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Fast Sampling of b-Matchings and b-Edge Covers

Zongchen Chen* Yuzhou Gu'

Abstract

For an integer b > 1, a b-matching (resp. b-edge cover) of a graph G = (V, E) is a subset S C E of edges
such that every vertex is incident with at most (resp. at least) b edges from S. We prove that for any b > 1
the simple Glauber dynamics for sampling (weighted) b-matchings and b-edge covers mixes in O(nlogn) time
on all n-vertex bounded-degree graphs. This significantly improves upon previous results which have worse
running time and only work for b-matchings with b < 7 and for b-edge covers with b < 2.

More generally, we prove spectral independence for a broad class of binary symmetric Holant problems with
log-concave signatures, including b-matchings, b-edge covers, and antiferromagnetic 2-spin edge models. We
hence deduce optimal mixing time of the Glauber dynamics from spectral independence.

The core of our proof is a recursive coupling inspired by [CZ23] which upper bounds the Wasserstein Wy
distance between distributions under different pinnings. Using a similar method, we also obtain the optimal
O(nlogn) mixing time of the Glauber dynamics for the hardcore model on n-vertex bounded-degree claw-free
graphs, for any fugacity A. This improves over previous works which have at least cubic dependence on n.

1 Introduction

1.1 b-Matchings and b-edge covers Let G = (V, E) be a graph and b > 1 be an integer. Let E, = {e €
E : e incident to v} be the set of all adjacent edges of a vertex v € V. A b-matching of G is a subset S C E of
edges such that |[SNE,| <b for all v € V. When b = 1 this reduces to a usual matching of G. We consider the
problem of sampling random weighted b-matchings of a given graph G. Write My = M, (G) for the collection of
all b-matchings of G. For A > 0, consider the Gibbs distribution 1 = pgp,x on My given by

2SI
‘LL(S) = 7, VS S Mb

where Z = Zg ,(A) is a normalization constant, known as the partition function, defined as

Z = Z NS

SeM,

Note that if A = 1 then p is the uniform distribution over M; and Z counts the total number of b-matchings in
Ms,.

For b = 1, namely the usual matchings, such a model is called the monomer-dimer model. Approximately
counting and sampling matchings is a fundamental problem in theoretical computer science and also one of the first
successful applications of Markov chain Monte Carlo (MCMC) methods in approximate sampling and counting
combinatorial objects. In a classical work [JS89], Jerrum and Sinclair proved rapid mixing of Glauber dynamics
for sampling from the monomer-dimer model. The best mixing time result to date is O(n?mlogn) on arbitrary
graphs where m is the number of edges [Jer03], and only very recently this was improved to O(nlogn) on all
bounded-degree graphs [CLV22].

For general b > 1, [HLZ16] presented a polynomial-time algorithm for approximately sampling b-matchings
on all graphs when b < 7. Their algorithm is based on MCMC and they utilize the notion of windable functions
introduced in [McQ13] to construct canonical paths and bound the spectral gap of the Markov chain. However,
as pointed out in [HLZ16], for 8-matchings the associated constraint function is no longer windable under their
characterization and hence their approach cannot work for b > 8.
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Another closely related problem is sampling b-edge covers of a given graph. A subset S C E of edges is
called a b-edge cover if every vertex is incident with at least b edges, i.e., |[S N E,| > b for every v € V. For
b = 1, i.e., the usual edge covers, the counting and sampling problems have been extensively studied as well
[BR09, LLL14, LLZ14, HLZ16, GLLZ21, BCR21, CLV22]. In particular, [LLL14] presented a deterministic
algorithm for counting unweighted edge covers for all graphs using the correlation decay approach with a
running time O(m!*1°226p2) and this was later generalized to weighted edge covers in [LLZ14]. Deterministic
algorithms based on the polynomial interpolation approach were also given for all bounded-degree graphs in
[GLLZ21, BCR21]. More recently, it was shown in [CLV22] that the Glauber dynamics for sampling edge covers
mixes in O(nlogn) time on all bounded-degree graphs.

