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Abstract

Recent years have seen significant progress in unsuper-
vised continual learning methods. Despite their success in
controlled settings, their practicality in real-world contexts
remains uncertain. In this paper, we first empirically in-
vestigate existing self-supervised continual learning meth-
ods. We show that even with a replay buffer, existing meth-
ods cannot preserve the critical knowledge on videos with
temporal-correlated input. Our insight is that the primary
challenge of unsupervised continual learning stems from
the unpredictable input and the absence of supervision as
well as prior knowledge. Drawing inspiration from hybrid
AI, we introduce EVOLVE, an innovative framework em-
ploying multiple pretrained models in the cloud, as experts,
to bolster existing self-supervised learning methods on lo-
cal clients. EVOLVE harnesses expert guidance through a
novel expert aggregation loss, calculated and returned from
the cloud. It also dynamically assigns weights to experts
based on their confidence and tailored prior knowledge,
thereby offering adaptive supervision for new streaming
data. We extensively validate EVOLVE across several real-
world data streams with temporal correlation. The results
convincingly demonstrate that EVOLVE surpasses the best
state-of-the-art unsupervised continual learning method by
6.1-53.7% in top-1 linear evaluation accuracy across var-
ious data streams, affirming the efficacy of diverse expert
guidance. The codebase is at https://github.com/
Orienfish/Evolve.

1. Introduction
Unsupervised continual learning (UCL), continuously

extracting information from unlabeled data streams, has

emerged as a crucial area of investigation in the field of

machine learning [2, 16, 26, 29, 61, 73, 74, 86, 88]. This ap-

proach holds significant value for real-world applications

like self-driving vehicles [81] and robotics [52], where a

mobile agent gathers ongoing data and an algorithm is con-

sistently trained on the agent. These environments are no-

tably dynamic, and obtaining real-time labels for samples

proves exceedingly costly. Hence the ultimate goal of UCL

Figure 1. EVOLVE is a novel hybrid learning framework to tackle

the UCL problem. EVOLVE enhances UCL with multiple experts

sitting in the cloud with dynamic weight adjustment.

is to train a learner capable of acquiring knowledge solely
from raw sensory data while retaining crucial past concepts.

The phenomenon of forgetting important concepts, termed

catastrophic forgetting [33, 62], can lead to safety risks and

potential catastrophic losses.

Despite significant efforts to achieve the goal, the fea-

sibility of applying these methods in natural environments

remains uncertain. The barrier primarily stems from two

factors: (1) the unpredictable streaming input and (2) the

lack of supervision and prior knowledge. State-of-the-art

self-supervised learning methods [7,20,23,35,92] thrive on

large volume of iid data for the optimal results, which does

not align with the streaming setting where concepts might

appear incrementally. Most of the existing UCL works,

even in the absence of class labels, still depend on strong as-

sumptions about the online data stream. For example, works

like [2, 74, 88] run multiple passes over iid data, while oth-

ers works take for granted the availability of class transition

boundaries [29, 61]. In contrast, our approach deliberately

refrains from such prior knowledge, as the streaming input

can be unpredictable.

In order to boost the deployment of UCL methods in a

natural environment, we propose to enhance UCL with di-

verse pre-trained models treated as experts. These large pre-

trained models inherently encompass extensive visual prior
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knowledge, which can be utilized to address the absence of

such knowledge in the context of UCL. An example of an

expert can be the Swin Transformer [58] pre-trained on Im-

ageNet [79]. Leveraging the experts, the smaller on-device

model with random initial parameters can be guided effec-

tively based on the most recent streaming data. Neverthe-

less, one major challenge with the scheme is the substantial

computational costs to execute the experts locally, which

can lead to degraded continual learning performance under

computational or delay budgets [32, 69].

In this paper, we propose EVOLVE, a hybrid frame-

work using local and cloud computing for strengthen-

ing unsupervised continual learning with multiple ex-

perts. EVOLVE draws inspiration from the novel hybrid

AI scheme [71] that has emerged recently to leverage the

strong capabilities of large language models while consid-

ering the resource constraints on local devices. Hybrid AI

aims to leverage the advancements in network technologies

like 5G for splitting the computation between the device and

cloud [38, 95]. As shown in Fig. 1, EVOLVE trains a target

model locally, while transmitting a small set of data and

intermediate features to the cloud, where multiple experts

reside. Within the cloud, the experts conduct inference on

the client’s data. The output features are utilized to compute

an expert aggregation loss that is returned to the client.

EVOLVE has two key designs: (1) the novel expert aggre-

gation loss, distilling invaluable guidance from the expert

ensemble, and (2) a dynamic weight adjustment strategy

that fine-tunes the impact of each expert according to the

latest data. EVOLVE employs multiple experts to provide

comprehensive guidance to the continual learner, particu-

larly in unpredictable scenarios, thereby boosting the per-

formance over relying on a single expert model. Further-

more, motivated by online optimization [15], we update the

weight assigned to each expert model dynamically during

training to ensure the continual learner receives the most

appropriate guidance.

