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Abstract

For an integer b ≥ 1, a b-matching (resp. b-edge cover) of a graph G = (V,E) is a subset S ⊆ E of edges
such that every vertex is incident with at most (resp. at least) b edges from S. We prove that for any b ≥ 1
the simple Glauber dynamics for sampling (weighted) b-matchings and b-edge covers mixes in O(n log n) time
on all n-vertex bounded-degree graphs. This significantly improves upon previous results which have worse
running time and only work for b-matchings with b ≤ 7 and for b-edge covers with b ≤ 2.

More generally, we prove spectral independence for a broad class of binary symmetric Holant problems with
log-concave signatures, including b-matchings, b-edge covers, and antiferromagnetic 2-spin edge models. We
hence deduce optimal mixing time of the Glauber dynamics from spectral independence.

The core of our proof is a recursive coupling inspired by [CZ23] which upper bounds the Wasserstein W1

distance between distributions under different pinnings. Using a similar method, we also obtain the optimal
O(n log n) mixing time of the Glauber dynamics for the hardcore model on n-vertex bounded-degree claw-free
graphs, for any fugacity λ. This improves over previous works which have at least cubic dependence on n.

1 Introduction

1.1 b-Matchings and b-edge covers Let G = (V,E) be a graph and b ≥ 1 be an integer. Let Ev = {e ∈
E : e incident to v} be the set of all adjacent edges of a vertex v ∈ V . A b-matching of G is a subset S ⊆ E of
edges such that |S ∩ Ev| ≤ b for all v ∈ V . When b = 1 this reduces to a usual matching of G. We consider the
problem of sampling random weighted b-matchings of a given graph G. WriteMb =Mb(G) for the collection of
all b-matchings of G. For λ > 0, consider the Gibbs distribution µ = µG,b,λ onMb given by

µ(S) :=
λ|S|

Z
, ∀S ∈Mb

where Z = ZG,b(λ) is a normalization constant, known as the partition function, defined as

Z :=
∑

S∈Mb

λ|S|.

Note that if λ = 1 then µ is the uniform distribution over Mb and Z counts the total number of b-matchings in
Mb.

For b = 1, namely the usual matchings, such a model is called the monomer-dimer model. Approximately
counting and sampling matchings is a fundamental problem in theoretical computer science and also one of the first
successful applications of Markov chain Monte Carlo (MCMC) methods in approximate sampling and counting
combinatorial objects. In a classical work [JS89], Jerrum and Sinclair proved rapid mixing of Glauber dynamics
for sampling from the monomer-dimer model. The best mixing time result to date is O(n2m log n) on arbitrary
graphs where m is the number of edges [Jer03], and only very recently this was improved to O(n log n) on all
bounded-degree graphs [CLV22].

For general b ≥ 1, [HLZ16] presented a polynomial-time algorithm for approximately sampling b-matchings
on all graphs when b ≤ 7. Their algorithm is based on MCMC and they utilize the notion of windable functions
introduced in [McQ13] to construct canonical paths and bound the spectral gap of the Markov chain. However,
as pointed out in [HLZ16], for 8-matchings the associated constraint function is no longer windable under their
characterization and hence their approach cannot work for b ≥ 8.

∗zchen83@buffalo.edu. Department of Computer Science and Engineering, University at Buffalo.
†yuzhougu@ias.edu. School of Mathematics, Institute for Advanced Study. Supported by National Science Foundation under

Grant No. DMS-1926686.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4972

D
ow

nl
oa

de
d 

08
/2

2/
24

 to
 1

28
.1

12
.2

00
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Another closely related problem is sampling b-edge covers of a given graph. A subset S ⊆ E of edges is
called a b-edge cover if every vertex is incident with at least b edges, i.e., |S ∩ Ev| ≥ b for every v ∈ V . For
b = 1, i.e., the usual edge covers, the counting and sampling problems have been extensively studied as well
[BR09, LLL14, LLZ14, HLZ16, GLLZ21, BCR21, CLV22]. In particular, [LLL14] presented a deterministic
algorithm for counting unweighted edge covers for all graphs using the correlation decay approach with a
running time O(m1+log2 6n2), and this was later generalized to weighted edge covers in [LLZ14]. Deterministic
algorithms based on the polynomial interpolation approach were also given for all bounded-degree graphs in
[GLLZ21, BCR21]. More recently, it was shown in [CLV22] that the Glauber dynamics for sampling edge covers
mixes in O(n log n) time on all bounded-degree graphs.

Meanwhile, the problem of sampling and counting b-edge covers for larger b is far from clear. The MCMC-
based algorithm in [HLZ16] can be applied to count b-edge covers for b ≤ 2, which only slightly extends the
classical case of b = 1. Similar to b-matchings, the approach from [HLZ16] no longer works for b ≥ 3 due to the
failure of windability.

In this paper we attempt to answer the following question: Are there polynomial-time algorithms for
approximately sampling/counting b-matchings and b-edge covers of a given graph for any b ≥ 1? We give a
positive answer to this question for all bounded-degree graphs. More specifically, we show that the Glauber
dynamics, a simple Markov chain for sampling b-matchings/b-edge covers, converges in O(n log n) time which is
optimal.

One can simultaneously generalize both b-matchings and b-edge covers by assigning a different threshold to
each vertex. More specifically, let b = (bv)v∈V ∈ NV be a vector of thresholds on all vertices. We consider the
collectionMb =Mb(G) of generalized b-matchings, defined as

Mb = {S ⊆ E : ∀v ∈ V, |S ∩ Ev| ≤ bv} .

For λ > 0 the Gibbs distribution µ = µG,b,λ is given by

µ(S) :=
λ|S|

Z
, ∀S ∈Mb

and the partition function Z = ZG,b(λ) is defined as

Z :=
∑

S∈Mb

λ|S|.

Thus, for uniform b = b1 where 1 is the all-ones vector we obtain b-matchings, and for bv = dv − b where dv is
the degree of v we get the complements of b-edge covers.

Our main contribution is to establish rapid mixing of the Glauber dynamics for sampling general b-matchings
for any b ∈ NV on all bounded-degree graphs. In each step of the Glauber dynamics, one picks an edge
e ∈ E uniformly at random and updates its status, e ∈ S (occupied) or e /∈ S (unoccupied), conditional on
the configuration of all other edges; in particular, if including e violates the subset S being a b-matching then
e must be unoccupied in this update. It is easy to show that the Glauber dynamics is ergodic for sampling
b-matchings.

