSim’s comprehensive variable coverage
is unprecedented, including all variables needed to be coupled to a land system simulator
and to enforce physical constraints. Its availability across coarse-resolution, high-resolution,
aquaplanet and real-geography use cases is also new to the community. Successful ML
innovations with ClimSim can have a downstream impact since it is based on state-of-the-art
multi-scale climate model simulations that are actively supported by a mission agency (U.S.
Department of Energy).

In non-multi-scale settings, an important body of related work (Bretherton et al., 2022;
Clark et al., 2022a; Kwa et al., 2023; Sanford et al., 2023b) has made exciting progress
on using analogous hybrid ML approaches to reduce biases in uniform resolution climate
simulations, including in an operational climate code with land coupling and online stability
(Yuval and O’Gorman, 2020; Yuval et al., 2021) (see Supplementary Information; SI). Other
related work includes full model emulation (FME) for short-term weather prediction (Pathak
et al., 2022; Bonev et al., 2023; Lam et al., 2022) and for long-term climate simulation
(Watt-Meyer et al., 2023). While ClimSim is focused on hybrid-ML climate simulations and
we do not demonstrate FME baselines, ClimSim contains full atmospheric state variable
samplings well suited for the FME task.

3 ClimSim Dataset

Dataset Overview: ClimSim is designed to facilitate the development of ML parameteriza-
tions for hybrid climate simulations. The dataset includes inputs x ∈ R

di (with di = 124 for
standard inputs and di = 617 for expanded inputs) representing the local vertical structure
of macro-scale state variables and boundary conditions, and targets y ∈ R

do (with do =
128 for standard targets and do = 368 for expanded targets) representing tendencies due to
unresolved processes and surface fluxes for surface coupling. Generated using the E3SM-
MMF multi-scale climate simulator over 10 simulated years, the dataset comprises 5.7 billion
high-resolution samples (41.2TB) and 100 million low-resolution samples (744GB). Data is
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Figure 1: The spatially-local version of ClimSim that our baselines are scored on. A spatially-
global version of the problem that expands to the full list of variables would be
useful to try.
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split into training/validation (first 8 years) and test (last 2 years) sets, ensuring no temporal
overlap. Offline training involves learning an ML parameterization by mapping inputs to
targets for each sample (an atmospheric column at a single timestep). ClimSim-Online
provides an accessible end-to-end workflow to integrate a trained ML parameterization into
a host climate simulator to perform hybrid simulations. Climate statistics in these hybrid
simulations are evaluated against those from pure physical E3SM-MMF simulations.

Experiment Outline: ClimSim presents a regression problem with mapping from a
multivariate input vector, with inputs x ∈ R

di of size di = 124 and targets y ∈ R
do of size do

= 128 (Figure 1). The input represents the local vertical structure (in horizontal location and
time) of macro-scale state variables in a multi-scale climate simulator before any adjustments
from sub-grid scale convection and radiation are made. The input also includes concatenated
scalars containing boundary conditions of incoming radiation at the top of the atmospheric
column and land surface model constraints at its base. The target vector contains the
tendencies of the same state variables representing the impact of unresolved processes (e.g.,
redistribution of water, related phase changes, and radiative heating due to convection).
The output vector represents the horizontally averaged change in atmospheric state after
the computationally demanding subcycling of nested simulators. The ultimate goal is to
outsource these physics to ML by mapping inputs to targets at comparable fidelity. The target
vector includes scalar fields and fluxes from the bottom of the atmospheric column expected
by the land surface model component that it must couple to; land-atmosphere coupling is
crucial to predicting regional water cycle dynamics (Fischer et al., 2007; Seneviratne et al.,
2010). Importantly, ClimSim also includes the option for expanded inputs x ∈ R

di of size di
= 617 and targets y ∈ R

do of size do = 368, which we demonstrate in one of our experiments.
Dataset Collection: We ran the E3SM-MMF multi-scale climate simulator (Hannah

et al., 2020; Norman et al., 2022; Hannah et al., 2022, 2021), using multiple NVIDIA A100
GPUs for a total of ∼ 9,800 GPU-hours. We saved instantaneous values from every grid
column of the atmospheric state before and after high-resolution calculations occurred,
isolating state updates due to explicitly-resolved moist convection, boundary layer turbulence,
and radiation; details of the E3SM-MMF climate simulator configuration can be found in
SI. These data were saved at 20-minute intervals (i.e., the time step of the host climate
model) for 10 simulated years (excluding one-month spinup), resulting in 5.7 billion samples
for the high-resolution simulation that uses an unstructured “cubed-sphere" horizontal grid
with 21,600 grid columns spanning the globe. This grid yields an approximate horizontal
grid spacing of 1.5◦, but unlike a traditional climate model that maps points across the
sphere using two dimensions aligned with cardinal north/south and east/west directions,
unstructured grids use a single dimension to organize the horizontal location of points. The
atmospheric columns at each location and time are treated as independent samples. Thus,
the total number of samples can be understood by considering that atmospheric columns at
each location and time are treated as independent samples, such that 5.7 billion ≈ 21,600
horizontal locations per time step × 72-time steps per simulated day × 3,650 simulated
days). It is important to note that each sample retains a 1D structure corresponding to the
vertical variation across 60 levels.

We also ran two additional simulations with approximately ten times less horizontal
resolution, with only 384 grid columns spanning the globe, resulting in 100 million samples
for each simulation. These low-resolution options allow for fast prototyping of ML models
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due to smaller training data volumes and less geographic complexity. One low-resolution
simulation uses an “aquaplanet” configuration, i.e., a lower boundary condition of specified
sea surface temperature, invariant in the longitudinal dimension with no seasonal cycle.
This is the simplest prototyping dataset, removing variance associated with continents and
time-varying boundary conditions. The total data volume is 41.2TB for the high-resolution
dataset and 744GB for each of the low-resolution datasets.

The input and output variables in this dataset were selected based on the design of
E3SM-MMF. We have included all variables involved in the interface between the host climate
simulator and the embedded cloud-resolving simulators. Specifically, the input variables are
macro-state variables calculated by the host climate simulator and passed to the embedded
cloud-resolving simulators. The output variables comprise the subgrid physics tendencies,
which are simulated by the embedded simulators based on these macro-state inputs. This
setup defines the pairing of input and output variables.

Locality vs. Nonlocality: A spatially-global version of the problem could be of
practical use for improving ML via helpful spatial context (Wang et al., 2022a; Lütjens
et al., 2022). In this case, information from other grid columns across the globe is taken
into account. Thus, the problem becomes a 2D → 2D regressions task with inputs x ∈ R

di

of maximum size di = 617× 21, 600 (grid columns) and targets, y ∈ R
do , of maximum size

do = 368× 21, 600. Here, the second dimension represents the unstructured "cubed-sphere"
computational mesh used by the climate model, which projects a cube onto the sphere,
effectively avoiding the polar singularity problems associated with regular Cartesian grids
(Ronchi et al., 1996; Hannah et al., 2022). Further details about the climate simulator
configuration, simulations, and data, including complete variable lists, can be found in SI.

Dataset Interface: Raw model outputs emerge from the climate simulator as standard
NetCDF files, which can be easily parsed in any language. Each timestep yields files
containing input and target vectors separately, resulting in a total of 525,600 files for each of
the three datasets. To prevent redundancy, variable metadata and grid information were
saved separately.

The raw tensors from the climate simulations are initially either 2D or 3D, depending on
the variable. For 2D tensors, the dimensions represent time and horizontal location. While
these variables actually depend on three physical dimensions (time and 2D space), since each
location on the sphere is indexed along a single axis due to the climate model’s unstructured
horizontal grid, the apparent dimensionality is lower. Such variables include solar insolation,
snow depth over land, surface energy fluxes, and surface precipitation rate. 3D tensors
include the additional dimension representing altitude relative to the Earth’s surface for
height-varying state variables like temperature, humidity, and wind vector components.
Separate files are used to store each timestep and variable. ClimSim includes a total of 24
2D variables and 10 3D variables (see Table 1 in SI).

Dataset Split: The 10-year datasets are divided into the following splits: (a) a training
and validation set spanning the first 8 years (0001-02 to 0009-01; YYYY-MM), excluding
the first simulated month for numerical spin-up, and (b) a test set spanning the remaining
two years (i.e., 0009-03 to 0011-02). A one-month gap is intentionally introduced between
the two sets to prevent test set contamination via temporal correlation. Both sets are stored
separately in our data repositories.
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It’s important to note that optimizing offline metrics does not necessarily lead to opti-
mized online performance (Ott et al., 2020; Wang et al., 2022b). Small prediction errors
at each time step can accumulate over time, potentially causing biases or drifts of the
atmospheric states in the hybrid simulation when compared to a purely physical reference
simulation. These accumulated errors can arise from the high degrees of freedom of the host
model interacting with imperfections of its embedded ML parameterization. Among other
conceivable pathologies, this interaction may lead to out-of-sample atmospheric states that
further degrade ML predictions and destabilize the hybrid simulation, potentially causing
model blowup.

Energy use: The computing and energy costs of generating ClimSim could be viewed as
wasteful and having a negative consequence for society through associated emissions (Luccioni
and Hernandez-Garcia, 2023). We emphasize that while it can appear large, the compute
used is actually orders of magnitude less than what is consumed by operational climate
prediction. Associated emissions are minimized given that our E3SM-MMF simulations were
performed on energy-efficient GPU hardware. The cost must also be weighed against the
potential social benefit of mitigating future energy consumption by eliminating end users’
need for costly physics-based multi-scale climate simulations. Meanwhile, a large consortium
of interested parties has helped agree on this dataset to help ensure it is not wasted.

4 Offline Experiments

To guide ML practitioners using ClimSim, we provide an example ML workflow using the
low-resolution, real-geography dataset to train ML models to predict target outputs from
the provided inputs. All but one of our baselines focuses on emulating the subset of total
available input and target variables illustrated in Figure 1, with the following inputs x ∈ R

di

of size di = 124, and targets y ∈ R
do of size do = 128 (Figure 1, Table 1), chosen for its

similarity to recent attempts in the literature.

Input Size Target Size

Temperature [K] 60 Heating tendency, dT/dt [K/s] 60
Specific humidity [kg/kg] 60 Moistening tendency, dq/dt [kg/kg/s] 60
Surface pressure [Pa] 1 Net surface shortwave flux, NETSW [W/m2] 1
Insolation [W/m2] 1 Downward surface longwave flux, FLWDS [W/m2] 1
Surface latent heat flux [W/m2] 1 Snow rate, PRECSC [m/s] 1
Surface sensible heat flux [W/m2] 1 Rain rate, PRECC [m/s] 1

Visible direct solar flux, SOLS [W/m2] 1
Near-IR direct solar flux, SOLL [W/m2] 1
Visible diffused solar flux, SOLSD [W/m2] 1
Near-IR diffused solar flux, SOLLD [W/m2] 1

Table 1: The subset of input and target variables used in most of our experiments (Figure 1).
Dimension length 60 corresponds to the total number of vertical levels (discretized
altitudes) of the climate simulator.
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Training/Validation Split: We divide the 8-year training/validation set into the first 7
years (i.e., 0001-02 to 0008-01 in the raw filenames’ “year-month” notation) for training and
the subsequent 1 year (0008-02 to 0009-01) for validation. This split was chosen somewhat
arbitrarily, and we encourage users of this dataset to consider alternative splits. However, it
is crucial to ensure that the validation period is separate from the training period by at least
one month to avoid contamination due to temporal autocorrelation in the atmosphere.

Preprocessing Workflow: Our preprocessing steps were (1) downsample in time
by using every 7th sample, (2) collapse horizontal location and time into a single sample
dimension, (3) normalize variables by subtracting the mean and dividing by the range, with
these statistics calculated separately at each of the 60 vertical levels for the four variables
with vertical dependence, and (4) concatenate variables into multi-variate input and output
vectors for each sample (Figure 1). The heating tendency target dT/dt (i.e., time rate of
temperature T ) was calculated from the raw climate simulator output as (Tafter −Tbefore)/Δt,
where Δt (= 1200 s) is the climate simulator’s known macro-scale timestep. Likewise,
the moisture tendency was calculated by taking the difference of humidity state variables
recorded before versus after the convection and radiation calculations. This target variable
transformation (i.e., state to tendency) is done to compare our baseline models’ performance
to that of previously published models that reported errors of emulated tendencies (Mooers
et al., 2021; Behrens et al., 2022). Additionally, this transformation implicitly normalizes
the target variables, leading to better convergence properties for ML algorithms. Given
the domain-specific nature of the preprocessing workflow, we provide scripts in the GitHub
repository for workflow reproduction.

4.1 Baseline Architectures

Six baseline models used in our experiment are briefly described here. Refer to SI for further
details.

Convolutional Neural Network (CNN) uses a 1D ResNet-style network. Each
ResNet block contains two 1D convolutional layers and a skip connection. CNNs can learn
spatial structure and have outperformed MLP and graph-based networks (Cachay et al.,
2021). The inputs and outputs for the CNN are stacked in the channel dimensions, such that
the mapping is 60 × 6 → 60 × 10. Accordingly, global variables have been repeated along
the vertical dimension.

Encoder-Decoder (ED) consists of an Encoder and a Decoder with 6 fully-connected
hidden layers each (Behrens et al., 2022). The Encoder condenses the original dimensionality
of the input variables down to only 5 nodes inside the latent space. This enhances the inter-
pretability of ED and makes the model beneficial for advanced postprocessing of multivariate
climate data (Behrens et al., 2022; Mooers et al., 2023).

Heteroskedastic Regression (HSR) predicts a separate mean and standard deviation
for each output variable, using a regularized MLP (Wong-Toi et al., 2023).

Multi-layer Perceptron (MLP) is a fully connected, feed-forward neural network.
The MLP architecture used for our experiments is optimized via an extensive hyperparameter
search with 8,257 trials.

Randomized Prior Network (RPN) is an ensemble model (Osband et al., 2018).
Each member of the RPN is built as the sum of a trainable and a non-trainable (so-called
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“prior”) surrogate model; we used MLP for simplicity. Multiple replicas of the networks
are constructed by independent and random sampling of both trainable and non-trainable
parameters (Yang et al., 2022; Bhouri et al., 2023a). RPNs also resort to data bootstrapping
(e.g., subsampling and randomization) in order to mitigate the uncertainty collapse of the
ensemble method when tested beyond the training data points (Bhouri et al., 2023a).

Conditional Variational Autoencoder (cVAE) uses amortized variational inference
to fit a deep generative model that is conditioned on the input and can produce samples
from a complex predictive distribution.