For optimal guidance in the client’s context, EVOLVE

necessitates the local client to transmit select data and in-

termediate features to the cloud. Previous works have

shown that data encryption techniques (e.g., Fully Ho-

momorphic Encryption [31]) can effectively safeguard the

client’s privacy when sharing data for cloud computing ser-

vices [4, 96]. EVOLVE lends itself seamlessly to data en-

cryption integration, a prospect that we leave as future work.

In summary, the contributions of the paper are:

• We conduct an empirical study and demonstrate that

current self-supervised learning methods experience a

significant decrease in accuracy when applied in un-

predictable and natural environments, thus impeding

their practical utility for real-world applications.

• We propose a general expert-guided continual learn-

ing framework, called EVOLVE. To the best of the au-

thors’ knowledge, EVOLVE represents the first effort in

leveraging diverse experts to enhance continual learn-

ing, managing resource constraints through a meticu-

lously designed hybrid learning scheme. The proposed

framework seamlessly integrates with established self-

supervised learning methods.

• We extensively validate EVOLVE across various chal-

lenging continual learning benchmarks. Our findings

highlight that EVOLVE fosters superior representation

learning, elevating top-1 linear evaluation accuracy

by 6.1-53.7% and kNN accuracy by 3.6-20.0% when

compared to existing UCL approaches.

2. Related Work
Self-Supervised Learning (SSL). SSL has demon-

strated superb performance in representation pre-training,

which is reported to obtain even more robust represen-

tations than its supervised counterparts [29, 57]. Previ-

ous SSL methods can be categorized into generative mod-

els [48,49,63], progressive clustering [12,13,18,37,75,87],

contrastive learning [20–22, 41, 65] and information max-

imization [7, 28, 45, 47, 54, 92]. The recent contributions

of Cha et al. [17] and Purushwalkam et al. [70] indicated

the potential of SSL methods with a replay buffer to alle-

viate catastrophic forgetting on non-iid data streams. How-

ever, the question of how to effectively maximize the hidden

power of SSL and achieve continual learning under general
real-world scenarios remains open.

Unsupervised Continual Learning. In contrast to tra-

ditional continual learning problems, which assume prior

knowledge of data independence, task labels, and class

labels in the incoming data (e.g., [1, 3, 5, 11, 19, 24, 36,

46, 50, 51, 60, 67, 72, 76, 77, 80, 83–85, 91, 93, 94]), Unsu-
pervised Continual Learning without task and class labels

presents the most challenging scenario. The primary chal-

lenge is learning useful information solely from the data

stream without supervision. Some approaches use varia-

tional autoencoders and generative replay to mitigate catas-

trophic forgetting (e.g., [2, 73, 74, 86, 88]). However, these

methods raise concerns about scalability in large datasets

and computational costs. STAM [82] offers an expand-

able memory architecture but requires dataset-specific tun-

ing. LUMP [61] utilizes data augmentation and interpola-

tion of new samples with buffered ones to address forget-

ting. Knowledge distillation-based methods, such as He

et al. [40], CCSL [55], and CaSSLe [29], retain critical

knowledge from past models but rely on task boundaries

to capture model snapshots. Nonetheless, as our experi-

ments demonstrate, state-of-the-art UCL methods struggle

with forgetting in temporally correlated data.

To excel in UCL in dynamic environments, we design

EVOLVE to leverage and manage the guidance from pre-

trained models, which is orthogonal to all above works.
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Online Optimization. Numerous studies have explored

online optimization, focusing on minimizing regret when

making sequential decisions [10, 15, 66]. One prominent

approach in online optimization is the ”learning with multi-

ple experts” algorithm [6, 14, 15]. In this method, a learner

leverages advice from a set of K experts to choose actions

in each round. The experts’ weights, denoted as we, are

updated dynamically using the Multiplicative Weights Up-

date Method [6, 30, 56], with the formula we = we(1− η),
where η is a hyperparameter. Alternative weight update

strategies also exist [6, 14, 15]. The learner’s worst-case

regret is proven to be O(
√
T logK), where T represents

the number of rounds [14, 15]. Despite the shared objec-

tive of predicting sequential tasks, online optimization and

continual learning have traditionally been studied as distinct

domains. This paper illustrates how learning with multiple

experts can effectively guide a continual learner in challeng-

ing environments.

3. Preliminary
Input Data Setups. Following on the trajectory of sev-

eral recent research efforts on continual learning [61, 82],

we consider a practical and general setting for UCL in the

wild. Our problem setting follows state-of-the-art works ex-

cept that we get rid of the unrealistic prior knowledge, such

as (i) iid and multi-pass data as in [2, 74, 88], (ii) class la-

bels as in [26, 53, 89] and (iii) task labels as in [29, 40, 55].