Theorem 1.1. (b-Matchings) Let ∆ ≥ 3 be an integer and G = (V,E) be an n-vertex graph of maximum
degree ∆. Let b ∈ NV be a vector of vertex thresholds. Then for any λ > 0, the Gibbs distribution µ = µG,b,λ over
b-matchings is O∆,λ(1)-spectrally independent. Furthermore, the Glauber dynamics for sampling from µ mixes in
O∆,λ(n log n) time.

We prove Theorem 1.1 by the spectral independence method which was introduced recently in [ALO20]
and has become a powerful tool for proving optimal mixing time of Glauber dynamics. Our proof of spectral
independence is inspired by [CZ23] and uses a recursive coupling to bound the Wasserstein W1 distance under
two distinct pinnings. For uniformly random b-matchings with small b, our bound on spectral independence is
O(∆b); see Remark 3.1 for more discussions. We remark that one interesting open problem is to show spectral
independence with a constant independent of ∆ even just for the usual matchings (monomer-dimer model), since
then one would obtain O(n log n) mixing of Glauber dynamics on all graphs even with unbounded degrees, using
new powerful techniques such as the field dynamics [CFYZ21, AJK+22, CFYZ22, CE22].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4973

D
ow

nl
oa

de
d 

08
/2

2/
24

 to
 1

28
.1

12
.2

00
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



1.2 Holant problem with log-concave signatures Both b-matchings and b-edge covers belong to a much
more general family of models called Holant problems, which can be understood as graphical models defined over
subsets of edges of a given graph. Examples and applications of Holant problems include also perfect matchings
[JSV04], even subgraphs [JS93, GJ18, LSS19, CLV22, CZ23, FGW22], Fibonacci gates [LWZ14], spin systems on
line graphs [DHJM21, GLLZ21, BCR21, CLV22], etc.

We consider the following binary symmetric Holant problem. Let G = (V,E) be a graph with n vertices.
For each vertex v let dv denote the degree of v. We consider a family of constraint functions on all vertices
denoted by f = (fv)v∈V , where each vertex v is associated with a constraint function fv : N → R≥0. Also, let
λ = (λe)e∈E ∈ RE

>0 be a vector of edge weights. The Gibbs distribution µ = µG,f ,λ and the partition function
Z = ZG,f ,λ of the Holant problem is defined as

µ(S) :=
1

Z

∏
v∈V

fv(|S ∩ Ev|)
∏
e∈S

λe, ∀S ⊆ E;

Z :=
∑
S⊆E

∏
v∈V

fv(|S ∩ Ev|)
∏
e∈S

λe.

When fv(k) = 1{k ≤ bv} for some b = (bv)v∈V , the Holant problem becomes b-matchings.
Holant problems can be defined more generally by allowing each fv : 2Ev → R≥0 to be a set function over

subsets of neighboring edges of v. In this paper we consider only the symmetric case, i.e., the value of fv depends
only on |S ∩ Ev|, the number of adjacent edges in S. Such symmetric constraint function fv can be equivalently
identified by the sequence fv = [fv(0), fv(1), . . . , fv(dv)], which is called the signature at v.

Our main result for Holant problems establishes spectral independence and rapid mixing of Glauber dynamics
when all the signatures are log-concave sequences.

Definition 1.1. (Log-concave signature) A sequence f = [f(0), f(1), . . . , f(d)] of non-negative real numbers
is called a log-concave signature if it satisfies the following conditions:

(a) Log-concavity: f(k)2 ≥ f(k − 1)f(k + 1) for all 1 ≤ k ≤ d− 1;

(b) No internal zeros: if f(k1) > 0 and f(k2) > 0 for some 0 ≤ k1 < k2 ≤ d, then f(k) > 0 for all k1 ≤ k ≤ k2
(i.e., the support of f is consecutive).

For example, the signature f = [1, . . . , 1, 0, . . . , 0] for the function f(k) = 1{k ≤ b} is log-concave.

Theorem 1.2. (Holant problem, informal) Let G = (V,E) be an n-vertex graph of maximum degree ∆.
Suppose that f = (fv)v∈V is a collection of log-concave signatures with fv(0) > 0 for all v ∈ V . Let λ ∈ RE

>0 be
a vector of edge weights. Then the Gibbs distribution µ = µG,f ,λ for the Holant problem (G,f ,λ) is O∆,f ,λ(1)-
spectrally independent. Furthermore, the Glauber dynamics for sampling from µ has modified log-Sobolev constant
at least 1/(Cn) and mixing time at most Cn log n, where C = C(∆,f ,λ) does not depend on n.

This is informal because technically speaking, vectors f and λ are dependent on n in dimensions. For a precise
statement, see Theorem 3.1.

We remark that the Gibbs distribution µ = µG,f ,λ in Theorem 1.2 is supported on b-matchings where
bv = max{0 ≤ k ≤ dv : fv(k) > 0}, and thus the Glauber dynamics for sampling from µ is ergodic.
Our assumptions of log-concave signatures in fact generalize previous works [GLLZ21, BCR21, CLV22] which

essentially require that the generating polynomial P (x) =
∑d

k=0

(
d
k

)
f(k)xk associated with every signature f is

real-rooted, which implies the log-concavity of f by Newton inequalities, see e.g. [Brä15]. Hence, Theorem 1.2
applies to many classes of Holant problems including the antiferromagnetic 2-spin systems on line graphs.

1.3 Hardcore model on claw-free graphs Another contribution of ours is that the Glauber dynamics has
the optimal O(n log n) mixing time for the hardcore model on n-vertex bounded-degree claw-free graphs. In the
hardcore model, we are given a graph G = (V,E) and λ = (λv)v∈V ∈ RV

>0 a vector of vertex weights called
fugacity. A set I ⊆ V is called an independent set if e ̸⊆ I for all e ∈ E. Let I ⊆ 2V be the set of all
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independent sets of G. Define the Gibbs distribution µ = µG,λ and the partition function Z = ZG,λ, also called
the (multivariate) independence polynomial, as

µ(I) :=
1

Z

∏
v∈I

λv, ∀I ∈ I;

Z :=
∑
I∈I

∏
v∈I

λv.

Specially, when λ = λ1, we denote the model as µG,λ.
The Glauber dynamics is a natural Markov chain for sampling from the hardcore model. In each step of

the Glauber dynamics, a vertex v ∈ V is picked uniformly at random, and its status, v ∈ I (occupied) or v ̸∈ I
(unoccupied), is updated according to the configuration on all other vertices. Specifically, if v has at least one
neighbor in the current independent set I, then nothing changes; if v has no neighbors in I, then it becomes
occupied with probability λv

1+λv
and unoccupied with probability 1

1+λv
.