Meanwhile, the problem of sampling and counting b-edge covers for larger b is far from clear. The MCMC-
based algorithm in [HLZ16] can be applied to count b-edge covers for b < 2, which only slightly extends the
classical case of b = 1. Similar to b-matchings, the approach from [HLZ16] no longer works for b > 3 due to the
failure of windability.

In this paper we attempt to answer the following question: Are there polynomial-time algorithms for
approximately sampling/counting b-matchings and b-edge covers of a given graph for any b > 1?7 We give a
positive answer to this question for all bounded-degree graphs. More specifically, we show that the Glauber
dynamics, a simple Markov chain for sampling b-matchings/b-edge covers, converges in O(nlogn) time which is
optimal.

One can simultaneously generalize both b-matchings and b-edge covers by assigning a different threshold to
each vertex. More specifically, let b = (b,),cy € NV be a vector of thresholds on all vertices. We consider the
collection Mp = Mp(G) of generalized b-matchings, defined as

Mp={SCE:YweVI|SNE,| <b,}.
For A > 0 the Gibbs distribution p = p1¢ p,» is given by

Sl

ILL(S) : 77 VSGMb

and the partition function Z = Zg () is defined as

Z:= > Al

SeMy

Thus, for uniform b = b1 where 1 is the all-ones vector we obtain b-matchings, and for b, = d, — b where d,, is
the degree of v we get the complements of b-edge covers.

Our main contribution is to establish rapid mixing of the Glauber dynamics for sampling general b-matchings
for any b € NV on all bounded-degree graphs. In each step of the Glauber dynamics, one picks an edge
e € E uniformly at random and updates its status, e € S (occupied) or e ¢ S (unoccupied), conditional on
the configuration of all other edges; in particular, if including e violates the subset S being a b-matching then
e must be unoccupied in this update. It is easy to show that the Glauber dynamics is ergodic for sampling
b-matchings.

THEOREM 1.1. (b-MATCHINGS) Let A > 3 be an integer and G = (V,E) be an n-vertex graph of maximum
degree A. Let b € NV be a vector of vertex thresholds. Then for any A > 0, the Gibbs distribution p = pgp s over
b-matchings is Oa (1)-spectrally independent. Furthermore, the Glauber dynamics for sampling from p mizes in
Oa x(nlogn) time.

We prove Theorem 1.1 by the spectral independence method which was introduced recently in [ALO20]
and has become a powerful tool for proving optimal mixing time of Glauber dynamics. Our proof of spectral
independence is inspired by [CZ23] and uses a recursive coupling to bound the Wasserstein W distance under
two distinct pinnings. For uniformly random b-matchings with small b, our bound on spectral independence is
O(A®); see Remark 3.1 for more discussions. We remark that one interesting open problem is to show spectral
independence with a constant independent of A even just for the usual matchings (monomer-dimer model), since
then one would obtain O(nlogn) mixing of Glauber dynamics on all graphs even with unbounded degrees, using
new powerful techniques such as the field dynamics [CFYZ21, AJK22, CFYZ22, CE22].
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1.2 Holant problem with log-concave signatures Both b-matchings and b-edge covers belong to a much
more general family of models called Holant problems, which can be understood as graphical models defined over
subsets of edges of a given graph. Examples and applications of Holant problems include also perfect matchings
[JSV04], even subgraphs [JS93, GJ18, LSS19, CLV22, CZ23, FGW22], Fibonacci gates [LWZ14], spin systems on
line graphs [DHJM21, GLLZ21, BCR21, CLV22], etc.

We consider the following binary symmetric Holant problem. Let G = (V, E) be a graph with n vertices.
For each vertex v let d, denote the degree of v. We consider a family of constraint functions on all vertices
denoted by f = (f,)vev, where each vertex v is associated with a constraint function f, : N — R>¢. Also, let
A = (A)ecr € RE| be a vector of edge weights. The Gibbs distribution 1 = ue, ¢ and the partition function
Z = Zg,f,x of the Holant problem is defined as

u(S) = [T £SO BN T Aer ¥S € B
veV ecS
Z:=> " T f.(8nEN ] *e-
SCEveV ecsS

When f,(k) = 1{k < b,} for some b = (b,)yev, the Holant problem becomes b-matchings.