We assume that the data comes in a class-incremental man-

ner, i.e., new classes emerge in a sequential manner. Such

a setup reflects the changing environment over time. For

example, as the autonomous vehicle moves from the city

to the suburbs, new classes such as buildings, stop signs,

pedestrians and trees are emerging sequentially. We assume

there are T training steps. In each step t, we have access to a

batch of samples {xt,i}bi=1. Each individual sample appears

at most once in the training stream. We assume each sam-

ple is drawn from a sequence of D classes with each class

corresponding to a unique distribution Pd in
{
P1, ...,PD

}
.

We consider three typical single-pass streams with no class
label, no task label and unknown boundaries:

(1) iid: we first consider an iid stream as a reference, in

which each sample is drawn independently and identi-

cally from the entire dataset.

(2) Seq: Sequential class-incremental stream where the

classes are introduced one-by-one and are balanced

(i.e., the number of samples from different classes are

identical),

(3) Seq-imb: Imbalanced sequential class-incremental

stream which introduces a largely varied number of

samples from each class incrementally.

Learning Protocol and Evaluation Metrics. The goal of

the UCL problem is to train a base model fθ : X → H
which is a mapping from the input space X to a low-

dimensional feature space H. θ are the learnable parame-

ters. For evaluation, we construct a separate testing dataset

E = {(xj , yj)} by randomly sampling an equal amount of

labeled samples from all classes in
{
P1, ...,PD

}
. We also

create another validation dataset V = {(xq, yq)} for hyper-

parameter selection. It is important to note that, irrespective

of whether a class has appeared in the training sequence or

not, it is always included in both E for ground-truth eval-

uation. During testing, given a snapshot of model θt at

time t, we first compute the learned latent representations

hj = fθt(xj) for each testing sample (xj , yj) ∈ E . Fol-

lowing previous protocols [29,61,74,82], we train the kNN

and linear classifiers respectively to evaluate the quality of

learned representations. We use kNN and top-1 linear clas-

sification accuracies as metrics.

4. An Empirical Study of Existing SSL
Recent studies have indicated that combining SSL with

memory replay holds great promise for continual represen-

tation learning in the wild [17, 61, 70]. However, it is un-

clear whether SSL is sufficiently practical in unsupervised

continual learning scenarios, especially with dynamic envi-
ronment and temporal-correlated streams.

In this section, we investigate this question by con-

ducting an empirical study of existing SSL methods with

memory replay on image- and video-based continuous data

streams. Using the setups described in Section 3, we con-

struct the iid and Seq-imb data streams from CIFAR-10

(image-based, 10 classes) [64] and Stream-51 (video-based,

51 classes) [78]. Notably, the Seq-imb data stream from

Stream-51 follows the original time stamps and imbalanced

class appearances, creating a realistic temporal-correlated

stream. For the Seq-imb stream from CIFAR-10, the data

in each class is sampled randomly. We employ a memory

buffer M to store and replay a finite number of historical

samples. Following [61], we update the buffer after each

incoming batch {xt,i}bi=1 with reservoir sampling.

Setups. During training, we randomly sample a finite sub-

set {xM,i}bMi=1 to concatenate the new incoming samples.

We assume the size of the memory buffer ism = 256, the fi-

nite number of samples for replay is bM = 128, the stream-

ing batch size is b = 128. At each time stamp t, we feed the

stacked input xt = [{xt,i}bi=1, {xM,i}bMi=1] into two ways

of random augmentations tA ∼ T A, tB ∼ T B and obtain

two augmented views: xA
t = tA(xt),x

B
t = tB(xt). We in-

put the augmented view into the base encoder fθ and obtain

hA
t = fθ(x

A
t ). In all SSL methods, a small projection head

fh is used to map the representations to the embeddings

zAt = fh(h
A
t ). Similarly, zBt is produced from another aug-

mented view. More details about the setups and baseline

implementations are reported in the Appendix.

We next detail the state-of-the-art SSL methods from

various categories, as shown in Tab. 1, which all employ
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Figure 2. The kNN accuracy during training on CIFAR-10 and Stream-51 under the iid and Seq-imb streaming data, using various SSL

baselines with a replay buffer. The accuracy at step 0 is evaluated on the randomly initialized model. Shaded areas show the standard

deviation of measurements after three random trials.

a variant of the Siamese networks [9].

•SimCLR [20] uses the InfoNCE loss [65] to maximize

the similarity between augmented embeddings zAt , z
B
t (pos-

itives) while contrasting against the other embeddings in the

same batch (negatives). In Tab. 1, we consider the cosine

similarity and τ is a hyperparameter called temperature.

•BYOL [35] maintains a momentum encoder from the past

and SimSiam [23] applied stop gradient, both operating

on one branch of the Siamese structure, to avoid degener-

ated solutions. An additional predictor head fp is used to

generate another view qA
t = fp(z

A
t ), and similar for qB

t .