We consider sampling from the hardcore model on a special class of graphs, the claw-free graphs. A graph
G = (V,E) is claw-free if it does not include an induced K1,3. In other words, there do not exist four distinct
vertices a, b, c, d ∈ V such that (a, b), (a, c), (a, d) ∈ E but (b, c), (b, d), (c, d) ̸∈ E. The class of claw-free graphs
includes all line graphs by definition, and thus the hardcore model on claw-free graphs includes in particular the
monomer-dimer model for matchings as a special case.

It was known that one can sample from the hardcore model on claw-free graphs in polynomial time.
Generalizing the approach from [JS89, Jer03] for matchings, Matthews [Mat08] gave a Markov chain which
mixes in O(∆n3) time where ∆ is the maximum degree. Recently, [DGM21] proved that the Glauber dynamics
mixes in O(n5 log n) time for claw-free graphs, and more generally in polynomial time for graphs with bounded
bipartite pathwidth.

In another direction, Patel and Regts [PR17] gave a polynomial-time deterministic algorithm (FPTAS) for
approximating the partition function based on Barvinok’s polynomial interpolation method [Bar16] and real-
rootedness of the independence polynomial on claw-free graphs [CS07, LR19]. As is common for deterministic
approximate counting algorithms, the exponent in n in the running time depends on parameters of the model.

Our main result for the hardcore model on claw-free graphs is that the Glauber dynamics has optimal mixing
when the maximum degree is bounded. Again we prove optimal mixing by establishing spectral independence via
a recursive coupling procedure.

Theorem 1.3. (Hardcore model on claw-free graphs) Let ∆ ≥ 3 be an integer and G = (V,E) be an
n-vertex claw-free graph of maximum degree ∆. Let λ ∈ RV

>0 be a vector of fugacity with λmin := minv∈V λv

and λmax := maxv∈V λv. Then the Gibbs distribution µ = µG,λ of the hardcore model is 2(1 + ∆λmax)-spectrally
independent. Furthermore, the Glauber dynamics for sampling from µ has modified log-Sobolev constant at least
1/(Cn) and mixing time at most Cn log n, where C = C(∆, λmax, λmin) does not depend on n.

2 Preliminaries

In this section we give definitions and lemmas that are needed. We introduce with the Holant problems in mind,
but the definitions and results work for the hardcore model with minor changes (e.g., replacing E with V ).

Let 2E be the collection of all subsets of E. We consider a distribution µ on 2E . We view a subset S ⊆ E
equivalently as a binary indicator vector σ = 1S ∈ {0, 1}E , where σe = 1 for e ∈ S, and σe = 0 for e ̸∈ S.

Definition 2.1. (Pinning) A pinning is a partial configuration τ ∈ {0, 1}Λ for some Λ ⊆ E such that µΛ(τ) > 0,
where µΛ is the marginal distribution on Λ. Let µτ denote the conditional distribution on E\Λ.

Definition 2.2. (Marginal boundedness) We say µ is b-marginally bounded if for all pinnings τ on Λ ⊆ E
and all e ∈ E\Λ, we have either b ≤ µτ (σe = 1) ≤ 1− b or µτ (σe = 1) ∈ {0, 1}.

Definition 2.3. (Influence matrix) Let µ be a distribution on 2E and τ be a pinning on Λ ⊆ E. The pairwise
influence matrix Jτ

µ ∈ R(E\Λ)×(E\Λ) is defined as following: for all e, f ∈ E\Λ, let

Jτ
µ(e, f) = µτ (σf = 1|σe = 1)− µτ (σf = 1|σe = 0)

when e ̸= f and min{µτ (σe = 1), µτ (σe = 0)} > 0, and let Jτ
µ(e, f) = 0 otherwise.
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Note that all eigenvalues of the influence matrix Jτ
µ are real (see e.g., [ALO20]).

Definition 2.4. (Spectral independence [ALO20]) We say µ is η-spectrally independent if for all pinnings
τ we have λmax(J

τ
µ) ≤ η.

Theorem 2.1. ([CLV21, BCC+22, CLV22]) Let µ be the Gibbs distribution of a Holant problem on an n-vertex
graph of maximum degree ∆. If µ is η-spectrally independent and b-marginally bounded, then the Glauber dynamics
has modified log-Sobolev constant at least 1/(Cn) and mixing time at most Cn log n, where C = C(∆, η, b) is a
constant independent of n.

For two distributions ν, π on 2E , the 1-Wasserstein distance between them is defined as

W1(ν, π) = inf
C

E(σ,τ)∼C [dH(σ, τ)] ,

where the infimum is over all couplings between ν and π, and dH(·, ·) denotes the Hamming distance between
two elements from 2E . We use the following lemma from [CZ23] to establish spectral independence; see also
[CMM23, GGGHP22, CLMM23] which use similar approach.

Lemma 2.1. ([CZ23]) Let µ be the Gibbs distribution of a Holant problem. Suppose that for some constant η > 0,
the following is true: For any two pinnings τ , τ ′ on the same subset Λ ⊆ E which differ on exactly one edge, we
have

W1(µ
τ , µτ ′

) ≤ η.

Then µ is η-spectrally independent.

3 Fast sampling for Holant problems with log-concave signatures

We first give a precise statement for Theorem 1.2. It is helpful to define the following local generating polynomial
associated with each vertex, as introduced in [GLLZ21].

Definition 3.1. (Normalized generating polynomial) For a signature f = [f(0), f(1), . . . , f(d)] with
f(0) > 0, define the normalized generating polynomial to be

Pf (x) =
1

f(0)

d∑
k=0

(
d

k

)
f(k)xk.

Definition 3.2. Let (G,f ,λ) be a Holant problem with log-concave signatures and fv(0) > 0 for all v ∈ V . We
define:

rmax := max
v∈V

fv(1)

fv(0)
, rmin := min

v∈V
min

k:fv(k)>0

fv(k)

fv(k − 1)
,

λmax := max
e∈E

λe, λmin := min
e∈E

λe,

Pmax := max
v∈V

Pfv (rmaxλmax) , ∆ := max
v∈V

dv.