Variable MAE [W/m2] R2

CNN ED HSR MLP RPN cVAE CNN ED HSR MLP RPN cVAE

dT/dt 2.585 2.864 2.845 2.683 2.685 2.732 0.627 0.542 0.568 0.589 0.617 0.590
dq/dt 4.401 4.673 4.784 4.495 4.592 4.680 – – – – – –
NETSW 18.85 14.968 19.82 13.36 18.88 19.73 0.944 0.980 0.959 0.983 0.968 0.957
FLWDS 8.598 6.894 6.267 5.224 6.018 6.588 0.828 0.802 0.904 0.924 0.912 0.883
PRECSC 3.364 3.046 3.511 2.684 3.328 3.322 – – – – – –
PRECC 37.83 37.250 42.38 34.33 37.46 38.81 0.077 -17.909 -68.35 -38.69 -67.94 -0.926
SOLS 10.83 8.554 11.31 7.971 10.36 10.94 0.927 0.960 0.929 0.961 0.943 0.929
SOLL 13.15 10.924 13.60 10.30 12.96 13.46 0.916 0.945 0.916 0.948 0.928 0.915
SOLSD 5.817 5.075 6.331 4.533 5.846 6.159 0.927 0.951 0.923 0.956 0.940 0.921
SOLLD 5.679 5.136 6.215 4.806 5.702 6.066 0.813 0.857 0.797 0.866 0.837 0.796

Table 2: MAE and R2 for target variables averaged globally and temporally (from 0009-03 to
0011-02). Variables include heating tendency (dT/dt), moistening tendency (dq/dt),
net surface shortwave flux (NETSW), downward surface longwave flux (FLWDS),
snow rate (PRECSC), rain rate (PRECC), visible direct solar flux (SOLS), near-IR
direct solar flux (SOLL), visible diffused solar flux (SOLSD), and near-IR diffused
solar flux (SOLLD). Units of non-energy flux variables are converted to a common
energy unit, W/m2. Best model performance for each variable is bolded. For dq/dt
and PRECSC, global mean R2 is not an ideal evaluation metric and not reported
due to negligible variability in dq/dt in the upper atmosphere and PRECSC in the
tropics in the dataset.

4.2 Offline Skill Boost from Expanding Features and Targets

We performed an ablation of our best-performing MLP baseline to demonstrate the added
value of the expanded inputs and targets available in ClimSim, i.e., using inputs x of size
di = 617 and targets y ∈ R

do of size do = 368; see Table 1 in SI for the full list of variables.
We use the same transformation described in our preprocessing workflow to compute and
add condensate (cloud liquid and cloud ice) and momentum (zonal and meridional winds)
tendencies to the target vector. We conducted this ablation study with both the low-resolution
and the high-resolution datasets (see Section 3.1 in SI for further details regarding these
MLP variants). For common elements of the target vector, using all available variables
leads to a uniform improvement in prediction accuracy, especially for precipitation, in both
resolutions (Figures SI7, SI8 and Table SI4). The larger errors (e.g., MAE and RMSE)
observed in the high-resolution emulators are anticipated due to the increased variance
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of higher-resolution data. Nevertheless, the similarity of their R2 values to those of the
corresponding low-resolution emulators confirms their adequate performance.

4.3 Evaluation Metrics

Our evaluation metrics are computed separately for each variable in the output vector.
The mean absolute error (MAE) and the coefficient of determination (R2) are calculated
independently at each horizontal and vertical location and then averaged horizontally and
vertically to produce the summary statistics in Figure 2. For the vertically-varying fields,
we first form a mass-weighting and then convert moistening and heating tendencies into
common energy units in Watts per square meter as in Beucler et al. (2024). We also report
continuous ranked probability scores (CRPS) for all considered models in SI.

4.4 Baseline Model Results

Figure 2 summarizes the error characteristics. Whereas heating and moistening rates have
comparable global mean MAE, behind a common background vertical structure (Figure 2
b,c) the coefficient of determination R2 (d,e) reveals that certain architectures (RPN, HSR,
cVAE, CNN) consistently perform better in the upper atmosphere (model level < 30) whereas
the highly optimized MLP model outperforms in the lower atmosphere (model level > 30)
and therefore the global mean (Table 2). For the global mean MAE, we see the largest
averaged errors for PRECC and NETSW (mean MAE > 15 W/m², Figure 2 and Table 2),
where MLP clearly has the best skill compared to all other benchmark models. For the other
variables, the global mean MAE is considerably smaller, and the skill of the benchmarks
model appears to be more similar in absolute numbers. While for the global mean R2 we
find the lowest measurable performance for dT/dt and PRECC (mean R2 < 0.7) and in
these cases, CNN gives the most skillful predictions. The other variables have larger R2 of
order 0.8 or higher, which suggests that these quantities are easier to deep-learn (Table 2).
For dq/dt and PRECSC global mean R2 is not an ideal evaluation metric due to negligible
variability in dq/dt in the upper atmosphere and for PRECSC in the tropics in the dataset
(Table 2).

Additional tables and figures that reveal the geographic and vertical structure of these
errors, fit quality, and analysis of stochastic metrics are included in SI (Sections 4.3, 8.1, and
8.2 in SI).

4.5 Physics-Informed Guidance to Improve Generalizability and Online
Performance

Physical Constraints: Mass and energy conservation are important criteria for Earth
system simulation. If these terms are not conserved, errors in estimating sea level rise or
temperature change over time may become as large as the signals we hope to measure.
Enforcing conservation on the learned quantities helps constrain results to be physically
plausible and reduce the potential for errors accumulating over long time scales. In addition to
conservation laws, we demonstrate in Section 5.4 that implementing cloud physics constraints
can optimize online error and improve the stability of hybrid simulations. We discuss how to
implement a range of conservation and cloud physics constraints, as well as enforce additional

12



ClimSim-Online: Dataset and Framework for Hybrid Climate Emulation

Figure 2: (a) Summary, where dT/dt and dq/dt are the tendencies of temperature and
specific humidity, respectively, and were vertically integrated with mass weighting.
(b,c) retain the vertical structure of MAE and (d,e) R2. Error bars and grey
shadings show the the 5- to 95-percentile range of MLP. Refer to Table 1 for
variable definitions.

constraints, such as non-negativity for precipitation, condensate, and moisture variables, in
the SI.

Stochasticity and Memory: The results of the embedded convection calculations
regulating do are chaotic and thus worthy of stochastic architectures, as in our RPN, HSR,
and cVAE baselines. These solutions are likewise sensitive to sub-grid initial state variables
from an interior nested spatial dimension that has not been included in our data.

Temporal Locality: Incorporating the previous timesteps’ target or feature in the input
vector inflation could be beneficial as it captures some information about this convective
memory and utilizes temporal autocorrelations present in atmospheric data. This approach
has been explored in previous studies (Han et al., 2020; Wang et al., 2022b; Han et al., 2023;
Behrens et al., 2024) and has been integrated into our model for online testing (see Section 5
in the main text and Section 6.3.3 in the SI).

Causal Pruning: A systematic and quantitative pruning of the input vector based on
objectively assessed causal relationships to subsets of the target vector has been proposed
as an attractive preprocessing strategy, as it helps remove spurious correlations due to
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confounding variables and optimize the ML algorithm (Iglesias-Suarez et al., 2023; Kühbacher
et al., 2024).

Normalization: Normalization that goes beyond removing vertical structure could be
strategic, such as removing the geographic mean (e.g., latitudinal, land/sea structure) or
composite seasonal variances (e.g., local smoothed annual cycle) present in the data. For
variables exhibiting exponential variation and approaching zero at the highest level (e.g.,
metrics of moisture), log-normalization might be beneficial.

Expanded Resolution and Complete Inputs and Outputs: Our baseline models
have focused on the low-resolution dataset, for ease of data volume, and using only a subset of
the available inputs and outputs. This illustrates the essence of the ML challenge. However,
we show in our ablation study, using MLPs, that including all input variables generally
yields an improved reproduction of the target variables in both the low-resolution and the
high-resolution datasets (Figures SI7 and SI8 and Table SI4). Accordingly, we encourage
users who discover competitive fits in this approachable limit to expand to all inputs/outputs
in the high-resolution, real-geography dataset, for which successful fits become operationally
relevant.

Further ML Approaches: Recent methods to capture multi-scale processes using
neural operators that learn in a discretization-invariant manner and can predict at higher
resolutions than available during training time (Li et al., 2021) may be attractive. Their
performance can be further enhanced by incorporating physics-informed losses at a higher
resolution than available training data (Li et al., 2023). Ideas on ML modeling for sub-
grid closures from adjacent fields like turbulent flow physics and reactive flows can also be
leveraged for developing architectures with an inductive bias for known priors (Ling et al.,
2016), easing prediction of stiff non-linear behavior (MacArt et al., 2021; Xing et al., 2021;
Brenner et al., 2019), generative modeling with physical constraints (Subramaniam et al.,
2020; Kim et al., 2019) and for interpretability of the final trained models (MacArt et al.,
2021).

5 Hybrid Testing and Online Performance Evaluation

The primary objective of evaluating a machine learning model within hybrid climate sim-
ulations is to measure the online error (Rasp et al., 2018; Wang et al., 2022b; Kochkov
et al., 2023; Sanford et al., 2023a). This error assesses how well the hybrid simulation, which
integrates the ML model with the rest of the climate simulator, reproduces the statistics of the
original high-fidelity climate simulation. Optimizing offline metrics does not necessarily lead
to optimized online performance (Ott et al., 2020; Wang et al., 2022b), as small prediction
errors at each time step can accumulate over year-long climate simulations (26,280 timesteps
per simulated year). In this section, we describe how to integrate the ML model into the
climate model and the process for evaluating the online performance of the hybrid ML-physics
climate simulations. We also provide a case study from Hu et al. (2024) illustrating our
experience in improving the online performance of the hybrid simulation. In this online task,
the ML models predict the expanded targets y ∈ R

do of size do = 368, similar to baseline
models with expanded features and target (Section 4.2) (tendencies of temperature, moisture,
cloud water, cloud ice, zonal wind and meridional wind, in addition to precipitation and
radiative fluxes at the surface, see Table 1 in the SI). These expanded targets ensure that
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the ML model predicts all the necessary variables to update the atmospheric state and drive
the rest of the climate simulator, thereby enabling complete coupling.

5.1 Software to Integrate ML Models into Physical Climate Simulations

Pytorch-Fortran Coupling: The original climate model, the E3SM-MMF multi-scale
climate model (see Section 1.1 in SI for more details), is written in object-oriented, MPI-
decomposed Fortran. To integrate a Python-based ML model into the climate model and
replace the learned code subregion, we implemented a coupling workflow using an open-source
library called Pytorch-Fortran (Alexeev, 2023). This library simplifies the integration of
PyTorch models with Fortran-based climate simulators and specifically supports TorchScript
models. It provides straightforward interfaces for loading ML models, processing Fortran
tensors in a zero-copy fashion, and performing efficient batch inference.

TorchScript: To utilize the PyTorch-Fortran bindings, it is necessary to first serialize
PyTorch models using TorchScript (Contributors, 2024). TorchScript models can operate
independently of Python and support flexible architecture design. Converting a PyTorch
model into TorchScript is straightforward, as TorchScript is compatible with most PyTorch
functions and many Python built-ins. Section 6.1 in the SI provides detailed instructions on
writing PyTorch models that can be converted into TorchScript. We also include example code
for converting a PyTorch model into TorchScript. Although we use the TorchScript interface
in PyTorch-Fortran for best performance, PyTorch-Fortran also supports spawning a Python
interpreter and run any Python code using other ML packages (e.g., JAX, scikit-learn, and
TensorFlow), provided the input and output interface of the Python code is torch.Tensor.

Cross-Platform Containerized Hybrid Testing Workflow: Building flexible
couplers to foster the progress from skillful ML parameterizations into skillful hybrid ML-
Physics climate simulators is vital for the ML and climate community. Unfortunately, the
complexity and nuance involved in performing climate simulations has meant many wasted
graduate student hours and a dearth of online error results in the hybrid simulation literature
(Lin et al., 2023). We have implemented the first end-to-end containerized workflow for this
purpose, enabling ML models to be integrated into our climate simulator for online testing.
This container can be deployed on multiple platforms, including Linux-based laptops or
workstations, high-performance computing (HPC) clusters, and cloud-based virtual machines.
Once the container is set up, users can easily launch hybrid simulations by providing the
trained ML model in TorchScript format and reproduce the results shown in Figure 3.

5.2 Metrics for Evaluating Online Errors in Hybrid Climate Simulations

Root Mean Square Error: Our online evaluation metrics are computed separately for
each variable in the hybrid simulations. For a given month, the root mean square error
(RMSE) for each variable is calculated as follows:

RMSE =

√√√√ Sm∑
i=1

wi(ŷm − ym)2 (1)

where:
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• Sm is the number of samples (each horizontal grid cell at a given time is one sample)
across the entire globe,

• ŷm represents the values from the hybrid simulation averaged over the entire month,

• ym represents the values from the reference simulation averaged over the entire month,

• w1, w2, . . . , wSm are weights that sum to 1 and are proportional to the air mass in each
grid cell.

Zonal Mean Bias: Additionally, we evaluate the multi-year (26,280 timesteps per year)
zonal mean bias, which measures the average difference between the hybrid simulation and
the reference simulation across key atmospheric variables, such as temperature, moisture,
wind, and cloud liquid and ice water. The zonal mean bias is derived by comparing variables
averaged over time and longitudes. For a more detailed illustration of the zonal mean bias
results, please refer to Section 6.4 in the SI.

5.3 Experiment Setup for Hybrid Online Testing

The initial architecture we used for testing the online performance was the MLP model
described in Section 4. However, as we will show in the next section, the hybrid simulations
with the MLP model were unstable and exhibited large online errors. The online failure of the
MLP model motivated us to explore more expressive architectures to achieve stable hybrid
simulations. Hu et al. (2024) explored a U-Net architecture, which is effective at capturing
the atmospheric vertical structure and is also recommended by Heuer et al. (2023). This
U-Net architecture achieved stable hybrid simulations with satisfying online performance
(see Section 5.4 and see Section 6.4 in the SI).

Here, we use the experiments and results from Hu et al. (2024) to illustrate the online
evaluation process and highlight experiences and key factors for optimizing online performance.
Three architecture designs are evaluated: a baseline MLP architecture, and two U-Net
architectures with expanded input features that include information from previous time steps.
One of the U-Net models further incorporates additional cloud physics constraints to enhance
performance. It is worth noting that these MLP and U-Net models are trained with different
input/output normalization strategies than those used in the baseline models in Section 4
Hu et al. (2024).

To account for the variability in online performance not fully captured by offline skill, we
tested three different checkpoints for each model. These checkpoints were obtained using
varying loss functions and learning rate schedules, as different configurations were found to
lead to differing online stability and error, even with similar offline performance (Lin et al.,
2023).

Each checkpoint was used to run a one-year hybrid simulation with the same initial
conditions. We evaluated the monthly RMSE evolution throughout the year compared to
the reference E3SM-MMF simulation. Additionally, to estimate the inherent unpredictability
of the atmospheric system, we ran three additional pure physical simulations with the same
initial conditions. These pure physical simulations were implemented using parallel reductions
and atomic operations that prevent bitwise reproducibility (see Section 6.3.5 in the SI). The
accumulation of these rounding errors over time can lead to variations in the climate model
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outcomes, mimicking the chaotic nature of the atmosphere. These simulations serve as a
baseline for the atmospheric unpredictability.

For more details on model architectures, hyperparameters, input variables, and cloud
physics constraints, please refer to Section 6.3 in the SI.