BYOL and SimSiam employ MSE-based losses between

the two views. SimSiam uses the negative cosine similarity

D(qA
t , z

B
t ) = − qA

t

‖qA
t ‖2

· zB
t

‖zB
t ‖2

which is equivalent to the

MSE of �2-normed vectors. Tab. 1 only shows a simplified

form of the loss while the complete symmetric loss can be

constructed with an additional term obtained by swapping

two views.

•BarlowTwins [92] and VICReg [7] learn self-supervised

with losses inspired by information theory. BarlowTwins

computes the cross-correlation matrix of the two-view em-

beddings: Cuv =
∑

j zA
j,uz

B
j,v√∑

j(zA
j,u)

2
√
(
∑

j zB
j,v)

2
, and builds the

loss function as shown in Tab. 1, where the first term en-

hances the invariance between augmented pairs and the sec-

ond term decorrelates non-identical samples. VICReg em-

ploys a combination of three losses: invariance s(·, ·) (MSE

between two views), variance v(·), and co-variance c(·)
(off-diagonal coefficients of C), weighted by appropriate

hyperparameters. For simplicity, we only show one-view

of v(·) and c(·) in Tab. 1.

Results and Discussions. Fig. 2 shows the kNN accu-

racy during training on three random trials of the CIFAR-10

and Stream-51 streams. Our empirical results on CIFAR-10

share similar patterns with the latest studies that report the

continual learning ability of SSL with memory replay on

imaged-based datasets [17, 61, 70]. Among all SSL meth-

ods, SimCLR and VICReg (with replay buffer) show better

results on CIFAR-10 with progressively increased accura-

cies in terms of both iid and Seq-imb streams. In contrast,

Table 1. Overview of state-of-the-art SSL methods and losses.

Methods Loss Loss Function LSSL

SimCLR [20] InfoNCE − log
exp(zAi ·zBj /τ)∑
k �=i exp(zAi ·zk/τ)

BYOL [35] MSE
∥
∥qA

t − zBt
∥
∥2
2

SimSiam [23] MSE D(qA
t , zBt )

Barlow Cross-Correlation
∑

u(1− Cuu)2+
Twins [92] ψ

∑
u

∑
v �=u C2

uv

VICReg [7] MSE + Variance ψs(zAt , zBt )+
+ Cross-Correlation μv(zAt ) + νc(zAt )

SimSiam and BarlowTwins learn less effectively while the

performance of BarlowTwins is unstable.

However, the performances are significantly different

when deploying those SSL methods on Stream-51 data with

a temporal order. While VICReg and SimCLR show pos-

itive accuracy gains with iid streams, all SSL baselines

struggle to learn and retain knowledge in sequential and

imbalanced streams, consistently displaying declining kNN

accuracies during training. Remarkably, even the top two

SSL methods on Seq-imb Stream-51, BarlowTwins and

BYOL, yield notably inferior kNN accuracies compared

to a randomly initialized network (18.0% and 17.2% ver-

sus 21.8%). Our findings demonstrate the limited ability

of current SSL methods, even with replay buffers, to con-

tinually learn from practical data streams within real-world

contexts. We hypothesize that this limitation is primarily

due to the incapability of memorizing critical knowledge

purely from the unsupervised streams, which motivates the

design of EVOLVE.

5. EVOLVE

Inspired by online optimization, we introduce the

EVOLVE framework which enhances unsupervised contin-

ual learning methods through multiple experts. Our central

idea involves leveraging the extensive knowledge embod-

ied by pre-trained large expert models, readily available on-

line. By distilling expert insights with self-supervised learn-

ing techniques, the unsupervised continual learner quickly

adapts to new environments while circumventing catas-

trophic forgetting.
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Figure 3. The workflow of EVOLVE that has two components: self-supervised learning and expert-guided learning, with two loss terms.

EVOLVE dynamically updates the weight associated to each expert.

.
5.1. Overview

The general workflow of EVOLVE is depicted in Fig. 3.

Given the constrained resources of the local client, execut-

ing extensive expert models becomes a challenge. To ad-

dress this, we adopt a hybrid AI [71] approach, confining

SSL training to the local client while storing and execut-

ing all expert models on the cloud. The local client share a

small subset of data and intermediate information with the

cloud (blue dotted lines in Fig. 3), while the computation

of expert aggregation loss takes place in the cloud, with the

resulting insights transmitted back to the client for learning

(red dotted line in Fig. 3). Essentially, the training process

of EVOLVE uses a sum of two loss terms:

L = LSSL + λ · LE , (1)

where LSSL is the SSL objective as summarized in Tab. 1,

LE is our novel expert aggregation loss, and λ is a hyperpa-

rameter to balance the two.

In the following section, we provide a detailed explana-

tion of the primary design of EVOLVE: (1) the computa-

tion of LE using diverse experts, and (2) the dynamic ad-

justment of expert weights.