Holant problems can be defined more generally by allowing each f, : 2F» — R>( to be a set function over
subsets of neighboring edges of v. In this paper we consider only the symmetric case, i.e., the value of f, depends
only on |S N E,|, the number of adjacent edges in S. Such symmetric constraint function f, can be equivalently
identified by the sequence f, = [f,(0), fu(1),..., fu(dy)], which is called the signature at v.

Our main result for Holant problems establishes spectral independence and rapid mixing of Glauber dynamics
when all the signatures are log-concave sequences.

DEFINITION 1.1. (LOG-CONCAVE SIGNATURE) A sequence f = [f(0), f(1),..., f(d)] of non-negative real numbers
1s called a log-concave signature if it satisfies the following conditions:

(a) Log-concavity: f(k)?> > f(k—1)f(k+1) forall1 <k <d—1;

(b) No internal zeros: if f(k1) > 0 and f(k2) > 0 for some 0 < k1 < ka <d, then f(k) > 0 for all k1 <k < ky
(i.e., the support of f is consecutive).

For example, the signature f =[1,...,1,0,...,0] for the function f(k) = 1{k < b} is log-concave.

THEOREM 1.2. (HOLANT PROBLEM, INFORMAL) Let G = (V, E) be an n-vertex graph of mazimum degree A.
Suppose that f = (fu)vev is a collection of log-concave signatures with f,(0) > 0 for allv € V. Let XA € RE be
a vector of edge weights. Then the Gibbs distribution p = pc g x for the Holant problem (G, f,A) is Oa £ (1)-
spectrally independent. Furthermore, the Glauber dynamics for sampling from u has modified log-Sobolev constant
at least 1/(Cn) and mizing time at most Cnlogn, where C = C(A, f,A) does not depend on n.

This is informal because technically speaking, vectors f and A are dependent on n in dimensions. For a precise
statement, see Theorem 3.1.

We remark that the Gibbs distribution u = pg, ¢ in Theorem 1.2 is supported on b-matchings where
b, = max{0 < k < d, : f,(k) > 0}, and thus the Glauber dynamics for sampling from pu is ergodic.
Our assumptions of log-concave signatures in fact generalize previous works [GLLZ21, BCR21, CLV22] which
essentially require that the generating polynomial P(x) = ZZ:O (ﬁ) f(k)z* associated with every signature f is
real-rooted, which implies the log-concavity of f by Newton inequalities, see e.g. [Bral5]. Hence, Theorem 1.2
applies to many classes of Holant problems including the antiferromagnetic 2-spin systems on line graphs.

1.3 Hardcore model on claw-free graphs Another contribution of ours is that the Glauber dynamics has
the optimal O(nlogn) mixing time for the hardcore model on n-vertex bounded-degree claw-free graphs. In the
hardcore model, we are given a graph G = (V,E) and A = (A\,)vev € RY; a vector of vertex weights called
fugacity. A set I C V is called an independent set if e € I for all e € E. Let T C 2V be the set of all
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independent sets of G. Define the Gibbs distribution i = pg,a and the partition function Z = Zg x, also called
the (multivariate) independence polynomial, as

1
wl) = [[» viez
vel

Z:=Y J[ >

IeTvel

Specially, when A = A1, we denote the model as pg,».

The Glauber dynamics is a natural Markov chain for sampling from the hardcore model. In each step of
the Glauber dynamics, a vertex v € V' is picked uniformly at random, and its status, v € I (occupied) or v & I
(unoccupied), is updated according to the configuration on all other vertices. Specifically, if v has at least one
neighbor in the current independent set I, then nothing changes; if v has no neighbors in I, then it becomes
occupied with probability 5 i‘)’w and unoccupied with probability ﬁ

We consider sampling from the hardcore model on a special class of graphs, the claw-free graphs. A graph
G = (V, E) is claw-free if it does not include an induced Kj 3. In other words, there do not exist four distinct
vertices a,b,c¢,d € V such that (a,b), (a,c), (a,d) € E but (b,c), (b,d),(c,d) ¢ E. The class of claw-free graphs
includes all line graphs by definition, and thus the hardcore model on claw-free graphs includes in particular the
monomer-dimer model for matchings as a special case.