5.4 Results of Online Performance Testing

Figure 3: (a) Offline R2 scores across various variables for MLP, U-Net, and U-Net with
physics constraints. Variables are the full target variables listed in Table S1,
including temperature tendency (dTdt ), water vapor tendency (dQv

dt ), liquid cloud
mixing ratio tendency (dQc

dt ), ice cloud mixing ratio tendency (dQi
dt ), zonal wind ten-

dency (dUdt ), meridional wind tendency (dVdt ), and eight flux variables. (b,c) Online
monthly and globally averaged (both horizontally and vertically and weighted by
mass in each grid) RMSE of temperature (K) and moisture (g/kg) over a one-year
period, comparing baseline MLP, U-Net, and U-Net with physics constraints mod-
els against the reference E3SM-MMF simulation. Atmospheric unpredictability
(black dashed lines) is estimated by running the reference E3SM-MMF simulations
multiple times with the same initial condition while allowing for the chaotic growth
of the random rounding errors.

Summary of Online Error and Offline Skill: Figure 3 summarizes the online error
for the one-year hybrid simulations along with the offline skill changes across our model
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choices. The hybrid simulations with the baseline MLP models were unstable, with all three
instances crashing within the first two months of the simulations. In contrast, the more
expressive U-Net architecture, which includes additional inputs from previous time steps,
improved the R2 score across all vertical levels and variables. In our case, this enhanced offline
skill also translated to better online performance. The U-Net architecture allowed for more
stable hybrid simulations, with all the U-Net simulations completing the full year. During
the first month before the MLP simulations crashed, these U-Net simulations demonstrated
significantly lower first-month RMSE for climatological temperature and moisture compared
to the hybrid simulations that used the MLP models without the additional previous-time
inputs.

Impact of Cloud Physics Constraints: Incorporating cloud physics constraints
significantly improved stability and reduced error growth in the hybrid simulations. Without
these constraints, the U-Net models developed increasing errors after a few months, leading
to unrealistic cloud formations not represented in the training data, which potentially
contributed to higher error growth (see Hu et al. (2024) for more details). The cloud
physics constraints mitigated this issue by ensuring clouds formed appropriately relative to
temperature, such as preventing liquid clouds at very low temperatures where condensate
should be frozen.

Achieving State of the Art for Hybrid Error: With these constraints, the online
RMSE stabilized after an initial rise within the first two months. The global temperature
RMSE remained around 2K, and the global moisture RMSE stayed below 1 g/kg, during
the entire span of the one-year simulations (red lines in Figure 3). In the SI, we show that
the U-Net model with cloud physics constraints can integrate stably for at least five years,
maintaining a tropospheric zonal mean temperature bias below 2K and a moisture bias below
1 g/kg. While there is still room for improvement, these magnitudes outperform the state
of the art results of (Han et al., 2023) within the context of analogous multi-scale hybrid
climate simulations, despite our having included the full complexity of interactive condensate
coupling and inclusion of radiative transfer within the full-physics ML parameterization,
which was sidestepped in that work. A caveat in this comparison is that the work of (Han
et al., 2023) used a higher resolution host climate model that has higher intrinsic variance,
as well as a different software version for the multi-scale climate simulator.

Beyond the context of the multiscale modeling framework, other state-of-the-art hybrid
ML-physics climate simulators include those by Kochkov et al. (2023) and Sanford et al.
(2023a) demonstrate additional metrics of hybrid model performance. For example,Sanford
et al. (2023a) reported a pattern RMSE of 1.2K for the annual mean temperature climatology
at 200 hPa and 850 hPa and 2 mm for precipitable water compared to their reference
dataset using a coarse-grained high-resolution global storm-resolving model. Sanford et al.
(2023a) also showed an annual-mean zonal mean temperature bias below 1K over most of the
troposphere and a zonal mean moisture bias within 0.8 g/kg. Kochkov et al. (2023) reported
an annual-mean temperature RMSE of 0.61K at 850 hPa and 1.05K at 200 hPa, and an
RMSE of 1.09 mm for annual precipitable water against their reference ERA5 dataset. It is
also worth noting that such error metrics tend to be a function of climate model resolution
and thus cannot be directly compared between these studies; the resolution in our hybrid
model is approximately 10◦, which is much lower than the 2◦ used by Sanford et al. (2023a)
and the 1.4◦ used by Kochkov et al. (2023).

18



ClimSim-Online: Dataset and Framework for Hybrid Climate Emulation

Further optimizing the remaining non-differentiable online bias is challenging and worthy
of community effort. We discuss potential methods to optimize these online bias in Section
6.5 of the SI.

6 Limitations and Other Applications

Idealizations: A limitation of the multi-scale climate simulator used to produce ClimSim
(E3SM-MMF) is that it assumes scale separation, i.e., that convection can be represented
as laterally periodic within the grid size of the host simulator, and neglects sub-grid scale
representations of topographic and land-surface variability. The configuration of the multi-
scale climate simulator used to make ClimSim also has no atmosphere-ocean coupling and
ignores the radiative effects of aerosols. These are essential for simulating important climate
phenomena like El Niño and the influence of aerosols on cloud properties, which are critical
for realistic future climate projections. Despite these simplifications, the data adequately
capture many historically challenging aspects of the ML parameterization problem, such
as stochasticity, and complex nonlinear interactions across radiation, microphysics, and
turbulence.

Hybrid testing: To maximize simplicity and scalability, our containerized pipeline for
evaluating hybrid error uses a very low resolution hybrid climate simulation that can run on
just a single cloud compute node and even a personal laptop, and our evaluation protocol
contains only minimum viable integrative statistics of hybrid climate simulation errors. As
methods to reliably achieve hybrid skill mature, this pipeline should be expanded. First, in
its computational ambition, towards multi-node cloud-compatible configurations compatible
with a full-resolution hybrid simulation. Second, to more fully evaluate a resulting historical
simulation or a simulation under Atmospheric Modelling Intercomparison Project conditions
(AMIP, Gates et al., 1999) with a hybrid model with Earth observations. Testing large
ensembles launched from multiple initial conditions as in Kochkov et al. (2023) would be
beneficial. Implementing diagnostics of the tendencies predicted by the ML versus physics
model, while each is alternately coupled to the host dynamics, would be strategic as was found
useful for making progress on microphysics ML parameterization in Perkins et al. (2024).
Finally, as hybrid simulators stabilize and begin to produce reasonable time-mean climate
statistics, their variability behind the mean state becomes important to validate, such as by
measuring intrinsic cyclogenesis frequency (Kochkov et al., 2023). Community-developed
open-source diagnostic tools such as the Earth System Model Evaluation Tool (Eyring et al.,
2020) and the Model Diagnostics Task Force Framework (Neelin et al., 2023) facilitate the
evaluation of climate simulations compared to observations and traditional climate models.

Stochasticity: One open problem that the dataset may allow assessing is understanding
the role of stochasticity in hybrid-ML simulation. While primarily used as a dataset for
regression it would be also interesting to assess and understand the degree to which different
variables are better modeled as stochastic or deterministic, or if the dataset gives rise to
heavy-tailed or even multi-modal conditional distributions that are important to capture.
To date, these questions have been raised based on physical conjectures (e.g., Lin and
Neelin, 2003) but remain to be addressed in the ML-based parameterization literature. For
instance, precipitation distributions have long tails that are projected to lengthen under
global climate change (O’Gorman, 2015; Neelin et al., 2022)—and will thus tend to generate
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out-of-distribution extremes. ClimSim could help construct optimal architectures to capture
precipitation tails and other impactful climate variables such as surface temperature, and
could be easily extended to a distributional regression benchmark.

Interpretability: This dataset could also be utilized to discover physically interpretable
models for atmospheric convection, radiation, boundary layer turbulence, and microphysics.
A possible workflow would apply dimensionality reduction techniques to identify domi-
nant predictors and vertical variations, followed by symbolic regression to recover analytic
expressions (Zanna and Bolton, 2020; Grundner et al., 2023).

Generalizability: Although the impacts of global climate change and inter-annual
variability are absent in this initial version of ClimSim, important questions surrounding
climate-convection interactions can begin to be addressed. One strategy would involve
partitioning the data such that the emulator is trained on cold columns, but validated on
warm columns, where warmth could be measured by surface temperatures, as in Beucler
et al. (2024). However, the results from this approach may also reflect the dependence of
convection on the geographical distribution of surface temperatures in the current climate
and should be interpreted with caution. To optimally engage ML researchers in solving the
climate generalization problem, a multi-climate extension of ClimSim should be developed
that includes physical simulations that samples future climate states and more internal
variability.

7 Conclusion and Future Work

We introduce ClimSim-Online, the most physically comprehensive dataset and framework
yet published for training and testing ML-based parameterizations of atmospheric storms,
clouds, turbulence, rainfall, and radiation for use in hybrid-ML climate simulations. It
contains all inputs and outputs necessary for online coupling in a full-complexity multi-scale
climate model. Additionally, it provides a containerized pipeline to integrate ML models into
climate models, allowing for the evaluation of online performance in hybrid-ML climate model
simulations. This containerized approach ensures reproducibility and accessibility, making
it user-friendly for ML researchers without domain expertise and, unlike typical climate
simulations, compatible with commonly available cloud and local computing environments.
We conduct a series of experiments on a subset of these variables that demonstrate the
degree to which climate data scientists have been able to fit the deterministic and stochastic
components in the dataset. We also provide a hybrid-ML baseline model to showcase one
example of improving the hybrid stability and online error, along with initial metrics for
assessing it. This demonstrates how ClimSim-Online can be an operational pipeline to
explore capabilities of novel models from the ML community in climate science.

We hope ML community engagement in ClimSim will advance fundamental ML method-
ology and clarify the path to producing increasingly skillful subgrid-scale physics parame-
terizations that can be reliably used for operational climate simulation (Eyring et al., 2025,
accepted). To facilitate two-way communications between ML practitioners and climate sci-
entists, we incorporate many desired characteristics for an ideal benchmark dataset suggested
in Ebert-Uphoff et al. (2017); Dueben et al. (2022). Such interdisciplinary collaboration
will open up an exciting future in which the computational limits that currently constrain
climate simulation can be reconsidered. We are already encouraged by several thousand
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global participants in a Kaggle ML competition based on the ClimSim dataset that has
attracted users from diverse domains and fostered innovation in the offline problem Lin et al.
(2024).

We plan to soon extend the ClimSim dataset to include a sampling of multiple future
climate states Clark et al. (2022b); Bhouri et al. (2023b). We hope the lessons learned from
our focus on multi-scale atmospheric simulations will apply to other sub-fields of Earth
System Science, where computational constraints currently hinder explicit representations of
more complex systems.
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1 Climate Simulations

Climate models divide the Earth’s atmosphere, land surface, and ocean into a 3D grid,
creating a discretized representation of the planet. Somewhat like a virtual Lego construction
of Earth, with each brick representing a small region (grid cell). Earth system models are
made up of independent component models for the atmosphere, land surface, rivers, ocean,
sea ice, and glaciers. Each of these component models is developed independently and can
run by itself when provided with the appropriate input data. When running as a fully coupled
system the “component coupler” handles the flow of data between the components.

Within each grid cell of the component models, a series of complex calculations are
performed to account for various physical processes, such as phase changes of water, radiative
heat transfer, and dynamic transport (referred to as “advection”). Each component model
uses the discretized values of many quantities (such as temperature, humidity, and wind
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speed) as inputs to parameterizations and fluid solvers to output those same values for a
future point in time.

The atmosphere and ocean components are the most expensive pieces of an Earth system
model, which is largely due to the computation and inter-process communication associated
with their fluid dynamics solvers. Furthermore, a significant portion of the overall cost is
attributed to the atmospheric physics calculations that are performed locally within each
grid column. It is important to note that atmospheric physics serves as a major source of
uncertainty in climate projections, primarily stemming from the challenges associated with
accurately representing cloud and aerosol processes.

1.1 Model Description

The data that comprise ClimSim are from simulations with the Energy Exascale Earth System
Model-Multiscale Modeling Framework version 2.1.0 (E3SM-MMF v2) (E3SM Project, 2023).
Traditionally, global atmospheric models parameterize clouds and turbulence using crude,
low-order models that attempt to represent the aggregate effects of these processes on larger
scales. However, the complexity and nonlinearity of cloud and rainfall processes make them
particularly challenging to represent accurately with parameterizations. The MMF approach
replaces these conventional parameterizations with a cloud resolving model (CRM) in each
cell of the global grid, so that cloud and turbulence can be explicitly represented. Each of
these independent CRMs is spatially fixed and exchange coupling tendencies with a parent
global grid column. This novel approach to representing clouds and turbulence can improve
various aspects of the simulated climate, such as rainfall patterns (Kooperman et al., 2016).

The configuration of E3SM-MMF used here shares some details with E3SMv2. The
dynamical code of E3SM uses a spectral element approach on a cubed-sphere geometry.
Physics calculations are performed on an unstructured, finite-volume grid that is slightly
coarser than the dynamics grid, following Hannah et al. (2021), which is better aligned with
the effective resolution of the dynamics grid. Cases with realistic topography include an
active land model component that responds to atmospheric conditions with the appropriate
fluxes of heat and momentum.

The embedded CRM in E3SM-MMF is adapted from the System for Atmospheric Modeling
(SAM) described by Khairoutdinov and Randall (2003). While the CRM does explicitly
represent clouds and turbulence, it still cannot represent the smallest scales of turbulence
and microphysics, and, therefore, these processes still need to be parameterized within each
CRM grid cell. Microphysical processes are parameterized with a single-moment scheme,
and sub-grid scale turbulent fluxes are parameterized using a diagnostic Smagorinsky-type
closure. Convective momentum transport in the nested CRM is handled using the scalar
momentum tracer approach of Tulich (2015). The CRM uses an internal timestep of 10
seconds, while the global calculations use a timestep of 20 minutes.

Despite recent efforts to accelerate E3SM-MMF with GPUs and algorithmic techniques
(Norman et al., 2022), the CRM domain size strongly affects the computational throughput
and limits the type of experiments that can be conducted. However, the MMF approach is
quite flexible in how the CRM size is specified. E3SM-MMF is typically run with a 2D CRM
that neglects one of the horizontal dimensions, and employs relatively coarse grid spacing
that cannot represent small clouds. Increasing the size of this 2D domain by adding further
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columns (more CRM cells) generally improves the realism of the model solution. Reducing
the model grid spacing can also improve the model to a certain degree, although the number
of columns often needs to be increased to avoid the degradation associated with a small
CRM. Ideally, the CRM would always be used in a 3D configuration to fully capture the
complex, chaotic turbulence that dictates the life cycle of each individual cloud, but this
approach is generally limited to special experiments that can justify the extra computational
cost. The simulations for ClimSim utilize a 2D CRM with 64 columns and 2 km horizontal
grid spacing within each grid cell.

The atmospheric component of E3SM uses a hybrid vertical grid that is “terrain-following”
near the surface, and transitions to be equivalent to pressure levels near the top (e.g., https:
//www2.cesm.ucar.edu/models/atm-cam/docs/usersguide/node25.html). The vertical
levels are specified to be thin near the surface to help capture turbulent boundary layer
processes, and are gradually stretched to be very coarse in the stratosphere. E3SM-MMF
uses 60 levels for the global dynamics with a top level around 65 km. The CRM used for
atmospheric physics uses 50 levels, ignoring the upper 10 levels, to avoid problems that arise
from using the anelastic approximation with very low densities. This does not create any
issues, because cloud processes are generally confined to the troposphere where the anelastic
approach is valid. The hybrid grid can be converted to pressure levels using Equation 1,
where P0 = 100, 000 Pa is a reference pressure, and Ps(x, t) is the surface pressure which
varies in location x and time t:

Pk = AkP0 +BkPs (1)

Ak and Bk—where the subscript k denotes the index of vertical coordinate—are the fixed,
prescribed coefficients that define how the “terrain-following” and “pure pressure” coordinates
are blended to define the hybrid coordinate at each vertical level. Ak and Bk are provided as
a part of the dataset with variable names of hyam and hyai or hybm and hybi, depending
on whether mid-level or interface values are needed. The third character of the variable
names (“a” and “b”) in Equation 1 denotes Ak and Bk coefficients, respectively. Note that the
indexing of the vertical coordinate starts from the top of the atmosphere due to the construct
of Ak and Bk coefficients, e.g., k = 0 for the top and k = 59 for the surface in E3SM-MMF.