5.2. Expert Aggregation Loss

Diverse Experts. Transferring knowledge from a universal

visual model has become the dominant paradigm in com-

puter vision [20, 41, 43]. We introduce a novel approach to

guide the continual learner: harnessing a diverse library of

pre-trained models as experts, contrasting the reliance on a

single model in traditional transfer learning. Our motivation

is rooted in the fact that the transferability of pre-trained

models is heavily dependent on the target task [8,90]. When

confronted with new visual inputs, we anticipate that at least

one of the experts will be able to accurately capture the un-

derlying semantics of the image.

Experts Aggregation. Given a library of E expert mod-

els, we aim to define a new loss term for aggregating the

knowledge across multiple experts unsupervisedly. Due to

the absence of labels, knowledge distillation-based meth-

ods [44] cannot be used. Instead, we propose to use Hilbert-

Schmidt independence criterion (HSIC) for assessing the

models’ ability in differentiating two augmentations of the

same image. HSIC was proposed in [34] as a measure of de-

pendence between two random variablesX and Y . Assume

that {x1, ...,xn} and {y1, ...,yn} are drawn from the joint

distribution (X , Y ). K and L are the centered kernel matri-

ces computed on {x1, ...,xn} and {y1, ...,yn} respectively.

The empirical HSIC can be computed as HSIC(X,Y ) =
HSIC(K,L) = 1

(n−1)2 Tr(KHLH), where H = I− 1
n11

T

is the centering matrix.

In our setup, using a subset of shared samples xt, each

expert model φe calculates representations φe(xt) via a for-

ward pass. These representations contribute to the computa-

tion of the kernel matrix Kt
e. Similarly, the local continual

learner generates the kernel matrix Lt for sharing with the

cloud. Denoted as HSIC(Kt
e,L

t), the HSIC score between

the expert model φe and the continual learner signifies their

similarity. Intuitively, the continual learner is trained to em-

ulate the higher-order representation similarities observed

in the expert models. To account multiple experts, we intro-

duce an expert aggregation loss as shown in Fig. 3:

LE = −
E∑

e=1

pte · HSIC(Kt
e,L

t), (2)

where pte is the weight of the expert ewhich is learned in the

next section. LE and Kt
e are then transmitted back to the

client to compute the final loss and gradients. We analyze

the communication overhead of EVOLVE in Section 6.5.

5.3. Dynamic Weight Adjustment

The effectiveness of expert models naturally fluctuates

over time in response to varying input data. For instance,

as an autonomous vehicle transitions from urban to subur-
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ban areas, the most effective expert model shifts from those

trained on street views to those specialized in natural land-

scapes. Consequently, the weight pte in Eq.(2) requires dy-

namic updating for each expert. However, achieving this

within the context of UCL poses challenges due to the ab-

sence of labels. To realize this goal, our design necessitates

two components: (i) a metric to assess the quality of each

expert, and (ii) a dynamic online weight adjustment algo-

rithm based on this metric.

Confidence Metric. Drawing inspiration from Con-

trastive Predictive Coding [65], we introduce a confidence

metric based on an expert model’s capability to predict one

image view from another. For a given expert e with model

φe, this involves assessing the confidence of expert e via

augmented representations φe(x
A
t ) and φe(x

B
t ), referred to

as hA
e and hB

e respectively:

qte =
∑

i

exp(hA
e,i · hB

e,i/τ)∑
k �=i exp(h

A
e,i · hA

e,k/τ) +
∑

k exp(h
A
e,i · hB

e,k/τ)
,

(3)

where τ is a temperature hyperparameter. Alternatively, the

confidence metric can be viewed as the categorical cross-

entropy for correctly predicting the augmented view among

all representations, utilizing softmax. This metric offers

two distinct benefits: Firstly, qte quantitatively gauges expert

e’s proficiency without relying on labels, always within the

bounds of [0, 1]. Secondly, the computation of HSIC can

be reused to compute cosine similarities among representa-

tions, resulting in significant time savings.

Online Adjustment. The online weight adjustment al-

gorithm should account the historical and latest confidence.

We maintain a weight wt
e to each expert e at step t, while

initializing w0
e = 1 for all e. Instead of using the multi-

plicative update rule [6, 30, 56] for online optimization, we

propose updating weights through moving average:

wt+1
e = αwt

e + (1− α)qte. (4)

where α is a hyperprameter. We adopt this approach be-

cause the multiplicative update rule might allocate an exces-

sively small weight to an initially underperforming expert.

Consequently, even if the expert improves later, it strug-

gles to regain a substantial weight. A similar issue is noted

in [39]. Conversely, our proposed update method priori-

tizes the current model’s confidence.t α can be fine-tuned

to strike a balance between past and present confidence.

Throughout training, we directly normalize wt
e across all

experts, i.e., employing pte = wt
e/

∑
l w

t
l in Eq. (2).