Theorem 3.1. (Holant problem) Let G = (V,E) be an n-vertex graph of maximum degree ∆. Suppose
that f = (fv)v∈V is a collection of log-concave signatures with fv(0) > 0 for all v ∈ V . Let λ ∈ RE

>0

be a vector of edge weights. Then the Gibbs distribution µ = µG,f ,λ for the Holant problem (G,f ,λ) is
O(Pmax)-spectrally independent, where Pmax is defined in Definition 3.2. Furthermore, the Glauber dynamics
for sampling from µ has modified log-Sobolev constant at least 1/(Cn) and mixing time at most Cn log n for some
C = C(∆, Pmax, rmin, λmin), where Pmax, rmin, λmin are defined in Definition 3.2.

See also Lemma 3.3 for a simple upper bound of Pmax in terms of ∆, rmax, λmax.
By Theorem 2.1, to prove Theorem 3.1, it suffices to establish spectral independence and marginal

boundedness. We focus on spectral independence in Section 3.1 whose proof is based on the log-concavity of
signatures. We give the marginal bound analysis in Section 3.2. The proofs of main results can be found in
Section 3.3.
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3.1 Spectral independence In this subsection we derive a constant bound of spectral independence via
Lemma 2.1.

Proposition 3.1. (Spectral independence) Under the assumptions of Theorem 3.1, the Gibbs distribution
µ of the Holant problem (G,f ,λ) is O(Pmax)-spectrally independent.

For spectral independence we need to consider the conditional distribution µτ under an arbitrary pinning
τ . We note that a pinning τ on a subset Λ ⊆ E of edges induces a Holant problem on the subgraph G\Λ. To
formalize this relationship, it is helpful to define the following notation of downward shifting operator.

Definition 3.3. (Downward shifting) For a function f : N→ R≥0, we define the function Df : N→ R≥0 as

(Df)(k) = f(k + 1), ∀k ∈ N.

We further define Dmf = D(Dm−1f) for integer m ≥ 1.

Let (G,f ,λ) be a Holant problem. For a subset U ⊆ V of vertices, we define DUf as

(DUf)v =

{
Dfv, v ∈ U,
fv, v ̸∈ U.

For a pinning τ , we define Dτf as for all v ∈ V ,

(Dτf)v = D|τ∩Ev|fv.

Observe that if an adjacent edge of a vertex v is pinned to be occupied, it corresponds to changing the signature
of v from fv to Dfv. Hence, the Holant problem (G,f ,λ) with pinning τ on Λ ⊆ E induces a smaller instance of
Holant problem (G\Λ,Dτf ,λE\Λ) on the subgraph G\Λ.

Observation 3.1. Consider a Holant problem (G,f ,λ) satisfying the conditions in Theorem 3.1. Then for any
pinning the induced Holant problem also satisfies the conditions. Furthermore, all parameters in Definition 3.2
are “monotone” in pinnings; i.e., we have that rmax, λmax, Pmax,∆ are non-increasing under any pinning and
rmin, λmin are non-decreasing.

Proof. The observation follows from that all signatures are log-concave and hence for all v ∈ V ,

fv(k)

fv(0)
≥ fv(k + ℓ)

fv(ℓ)

where 0 ≤ k ≤ dv and 0 ≤ ℓ ≤ dv − k (assuming 0/0 = 0).

By Observation 3.1, µτ corresponds to an induced Holant problem still satisfying the conditions in
Theorem 3.1; hence it suffices to focus on the no-pinning case. The following proposition gives the key step
for bounding the spectral independence constant via Lemma 2.1. It upper bounds the expected number of
discrepancies when one signature fv is changed to Dfv, i.e., the difference between an adjacent (half-)edge of v is
occupied and unoccupied.

Proposition 3.2. Let (G, f, λ) be a Holant problem satisfying the conditions in Theorem 3.1 with Gibbs
distribution µ = µG,f ,λ. Suppose v ∈ V is a vertex with fv(1) > 0, and let µ′ = µG,Dvf ,λ be the Gibbs distribution
of the Holant problem obtained by changing fv to Dfv. Then we have

W1(µ, µ
′) ≤ Pmax − 1.

Our coupling between µ and µ′ is inspired by [CZ23] which proves spectral independence for weighted even
subgraphs with signatures [1, a, 1, a, . . . ] for some a > 0. Note that such signatures have period two which is
crucial for the coupling arguments in [CZ23]. Our new ingredient is to construct a coupling without periodicity
of signatures but incorporating the log-concavity in a suitable way.

Proof. [Proof of Proposition 3.2] We construct a simple coupling between µ = µG,f ,λ and µ′ = µG,Dvf ,λ using
Algorithm 1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4977

D
ow

nl
oa

de
d 

08
/2

2/
24

 to
 1

28
.1

12
.2

00
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Algorithm 1 Coupling procedure for Holant problems

1: procedure Couple(G, f ,λ, v)
2: Input: (G,f ,λ) a Holant problem, v ∈ V a disagreeing vertex
3: Output: A pair of random configurations (σ, σ′) ∈ 2E × 2E drawn from a coupling between µ = µG,f ,λ

and µ′ = µG,Dvf ,λ

4: if v is isolated then
5: Sample σ ∼ µ
6: return (σ, σ)

7: Choose e = {u, v} ∈ E such that µe(1) ≥ µ′e(1). ▷ Lemma 3.1
8: Sample (σe, σ

′
e) from an optimal coupling of (µe, µ

′
e).

9: if σe = σ′e = 0 then
10: (σE\e, σ

′
E\e)← Couple(G\e, f ,λE\e, v)

11: else if σe = σ′e = 1 then
12: (σE\e, σ

′
E\e)← Couple(G\e,Def ,λE\e, v)

13: else ▷ We must have σe = 1, σ′e = 0
14: (σ′E\e, σE\e)← Couple(G\e,Dvf ,λE\e, u)

15: return (σe ∪ σE\e, σ
′
e ∪ σ′E\e)

Coupling. We prove that Algorithm 1 produces a coupling between µ and µ′. We prove this by induction
on the number of edges of G.

Base case is when v is isolated. In this case we have µ = µ′. The algorithm produces the identity coupling.
Induction step: Suppose v is not isolated. By Lemma 3.1, there exists an edge e ∈ Ev such that µe(1) ≥ µ′e(1),

so Line 7 runs successfully; we shall prove Lemma 3.1 right after this proof. By Line 8, the marginal distributions
on edge e are correct. In particular, note that because in Line 8 we choose an optimal coupling, it is impossible
to have σe = 0 and σ′e = 1 since µe(1) ≥ µ′e(1). We need to prove that the recursive calls produce the desired
distributions on E\e.