In the E3SM-MMF framework, the sequencing of atmospheric processes can be conceptu-
alized as follows. It starts with a surface coupling step that receives fluxes from the surface
component models (i.e., land, ocean, and sea ice). This is followed by a set of relatively
inexpensive physics parameterizations that handle processes such as airplane emissions,
boundary layer mixing, and unresolved gravity waves. The global dynamics then takes
over to evolve the winds and advect tracers on the global grid. Finally, there is another
set of physics calculations to handle clouds, chemistry, and radiation, which are relatively
expensive. This final physics section is where the embedded CRM of E3SM-MMF is used,
and is the ideal target for surrogate model emulation due to its outsized computational
expense. Accordingly, this step represents the target of ClimSim.

One area where E3SM-MMF significantly differs from E3SMv2 is in the treatment of
aerosols and chemistry. The embedded CRM in E3SM-MMF predicts the mass of water
species (i.e., cloud and rain droplet mass mixing ratios) but does not predict the number
concentration (i.e., number of drops per mass of air). One consequence of this limitation
is that E3SM-MMF cannot represent complex cloud aerosol interactions that can impact
droplet number concentrations and cloud radiative feedbacks. Therefore, E3SM-MMF cannot
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use the more sophisticated aerosol and chemistry package used by E3SMv2, and instead uses
prescribed aerosol and ozone amounts to account for the direct radiative impact of these
tracers. Current efforts are addressing this limitation for future versions of E3SM-MMF.

1.2 Model Configurations

The simulations used for ClimSim were performed on the NERSC Perlmutter machine. E3SM-
MMF is unique among climate models in that it can leverage hybrid CPU/GPU architectures
on machines such as NERSC Perlmutter (https://www.nersc.gov/systems/perlmutter),
which has 4 NVIDIA A100 GPUs per node. All simulations were configured to run with
4 MPI ranks and 16 OpenMP threads per node. The low-resolution (real geography and
aquaplanet) cases used 2 nodes, and the high-resolution (real geography) case used 32 nodes.
The throughput of these configurations was roughly 11.5 simulated years per day (sypd)
for low-resolution cases and 3.3 sypd for the high-resolution case, averaged over multiple
batch submissions. The total simulation length in all cases was 10 model years and 2 model
months.

Boundary conditions over maritime regions are constrained by prescribed sea surface
temperatures and sea ice amount. Various input data are needed for the cases with realistic
topography, such as ozone concentrations and sea surface temperatures, which have been
generated to reflect a climatological average of the 2005-2014 period. The aquaplanet
configuration does not have a land component, but otherwise has similar input requirements
using idealized data to produce a climate that is symmetric along lines of constant latitude.

2 Dataset and Code Access

2.1 Code Access

Following NeurIPS Dataset and Benchmark Track guidelines, we have uploaded our datasets
to Hugging Face:

• E3SM-MMF High-Resolution Real Geography dataset:
https://huggingface.co/datasets/LEAP/ClimSim_high-res

• E3SM-MMF Low-Resolution Real Geography dataset:
https://huggingface.co/datasets/LEAP/ClimSim_low-res

• E3SM-MMF Low-Resolution Aquaplanet dataset:
https://huggingface.co/datasets/LEAP/ClimSim_low-res_aqua-planet

We have documented all code (including the code to preprocess the data, create, train, and
evaluate the baseline models, and visualize data and metrics) in an openly-available GitHub
repository: https://leap-stc.github.io/ClimSim. The containerized workflow of running
hybrid simulations can be found at https://github.com/leap-stc/climsim-online/.

2.2 Variable List

All variables included in our dataset are listed in Table 1.
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In Out Variable Dimensions Units Description

× pbuf_SOLIN ncol W/m2 Solar insolation

× pbuf_COSZRS ncol Cosine of solar zenith angle

× pbuf_LHFLX ncol W/m2 Surface latent heat flux

× pbuf_SHFLX ncol W/m2 Surface sensible heat flux

× pbuf_TAUX ncol W/m2 Zonal surface stress

× pbuf_TAUY ncol W/m2 Meridional surface stress

× pbuf_ozone lev, ncol mol/mol Ozone volume mixing ratio

× pbuf_N2O lev, ncol mol/mol Nitrous oxide volume mixing ratio

× pbuf_CH4 lev, ncol mol/mol Methane volume mixing ratio

× state_ps ncol Pa Surface pressure

× × state_q0001 lev, ncol kg/kg Specific humidity

× × state_q0002 lev, ncol kg/kg Cloud liquid mixing ratio

× × state_q0003 lev, ncol kg/kg Cloud ice mixing ratio

× × state_t lev, ncol K Air temperature

× × state_u lev, ncol m/s Zonal wind speed

× × state_v lev, ncol m/s Meridional wind speed

× state_pmid lev, ncol Pa Mid-level pressure

× cam_in_ASDIR ncol Albedo for direct shortwave radiation

× cam_in_ASDIF ncol Albedo for diffuse shortwave radiation

× cam_in_ALDIR ncol Albedo for direct longwave radiation

× cam_in_ALDIF ncol Albedo for diffuse longwave radiation

× cam_in_LWUP ncol W/m2 Upward longwave flux

× cam_in_SNOWHLAND ncol m Snow depth over land (liquid water equivalent)

× cam_in_SNOWHICE ncol m Snow depth over ice

× cam_in_LANDFRAC ncol Land area fraction

× cam_in_ICEFRAC ncol Sea-ice area fraction

× cam_out_NETSW ncol W/m2 Net shortwave flux at surface

× cam_out_FLWDS ncol W/m2 Downward longwave flux at surface

× cam_out_PRECSC ncol m/s Snow rate (liquid water equivalent)

× cam_out_PRECC ncol m/s Rain rate

× cam_out_SOLS ncol W/m2 Downward visible direct solar flux to surface

× cam_out_SOLL ncol W/m2 Downward near-IR direct solar flux to surface

× cam_out_SOLSD ncol W/m2 Downward visible diffuse solar flux to surface

× cam_out_SOLLD ncol W/m2 Downward near-IR diffuse solar flux to surface

Table 1: Overview of input variables (first column) and output variables (second column)
of the E3SM-MMF physics calculations (including the CRM) that are stored in
ClimSim. The other columns indicate the variable name, dimensions, units, and a
brief description. IR is short for infrared, which is also often referred to as “longwave”
radiation among atmospheric scientists.
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2.3 Dataset Statistics

Here, we present some distribution statistics to aid in understanding the dataset. Detailed
distributions for all variables are provided in https://github.com/leap-stc/ClimSim/

tree/main/dataset_statistics. These statistics are calculated for each vertical level
individually for the vertically-resolved variables (e.g., state_t and state_q0001). For each
variable (additionally, at each level for the vertically-resolved variables), a histogram is
provided to visualize the distribution using 100 bins. Additionally, a text file accompanies
each histogram, containing key statistical measures such as the mean, standard deviation,
skewness, kurtosis, median, deciles, quartiles, minimum, maximum, and mode. The text
file also includes the bin edges and the corresponding frequency values used to generate
the histogram figures. This comprehensive approach allows for a detailed analysis of the
dataset’s distributions.

2.4 Dataset Applications

Our data can benefit a broader audience beyond climate modelers wishing to explore ML
for sub-grid parameterization. For climate studies, while high-frequency timestep-level
outputs from simulations are rarely archived, they offer insights into convective extremes
and diurnal variability. Such data opens the path to explore multi-scale interactions between
rapid dynamics and broader weather and climate fluctuations. This includes a detailed
examination of variables needed to constrain vertically resolved energy and water budgets
and understand their variability. For the machine learning community, this dataset addresses
the scarcity of large-scale regression benchmarks, common in the sciences. Such benchmarks
are less common compared to prevalent industrial datasets that emphasize classification,
computer vision, and NLP tasks.

2.5 Target Audiences

In essence, this benchmark aims to democratize and expand access to advanced climate
modeling. High-potential architectures will undergo testing in the superparameterized version
of the DOE’s primary climate model, E3SM. Successful integration would substantially reduce
computational costs for the DOE when contemplating the deployment of MMF technology
in climate prediction. E3SM’s external user community, typically deterred by the extensive
computational demands of superparameterized simulators, also stands to benefit. Currently,
only a minority with substantial computing resources can engage with such models. A
successful recipe for ClimSim could thus democratize the use of explicit convection for a
broader user base. If performant architectures also prove effective in the NCAR Community
Earth System Model (CESM) - the world’s most widely used open source climate simulator
- the user base could expand significantly. Given its software similarities to E3SM, it is
logical to expect that ClimSim’s learnt parameterizations will be readily adaptable to CESM.
Moreover, we anticipate that a successful hybrid machine learning climate simulator will
bring benefits to a diverse range of industry sectors, including those vulnerable to climate
risks (such as agriculture, energy, and tourism), as well as the climate risk industry itself
(such as insurance and risk assessment).
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3 Baseline Models

This section offers a detailed depiction of six baseline models. Every facet of model designs,
excluding the dimensions of the input and output layers, differs among the models. We
recognize that while this approach maximizes the differentiation among baseline models, such
extensive degrees of freedom complicate the complete isolation of the effects arising from
optimization parameter choices and those originating from the model architecture itself. In
future ClimSim releases, baseline models will share more constraints (including optimization
parameters) to highlight the performance difference due to model architectures.

3.1 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a basic, densely connected artificial neural network. We
used KerasTuner (O’Malley et al., 2019) with a random search algorithm for hyperparameter
optimization. The following hyperparameters were optimized: the number of hidden layers
(N layers), the number of nodes per layer (N nodes), activation function, and batch size. The
search domains were:

• N layers: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

• N nodes: [128, 256, 384, 512, 640, 768, 896, 1024]

• Activation function: [ReLU, LeakyReLU (α = 0.15), eLU (α = 1.0)]

• Batch size: [48, 96, 192, 384, 768, 1152, 1536, 2304, 3072]

• Optimizer: [Adam, RAdam, RMSprop, SGD]

Note that N nodes was selected independently for each hidden layer. For example, for
N layers = k, N nodes was drawn from the search domain k times. The width of the last hidden
layer was fixed at 128. The output layer utilized the linear activation function for the first
120 outputs (corresponding to the heating and moistening tendencies), and ReLU for the
remaining 8 variables (corresponding positive-definite surface variables). The loss function
was taken as the mean squared error (MSE), and the learning rate was defined using a cyclic
scheduler, with an initial learning rate of 2.5 × 10-4, maximum of 2.5 × 10-3, and step size
of 4 epochs.

Following Yu et al. (2023, Under Review), we conducted the hyperparameter search in
two stages. In the first stage, a total of 8,257 randomly-drawn hyperparameter configurations
were trained and evaluated with a tiny subset of the full training set, sub-sampled in the
time dimension with a stride of 37. In the second stage, the top 0.2% candidates (160
hyperparameter configurations) were re-trained with a larger fraction of the full training
set (sub-sampled with a stride of 7), and then evaluated for our MLP baseline. After this
two-step search process, the best hyperparameter configuration was identified as: N layers = 5,
N nodes = [768, 640, 512, 640, 640], LeakyReLU activation, a batch size of 3,072, and RAdam
optimizer. The MLP baseline has approximately 1.75 million parameters and executes 3.50
MFlops on one data point, the architecture of which is summarized in Figure 1.

To provide some context on the amount of variance in model performance that can be
attributed to random effects of optimization, the top 160 models were selected from our
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pool of 8,257 trials and scored on the validation set; the 5th to 95th percentile range of
this ensemble is shown by the error bars in Figures 2a and SI3, and by the grey shading in
Figures 2b-e, SI4, and SI5.

Figure 1: The architecture of the MLP baseline model.

MLP with expanded features and targets: We built MLP with an expanded set of
input and output variables, as elaborated in Section 4.2 of the main text. For the sake of
clarity, we designate an MLP model employing the subset of available variables (outlined
in Section 4 of the main text) as "MLPv1," while an MLP model utilizing the expanded
variables is referred to as "MLPv2." The hyperparameter optimization for MLPv2 followed
a similar process as MLPv1, with the exception that the search domain of batch size was
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defined as [2700, 5400, 10800, 21600, 43200, 64800, 86400, 129600, 172800]. After 11,851
search trials, the best hyperparameter configuration was identified as: N layers = 3, N nodes =
[384, 1024, 640], ReLU activation, a batch size of 2,304, and Adam optimizer. The MLPv2
baseline has approximately 1.59 million parameters and executes 3.17 MFlops on one data
point.

MLP with the high-resolution dataset: In conjunction with the MLP featuring
expanded features and targets, we also constructed MLP models using the high-resolution
dataset for both MLPv1 and MLPv2. To differentiate these models from those constructed
with the low-resolution dataset, we add the suffix "-ne30" to their names. The hyperparame-
ters for MLPv1-ne30 and MLPv2-ne30 were optimized using the same methodology as was
applied to their low-resolution counterparts. For MLPv1-ne30, after 10,296 search trials, the
best hyperparameter configuration was identified as: N layers = 4, N nodes = [1024, 128, 128,
768], leaky ReLU activation, a batch size of 5,400, and Adam optimizer. The MLPv1-ne30
baseline has approximately 0.49 million parameters and executes 0.98 MFlops on one data
point. For MLPv2-ne30, after 10,440 search trials, the best hyperparameter configuration
was identified as: N layers = 3, N nodes = [640, 128, 1024], ReLU activation, a batch size
of 2,700, and Adam optimizer. The MLPv2-ne30 baseline has approximately 1.00 million
parameters and executes 2.00 MFlops on one data point.

The model performance comparison between MLPv1, MLPv2, MLPv1-ne30, and MLPv2-
ne30 is presented in SI Section 8.1.

3.2 Randomized Prior Network (RPN)

A randomized prior network (RPN) is an ensemble model (Osband et al., 2018). Each member
of the RPN is built as the sum of a trainable and a non-trainable (so-called “prior”) surrogate
model; we used MLP for simplicity. Multiple replicas of the networks are constructed by
independent and random sampling of both trainable and non-trainable parameters (Yang
et al., 2022; Bhouri et al., 2023). RPNs also resort to data bootstrapping in order to mitigate
the uncertainty collapse of the ensemble method when tested beyond the training data points
(Bhouri et al., 2023). Data bootstrapping consists of sub-sampling and randomization of the
data each network in the ensemble sees during training. Hyperparameters of individual MLPs
(i.e., N layers, N nodes, batch size) did not need to be tuned from scratch, and were instead
chosen based on the hyperparameter search mentioned in Section 3.1. RPN ensembles of 128
networks were considered justified (Yang et al., 2022).