It was known that one can sample from the hardcore model on claw-free graphs in polynomial time.
Generalizing the approach from [JS89, Jer(03] for matchings, Matthews [Mat08] gave a Markov chain which
mixes in O(An?) time where A is the maximum degree. Recently, [DGM21] proved that the Glauber dynamics
mixes in O(n®logn) time for claw-free graphs, and more generally in polynomial time for graphs with bounded
bipartite pathwidth.

In another direction, Patel and Regts [PR17] gave a polynomial-time deterministic algorithm (FPTAS) for
approximating the partition function based on Barvinok’s polynomial interpolation method [Barl6] and real-
rootedness of the independence polynomial on claw-free graphs [CS07, LR19]. As is common for deterministic
approximate counting algorithms, the exponent in n in the running time depends on parameters of the model.

Our main result for the hardcore model on claw-free graphs is that the Glauber dynamics has optimal mixing
when the maximum degree is bounded. Again we prove optimal mixing by establishing spectral independence via
a recursive coupling procedure.

THEOREM 1.3. (HARDCORE MODEL ON CLAW-FREE GRAPHS) Let A > 3 be an integer and G = (V, E) be an
n-vertexr claw-free graph of mazximum degree A. Let X € R‘;O be a vector of fugacity with Apin = ming,ey Ay
and Amax = MaxX,ev Ay. Then the Gibbs distribution p = pa x of the hardcore model is 2(1 + Almax)-spectrally
independent. Furthermore, the Glauber dynamics for sampling from u has modified log-Sobolev constant at least
1/(Cn) and mizing time at most Cnlogn, where C = C(A, Anax, Amin) does not depend on n.

2 Preliminaries

In this section we give definitions and lemmas that are needed. We introduce with the Holant problems in mind,
but the definitions and results work for the hardcore model with minor changes (e.g., replacing F with V).

Let 2% be the collection of all subsets of E. We consider a distribution x4 on 2€. We view a subset S C F
equivalently as a binary indicator vector o = 1g € {0,1}¥ where 0. = 1 for e € S, and 0. =0 for e ¢ S.

DEFINITION 2.1. (PINNING) A pinning is a partial configuration T € {0,1}* for some A C E such that (1) > 0,
where pp 1s the marginal distribution on A. Let u™ denote the conditional distribution on E\A.

DEFINITION 2.2. (MARGINAL BOUNDEDNESS) We say u is b-marginally bounded if for all pinnings 7 on A C E
and all e € E\A, we have either b < u" (0, =1) <1—"b or " (o, =1) € {0,1}.

DEFINITION 2.3. (INFLUENCE MATRIX) Let u be a distribution on 2% and 7 be a pinning on A C E. The pairwise
influence matriz Jj; € RENMXEAN) s defined as following: for all e, f € E\A, let

(e, f)=p"(of = loe =1) = u"(of = 1o = 0)
when e # f and min{u" (0. = 1),u" (0 = 0)} >0, and let J] (e, f) =0 otherwise.
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Note that all eigenvalues of the influence matrix J]] are real (see e.g., [ALO20]).

DEFINITION 2.4. (SPECTRAL INDEPENDENCE [AL.O20]) We say u is n-spectrally independent if for all pinnings
T we have )\max(J;) <.

THEOREM 2.1. ([CLV21, BCCT22, CLV22]) Let p be the Gibbs distribution of a Holant problem on an n-vertex
graph of mazximum degree A. If i1 is n-spectrally independent and b-marginally bounded, then the Glauber dynamics
has modified log-Sobolev constant at least 1/(Cn) and mizing time at most Cnlogn, where C = C(A,n,b) is a
constant independent of n.