The weight adjustment scheme we propose connects and

contrasts with conventional online optimization, with de-

tailed discussion provided in the Appendix.

6. Experiments
6.1. Experimental Setup

Our setups are listed as follows with more implementa-

tion details in the Appendix.

Datasets. We conduct comprehensive experiments on four

visual datasets: CIFAR-10 (10 classes) [64], TinyIma-
geNet (100 classes) [27], CORe50 (50 classes) [59] and

Stream-51 (51 classes) [78]. To align with real-world sce-

narios, we mainly consider the Seq, Seq-imb streams in

each dataset. CIFAR-10 and TinyImageNet are image-

based datasets, where we randomly sample a stream from

the image pools. CORe50 and Stream-51 are video-based

continual learning datasets collected from streaming scenar-

ios, with CORe50 focusing on hand-held object detection

and Stream-51 hosting a variety of classes from animals to

vehicles. In Seq and Seq-imb, we preserve the temporal

order within the video datasets.

Implementation details of EVOLVE. We use ResNet-18

with a feature space dimension of 512 as the model. Simi-

lar to [61], we employ the SGD optimizer with a learning

rate of 0.03. The batch sizes are the same as Section 4.

Based on validation results, we set α = 0.95, τ = 0.1 and

set λ to ensure comparable LSSL and LE , i.e., λ = |LSSL|
|LE | .

For evaluation, the kNN classifier is trained with a separate

subset of testing samples with k = 50. The linear classi-

fier is trained offline for 50 epochs. All measurements are

averaged after three random trials.

For the experts, we employ 4 large models pretrained

on ImageNet [79] with many offline epochs. Hence the

expert models capture rich and diverse knowledge in the

computer vision domain. Specifically, we use (1) Supervis-

edly pretrained ResNet-50 [42], (2) Supervisedly pretrained

base Swin Transformer [58], (3) Unsupervisedly pretrained

ResNet-50 with MoCo [41], and (4) Unsupervisedly pre-

trained ResNet-50 with MoCo v2 [22]. All models can be

easily downloaded from the torchvision package [68] or the

original code release. All expert models are frozen.

Baselines. Apart from the SSL methods in Section 4,

we also adapt state-of-the-art continual learning base-

lines which can be added on top of the SSL framework:

the regularization-based SI [93], the architecture-based

PNN [80], the replay-based DER [11]. All above baselines

are originally proposed for supervised continual learning,

but are adapted to the unsupervised settings following [61].

CaSSLe [29] and LUMP [61] are the UCL methods based

on SSL backbones. To ensure a fair comparison, CaSSLe

does not use task labels and stores the models from the pre-

vious batch.

6.2. Comparison with Existing UCL Baselines

Final Accuracy. We first compare the final accuracy re-

sults of all methods in combination with various SSL back-
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Table 2. Comparison of EVOLVE and unsupervised continual learning baselines on the Seq-imb TinyImageNet streams. Bold and

underlined values show the best and second best results based on each SSL.

Method kNN Accuracy(↑) Linear Evaluation Accuracy(↑)

SimCLR BYOL SimSiam BarlowTwins VICReg SimCLR BYOL SimSiam BarlowTwins VICReg
SSL 15.2±0.1 10.8±0.7 10.7±0.7 7.5±0.6 13.9±0.3 11.6±0.9 7.4±0.9 5.2±1.2 3.0±0.7 15.9±0.3

SI 13.7±0.2 10.0±0.5 9.6±0.1 7.6±0.3 12.8±0.5 10.7±0.4 7.7±0.1 4.3±0.5 2.8±0.8 11.9±0.7

PNN 13.7±0.1 9.9±0.3 9.8±0.3 7.0±0.5 12.5±0.3 10.8±0.5 6.4±0.4 4.5±0.4 2.8±0.1 12.1±0.3

DER 13.1±0.2 9.5±0.6 9.1±0.4 7.6±0.5 12.6±0.2 13.0±0.3 7.0±1.3 6.3±0.3 2.9±0.5 12.4±0.2

CaSSLe 8.5±0.8 10.2±0.4 10.1±0.4 7.4±0.1 14.4±0.2 3.2±0.9 6.7±2.0 4.6±0.6 2.1±0.1 15.8±0.2

LUMP 12.2±0.3 7.9±0.4 8.5±0.1 6.8±0.5 14.5±0.4 9.0±1.5 2.5±0.2 3.2±0.6 2.1±0.4 14.7±0.3

EVOLVE 18.8±0.2 18.5±0.1 18.4±0.6 12.3±2.3 19.4±0.5 19.5±1.6 16.3±2.8 19.2±0.9 10.5±3.9 24.0±0.5

Table 3. Comparison of EVOLVE and unsupervised continual learning baselines on the Seq-imb CoRe50 streams. Bold and underlined

values show the best and second best results based on each SSL.