In particular, individual MLPs forming the RPN were considered as fully connected
neural networks with N layers = 5, N nodes = [768, 640, 512, 640, 640], and a batch size of
3,072, as in Section 3.1. We utilized ReLU activation (with a negative slope of 0.15) for all
layers except for the output layer, where the linear activation function was used.

The MLPs were trained for a total of 13,140 stochastic gradient descent (SGD) steps
using the Adam optimizer. The learning rate was initialized at 5 × 10-4 with an exponential
decay at a rate of 0.99 for every 1,000 steps. The RPN baseline has approximately 222.3
million parameters (∼1.74 million per MLP) and executes 0.89 GFlops on one data point.
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3.3 Convolutional Neural Network (CNN)

The convolutional neural network (CNN) used is a modified version of a residual network
(ResNet). Each ResNet block is composed of two, 1D convolutions (Conv1D) with a 3 × 3
kernel using “same” padding, and an output feature map size of 406. Each Conv1D is followed
by ReLU activation and dropout (with rate = 0.175). Residuals were also 1D convolved
using a 1 × 1 kernel, and added back to the output of the main ResNet block.

The CNN composes 12 such ResNet blocks, followed by “flattening” of the feature map via
a 1 × 1 convolution and eLU activation. Two separate Dense layers (and their corresponding
activations) map the output feature map to their respective co-domains: one to (−∞,∞)
assuming that vertically-resolved variables have no defined range, and another to [0,∞) for
all globally-resolved variables. These were concatenated as the output of the network.

A hyperparameter search was conducted on depth, width, kernel size, activation functions,
loss functions, and normalization types using the Hyperband (Li et al., 2018) strategy with
the KerasTuner (O’Malley et al., 2019) framework. The search domains were:

• Model depth/number of ResNet blocks: [2, 15]

• Model width: [32, 512]

• Kernel width: [3, 5, 7, 9]

• Activation function: [GeLU, eLU, ReLU, Swish]

• Layer normalization: [True, False]

• Dropout: [0.0, 0.5]

• Optimizer: [SGD, Adam]

The CNN was trained for 10 epochs with an Adam optimizer with standard hyperparameters
(β1 = 0.9, β2 = 0.999, ε = 1× 10−7). The learning rate was defined using a cyclic scheduler,
with an initial learning rate of 1 × 10-4, a maximum of 1 × 10-3, and a step size of 2
×�10,091,520

12 �. A scaling function of 1
2.0x−1 was applied to the scheduler per step x.

The hyperparameter search was conducted for 12 hours on 8 NVIDIA Tesla V100 32GB
cards, with one model executing on each card. A weighted mean absolute error (MAE) was
used as the loss function for optimization. We down-weighted the standard MAE loss to
de-emphasize repeated scalar values provided to the network as input. The weighted MAE
function is defined below:

def mae_adjusted(y_true , y_pred):

abs_error = K.abs(y_pred - y_true)

vertical_weights = K.mean(abs_error[:,:,0:2])*(120/128)

scalar_weights = K.mean(abs_error[:,:,2:10])*(8/128)

return vertical_weights + scalar_weights

The CNN baseline has approximately 13.2 million parameters and executes 1.59 GFlops on
one data point. The architecture is visualized below in Figure 2.
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Figure 2: The ResNet-style CNN baseline is comprised of multiple ResNet blocks (i.e.,
DoubleConv), and applies different activation to the outputs for vertically-resolved
and global variables. The channel dimensions are [in_channels, hidden_ch, out_ch,
vert_ch, scalar_ch] = [6, 406, 10, 8, 2].

3.4 Heteroskedastic Regression (HSR)

We quantified the inherent stochasticity in the data D = {(x1,y1), . . . , (xn,yn)}, and the
uncertainty in our prediction by providing a distributional prediction instead of a point
estimate. In hetereoskedastic regression (HSR), this predictive distribution is modeled
explicitly; here as independent Gaussians with unique mean μk and precision (inverse
variance) τk for each variable. We assumed

yi |xi ∼ N (μ(xi),Diag(τ(xi)
−1)),

and parameterized both μ and τ as over-parameterized feed-forward neural networks (i.e.,
MLPs) μ̂θ(x) and τ̂φ(x), respectively. This yielded the corresponding predictive distribution

ŷi |xi ∼ N (μ̂θ(xi),Diag(τ̂θ(xi)
−1)),

which was fitted with maximum likelihood estimation (MLE) by minimizing the objective

L(θ, φ) = 1

2n

n∑
i=1

[
‖τ̂φ(xi) (yi − μ̂θ(xi))‖22 − 1T log (μ̂θ(xi))

]
.

Note that, due to the flexibility of the neural networks, this formulation is ill-posed. It
may lead to cases of extreme overfitting where τ̂φ(xi) ≈ yi, τ̂φ(xi) ≈ 0, thus making
L(θ, φ) completely unstable. Hence, we instead minimized a modified objective that included

12
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L2-regularization via

Lρ,γ(θ, φ) := ρL(θ, φ) + (1− ρ)
[
γ ‖θ‖22 + (1− γ) ‖φ‖22

]
,

where ρ, γ ∈ (0, 1) determines the trade-off between MLE estimation, mean regularization,
and precision regularization. We follow Wong-Toi et al. (2023) and set ρ = 1− γ to reduce
the hyperparameter search domain.

Specifically, we used two MLPs with layer normalization and ReLU activation, and
trained them with gradient-based stochastic optimization. To improve stability, the first
third of training was spent on exclusively training μ̂θ(xi) with an MSE loss. To optimize
hyperparameters, we selected a configuration from 300 trials with a random number of
N layers = [2, 3, 4], N nodes = [256, 512, 1,024, 2,048], γ (log-uniform in [0.001, 0.1]), optimizer
= [SGD, Adam] with hyperparameters (β1 = 0.9, β2 = 0.999), learning rate λ (log-uniform
in [10-6, 10-3]), and batch size = [1024, 2048, 4096, 8192, 16384]. Each run was trained
for 12 epochs total on one NVIDIA GeForce RTX 4080 16GB. We chose the run with the
lowest CRPS on the validation data, yielding N layers = 4, N nodes = 1,024, γ = 2.2× 10−2,
λ = 7 × 10−6, and a batch size of 16,384, trained with Adam. The HSR baseline has
approximately 6.63 million parameters and executes 6.85 MFlops per data point.

3.5 Conditional Variational Autoencoder (cVAE)

A conditional generative latent variable model first samples—from a prior p(z)—a point z
in a low-dimensional latent space, which then informs a conditional distribution pθ(y|z,x)
over the target domain. This allows for a complex and flexible predictive distribution. In our
case, we used feed-forward neural networks (i.e., MLPs) μθ(z,x) and σθ(z,x) with combined
parameters θ and model:

z ∼ N (0, I)
y|z,x ∼ N (

μθ(z,x),Diag(σθ(x)
2)
) (2)

To fit the model to data D = {(x1,y1), . . . , (xn,yn)}, we minimized the negative evidence
lower bound (NELBO) Lθ(q) that bounds the intractable negative marginal likelihood from
above via

Lθ(q) := −Ezi∼q

[
log

pθ(yi, zi|xi)

q(zi|xi)

]
= − log pθ(yi|xi) + KL

(
q ‖ pθ(zi|yi,xi)

)︸ ︷︷ ︸
≥0

,

using an approximation q to the posterior pθ(zi|yi,xi). The conditional variational autoen-
coder (cVAE) (Kingma and Welling, 2014) uses amortized variational inference to optimize
θ and q jointly by approximating the latter with e.g., qψ(zi) = N (

gψ(xi),Diag(hψ(xi)
2)
)
,

where we again chose gψ(xi) and hψ(xi) to be MLPs. This allowed us to optimize for θ and
ψ by minimizing

Lθ(q)
β=1
= Ezi∼qψ

[
1

2

∥∥∥∥yi − μθ(zi,xi)

σθ(zi,xi)

∥∥∥∥2
2

+ 1T log (σθ(zi,xi))

]
+ βKL(qψ(zi) ‖ p(zi)) + const
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with a Monte Carlo approximation by first sampling zi (once) from the variational encoder
qψ(zi). After which, we decoded the predictive mean and standard deviation with the
variational decoder μθ(z,x) and σθ(z,x). We then computed NELBO as a sum of a recon-
struction term and a KL term that regularizes the latent space, averaged over all samples, and
back-propagated the gradients. By letting β be a hyperparameter, we manually determined
the trade-off between reconstruction quality and latent space structure. Finally, at inference
time, we used Equation 2 to sample from the predictive distribution

pθ(ŷ|x) =
∫

pθ(ŷ|x, z)p(z) dz.

For both the variational encoder and decoder, we used an MLP with layer normalization,
ReLU activation, dropout with p = 0.05, and two branching final layers that produced the
mean and standard deviation, respectively. We trained both MLPs jointly—with gradient-
based stochastic optimization—on the objective described above.

To optimize hyperparameters, we ran 300 trials with a random number of hidden layers
N layers = [2, 3, 4], N nodes = [256, 512, 1024, 2048], size of the latent space = [4, 8, 16, 32], β
(log-uniform in [0.01, 10]), optimizer = [SGD, Adam] with (β1 = 0.9, β2 = 0.0999), learning
rate λ (log-uniform in [10-6, 10-3]), L2 regularization α (log-uniform in [10-6, 10-3]), and
batch size = [1024, 2048, 4096, 8192, 16384]. Each run was trained for 5 epochs total on
one NVIDIA GeForce RTX 4080 16GB. The run with the lowest CRPS on the validation
data yielded N layers = 3, N nodes = 1,024, and a batch size of 4,096, trained with Adam. In a
second step, we fixed these hyperparameters and further fine-tuned β, λ, and α by training
for 20 epochs every time, for 10 trials. We found the best model with β = 0.5, λ = 5× 10−5,
α = 10−3. The cVAE baseline has approximately 4.9 million parameters and executes 4.88
MFlops per data point.

3.6 Encoder-Decoder (ED)

The Encoder-Decoder (ED) is an adjusted version of the ED presented in Behrens et al.
(2022). We keep all tuneable hyperparameters except for the learning rate and the node
sizes of input and output layer of ED fixed to the original values that were optimized with a
detailed hyperparameter search for the superparameterization of the Community Atmosphere
Model version 3 in an aquaplanet setup (Behrens et al., 2022). The Encoder consists of
6 hidden fully-connected layers. The Encoder decreases progressively the dimensionality
of the input variables down to 5 nodes in the latent space of the network. These 5 latent
nodes are the only input to the decoding part of ED. The Decoder maps the information
from the latent space back to 128 nodes in the output layer through 6 progressively wider
fully-connected hidden layers (Behrens et al., 2022). We train ED over 40 epochs with a
learning rate step after each 7th epoch, which reduces the learning rate by factor 5 (Behrens
et al., 2022). The adjusted initial learning rate has a value of 1 × 10−4. The batch size has
a value of 714 samples. As activation functions of all hidden layers we use ReLU and the
output layer of the Decoder is ELU-activated (Behrens et al., 2022). As an optimizer during
training we use Adam. As a loss function of ED we use a MSE loss and as additional metric
the MAE during training. The following list summarizes the key hyperparameters of ED:

• Learning rate: 1 × 10−4, learning rate decrease after every 7th epoch
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• Batch size: 714

• Latent space width: 5 Nodes

• Encoder node size: [124, 463, 463, 232, 116, 58, 29, 5]

• Decoder node size: [5, 29, 58, 116, 232, 463, 463, 128]

• Encoder activation functions: [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU]

• Decoder activation functions: [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU, ELU]

• Optimizer: Adam

To prevent overfitting we shuffle the training data set before each epoch. ED baseline has
approximately 832,000 parameters, with 415,000 parameters in the Encoder and 417,000
parameters in the Decoder. In total, ED executes 1.66 MFlops per data point, with 829
kFLops per data point for the Encoder and 832 kFlops per data point for the Decoder.

3.7 Inference Cost

CNN ED HSR MLP RPN cVAE

Number of Parameters 13,200,000 832,000 6,630,000 1,750,000 222,300,000 4,900,000
MFlops Per Data Point 1590 1.66 6.85 3.50 890 4.88

Table 2: The number of learnable parameters and Megaflops (MFlops) per data point for
each of the six baseline models.

4 Baseline Model Evaluations

4.1 Metrics

4.1.1 Deterministic Metrics

Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|Xi − y| (3)

Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(Xi − y)2 (4)

Coefficient of Determination (R2):

R2 = 1−
∑n

i=1(Xi − y)2∑n
i=1(Xi − X̄)2

(5)

15



Yu and Hu et al.

In Equations 3–5, Xi and y represent the true and predicted values, respectively. The mean
of the true values of the dependent variable is denoted by X̄.

4.1.2 Stochastic Metric (CRPS)

The continuous ranked probability score (CRPS) is a generalization of the MAE for distribu-
tional predictions. CRPS penalizes over-confidence in addition to inaccuracy in ensemble
predictions—a lower CRPS is better. For each variable, it compares the ground truth target
y with the cumulative distribution function (CDF) F of the prediction via

CRPS(F, y) :=

∫ (
F (x)− 1{x≥y}

)2
dx

= E[|X − y|]− 1

2
E[|X −X ′|],

where X,X ′ ∼ F are independent and identically distributed (iid) samples from the distri-
butional prediction. We use the non-parametric “fair estimate to the CRPS” (Ferro, 2014),
estimating F with the empirical CDF of n = 32 iid samples Xi ∼ F :

ˆCRPS(X, y) :=
1

n

n∑
i=1

|Xi − y| − 1

2n(n− 1)

n∑
i=1

n∑
j=1

|Xi −Xj | (6)

The first term in Equation 6 is the MAE between the target and samples of the predictive
distribution, while the second term is small for small predictive variances, vanishing completely
for point estimates. Note that this definition extends to ensemble models, where we take the
prediction of each ensemble member as a sample of an implicit predictive distribution.

Variable RMSE [W/m2] CRPS [W/m2]

CNN ED HSR MLP RPN cVAE CNN ED HSR MLP RPN cVAE

dT/dt 4.369 4.696 4.825 4.421 4.482 4.721 – – 2.158 – 2.305 2.708
dq/dt 7.284 7.643 7.896 7.322 7.518 7.780 – – 3.645 – 4.100 4.565
NETSW 36.91 28.537 37.77 26.71 33.60 38.36 – – 14.62 – 14.82 20.53
FLWDS 10.86 9.070 8.220 6.969 7.914 8.530 – – 4.561 – 4.430 6.732
PRECSC 6.001 5.078 6.095 4.734 5.511 6.182 – – 2.905 – 2.729 3.513
PRECC 85.31 76.682 90.64 72.88 76.58 88.71 – – 34.30 – 30.08 40.17
SOLS 22.92 17.999 23.61 17.40 20.61 23.27 – – 8.369 – 8.309 11.91
SOLL 27.25 22.540 27.78 21.95 25.22 27.81 – – 10.14 – 10.49 14.42
SOLSD 12.13 9.917 12.40 9.420 11.00 12.64 – – 4.773 – 4.649 5.945
SOLLD 12.10 10.417 12.47 10.12 11.25 12.63 – – 4.599 – 4.682 5.925

Table 3: Globally-averaged RMSE and CRPS. Each metric is calculated at each grid point,
then horizontally-averaged and (for dT/dt and dq/dt) vertically-averaged. The
units of non-energy flux variables are converted to a common energy unit, W/m2,
following Section 5.2. Best model performance for each variable is highlighted in
bold.
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4.2 Results

MAE and R2 of the baseline models are presented in the main text (e.g., Table 1 and Figure
2 in the main text). Here, we show RMSE and CRPS in Table 3 and Figures 3, 4, and 5.