For two distributions v, 7 on 27, the 1-Wasserstein distance between them is defined as

W1 (l/, 7T) = i%fE(o',T)NC [dH (U, 7')] ,

where the infimum is over all couplings between v and m, and dy(-,-) denotes the Hamming distance between
two elements from 2. We use the following lemma from [CZ23] to establish spectral independence; see also
[CMM23, GGGHP22, CLMM23] which use similar approach.

LEMMA 2.1. ([CZ23]) Let u be the Gibbs distribution of a Holant problem. Suppose that for some constant n > 0,
the following is true: For any two pinnings 7, T’ on the same subset A C E which differ on exactly one edge, we
have

Wl(/J/Tal’LT ) S .

Then p is n-spectrally independent.

3 Fast sampling for Holant problems with log-concave signatures

We first give a precise statement for Theorem 1.2. It is helpful to define the following local generating polynomial
associated with each vertex, as introduced in [GLLZ21].

DEFINITION 3.1. (NORMALIZED GENERATING POLYNOMIAL) For a signature f = [f(0), f(1),..., f(d)] with
f(0) > 0, define the normalized generating polynomial to be

d

Pro) = 7155 3 () F®

k=0

DEFINITION 3.2. Let (G, f,\) be a Holant problem with log-concave signatures and f,(0) > 0 for allv € V. We
define:

Tmax ‘= MAax fv(l) ’ Tmin = min min M?
veV fy(0) VeV kify(k)>0 fo(k — 1)
Amax := max )\67 Amin := min )\67
eck ecE
Prax = Igleaa( va (Tmax)\max) ) A= Iglea‘a,{ dv'

THEOREM 3.1. (HOLANT PROBLEM) Let G = (V, E) be an n-vertex graph of maximum degree A. Suppose
that f = (fu)vev is a collection of log-concave signatures with f,(0) > 0 for all v € V. Let X € RE,
be a wvector of edge weights. Then the Gibbs distribution p = pa g x for the Holant problem (G, f,\) is
O(Prax)-spectrally independent, where Ppax s defined in Definition 3.2. Furthermore, the Glauber dynamics
for sampling from p has modified log-Sobolev constant at least 1/(Cn) and mizing time at most Cnlogn for some
C = C(A, Punaxs "min, Amin ), Where Poax, Tmin, Amin e defined in Definition 3.2.

See also Lemma 3.3 for a simple upper bound of P, in terms of A, rmax, Amax-

By Theorem 2.1, to prove Theorem 3.1, it suffices to establish spectral independence and marginal
boundedness. We focus on spectral independence in Section 3.1 whose proof is based on the log-concavity of
signatures. We give the marginal bound analysis in Section 3.2. The proofs of main results can be found in
Section 3.3.
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3.1 Spectral independence In this subsection we derive a constant bound of spectral independence via
Lemma 2.1.

PROPOSITION 3.1. (SPECTRAL INDEPENDENCE) Under the assumptions of Theorem 3.1, the Gibbs distribution
w of the Holant problem (G, f, ) is O(Pmax)-spectrally independent.

For spectral independence we need to consider the conditional distribution p” under an arbitrary pinning
7. We note that a pinning 7 on a subset A C E of edges induces a Holant problem on the subgraph G\A. To
formalize this relationship, it is helpful to define the following notation of downward shifting operator.

DEFINITION 3.3. (DOWNWARD SHIFTING) For a function f : N — Rsq, we define the function Df : N — R>q as
(Df)(k) = f(k+1), VkeN.
We further define D™ f = D(D™Lf) for integer m > 1.
Let (G, f, ) be a Holant problem. For a subset U C V' of vertices, we define Dy f as

(Duf)o = { Df‘f:” Z ;g’

For a pinning 7, we define D, f as for all v € V|
(D'rf)v = DhmEvlfv-

Observe that if an adjacent edge of a vertex v is pinned to be occupied, it corresponds to changing the signature
of v from f, to Df,. Hence, the Holant problem (G, f, A) with pinning 7 on A C F induces a smaller instance of
Holant problem (G\A, D, f,Ag\a) on the subgraph G\A.