• Case 1: σe = σ′e = 0. By induction hypothesis,

σE\e ∼ µG\e,f ,λE\e = µE\e(· | σe = 0),

σ′E\e ∼ µG\e,Dvf ,λE\e = µ′E\e(· | σ
′
e = 0).

• Case 2: σe = σ′e = 1. By induction hypothesis,

σE\e ∼ µG\e,Def ,λE\e = µE\e(· | σe = 1),

σ′E\e ∼ µG\e,DvDef,λE\e = µ′E\e(· | σ
′
e = 1).

• Case 3: σe = 1, σ′e = 0. By induction hypothesis,

σE\e ∼ µG\e,DuDvf ,λE\e = µE\e(· | σe = 1),

σ′E\e ∼ µG\e,Dvf ,λE\e = µ′E\e(· | σ
′
e = 0).

In all three cases, we see that σE\e and σ′E\e have the desired distributions. So the algorithm returns correctly.
W1 distance. Let us bound the expected ℓ1 distance under the coupling generated by Algorithm 1. We prove

by induction on the number of edges that the expected ℓ1 distance is at most Pmax−1, as defined in Definition 3.2.
Base case is when v is isolated. In this case the ℓ1 distance is 0.
Induction step: Suppose that v is not isolated. We consider recursive calls of Algorithm 1 until: (1) the

input vertex becomes some other vertex u ̸= v, or (2) the algorithm halts. We claim that Case (2) happens
with probability at least µEv

(0), which is the probability that all edges in Ev are unoccupied under the Gibbs
distribution µ.
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To see this, let A be the following event: For all 1 ≤ i ≤ d where d = dv = |Ev|, in the i-th call of
Algorithm 1, the algorithm picks an edge from Ev, denoted by ei, which has not yet be chosen, and sets its values
to be σei = σ′ei = 0 in both samples. Note that if A occurs then the algorithm halts in the (d + 1)-th call and
the ℓ1 distance is 0. For simplicity of the proof we assume that there is a total ordering of edges and in Line 7
we always pick the smallest edge satisfying the requirement. Hence, the sequence of edges (e1, . . . , ed) associated
with the event A is fixed and deterministic: ei is the smallest edge in Ev\{e1, . . . , ei−1} such that

µ(σe = 1 | σe1 = · · · = σei−1 = 0) ≥ µ′(σ′e = 1 | σ′e1 = · · · = σ′ei−1
= 0).(3.1)

It follows that

Pr (Case (2)) ≥ Pr (A) =
d∏

i=1

Pr
(
σei = σ′ei = 0

∣∣∣ ∀j < i, σej = σ′ej = 0
)

(∗)
=

d∏
i=1

µ(σe = 0 | σe1 = · · · = σei−1
= 0)

= µ(σEv = 0),

where (∗) is because of Eq. (3.1) and the optimal coupling of (σe, σ
′
e).

To summarize, Case (2) happens with probability at least µEv (0) and the ℓ1 distance is 0 in this case; Case (1)
happens with probability at most 1 − µEv

(0) and the expected ℓ1 distance is at most 1 + (Pmax − 1) = Pmax,
where 1 comes from the edge {u, v} and Pmax − 1 comes from induction hypothesis. Therefore, the expected ℓ1
distance produced by the root call is at most

(1− µEv
(0))Pmax ≤ Pmax − 1,(3.2)

where the inequality follows from µEv (0) ≥ 1/Pmax by Lemma 3.2, whose proof is technical and postponed to
Section 3.2. This completes the induction.

Note that as long as it holds µEv
(0) = Ω(1) one can deduce O(1) Wasserstein distance using the inductive

argument in Proposition 3.2.
We now present and prove Lemma 3.1 which is crucially used in Line 7 of Algorithm 1.

Lemma 3.1. Let (G,f ,λ) be a Holant problem and v ∈ V be a vertex such that µ = µG,f ,λ and µ′ = µG,Dvf ,λ

are both well-defined. If fv is a log-concave signature, then we have

Eσ∼µ|σ ∩ Ev| ≥ Eσ′∼µ′ |σ′ ∩ Ev|.(3.3)

In particular, there exists e ∈ Ev such that

µ(σe = 1) ≥ µ′(σ′e = 1).(3.4)

Proof. Let dv = |Ev| be the degree of v in G. For 0 ≤ k ≤ dv, define

Φk :=
∑

σ∈2E : |σ∩Ev|=k

∏
u∈V \v

fu(|σ ∩ Eu|)
∏

e∈E:σe=1

λe.

Then we have that

Eσ∼µ|σ ∩ Ev| =
∑dv

k=0 kfv(k)Φk∑dv

k=0 fv(k)Φk

,

Eσ′∼µ′ |σ′ ∩ Ev| =
∑dv

k=0 kfv(k + 1)Φk∑dv

k=0 fv(k + 1)Φk

.
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It follows that (
dv∑
k=0

kfv(k)Φk

)(
dv∑
ℓ=0

fv(ℓ+ 1)Φℓ

)
−

(
dv∑
k=0

fv(k)Φk

)(
dv∑
ℓ=0

ℓfv(ℓ+ 1)Φℓ

)

=

dv∑
k,ℓ=0

(k − ℓ)fv(k)fv(ℓ+ 1)ΦkΦℓ

=
1

2

dv∑
k,ℓ=0

(k − ℓ)
(
fv(k)fv(ℓ+ 1)− fv(k + 1)fv(ℓ)

)
ΦkΦℓ ≥ 0,

where the last step is because of the log-concavity assumption of fv. Therefore Eq. (3.3) holds as desired, and
Eq. (3.4) is an immediate consequence of Eq. (3.3).

We are now ready to prove Proposition 3.1 on spectral independence.

Proof. [Proof of Proposition 3.1] We prove spectral independence via Lemma 2.1. Let τ be a pinning on Λ ⊆ E
and let e = {u, v} ∈ E\Λ such that 0 < µτ

e (1) < 1. For two pinnings τ ′ = τ ∪ {e ← 0}, τ ′′ = τ ∪ {e ← 1} on
Λ ∪ {e} which differ only at e, we consider the two conditional distributions

µτ ′
= µG,f ,λ(· | σΛ = τ, σe = 0) = µG̃,f̃ ,λ̃,

µτ ′′
= µG,f ,λ(· | σΛ = τ, σe = 1) = µG̃,DvDuf̃ ,λ̃

,

where G̃ = G\Λ\{e}, f̃ = Dτf , and λ̃ = λE\Λ\{e}. By Proposition 3.2 and the triangle inequality, we deduce
that

W1(µ
τ ′
, µτ ′′

) ≤W1

(
µG̃,f̃ ,λ̃, µG̃,Duf̃ ,λ̃

)
+W1

(
µG̃,Duf̃ ,λ̃

, µG̃,DvDuf̃ ,λ̃

)
≤ 2(Pmax − 1).