Figure 3: Averaged (a) MAE, (b) RMSE, (c) R2, and (d) CRPS. Each metric is calculated at
each grid point, then horizontally-averaged and (for dT/dt and dq/dt) vertically-
averaged. For MAE, RMSE, and CRPS, the units of non-energy flux variables are
converted to a common energy unit, W/m2, following Section 5.2. Negative values
are not shown for R2. Error bars show the 5- to 95-percentile range of MLP.
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Figure 4: Vertical structures of horizontally-averaged (a) MAE, (b) RMSE, (c) R2, and
(d) CRPS of dT/dt. For MAE, RMSE, and CRPS, the units of non-energy flux
variables are converted to a common energy unit, W/m2, following Section 5.2.
Negative values are not shown for R2. Grey shadings show the 5- to 95-percentile
range of MLP.

Figure 5: Similar to Figure 4, but for dq/dt.
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We also present the spatial structure of the metrics. Figure 6 shows the latitude-height
structure of R2.

Figure 6: R2 of daily-mean, zonal-mean (a) heating tendency and (b) moistening tendency.
Yellow contours surround regions of > .9R2 while orange contours surround regions
of > .7R2. Negative values are not plotted (white). Sin(latitude) is used for
x-axis to account for the curvature of Earth. The pressure levels on Y-axis are
approximated values.
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4.3 Fit Quality

Scatter plots of truth versus prediction are shown in this section (Figures SI11 to SI18 in SI
Section 8). While many variables exhibit consistent fit quality, some show notable variability
between baselines, as seen with snow precipitation rate predictions. The performance of our
optimized deterministic baseline (MLP) suggests these issues are avoidable. However, note
that our prediction problem has a multi-variate and multi-dimensional nature.

5 Guidance

5.1 Physical Constraints

Mass and energy conservation are important criteria for Earth system modeling. If these
terms are not conserved, errors in estimating sea level rise or temperature change over time
may become as large as the signals we hope to measure. Enforcing conservation on emulated
results helps constrain results to be physically plausible and reduce the potential for errors
accumulating over long time scales.

In the atmospheric component of the E3SM climate model, mass is composed of “dry air”
(i.e., well-mixed gases such as molecular nitrogen and oxygen) and water vapor. During the
physics parameterizations we seek to emulate, there is no lateral exchange of mass across
columns of the host model, and the model assumes that the total mass in each column
and level remains unchanged. Thus, while surface pressure (state_ps) is part of the state
structure we seek to emulate, that surface pressure component must be held fixed. The
water mass, however, is not held fixed, requiring fictitious sources and sinks of dry air, which
are corrected later in the model—outside of the “emulated” part of the code—and is not
addressed within the emulator.

Changes in column water mass should balance the sources and sinks of water into and out
of the column through surface fluxes. The surface source of water is an input to the emulator
via the cam_in structure. The surface sink of water is generated by the model, and hence
emulated in our case. The net surface water flux (source minus sink) should be equal to the
tendency of water mass within the column (7). The mass of water is held in five separate
terms within the state structure: water vapor (qv), cloud liquid condensate (ql), cloud ice
(qi), rain (qr), and snow (qs). These terms are held as ratios of their mass to the sum of dry
air plus water vapor (referred to as specific humidity). The “δ” refers to the difference (after
minus before computation) in each quantity owing to the CRM physics. The layer mass
(sum of dry air and water vapor) of level k is equal to the pressure thickness of that layer
Δpi (the difference between top and bottom interface pressure for level i) divided by the
gravitational acceleration g (assumed constant). The timestep length is δt. In addition to
conserving water mass, we required each individual water constituent to remain greater than
or equal to zero in every layer within the column. In Equation 7, E is the surface source of
water (evapotranspiration) and P is the surface sink of water (precipitation):

∑
i

(δqv + δql + δqi + δqr + δqs)
Δpi
gδt

= E − P (7)

For the portion of the code that we try to emulate, the water source E is not applied such that
the only surface flux to account for when constraining water conservation is the precipitation
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flux (P , cam_out_PRECC). Unfortunately, only the input and output state variables for water
vapor (state_q0001), cloud liquid (state_q0002), and cloud ice (state_q0003) are available.
Additional storage terms related to precipitating water that have not exited the column
over the course of a model timestep are unavailable in the current output. Therefore, we
are unable to exactly enforce water conservation. Estimates show relative errors of a couple
percent resulting from the lack of these precipitation mixing ratios. We can still require that
the relative error be small. To accomplish this, we compared the “expected” total water,
based on the combination of the input and surface fluxes, to the predicted total water. In
the equations below, superscript o denotes output and superscript i denotes input:

Total Water (Actual) =
∑
i

(δqov + δqol + δqoi )
Δpi
g

Total Water (Expected) =
∑
i

(
δqiv + δqil + δqii

) Δpi
g

− Pδt

Relative Error =
Total Water (Expected)− Total Water (Actual)

Total Water (Actual)

We required the model to keep the relative error small (e.g., below 5%). Anything further is
beyond the limit of the current data.

Like mass conservation, energy conservation can generally be enforced by requiring
that the total change within the column is exactly balanced by the fluxes into and out
of that column. Because the emulator does not predict upwelling radiative fluxes at the
model top (a sink term for energy), we do not have the boundary conditions necessary to
constrain column energy tendencies. However, we still required certain criteria be met for
physical consistency. First, the downwelling surface shortwave radiative flux cannot exceed
the downwelling shortwave flux at the model top (prescribed input pbuf_SOLIN). Likewise,
the net surface shortwave flux should also be bounded between zero (100% reflection) and
the surface downwelling shortwave flux (100% absorption). Additionally, the downwelling
longwave flux should not exceed the blackbody radiative flux from the warmest temperature
in the column.

In addition to conservation laws, cloud physics are found to be useful to constrain model
predictions in ways that significantly benefit online error and stability in hybrid ML-physic
climate simulations. Cloud formation is partially governed by the thermal state of the
atmosphere. See Section 6.3.4 for discussions and implementations of some cloud physics
constraints and approximations that are beneficial.

5.2 Unit Conversion and Weighting for Interpretable Evaluation

To facilitate the objective evaluation of the model’s prediction, we provided a weight tensor
of shape (do, Nx) to convert raw outputs to area-weighted outputs with consistent energy
flux units [W/m2]. More details are given below.

To ensure that our evaluation takes the Earth’s spherical geometry into account, we
designed an area weighting factor a that depends on the horizontal position x:

a (x) = Acol (x) / 〈Acol〉x
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where Acol is the area of an atmospheric column and 〈Acol〉x the horizontal average of all
atmospheric columns’ areas. This formula gives more weight to outputs if their grid cell has
a larger horizontal area. To ensure that our evaluation is physically-consistent, we convert
all predicted variables to energy flux units

[
W/m2

]
(power per unit area). This has to be

done for each variable separately.

• For the heating tendency Ṫ [K/s], which depends on the horizontal position x and
vertical level lev, this was done using the specific heat capacity at constant pressure
cp [1004.64 J/ (K× kg)], where Δpi [Pa] is the layer’s pressure thickness, calculated as
the difference between the pressure at the layer’s top and bottom interfaces:

Ṫ
[
W/m2

]
=

cp
g

× a (x)×Δpi (lev)× Ṫ [K/s]

• For the water concentration tendency q̇
[
s−1

]
, which also depends on x and lev, this

was done using the latent heat of vaporization of water vapor at constant pressure
Lv

[
2.50× 106 J/kg

]
:

q̇
[
W/m2

]
=

Lv

g
× a (x)×Δpi (lev)× q̇

[
s−1

]
Note that there is some level of arbitrariness, as the exact latent heat depends on which
water phase is assumed to calculate the energy transfer. Here, we chose to weigh all
phases using Lv to give them comparable weights in the evaluation metrics.

• For momentum tendencies u̇
[
m/s2

]
, which also depend on x and lev, we used a

characteristic wind magnitude |U | [m/s] to convert these tendencies into turbulent
kinetic energy fluxes, in units W/m2, making them comparable to Ṫ

[
W/m2

]
and

q̇
[
W/m2

]
:

u̇
[
W/m2

]
=

|U |
g

× a (x)×Δpi (lev)× u̇
[
m/s2

]
Note that there is some level of arbitrariness in the choice of |U | [m/s], which could
e.g., be chosen so that the variances of u̇

[
W/m2

]
and Ṫ

[
W/m2

]
are comparable.

• Precipitation rate variables P [m/s] were also be converted to energy fluxes using
Lv and the density of liquid water ρw

[
kg/m3

]
(or the density of snow/ice for solid

precipitation), though they do not require vertical integration:

P
[
W/m2

]
= Lv × ρw × a (x)× P [m/s]

• Finally, surface energy fluxes F [
W/m2

]
were simply multiplied by a (x) to account

for area-weighting.

Note that while these choices ensured unit consistency, facilitating the physical interpretation
of our evaluation metrics, we recommend tailoring the exact choice of physical constants to
the application of interest.
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5.3 Additional Guidance

Stochasticity and Memory: The results of the embedded convection calculations regulating
do come from a chaotic dynamical system and thus could be worthy of architectures and
metrics beyond the deterministic baselines in this paper. These solutions are likewise sensitive
to sub-grid initial state variables from an interior nested spatial dimension that have not
been included in our data.

Temporal Locality: Incorporating the previous timesteps’ target or feature in the input
vector inflation could be beneficial as it captures some information about this convection
memory and utilizes temporal autocorrelations present in atmospheric data. This approach
has been explored in previous studies (Han et al., 2020; Wang et al., 2022b; Han et al., 2023;
Lin et al., 2023; Behrens et al., 2024) and has been integrated into our model for online
testing (see Section 5 in the main text and Section 6.3.3 in SI).

Causal Pruning: A systematic and quantitative pruning of the input vector based on
objectively assessed causal relationships to subsets of the target vector has been proposed
as an attractive preprocessing strategy, as it helps remove spurious correlations due to
confounding variables and optimize the machine learning (ML) algorithm (Iglesias-Suarez
et al., 2023).

Normalization: Normalization that goes beyond removing vertical structure could be
strategic, such as removing the geographical mean (e.g., latitudinal, land/sea structure) or
composite seasonal variances (e.g., local smoothed annual cycle) present in the data. For
variables exhibiting exponential variation and approaching zero at the highest level (e.g.,
metrics of moisture), log-normalization might be beneficial.

6 Online Evaluation Pipeline and Experiment Details

This section provides a detailed example of the online evaluation pipeline for hybrid sim-
ulations. First, we describe the integration of the Python-based machine learning (ML)
model into the Fortran-based climate simulator using the Pytorch-Fortran bindings library
(Alexeev, 2023). This integration requires the ML model to be in the TorchScript format,
which we will explain in the following subsection, including examples and notes on converting
a PyTorch model into TorchScript. Next, we present online results, citing our work in Hu
et al. (2024) to illustrate methods for evaluating online errors, share insights for optimizing
stability and performance, and showcase the best online errors we have achieved so far along
with potential pathways for further improvements.

6.1 Converting PyTorch Models to TorchScript

Converting a PyTorch model to TorchScript is straightforward. However, it is essential to
ensure that the model does not use operations unsupported by TorchScript. Most standard
PyTorch operations are supported, but some advanced or less common operations may not
be. Documentation for supported operations can be found at https://pytorch.org/docs/
stable/jit_builtin_functions.html#builtin-functions, and unsupported constructs
are listed at https://pytorch.org/docs/stable/jit_unsupported.html#jit-unsupported.

TorchScript requires more static typing compared to regular Python. Ensure your
functions have clear type annotations and avoid using Python-only constructs unsupported
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by TorchScript. For detailed instructions, refer to the official TorchScript documentation:
https://pytorch.org/docs/stable/jit.html.

Below is an example of how to convert a PyTorch MLP model to TorchScript:

import torch

import torch.nn as nn

import torch.jit

# Define the MLP model

class MLP(nn.Module):

def __init__(self , in_dims: int = 512 , out_dims: int = 368):

super(MLP , self).__init__ ()

self.linear1 = nn.Sequential(

nn.Linear(in_dims , 512),

nn.ReLU()

)

self.final_linear = nn.Linear(512 , out_dims)

def forward(self , x: torch.Tensor) -> torch.Tensor:

x = self.linear1(x)

x = self.final_linear(x)

return x

# Create an instance of the model

model = MLP()

# Convert the model to TorchScript using scripting

scripted_model = torch.jit.script(model)

# Set the model to evaluation mode

scripted_model = scripted_model.eval()

# Save the TorchScript model to a file

scripted_model.save(’model.pt’)

6.2 Metrics for Evaluating Hybrid Climate Simulators

Root Mean Square Error: Our online evaluation metrics are computed separately for
each variable in the hybrid simulations. The goal is to measure the error in simulated climate
by analyzing state variables that are sufficiently averaged in space and time. For a given
month, RMSE for each variable is calculated as follows:

RMSE =

√√√√ Sm∑
i=1

wi(ŷm − ym)2

where:

• Sm is the number of samples (each grid cell is one sample) across the entire globe, both
horizontally and vertically.

• ŷm represents the values from the hybrid simulation averaged over the entire month.
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• ym represents the values from the reference simulation averaged over the entire month.

• w1, w2, . . . , wSm are mass-weights that sum to 1, proportional to the air mass in each
grid cell.

Zonal Mean Bias: Additionally, we evaluate the long-term zonal mean bias, which
measures the average difference between the hybrid simulation and the reference simulation
across various atmospheric variables, such as temperature, moisture, wind, cloud water, and
cloud ice. The zonal mean bias is derived by comparing variables averaged over time and
longitudes. The E3SM-MMF climate simulator outputs variables on unstructured grids
instead of regular latitude-longitude grids. To average a variable over all longitudes, we
first define latitude bins. For the low-resolution version of the ClimSim dataset, we choose
10-degree intervals from 90°S to 90°N. Within each bin, we count all the grid columns that
fall into the bin and calculate the horizontal average of those columns weighted by their area.

6.3 Experiment Setup for Online Testing

6.3.1 Multilayer Perceptron (MLP)

We used the architecture parameters recommended from the hyperparameter search in Section
3.1, with N layers = 3, N nodes = [384, 1024, 640], and ReLU activation. We trained these
MLP models with a batch size of 1024 using the Adam optimizer on 4 GPUs. The training
utilized the full low-resolution training data without subsampling.

6.3.2 U-Net

Since the MLP model turned out not to succeed on the downtream task, we now describe
a considerably more sophisticated approach that proved more successful. Hu et al. (2024)
adapted the 2D U-Net model from Song and Ermon (2019) into a 1D version for column-to-
column prediction. A U-Net model can efficiently learn and use the vertical structures in the
atmosphere. The architecture schematic is shown in Figure 7. Each ResBlock consists of the
following operations:

y = Conv1D(GM(Conv1D(silu(GM(x))))) + x

This series of operations includes group normalization (GM), sigmoid linear unit (silu)
activation function, 1D convolution (Conv1D) with a kernel size of 3, and a residual connection.
The U-Net has 4 layers in depth with latent feature dimensions in each layer N latent = [128,
256, 256, 256]. The model comprises 13 million parameters. Like the MLP models, we
trained these U-Net models with a batch size of 1024 using the Adam optimizer on 4 GPUs,
utilizing the full low-resolution training data without subsampling. More training details,
e.g. input and output normalization, can be found in Hu et al. (2024).