OBSERVATION 3.1. Consider a Holant problem (G, f,\) satisfying the conditions in Theorem 3.1. Then for any
pinning the induced Holant problem also satisfies the conditions. Furthermore, all parameters in Definition 3.2
are “monotone” in pinnings; i.e., we have that rmax, Amax, Pmax, & are non-increasing under any pinning and
Tmins Amin @re non-decreasing.

Proof. The observation follows from that all signatures are log-concave and hence for all v € V,

folk) o folk+0)
0) = R0

where 0 < k < d, and 0 < ¢ < d, — k (assuming 0/0 = 0). O

By Observation 3.1, p” corresponds to an induced Holant problem still satisfying the conditions in
Theorem 3.1; hence it suffices to focus on the no-pinning case. The following proposition gives the key step
for bounding the spectral independence constant via Lemma 2.1. It upper bounds the expected number of
discrepancies when one signature f, is changed to Df,, i.e., the difference between an adjacent (half-)edge of v is
occupied and unoccupied.

PROPOSITION 3.2. Let (G, f,\) be a Holant problem satisfying the conditions in Theorem 3.1 with Gibbs
distribution p = p g a. Suppose v € V is a vertex with f,(1) > 0, and let jf = pa p, ¢ x be the Gibbs distribution
of the Holant problem obtained by changing f, to Df,. Then we have

Wl(,u,u') S Pmax -1

Our coupling between p and g’ is inspired by [CZ23] which proves spectral independence for weighted even
subgraphs with signatures [1,a,1,a,...] for some a > 0. Note that such signatures have period two which is
crucial for the coupling arguments in [CZ23]. Our new ingredient is to construct a coupling without periodicity
of signatures but incorporating the log-concavity in a suitable way.

Proof. [Proof of Proposition 3.2] We construct a simple coupling between p = pg ¢ x and ¢ = pe p, f,a using
Algorithm 1.
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Algorithm 1 Coupling procedure for Holant problems
1: procedure COUPLE(G, f, A\, v)
2: Input: (G, f,A) a Holant problem, v € V' a disagreeing vertex
3: Output: A pair of random configurations (o,0’) € 2F x 2F drawn from a coupling between 1 = ug, f.a
and ¢’ = pG,p, £,

4: if v is isolated then

5: Sample o ~

6: return (o, 0)

7: Choose e = {u,v} € E such that u.(1) > u.(1). > Lemma 3.1
8: Sample (0., 0.) from an optimal coupling of (p, pL).

9: if 0. = 0, =0 then

10: (O'E\E,O'/E\e) < CoupPLE(G\e, f, Ap\e, V)

11: else if o, = o, =1 then

12: (CTE\G,(T,E\e) < CouPLE(G\e, D f, Ap\e, V)

13: else > We must have o, =1, 0/, =0
14: (a;;\e,aE\e) < CoUPLE(G\e, D, f, Ap\c, u)

15: return (o, Uop\e, 0, U a’E\e)

Coupling. We prove that Algorithm 1 produces a coupling between p and p’. We prove this by induction
on the number of edges of G.

Base case is when v is isolated. In this case we have u = p’. The algorithm produces the identity coupling.

Induction step: Suppose v is not isolated. By Lemma 3.1, there exists an edge e € E,, such that p.(1) > pL(1),
so Line 7 runs successfully; we shall prove Lemma 3.1 right after this proof. By Line 8, the marginal distributions
on edge e are correct. In particular, note that because in Line 8 we choose an optimal coupling, it is impossible
to have o, = 0 and o], = 1 since p.(1) > p,(1). We need to prove that the recursive calls produce the desired
distributions on F\e.

e Case 1: 0, =0, = 0. By induction hypothesis,

TR\e ~ HG\e.f Ap. = HE\e(* | 0c = 0),

0-;3‘\6 ~ HG\e,Dy f Ap\e = H’IE\E( | Ué = 0)
e Case 2: 0, = 0, = 1. By induction hypothesis,

OE\e ™~ HG\e,Def Ap\e — ME\e(' | O¢ = 1)7

Tve ~ Ha\e.Dy Do fAp. = Hp\e (- | 00 = 1).
e Case 3: 0. =1, 0, = 0. By induction hypothesis,

Om\e ~ HG\e, DDy f A = HE\e( | 0e = 1),

Thve ~ HG\e, Dy fAp. = Hpne( | 0c = 0).