Note that all these Holant sub-problems under downward shifting operators still satisfy the assumptions of
Theorem 3.1 by Observation 3.1. Therefore, by Lemma 2.1 µG,f ,λ is 2(Pmax − 1)-spectrally independent.

3.2 Marginal bounds We first lower bound the probability that all adjacent edges of a vertex are unoccupied,
which justifies Eq. (3.2).

Lemma 3.2. Let (G,f ,λ) be a Holant problem satisfying the assumptions of Theorem 3.1. Then for any vertex
v, we have

µEv
(0) ≥ 1

Pv(rmaxλmax)
.

Proof. For any σ ∈ 2E\Ev and τ ∈ 2Ev viewed as subsets, suppose τ = {e1, . . . , ek} ⊆ Ev where k = |τ | and
ei = {ui, v} for each i, and we have that

µ(σ ∪ τ)

µ(σ)
≤ fv(k)

fv(0)

(
k∏

i=1

max
1≤ℓ≤dui

fui(ℓ)

fui(ℓ− 1)

)(
k∏

i=1

λei

)

=
fv(k)

fv(0)

k∏
i=1

(
fui

(1)

fui
(0)

λei

)
≤ fv(k)

fv(0)
(rmaxλmax)

k.
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Summing over σ and τ , we obtain that

1 =
∑

σ∈2E\Ev

∑
τ∈2Ev

µ(σ ∪ τ)

≤
∑

σ∈2E\Ev

∑
τ∈2Ev

fv(|τ |)
fv(0)

(rmaxλmax)
|τ |µ(σ)

=
∑

σ∈2E\Ev

µ(σ)
∑

τ∈2Ev

fv(|τ |)
fv(0)

(rmaxλmax)
|τ |

≤ µEv
(0)Pv(rmaxλmax),

as claimed.

We now give marginal lower bounds.

Proposition 3.3. (Marginal boundedness) Let (G,f ,λ) be a Holant problem satisfying the assumptions of
Theorem 3.1. Then for any pinning τ on a subset Λ ⊆ E and for any edge e ∈ E\Λ that can be occupied, we have

µτ (σe = 0) ≥ 1

Pmax
and µτ (σe = 1) ≥ r2minλmin

P 2
max

.

Proof. By the monotonicity of pinning given in Observation 3.1 it suffices to focus on the no-pinning case. Let
e = {u, v}. The first part follows from Lemma 3.2. Let us prove the second part.

By applying Lemma 3.2 twice, we have

µ(σEu∪Ev
= 0) = µ(σEu

= 0) · µ(σEv\Eu
= 0 | σEu

= 0) ≥ 1

P 2
max

,

where we note that µ(· | σEu
= 0) corresponds to an induced Holant problem whose Pmax is no bigger by

Observation 3.1. Then we have

µ(σe = 1) ≥ µ(σe = 1, σEu∪Ev\{e} = 0)

=
fu(1)fv(1)

fu(0)fv(0)
λe · µ(σEu∪Ev

= 0)

≥ r2minλmin

P 2
max

.

This verifies the second part.

The following lemma provides an upper bound on Pmax which in turn gives simple and clean constant bounds
on spectral independence and marginal boundedness.

Lemma 3.3. For a Holant problem (G,f ,λ) with log-concave signatures and fv(0) > 0 for all v ∈ V , we have

Pmax ≤
(
r2maxλmax + 1

)∆
.

Proof. We note that for any vertex v,

fv(k)

fv(0)
=

k∏
i=1

fv(i)

fv(i− 1)
≤
(
fv(1)

fv(0)

)k

≤ rkmax

by the log-concavity of fv. Hence, we deduce that

Pfv (x) =
1

fv(0)

dv∑
k=0

(
dv
k

)
fv(k)x

k ≤
dv∑
k=0

(
dv
k

)
rkmaxx

k = (1 + rmaxx)
dv .

Letting x = rmaxλmax and taking maximum over v gives the desired bound.
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3.3 Proofs of main results

Proof. [Proof of Theorem 3.1] By Proposition 3.1, µ is O(Pmax)-spectrally independent. By Proposition 3.3, µ is
b-marginally bounded for b = b(Pmax, rmin, λmin) > 0. Using Theorem 2.1, we finish the proof.

Proof. [Proof of Theorem 1.1] Because [1, . . . , 1, 0, . . . , 0] is a log-concave signature, we can apply Theorem 3.1.
For the b-matching problem (G, b, λ), we have rmax = rmin = 1 and λmax = λmin = λ. Therefore Pmax is upper
bounded by a function of ∆ and λ. So Theorem 1.1 is a corollary of Theorem 3.1.

Remark 3.1. Note that for uniformly random b-matchings on a graph of maximum degree ∆ where 1 ≤ b ≤ ∆,
we have rmax = rmin = 1, λmax = λmin = 1, and

Pmax ≤
b∑

k=0

(
∆

k

)
.

Hence, for small b≪ ∆ we have O(∆b)-spectral independence, and for all b we have O(2∆)-spectral independence.

3.4 Further discussions Theorem 3.1 establishes spectral independence for a broad class of Holant problems
with log-concave signatures. The support of the corresponding Gibbs distribution is over all b-matchings for some
b ∈ NV . Note that O(1)-spectral independence fails for the signature [0, 1, 0, . . . , 0] which corresponds to perfect
matchings. Moreover, it also fails for the signature [0, 1, . . . , 1, 0] in the ℓ∞ sense (maximum absolute row sum of
influence matrices), as illustrated by the examples below.

• Consider a path v0 ↔ v1 ↔ · · · ↔ vn. Suppose the signature at v2i−1 is [1, 1, 0] for all i ≥ 1, i.e., requiring at
least one adjacent edge unoccupied, and the signature at v2i is [0, 1, 1] for all i ≥ 1, i.e., requiring at least one
adjacent edge occupied. If σ(v0v1) = 1, then there is only one feasible configuration where σ(v2i−1v2i) = 0
and σ(v2iv2i+1) = 1. If σ(v0v1) = 0, then one can check that there are n feasible configurations. The
absolute sum of influences of edge v0v1 on all other edges is Ω(n).