6.3.3 Additional Inputs for the U-Net Model

The U-Net model utilized additional input variables listed in Table 4. These inputs include
large-scale forcing at the current and previous time steps, and the convection memory (i.e.,
the target) at two previous time steps. Large-scale forcing and convection memory are also
used in Han et al. (2020); Wang et al. (2022b); Han et al. (2023). Cosine and sine of latitudes
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Figure 7: The schematic of the U-Net architecture. The U-Net architecture is comprised of
multiple ResBlocks, with 4 layers in depth and latent dimension sizes of [128, 256,
256, 256]. The model requires preparing the input and output as sequence data,
with different features as the channels of the sequence and the sequence as the
vertical dimension. See Hu et al. (2024) for more details.

are included as well. When cloud physics constraints are enabled (see Section 6.3.4), liquid
cloud and ice cloud inputs are replaced with the corresponding total cloud condensate inputs
(liquid plus ice), along with a diagnosed fraction of liquid cloud based on temperature. All
these inputs can be retrieved from the existing ClimSim dataset. Retrieving large-scale
forcing and convection memory requires using continuous time series data without gaps.

Dynamical Forcing: Dynamical forcing can be calculated as follows:

state_t_dyn(t=0) = (state_t_in(t=0) - state_t_out(t=-1)) / 1200

state_q0001_dyn(t=0) = (state_q0001_in(t=0) - state_q0001_out(t=-1)) / 1200

state_q0002_dyn(t=0) = (state_q0002_in(t=0) - state_q0002_out(t=-1)) / 1200

state_q0003_dyn(t=0) = (state_q0003_in(t=0) - state_q0003_out(t=-1)) / 1200

state_q0_dyn = state_q0001_dyn + state_q0002_dyn + state_q0003_dyn

state_u_dyn(t=0) = (state_u_in(t=0) - state_u_out(t=-1)) / 1200

Here, the subscripts ’_in’ and ’_out’ refer to the variables in the input and output files,
respectively. The current model time step is denoted as t = 0, and t = −1 represents the
previous time step. Dynamical forcing represents the rate of change of a variable between
two time checkpoints over one time step (1200 seconds). The first checkpoint is before the
call to the embedded cloud resolving model (CRM) in the multi-scale climate simulator (see
Section 1.1) at the current time step, and the second is immediately after the call to the
CRM at the previous time step. The changes in temperature, water, and wind fields during
this period are due to model physics outside the CRM, primarily advection from the host
dynamical model’s planetary scale fluid solver. These dynamical tendencies of temperature,
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total water (vapor plus cloud), and zonal winds are applied to the CRM grids during the
CRM calculation, making them useful input features for training.

Convection Memory: Convection memory refers to the residual effects of convective
processes in the CRM model that might not be fully captured by the values in the coarser
grids of the host climate simulator. We utilize the CRM tendencies from two previous time
steps to represent this convection memory, as suggested by Han et al. (2020); Wang et al.
(2022b); Han et al. (2023). At each time step, the CRM tendencies can be retrieved as
follows:

state_t_prvphy = (state_t_out - state_t_in) / 1200

state_q0001_prvphy = (state_q0001_out - state_q0001_in) / 1200

state_q0002_prvphy = (state_q0002_out - state_q0002_in) / 1200

state_q0003_prvphy = (state_q0003_out - state_q0003_in) / 1200

state_u_prvphy = (state_u_out - state_u_in) / 1200

During the hybrid simulation where an ML emulator replaces the CRM, the previous
steps’ ML predictions are used as the convection memory. Because this simulation requires
information from previous steps as input features, the hybrid simulation must start by calling
the CRM for during the initial a few host simulator’s time steps before switching to using only
the ML emulator. When launching a brand new hybrid simulation, the atmospheric fields in
the CRM typically start from an unrealistic initial condition and require some host-model
time steps to form realistic clouds and storms that are consistent with the training data. It
is important to fully spin up the CRMs before switching to using only the ML emulator. For
a brand new simulation, we recommend a spin-up period of at least one simulation day. In
our container workflow, we can launch the hybrid simulation by restarting from the previous
simulation where the atmosphere is already spun up. When this restarting configuration is
used, we only need to run the CRM for a few steps, depending on how many previous step
input features are required.

In Out Variable Dimensions Units Description

× state_t_dyn lev, ncol, t=0,-1 K/s Large-scale forcing of temperature

× state_q0_dyn lev, ncol, t=0,-1 kg/kg/s Large-scale forcing of total water

× state_u_dyn lev, ncol, t=0,-1 m/s2 Large-scale forcing of zonal wind

× state_t_prvphy lev, ncol, t=-1,-2 K/s Temperature tendency at previous steps

× state_q0001_prvphy lev, ncol, t=-1,-2 kg/kg/s Water vapor tendency at previous steps

× state_q0002_prvphy lev, ncol, t=-1,-2 kg/kg/s Liquid cloud tendency at previous steps

× state_q0003_prvphy lev, ncol, t=-1,-2 kg/kg/s Ice cloud tendency at previous steps

× state_u_prvphy lev, ncol, t=-1,-2 m/s2 Zonal wind tendency at previous steps

× clat ncol Cosine of latitude

× slat ncol Sine of latitude

× liq_partition lev, ncol Fraction of liquid cloud

Table 4: Additional input variables used in the U-Net model
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6.3.4 Implementing Cloud Physics Constraints

In this and the following section we describe two physical constraints helpful to achieving
reasonable performance on the online task related to cloud condensate.

Liquid-Ice Cloud Partition: The formulation of cloud microphysics in the CRM uses
temperature to determine the mass of liquid and ice clouds on each grid, as a function of a
more fundamental total non-precipitating water prognostic variable. Liquid clouds are only
allowed to exist when the temperature is above 273.16K, and ice clouds are only allowed
below 253.16K. In between these temperatures, the fraction of liquid cloud over the total
cloud mixing ratio follows a linear function of temperature. Hu et al. (2024) demonstrates
that this temperature-based partition relationship between liquid and ice clouds holds well on
the grid of the host E3SM model. To incorporate this constraint, the U-Net model predicts
only the total cloud (liquid plus ice) change and then diagnoses the liquid and ice clouds
based on the updated temperature.

Cloud Top Capped by the Tropopause Layer: The tropopause is the boundary
between the lower atmosphere (troposphere) and the upper atmosphere (stratosphere). It
acts like a ceiling for weather systems. When a storm’s rising air reaches this boundary, it
encounters a very stable layer that prevents further upward movement, effectively capping
cloud formation below a dynamical barrier. To identify the tropopause, we look for the
lowest altitude where the pressure is below 400 hPa and the potential temperature vertical
gradient is steep (greater than 10 K/km). In our simulations, any clouds that form above the
tropopause (either from strong storms or being moved up by other atmospheric processes)
are quickly removed by falling back down or evaporating. Hu et al. (2024) showed that
residual clouds above the tropopause after CRM are rare (but not zero) and have low water
content (less than 10−3 g/kg). The empirical conditions and thresholds used to detect the
tropopause could be refined further. To improve the stability of the hybrid simulator, we
include an approximate constraint that removes all clouds above the tropopause. This helps
prevent unrealistic cloud accumulation in the upper atmosphere and reduces error growth in
hybrid simulations. This constraint is implemented directly in the hybrid simulator and does
not alter the model architecture and training.

6.3.5 Sources of Online Uncertainty in Hybrid Simulations

Uncertainty from Sampling Model Checkpoints: Previous studies, such as Ott et al.
(2020); Wang et al. (2022b), have shown that improved offline skill can benefit online error,
but the online error is not fully constrained by offline skill. This means different checkpoints
with very similar offline skill can exhibit varying online stability and error. A trial-and-error
approach is often used to identify the checkpoint with the best online performance. For
subtle sensitivities, hundreds of trials can become important to detect downtream signals of
hybrid climate error from upstream ML noise (Lin et al., 2023).

To account for some of this online uncertainty, we trained three MLP models with different
loss functions and learning rate schedules:

• The first model used Mean Absolute Error (MAE) loss, with an initial learning rate of
1× 10−3, reduced by a factor of 0.3162 every 7 epochs for a total of 28 epochs.
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• The second model used the same learning rate schedule but a standard Huber loss with
δ = 1.

• The third model also used Huber loss but with a different learning rate schedule:
starting at 1× 10−3, using a ReduceOnPlateau scheduler with a patience of 3 epochs
and a reduction factor of 0.3162 for a total of 20 epochs. This was followed by manually
reducing the learning rate to 1 × 10−4 for fine-tuning over 12 more epochs with a
patience of 0 epochs and a reduction factor of 0.5.

Similarly, we trained three versions of the U-Net model with cloud physics constraints
and three versions of the U-Net models without the constraints:

• The first used MAE loss, with an initial learning rate of 1× 10−4, reduced by a factor
of 0.5 every 3 epochs for a total of 16 epochs.

• The second model used the same learning rate schedule but a standard Huber loss with
δ = 1.

• The third used Huber loss with a different learning rate schedule: starting at 1× 10−4

with a ReduceOnPlateau scheduler with a patience of 3 epochs and a reduction factor
of 0.3162 for a total of 20 epochs, followed by manually reducing the learning rate to
5× 10−5 for fine-tuning over 8 more epochs with a patience of 0 epochs and a reduction
factor of 0.5.

Uncertainty Due to Atmospheric Stochasticity: The atmosphere is a chaotic
system where small random perturbations can grow over time and lead to different weather
patterns at weekly timescale. For online evaluation, we do not expect our ML emulator
hybrid simulations to reproduce daily patterns but rather to match monthly or yearly mean
patterns – i.e. climate, not weather. However, the reference E3SM-MMF simulation’s climate
also contains some inherent uncertainty due to the way it is implemented and its stochastic
nature. The E3SM-MMF simulator is not bit-for-bit reproducible due to the use of atomic
operations, particularly during dimension reductions such as horizontal summation. These
operations add numbers in a different random order each time, resulting in round-off errors
that lead to non-reproducible outcomes. Tiny numerical differences in the calculations can
grow, contributing to small but non-zero uncertainty in monthly atmospheric states. To
estimate this atmospheric unpredictability, we ran the climate model three additional times
with the same initial conditions and compared their differences to the reference simulation
as a baseline uncertainty, which can be viewed as an error floor that the ML emulator
simulations should not be expected to ever overcome.

6.4 Diagnosis of Online Performance

In Section 5.4 of the main text, we presented the global RMSE evolution for 1-year hybrid
simulations using the MLP and U-Net models. The hybrid runs using baseline MLP models
crashed within 2 months. In contrast, the more advanced U-Net architecture, with its
expanded input features and microphysics constraints, significantly reduced the online error
and achieved hybrid simulations that operated stably for years.

29



Yu and Hu et al.

The purpose is to clearly demonstrate the connection between the offline task around
which ClimSim is defined and its ultimate online impact – achieving skillful hybrid climate
runs, by showing two approaches that have considerably different online skill, and to illustrate
how to appropriately measure hybrid climate errors.

As a final illustration, we extended the simulation of one of the constrained U-Net models
to 5 years. At this level of sampling geographic structures of the simulated climate are
statistically stable and worth revealing. pressure-vs-latitude structure of the zonal mean bias
of the 5-year mean state in this hybrid simulation. For comparison, we also ran a reference
5-year E3SM-MMF simulation with the same initial conditions. In the lower atmosphere,
the zonal mean temperature bias was approximately within 2K, and the moisture bias was
around 1 g/kg (Figure 8c and f). The zonal mean structures of wind and cloud distribution
also compared favorably with the reference simulation.

To our knowledge, this represents state-of-the-art performance in online bias for hybrid
climate simulation tests with real-geography and full subgrid physics emulation within the
context of multi-scale modeling framework. Beyond the context of multi-scale modeling
framework, other hybrid models have achieved better online bias (Kochkov et al., 2023;
Sanford et al., 2023). See Section 5.3 in the main text for some reference numbers. Kochkov
et al. (2023) used an end-to-end training framework, developing a fully differentiable hybrid
model and directly optimizing multi-step rollout loss. Nevertheless, making existing Fortran-
based climate models differentiable is challenging.

6.5 Challenges and Future Directions in Online Error Optimization

Checkpoint Sensitivity and Persistent Error Patterns: Optimizing the online error,
as shown in Figure 8 and in the Section 5.4 of the main text, presents significant challenges.
Unlike offline errors, online errors are non-differentiable and cannot be optimized directly
using gradient descent. While we have identified some methods for improving offline error,
such as enhancing model architecture and adding physics constraints, can help reduce online
errors, these methods are not sufficient on their own. Once the architecture is fixed, we
currently rely on checkpoint searches to identify the checkpoint that yields the best online
performance. Some error patterns, such as zonal-mean cloud bias at latitudes greater than
30N or 30S, are sensitive to the choice of checkpoint. For example, we observed checkpoints
that do not exhibit the significant positive liquid cloud bias near 60N seen in Figure 8l.
However, other error patterns, such as the stratospheric dipole temperature bias in high
latitudes (Figure 8c) and drying vapor and liquid cloud biases in the tropics (Figure 8f and
l), are persistent and seem so far immune to checkpoint search.

Exploring Gradient-Free and Differentiable Methods: Fully optimizing these
online errors remains an open question and important challenge for the community. Promising
approaches might include gradient-free methods, such as imitation learning and online learning,
and it would be interested to explore whether these could further optimize these bias patterns
(Ross et al., 2011; Rasp, 2020; Kelp et al., 2022; Lopez-Gomez et al., 2022; Pahlavan et al.,
2024). Another approach involves making the online error differentiable by either training a
differentiable emulator for all the physics outside the CRM or rewriting the entire numerical
climate simulator in a differentiable manner, as demonstrated by Kochkov et al. (2023).
With a model that can be integrated in time in a differentiable way, it would be possible to
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Figure 8: Five-year zonal mean atmospheric state in the reference E3SM-MMF simulation
(left) and in the hybrid simulation (middle). The right column shows the zonal
mean bias as the mean state from the hybrid simulation minus that of the reference
simulation. The five rows show temperature, water vapor, zonal wind, liquid cloud,
and ice cloud.
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optimize multi-step losses using gradient descent. However this is a nontrivial effort for a
fully-featured climate simulator.

7 Other Related Work

Several benchmark datasets have been developed to facilitate AI tasks in weather and
climate. ClimateNet (Prabhat et al., 2021) and Extremeweather (Racah et al., 2017) were
both designed for AI-based feature detection of extreme weather events in forecasts of
Earth’s future climate made using conventional climate models. WeatherBench 2 (Rasp
et al., 2024) provides data specifically designed for data-driven weather forecasting, focusing
on periods ranging from 3 to 5 days into the future. PDEBench (Takamoto et al., 2023)
provides data from numerical simulations of several partial differential equations (PDEs) for
benchmarking AI PDE emulators. ClimateBench (Watson-Parris et al., 2022) was designed
for emulators that produce annual mean global predictions of temperature and precipitation
given greenhouse gas concentrations and emissions. The ClimateBench provides data from
onyl one climate model, while ClimateSet (Kaltenborn et al., 2023) expands on the ML tasks
in ClimateBench by providing a large-scale dataset with inputs and outputs from 36 climate
models. ClimART (Cachay et al., 2021) was designed for the development of radiative
energy transfer parameterization emulators for use in weather and climate modeling. These
benchmark datasets play a vital role in advancing AI and ML research within the weather
and climate domains.