Method kNN Accuracy(↑) Linear Evaluation Accuracy(↑)

SimCLR BYOL SimSiam BarlowTwins VICReg SimCLR BYOL SimSiam BarlowTwins VICReg
SSL 24.7±0.8 26.8±1.2 20.6±1.3 30.9±1.2 25.9±1.0 13.6±1.0 15.4±6.1 8.2±3.3 12.8±10.3 20.8±0.9

SI 19.4±1.9 25.0±0.6 19.5±0.1 23.0±3.1 16.3±1.4 8.6±3.3 11.2±2.4 5.4±0.2 16.9±2.7 11.4±1.2

PNN 17.8±1.2 26.5±0.5 19.8±1.4 20.1±2.6 15.9±1.0 9.2±3.2 16.8±3.6 8.7±3.3 12.1±4.1 11.1±1.3

DER 23.0±0.8 26.6±0.3 25.2±1.0 20.0±2.2 16.9±3.3 16.6±1.1 18.3±0.6 11.7±3.4 12.5±2.7 11.4±2.3

CaSSLe 14.7±0.9 26.5±1.6 21.9±0.8 16.7±0.3 26.7±0.4 4.1±1.0 13.8±5.4 8.5±4.0 4.6±0.1 21.7±0.1

LUMP 27.1±0.3 23.2±0.6 16.0±0.6 17.6±1.1 30.2±0.4 16.3±2.3 9.8±1.2 4.9±1.0 7.5±1.1 27.6±0.6

EVOLVE 44.2±1.4 44.2±1.8 45.2±0.5 41.6±3.9 40.9±1.9 51.3±3.1 54.3±1.4 50.8±4.0 45.4±7.4 42.9±2.1

Figure 4. The kNN accuracies during training on Seq-imb
CORe50 data streams using EVOLVE and other baselines.

bones. Tab. 2, 3 and 4 present the results on Seq-imb

streams from TinyImageNet, CORe50 and Stream51 re-

spectively. EVOLVE significantly improves the learning per-

formance on all settings including both image- and video-

based datasets, when accompanied with various SSL bases.

Specifically, EVOLVE outperforms the top baseline using
the same SSL by 3.6-20.0% in kNN accuracy and 6.1-
53.7% in top-1 linear evaluation accuracy across diverse
data streams. This demonstrates that EVOLVE, by distill-

ing the guidance from experts, can significantly enhance the

unsupervised continual learning capability of existing SSL

methods, even on the challenging video-based streams with

temporal correlations.

Accuracy during Training. To better visualize the contin-

ual learning dynamics, we plot the the evolution of kNN ac-

curacies on CORe50 Seq-imb streams in Fig. 4 using Sim-

CLR, SimSiam and BarlowTwins. In the UCL setting, the

accuracy curves of existing continual learning baselines can

deteriorate faster than the SSL method with a replay buffer,

indicating catastrophic forgetting. EVOLVE outperforms the

other methods, being able to preserve critical knowledge

and continually improve throughout the process.

6.3. Comparison with Other Weight Update Policies
for Using the Experts

In Section 6.2, we contrast EVOLVE with baselines not

employing pretrained experts. In this section, we assess our

dynamic weight update design when utilizing the same set

of experts. We compare with three other commonly used

policies: (1) EW: equally assigning weights for all ex-

perts throughout training, namely wt
e = 1, ∀e. (2) Sin-

gle, assigning pte = 1 to the best expert e and 0’s to the

rest at each timestamp t. (3) MW: using the Multiplica-

tive Weight Update Method [6, 30, 56] and updating with

wt+1
e = wt

e(1 + ηqte). We show the final kNN accura-

cies when using various policies on Seq streams in Tab. 5.

EVOLVE with the moving-average weight update algorithm

surpasses the other policies on TinyImageNet and Stream-

51. On CORe50, the Swin Transformer prevails among

other experts, leading to the best outcome when employ-

ing a single expert, with EVOLVE trailing by only 0.5%.

In summary, our moving-average weight update emerges as

the most robust design within the dynamic UCL context,

effectively leveraging multiple experts.

For deeper insights into the intricate weight adjustment

dynamics, we visualize the normalized weight pte during

MW and EVOLVE training in Fig. 5. The left plot demon-

strates that MW establishes weights based on historical con-

fidence accumulation, which can converge to extremes and

struggle to adapt to new samples. Conversely, EVOLVE

monitors the latest confidence while retaining a balanced

influence from the past, yielding a dynamic weight pattern

as depicted in Fig. 5 (right).
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Table 4. Comparison of EVOLVE and unsupervised continual learning baselines on the Seq-imb Stream-51 streams. Bold and underlined

values show the best and second-best results based on each SSL.