• Consider a path v0 ↔ v1 ↔ · · · ↔ vn together with edges uivi where 1 ≤ i < n. Suppose every vertex vi has
signature [0, 1, 1, 0] for i ≥ 1. Fix σ(u2i−1v2i−1) = 1 and σ(u2iv2i) = 0 for all i ≥ 1 as a pinning, then the
resulted Holant problem is equivalent to the previous example. So the absolute sum of influences of v0v1 is
Ω(n).

4 Hardcore model on claw-free graphs

In this section we prove Theorem 1.3 from introduction. The proof idea is similar to Theorem 3.1 on a high level.
We establish an upper bound on the Wasserstein W1 distance between distributions under different pinnings,
which implies spectral independence and fast mixing via Lemma 2.1 and Theorem 2.1. The W1 upper bound is
proved using a recursive coupling (Algorithm 2), which shares some similarities with Algorithm 1 but requires
new ideas to utilize claw-freeness of the graph.

While the hardcore model is a distribution on 2V rather than 2E , notations in Section 2 can be applied
here with simple changes. For example, we view a subset I ⊆ V equivalently as a binary indicator vector
σ = 1I ∈ {0, 1}V . We similarly define pinnings, marginal boundedness, influence matrices, and spectral
independence for the hardcore model; importantly, Theorem 2.1 and Lemma 2.1 still hold. We refer to
[ALO20, CLV21] for formal definitions and precise statements.

4.1 Preliminaries on claw-free graphs A graph is called claw-free if it does not contain K1,3 (that is, a star
graph comprising three edges, three leaves, and a central vertex) as an induced subgraph. Note that any induced
subgraph of a claw-free graph is still claw-free by definition. The class of claw-free graphs includes in particular
all line graphs.

For a vertex v of a graph G = (V,E), let Nv = {u ∈ V : (u, v) ∈ E} denote the neighborhood of v, and let
N∗v = v∪Nv denote the closed neighborhood including v itself. We say a vertex v is simplicial if its neighborhood
Nv (or, equivalently, its closed neighborhood N∗v ) forms a clique, i.e., every two neighbors of v are adjacent. The
following simple lemma is very helpful to us.
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Claim 4.1. Suppose G = (V,E) is a claw-free graph and v ∈ V is a vertex. Let u ∈ Nv be a neighbor of v. Then
the subgraph G\(N∗v \u) is claw-free and u is a simplicial vertex of G\(N∗v \u).

Proof. The subgraph G\(N∗v \u) is claw-free since it is an induced subgraph on V \(N∗v \u). Suppose for
contradiction that u is not simplicial in G\(N∗v \u). By definition there exist two neighbors w1, w2 of u in
G\(N∗v \u) that are not adjacent. Then, {u, v, w1, w2} forms a claw centered at u in G: u is adjacent to all of
v, w1, w2 by our choice, and w1, w2 are not adjacent to v since w1, w2 /∈ N∗v . This is a contradiction and hence u
must be simplicial.

4.2 Spectral independence We establish spectral independence in this subsection. For a vertex v and a spin
i ∈ {0, 1}, we use the notation v ← i to represent the pinning σv = i. Hence, if Λ ⊆ V is a subset of vertices, τ
is a pinning on Λ, and v ∈ V \Λ, then µτ,v←i represents the conditional Gibbs distribution on the subset V \Λ\v
conditioned on both σΛ = τ and σv = i.

Proposition 4.1. (Spectral independence) Work under the setting of Theorem 1.3. For any pinning τ on
a subset Λ ⊆ V and any vertex v ∈ V \Λ, we have

W1

(
µτ,v←0, µτ,v←1

)
≤ 2(1 + ∆λmax).

In particular, µ is 2(1 + ∆λmax)-spectrally independent.

As a standard trick for the hardcore model, we can view the the conditional Gibbs distribution under a
pinning τ on Λ ⊆ V as a hardcore model on an induced subgraph by removing all pinned vertices in Λ together
with all neighbors of those fixed to be occupied (pinned to spin 1). Note that the maximum degree of the resulting
subgraph does not increase. Thus, for simplicity we consider the case without pinnings except at v.

We first argue that for claw-free graphs, to prove Proposition 4.1 it suffices to consider only when v is a
simplicial vertex. Sample ξ ∼ µv←0

Nv
and ξ′ ∼ µv←1

Nv
two configurations on the neighborhood of v. Observe that we

must have ξ′ = 0 since v is occupied. Suppose ∥ξ∥1 = m and denote the occupied vertices in ξ by {u1, . . . , um}
under any ordering. We must have m ≤ 2; otherwise, since there can be no edge between any pair of occupied
vertices, the set {v, u1, u2, u3} forms a claw. For 0 ≤ i ≤ m, let ξi be the configuration on Nv with {u1, . . . , ui}
occupied and all other vertices in Nv unoccupied, so ξ0 = ξ′ = 0 and ξm = ξ. We note that each ξi is feasible
because ξ is feasible. We then deduce from the triangle inequality that

W1

(
µv←0, µv←1

)
≤ E[∥ξ − ξ′∥1] + E

[
W1

(
µv←0,ξ, µv←1,ξ′

)]
= E[∥ξ − ξ′∥1] + E

[
W1

(
µv←0,ξm , µv←0,ξ0

)]
≤ 2 + E

[
m∑
i=1

W1

(
µv←0,ξi−1

, µv←0,ξi
)]

.(4.5)

For each i, the Wasserstein distance W1

(
µv←0,ξi−1

, µv←0,ξi
)
corresponds to a hardcore model on the subgraph

G\(N∗v \ui)\
⋃i−1

j=1 Nuj
under two pinnings ui ← 0 and ui ← 1; the pinning on v does not matter since the

configuration on Nv is fixed. In particular, ui is a simplicial vertex in this subgraph since it is already simplicial
in G\(N∗v \ui) by Claim 4.1. Thus, Eq. (4.5) shows that it suffices to consider the case where the disagreeing
vertex is simplicial.

We show in the next proposition that the Wasserstein distance is constant between Gibbs distributions under
different pinnings on a simplicial vertex.

Proposition 4.2. Work under the setting of Theorem 1.3. If v is a simplicial vertex, then we have

W1

(
µv←0, µv←1

)
≤ ∆λmax.

We can then deduce Proposition 4.1 from Proposition 4.2 by the arguments above.

Proof. [Proof of Proposition 4.1] Combining Eq. (4.5) and Proposition 4.2, we deduce that

W1(µ
v←0, µv←1) ≤ 2 + 2∆λmax.