ClimSim, a dataset for parameterization emulators trained on high-resolution data from
small-scale embedded models, is unique compared to other benchmark datasets designed for
emulators in climate simulation (ClimateBench, ClilmateSet, ClimART, and PDEBench).
While PDEBench provides data for developing AI emulators of the same PDEs commonly
used in climate simulation, ClimSim is uniquely tailored to address the challenging task of
replacing a sophisticated parameterization for the combined effects of clouds, rain, radiation,
and storms. Specifically, models trained using ClimSim will learn to emulate the nonlinear
effect of clouds, rain, and storms resolved on the 1 km (20 s) space (time) scale, which is
a collection of hundreds of equations rather than one, to represent their upscale impacts
on the 100 km (30 min) scale. Hybrid simulation is also the goal of ClimART, which is
designed specifically for the narrower and less computationally costly task of radiative energy
transfer parameterization, rather than cloud and rain emulators. ClimateBench, on the other
hand, is not an attempt at hybrid simulation, but rather for “whole-model” emulators that
reproduce the annual mean global predictions of climate that a conventional climate model
would simulate given unseen greenhouse gas concentrations and emissions. This does not
attempt to sidestep Moore’s Law or admit previously unattainable resolution, i.e., any error
or bias related to the parameterizations used to create the training data are part of what is
learned by the emulator.

In contrast, the goal of ClimSim is to develop an emulator for the explicitly resolved
effect of clouds and storms on climate, so that, down the road, the emulator can be used
to replace parameterizations in a climate model, enabling more realistic climate simulation
without the typical computational overhead. ClimSim builds off work by a few climate
scientists who have been exploring since 2017 to apply ML for hybrid multi-scale climate
modeling. Gentine et al. (2018) first demonstrated that using simple ML models, and a simple
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atmosphere test-bed, certain atmospheric patterns of convective heating and moistening could
be effectively predicted, particularly in the tropics and mid-latitude storm tracks. However,
when these models were integrated into broader climate simulations, except for lucky fits that
demonstrated the exciting potential for success (Rasp et al., 2018), issues related to stability
arose, a common problem when constructing hybrid climate models. Various methods were
tried to improve the stability, such as coupling multiple models together and searching for
better model architectures (Brenowitz et al., 2020; Ott et al., 2020). These efforts led to
improved error rates in the predictions. More recently, researchers have expanded this work
into real-world settings, using more advanced ML architectures (Han et al., 2020; Mooers
et al., 2021; Wang et al., 2022b; Han et al., 2023). Wang et al. (2022a) and Han et al. (2023)
even managed to create a deep-learning model that showed hybrid stability over 5 years to
a decade under real-world conditions. While these hybrid models had a few biases, they
were successful in capturing some aspects of climate variability. Additionally, work has
been done to compress input data to avoid causal confounders while maintaining accuracy
(Iglesias-Suarez et al., 2023), use latent representations that account for stochasticity (Behrens
et al., 2022), and enforce physical constraints within these models (Beucler et al., 2021), all
of which could potentially improve their reliability.
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8 Extra Figures and Tables

8.1 MLP with Expanded Target Variables

(Variables) MLPv1 MLPv2 MLPv1-ne30 MLPv2-ne30

MAE

dT/dt 2.688 2.305 2.799 2.886
dq/dt 4.503 4.030 4.231 4.068
dql/dt N/A 0.689 N/A 0.697
dqi/dt N/A 0.384 N/A 0.330
du/dt N/A 1.34E-04 N/A 2.68E-04
dv/dt N/A 1.09E-04 N/A 2.66E-04
NETSW 13.47 8.339 15.47 11.04
FLWDS 5.118 4.134 5.318 4.891
PRECSC 2.645 1.539 3.115 3.009
PRECC 33.89 23.74 42.49 29.62
SOLS 7.942 5.774 8.484 6.866
SOLL 10.30 8.190 10.582 8.993
SOLSD 4.587 3.230 5.056 4.360
SOLLD 4.834 3.977 4.963 4.553

R2

dT/dt 0.590 0.663 0.626 0.536
dq/dt - - - -
dql/dt N/A - N/A -
dqi/dt N/A - N/A -
du/dt N/A - N/A -
dv/dt N/A - N/A -
NETSW 0.982 0.993 0.977 0.988
FLWDS 0.927 0.945 0.914 0.924
PRECSC - - -0.117 -0.117
PRECC -1.494 0.833 -0.115 -0.115
SOLS 0.962 0.978 0.963 0.976
SOLL 0.948 0.964 0.953 0.965
SOLSD 0.955 0.976 0.950 0.965
SOLLD 0.866 0.905 0.874 0.899

RMSE

dT/dt 4.437 3.756 5.199 4.958
dq/dt 7.337 6.521 7.550 7.135
dql/dt 1.192 1.489
dqi/dt 0.812 0.940
du/dt 2.80E-04 6.45E-04
dv/dt 2.25E-04 6.72E-04
NETSW 26.95 17.24 30.48 21.18
FLWDS 6.803 5.532 7.136 6.540
PRECSC 4.656 2.955 7.791 7.509
PRECC 73.16 53.47 119.8 83.22
SOLS 17.39 12.84 18.51 14.74
SOLL 21.96 17.89 22.71 19.27
SOLSD 9.474 6.837 10.42 8.724
SOLLD 10.14 8.486 10.62 9.526

Table 5: Similar to Table 2 in the main text but for comparing MAR, R2, and RMSE of
different MLP models: MLP v1 (subset emulation) and the MLP v2 (full vector em-
ulation) built with the low-resolution (ne4) and the high-resolution datasets (ne30).
dql/dt, dqi/dt, du/dt, and dv/dt correspond to the tendencies of state_q0002,
state_q0003, state_u, and state_v, respectively, in Table SI1.
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Figure 9: Equivalent to Figure S3, but for comparing the MLPv1 (subset emulation) and
the MLPv2 (full vector emulation). In addition, MLP models trained with the
high-resolution dataset (ne30) are shown here: MLPv1-ne30 and MLPv2-ne30.
Bars show the median of the performance of top-20 models selected from the
hyperparamter search (>8,000 trials), and magenta error bars show the range of
the top-20 model performance.
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Figure 10: Equivalent to Figure 2, but for comparing the MLP v1 (subset emulation) and
the MLP v2 (full vector emulation). In addition, MLP models trained with the
high-resolution dataset (ne30) are shown here: MLPv1-ne30 and MLPv2-ne30.
Out of the top model pools, MLP models shown in this figure are randomly
chosen for visualizatoin.
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8.2 Scatter Plots

Figure 11: Hexagonally-binned representation of 2D target variables comparing the climate
model simulation (“true"; x-axis) with the ML model prediction (“predicted";
y-axis). The color of each hexagonal bin corresponds to the number of data points
enclosed.
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Figure 12: Hexagonally-binned representation of 2D target variables comparing the climate
model simulation (“true"; x-axis) with the ML model prediction (“predicted";
y-axis). The color of each hexagonal bin corresponds to the number of data points
enclosed.
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Figure 13: Hexagonally-binned representation of 2D target variables comparing the climate
model simulation (“true"; x-axis) with the ML model prediction (“predicted";
y-axis). The color of each hexagonal bin corresponds to the number of data points
enclosed.
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Figure 14: Hexagonally-binned representation of 2D target variables comparing the climate
model simulation (“true"; x-axis) with the ML model prediction (“predicted";
y-axis). The color of each hexagonal bin corresponds to the number of data points
enclosed.

40



ClimSim-Online: Dataset and Framework for Hybrid Climate Emulation

Figure 15: Hexagonally-binned representation of 3D (vertically-resolved) target variables
comparing the climate model simulation (“true"; x-axis) with the ML model
prediction (“predicted"; y-axis) at four different vertical levels. The color of each
hexagonal bin corresponds to the number of data points enclosed.
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Figure 16: Hexagonally-binned representation of 3D (vertically-resolved) target variables
comparing the climate model simulation (“true"; x-axis) with the ML model
prediction (“predicted"; y-axis) at four different vertical levels. The color of each
hexagonal bin corresponds to the number of data points enclosed.
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Figure 17: Hexagonally-binned representation of 3D (vertically-resolved) target variables
comparing the climate model simulation (“true"; x-axis) with the ML model
prediction (“predicted"; y-axis) at four different vertical levels. The color of each
hexagonal bin corresponds to the number of data points enclosed.
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Figure 18: Hexagonally-binned representation of 3D (vertically-resolved) target variables
comparing the climate model simulation (“true"; x-axis) with the ML model
prediction (“predicted"; y-axis) at four different vertical levels. The color of each
hexagonal bin corresponds to the number of data points enclosed.
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8.3 Global Maps of R2

Figure 19: Global maps of R2 of baseline models (built on the low-res, real-geography dataset).
Grey shading shows locations with negative R2 values.
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Figure 20: Global maps of R2 of baseline models (built on the low-res, real-geography dataset).
Grey shading shows locations with negative R2 values.
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Figure 21: Global maps of R2 of baseline models (built on the low-res, real-geography dataset).
Grey shading shows locations with negative R2 values.
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Figure 22: Global maps of R2 of baseline models (built on the low-res, real-geography dataset).
Grey shading shows locations with negative R2 values.
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9 Datasheet

Motivation

1. For what purpose was the dataset created? Our benchmark dataset was created to
serve as a foundation for developing robust frameworks that emulate parameterizations
for cloud and extreme rainfall physics and their interaction with other sub-resolution
processes.

2. Who created the dataset and on behalf of which entity? The dataset was
developed by a consortium of climate scientists and ML researchers listed in the author
list.

3. Who funded the creation of the dataset? The main funding body is the National
Science Foundation (NSF) Science and Technology Center (STC) Learning the Earth
with Artificial Intelligence and Physics (LEAP). Other funding sources of individual
authors are listed in the acknowledgment section of the main text.

Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g.,
company, institution, organization) on behalf of which the dataset was
created? Yes, the dataset is open to the public.

2. How will the dataset will be distributed (e.g., tarball on website, API,
GitHub)? The dataset will be distributed through Hugging Face and the code used for
developing baseline models through GitHub.

3. Have any third parties imposed IP-based or other restrictions on the data
associated with the instances? No.

4. Do any export controls or other regulatory restrictions apply to the dataset
or to individual instances? No.

Maintenance

1. Who will be supporting/hosting/maintaining the dataset? NSF-STC LEAP
will support, host, and maintain the dataset.

2. How can the owner/curator/manager of the dataset be contacted (e.g., email
address)? The owner/curator/manager(s) of the dataset can be contacted through fol-
lowing emails: Sungduk Yu (sungduk@uci.edu), Michael S. Pritchard (mspritch@uci.edu)
and LEAP (leap@columbia.edu).

3. Is there an erratum? No. If errors are found in the future, we will release errata on
the main web page for the dataset (https://leap-stc.github.io/ClimSim).

4. Will the dataset be updated (e.g., to correct labeling errors, add new
instances, delete instances)? Yes, the datasets will be updated whenever necessary
to ensure accuracy, and announcements will be made accordingly. These updates will
be posted on the main web page for the dataset (https://leap-stc.github.io/ClimSim).
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5. If the dataset relates to people, are there applicable limits on the retention
of the data associated with the instances (e.g., were the individuals in
question told that their data would be retained for a fixed period of time
and then deleted?) N/A

6. Will older version of the dataset continue to be supported/hosted/main-
tained? Yes, older versions of the dataset will continue to be maintained and hosted.

7. If others want to extend/augment/build on/contribute to the dataset, is
there a mechanisms for them to do so? No.

Composition

1. What do the instance that comprise the dataset represent (e.g., documents,
photos, people, countries?) Each instance includes both input and output vector
pairs. These inputs and outputs are instantaneous snapshots of atmospheric states
surrounding detailed numerical calculations to be emulated.

2. How many instances are there in total (of each type, if appropriate)? The
high-resolution dataset (ClimSim_high-res) includes 5,676,480,000 instances, and each
low-resolution dataset (ClimSim_low-res and ClimSim_low-res_aqua-planet) includes
100,915,200 instances.

3. Does the dataset contain all possible instances or is it a sample of instances
from a larger set? The datasets contain 80% of all possible instances. The rest 20%
are reserved as the holdout test set, which will be released once enough models using
ClimSim are developed by independent groups.

4. Is there a label or target associated with each instance? Yes, each instance
includes both input and target (prediction) variables.

5. Is any information missing from individual instances? No.

6. Are there recommended data splits (e.g., training, development/validation,
testing)? We have a hard split between the training/validation set and the test set.
The first 8 simulation years-worth dataset is reserved for the training/validation set,
and the last 2 simulation years-worth dataset is reserved for the test set. However, we
do not have specific recommendations on the split within the training/validation set.

7. Are there any errors, sources of noise, or redundancies in the dataset? There
is one redundancy. Input variable “state_pmid” is redundant since it is a linear function
of “state_ps”.

8. Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)? The dataset is self-contained.

9. Does the dataset contain data that might be considered confidential? No.

10. Does the dataset contain data that, if viewed directly, might be offensive,
insulting, threatening, or might otherwise cause anxiety? No.

50



ClimSim-Online: Dataset and Framework for Hybrid Climate Emulation

Collection Process

1. How was the data associated with each instance acquired? The data associated
with each instance is acquired from a series of simulations of a global climate model
called E3SM-MMF. References for E3SM-MMF are provided in Section 3 of the main
text.

2. What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software
API)? We used many NVIDIA A100 GPU nodes in a high-performance computing
cluster called Perlmutter (operated by the U.S. Department of Energy) to run the
E3SM-MMF simulations.

3. Who was involved in the data collection process (e.g., students, crowdwork-
ers, contractors) and how were they compensated (e.g., how much were
crowdworkers paid)? Regular employees (e.g., scientists and postdocs) at UC Irvine,
LLNL, and SNL were involved in the data collection process. No crowdworkers were
involved during the data collection process.

4. Does the dataset relate to people? No.

5. Did you collect the data from the individuals in questions directly, or obtain
it via third parties or other sources (e.g., websites)? We obtained the dataset
from computer simulations of Earth’s climate.

Uses

1. Has the dataset been used for any tasks already? No, this dataset has not been
used for any tasks yet.

2. What (other) tasks could be the dataset be used for? Please refer to Section 5
in the main manuscript for other applications.

3. Is there anything about the composition of the dataset or the way it was
collected and preprocessed/cleaned/labeled that might impact future uses?
The current composition of the datasets are self-sufficient to build a climate emulator.
However, it misses some extra variables, which are not essential for such climate
emulators but necessary to strictly enforce physical constraints (see Section 4.5 of the
main text). We plan to include these extra variables in the next release. Any changes
in the next release and update to user guidelines will be documented and shared through
the dataset webpage (https://leap-stc.github.io/ClimSim).

4. Are there tasks for which the dataset should not be used? No.
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