Method kNN Accuracy(↑) Linear Evaluation Accuracy(↑)

SimCLR BYOL SimSiam BarlowTwins VICReg SimCLR BYOL SimSiam BarlowTwins VICReg
SSL 14.0±0.4 17.1±0.1 13.1±1.0 18.1±0.4 14.8±0.3 33.1±1.5 27.7±2.6 11.9±3.5 51.4±1.1 40.8±0.2

SI 12.9±0.5 17.0±1.0 12.3±0.6 12.2±0.8 11.1±0.4 21.3±1.9 27.0±8.3 13.2±5.9 26.2±0.2 23.5±2.0

PNN 12.0±0.2 17.1±1.1 12.5±0.5 12.7±1.2 11.6±0.8 13.5±0.6 29.9±0.1 9.8±0.9 26.9±4.6 25.4±0.1

DER 13.6±0.6 16.0±0.4 14.4±1.3 13.0±1.2 10.7±0.4 31.5±1.5 37.5±2.4 28.0±5.0 28.9±0.1 24.0±1.7

CaSSLe 14.7±0.9 26.5±1.6 21.9±0.8 16.7±0.3 12.6±2.0 7.5±3.2 27.3±5.0 20.6±6.1 10.0±1.2 38.5±2.4

LUMP 20.5±0.7 14.5±0.5 12.7±0.1 13.9±0.5 20.7±1.3 48.2±0.1 27.2±0.8 8.4±0.1 16.9±3.4 55.1±1.5

EVOLVE 30.1±1.6 31.6±1.3 31.5±1.7 30.1±1.7 24.8±0.4 82.2±0.9 84.4±1.0 81.7±1.0 75.7±2.4 61.2±1.7

Table 5. The kNN accuracies when using various online weight

update policies in EVOLVE, tested on BYOL and Seq streams.

Dataset EW Single MW EVOLVE

TinyImageNet 19.7±0.2 18.3±0.6 18.0±0.6 20.2±0.5
CORe50 41.5±1.8 44.7±0.6 44.0±0.3 44.2±1.3

Stream-51 21.5±0.3 22.5±0.3 22.2±0.6 30.2±0.8

Figure 5. The expert weights pte during training under MW and

EVOLVE on Seq streams with BYOL.

6.4. Hyperparameters

Number of Experts. We experiment using 1,2,3,4 ex-

perts from our model candidates on the Seq-imb Stream-

51 streams with BYOL. As shown in Fig. 6 (left), aug-

menting the number of experts yields consistent accuracy

enhancement, highlighting the efficacy of incorporating di-

verse experts for adaptive responses to dynamic environ-

ments. In the Appendix, we show that by using a longer

training stream (such as multiple epochs), the performance

of EVOLVE can be comparable to that of the best expert, or

even surpass it, despite having a much smaller model size.

Hyperparameters λ and α. λ is the hyperparameter to

balance LSSL and LE . We experiment λ = ψ |LSSL|
|LE |

with ψ ∈ {0.5, 0.75, 1.0, 1.25, 1.5} on Stream-51 Seq-

imb streams using BYOL backbone. Fig. 6 (middle) re-

veals that ψ = 1.0 yields optimal results, indicating a

need for balanced weighting between LSSL and LE . An-

other pivotal hyperparameter is α, employed in dynamic

weight updates. Fig. 6 (right) showcases results using

α ∈ {0.9, 0.93, 0.95, 0.97, 0.99} on Stream-51 Seq-imb

with BYOL. A smaller α elevates the importance of recent

expert confidence, while a larger α accentuates past confi-

dence. Notably, α = 0.95 delivers peak performance, align-

ing with our validation outcomes.

6.5. Communication Overhead

EVOLVE’s hybrid scheme allows for effective utiliza-

tion of large expert models while necessitating the transmis-

Figure 6. Sensitivity experiments of various hyperparameters in

EVOLVE, tested on BYOL and Seq-imb Stream-51 streams.

sion of a subset of xt and its corresponding kernel matrix

Lt. We analyze the communication cost of this approach,

considering a scenario where xt consists of 128 RGB im-

ages of size 32×32 from CIFAR-10, and Lt matrix of size

128×128, using 4 experts. The downlink transmission from

the cloud to the local client includes LE and the experts’

kernel matrices Kt
e. Consequently, a single round of trans-

mission involves around 720kB of uncompressed data. This

data exchange takes less than 1 ms using 5G technology at

an average speed of 10Gbps [25], making it almost negli-

gible. Communication efficiency can be further enhanced

through data compression, a prospect for our future work.

7. Summary
In this paper, we demonstrate that when applied to prac-

tical temporal-correlated data streams, current UCL meth-

ods experience a significant performance drop. We pro-

pose a general expert-guided learning framework, called

EVOLVE, for enhancing the UCL capability of existing

self-supervised learning methods using a hybrid learning

scheme. EVOLVE introduces multiple frozen experts, each

with dynamically updatable weights, to guide the continual

learner in adapting to challenging data streams. Extensive

results demonstrate that EVOLVE significantly enhances the

performance of existing UCL methods in challenging natu-

ral environments.
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