Spectral independence then follows from Lemma 2.1 and the bound on W1.
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Algorithm 2 Coupling procedure for the hardcore model on claw-free graphs

1: procedure Couple(G,λ, v)
2: Input: G = (V,E) a claw-free graph, λ ∈ RV

>0 a vector of fugacity, v ∈ V a simplicial vertex which is
disagreeing

3: Output: A pair of random configurations (σ, σ′) ∈ 2V \v×2V \v drawn from a coupling between µv←0
G,λ and

µv←1
G,λ

4: if v is isolated then
5: Sample σ ∼ µv←0

G,λ

6: return (σ, σ)

7: Sample σNv
∼
(
µv←0
G,λ

)
Nv

and σ′Nv
← 0

8: if σNv
= 0 then

9: Sample σV \N∗
v
∼ µv←0,Nv←0

G,λ

10: return (σ, σ)
11: else ▷ We must have ∥σNv

∥1 = 1
12: Let u ∈ Nv such that σu = 1
13:

(
σ′V \(N∗

v \u)
, σV \(N∗

v \u)
)
← Couple

(
G\(N∗v \u),λV \(N∗

v \u), u
)

▷ Claim 4.1

14: return (σ, σ′)

It remains to prove Proposition 4.2, which is again proved by a recursive coupling.

Proof. [Proof of Proposition 4.2]
We construct a coupling between µv←0

G,λ and µv←1
G,λ for configurations on V \v using Algorithm 2, and upper

bound the W1 distance via claw-freeness of the graph.
Coupling. We prove that Algorithm 2 produces a valid coupling by induction on the number of vertices in G.

If v is isolated then the configuration on V \v is independent of σv, and hence µv←0
G,λ = µv←1

G,λ ; this justifies Line 6

and also the base case for our induction. For non-isolated v, we sample σNv
∼
(
µv←0
G,λ

)
Nv

and σ′Nv
∼
(
µv←1
G,λ

)
Nv

;

note that we must have σ′Nv
= 0 for the latter since v is occupied. If σNv

= 0 = σ′Nv
, then the configuration on

the remaining graph is independent of σv, namely µv←0,Nv←0
G,λ = µv←1,Nv←0

G,λ , which justifies Line 10. Otherwise,
we have σNv

̸= 0. Since v is simplicial, Nv is a clique and hence there is exactly one vertex in Nv that is occupied
under σNv

, which we denote by u. Let A = N∗v \u be the closed neighborhood at v excluding u, and we have
σA = 0. By the induction hypothesis we have in Line 13 that

σV \A ∼ µu←1
G\A,λV \A

= µ
v←0,Nv←σNv

G,λ ;

σ′V \A ∼ µu←0
G\A,λV \A

= µ
v←1,Nv←σ′

Nv

G,λ .

Notice that we can recursively call Algorithm 2 on the input (G\A,λV \A, u) because G\A is a claw-free graph
and u is a simplicial vertex by Claim 4.1. Thus, (σV \A, σ

′
V \A) comes from the desired conditional distributions

and therefore the output of Algorithm 2 is from a coupling of µv←0
G,λ and µv←1

G,λ by induction.
W1 distance. Next, we bound the expected ℓ1 distance under the coupling generated by Algorithm 2 by

induction on the number of vertices. Base case is when v is isolated, in which case the ℓ1 distance is 0. Now
suppose that v is not isolated. Observe that in one run of Algorithm 2: either σNv = 0 and the ℓ1 distance is 0,
or ∥σNv∥ = 1 and it recursively calls Algorithm 2 in Line 13 on a smaller instance so that the combined expected
ℓ1 distance is at most 1 + ∆λmax by our induction hypothesis (1 for the discrepancy at u and ∆λmax for the
recursive call). We note that the first case happens with probability exactly µv←0

G,λ (σNv
= 0), the probability that

all neighbors of v are unoccupied. Therefore, the expected ℓ1 distance produced by the root call is at most

(
1− µv←0

G,λ (σNv = 0)
)
(1 + ∆λmax).(4.6)
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It remains to lower bound µv←0
G,λ (σNv

= 0). Since v is simplicial, every feasible configuration ξ on Nv satisfies
ξ = 0 or ∥ξ∥1 = 1. We have

1 = µv←0
G,λ (σNv = 0) +

∑
ξ∈2Nv : ∥ξ∥1=1

µv←0
G,λ (σNv = ξ) ≤ (1 + ∆λmax) · µv←0

G,λ (σNv = 0),

and thus µv←0
G,λ (σNv

= 0) ≥ (1 + ∆λmax)
−1. Plugging into Eq. (4.6) finishes the proof.

4.3 Marginal bounds In this subsection we give marginal bounds that are needed.

Proposition 4.3. (Marginal boundedness) Work under the setting of Theorem 1.3. For any pinning τ on
a subset Λ ⊆ V and any vertex v ∈ V \Λ that can be occupied, we have

µτ (σv = 0) ≥ 1

1 + λmax
and µτ (σv = 1) ≥ λmin

(1 + λmin)
(
1 + ∆λmax +

(
∆
2

)
λ2
max

) .
Proof. For any configuration σ1 ∈ 2V \(Λ∪v) with non-zero probability under µτ , we have

µτ (σ1, σv = 1) ≤ λvµ
τ (σ1, σv = 0).

Therefore

µτ (σv = 0) =
∑

σ1∈2V \(Λ∪v)

µτ (σ1, σv = 0) ≥ 1

1 + λv

∑
σ1∈2V \(Λ∪v)

µτ (σ1) =
1

1 + λv
≥ 1

1 + λmax
.

This proves the first part.
For the second part, note that for claw-free graphs, at most two neighboring vertices of v can be occupied at

the same time, and hence we have

1 =
∑

ξ∈2Nv : ∥ξ∥1≤2

µτ (σNv = ξ) ≤
(
1 + ∆λmax +

(
∆

2

)
λ2
max

)
µτ (σNv = 0).

So µτ (σNv
= 0) ≥

(
1 + ∆λmax +

(
∆
2

)
λ2
max

)−1
and it follows that

µτ (σv = 1) ≥ µτ (σv = 1, σNv = 0)

=
λv

1 + λv
· µτ (σNv = 0)

≥ λmin

(1 + λmin)
(
1 + ∆λmax +

(
∆
2

)
λ2
max

) .
This proves the second part.

We are now ready to prove Theorem 1.3.

Proof. [Proof of Theorem 1.3] Follows from Propositions 4.1 and 4.3 and Theorem 2.1.
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