In all three cases, we see that o\, and o', . have the desired distributions. So the algorithm returns correctly.

W7 distance. Let us bound the expected ¢; distance under the coupling generated by Algorithm 1. We prove
by induction on the number of edges that the expected ¢; distance is at most Pp.x — 1, as defined in Definition 3.2.

Base case is when v is isolated. In this case the ¢; distance is 0.

Induction step: Suppose that v is not isolated. We consider recursive calls of Algorithm 1 until: (1) the
input vertex becomes some other vertex u # v, or (2) the algorithm halts. We claim that Case (2) happens
with probability at least pg, (0), which is the probability that all edges in F, are unoccupied under the Gibbs
distribution p.
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To see this, let A be the following event: For all 1 < ¢ < d where d = d, = |E,|, in the i-th call of
Algorithm 1, the algorithm picks an edge from E,,, denoted by e;, which has not yet be chosen, and sets its values
to be 0., = o, = 0 in both samples. Note that if A occurs then the algorithm halts in the (d + 1)-th call and
the ¢; distance is 0. For simplicity of the proof we assume that there is a total ordering of edges and in Line 7

we always pick the smallest edge satisfying the requirement. Hence, the sequence of edges (eq,...,eq) associated
with the event A is fixed and deterministic: e; is the smallest edge in E,\{e1,...,e;—1} such that
(31) ‘u(ge =1 | Oy =+ =0¢,_, :()) > ’u/((fé =1 ‘ 0':31 = ... :0':32_71 = 0)

It follows that

d

Pr (Case (2)) > Pr(A) = [[Pr (a =0l =0|Vj<io., =0, = 0)
i=1
d
w H,LL(UeZO | oey =+ =0¢,_, =0)
=1
= /’L(O-EU = 0)7

where (%) is because of Eq. (3.1) and the optimal coupling of (o, o?).

To summarize, Case (2) happens with probability at least ug, (0) and the ¢; distance is 0 in this case; Case (1)
happens with probability at most 1 — pg, (0) and the expected ¢; distance is at most 1 + (Ppax — 1) = Prax,
where 1 comes from the edge {u,v} and Ppax — 1 comes from induction hypothesis. Therefore, the expected ¢;
distance produced by the root call is at most

(32) (1 —MHE, (0)) Prax < Prax — 17

where the inequality follows from pg, (0) > 1/Ppnax by Lemma 3.2, whose proof is technical and postponed to
Section 3.2. This completes the induction. 0

Note that as long as it holds pg,(0) = Q(1) one can deduce O(1) Wasserstein distance using the inductive
argument in Proposition 3.2.

We now present and prove Lemma 3.1 which is crucially used in Line 7 of Algorithm 1.

LEMMA 3.1. Let (G, f,A) be a Holant problem and v € V be a vertex such that p = pg ¢ x and f' = pG o, £,
are both well-defined. If f, is a log-concave signature, then we have

(3.3) Eonplo NEy| > By |o’ NE,|.
In particular, there exists e € E, such that
(3.4) ploe=1) > /(o = 1).

Proof. Let d,, = |E,| be the degree of v in G. For 0 < k < d,, define

Oy, = Z H fu(‘aﬁEuD H Ae-

o€27: [oNEy |=kueV\v e€E:o.=1
Then we have that
d
Lo kfo(k)®
Eqgrpulo N Ey| = M
> ko fo (k)P

koo kfo(k + 1)
ZZLO fv(k + 1)‘I)k

EJ/NH/‘O'I M Ev| =
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It follows that

(Z kfy(k)%) (Z fv(€+1)<1>g> - (Z fy(k)%) (fjmm 1)@)
k=0 £=0 k=0 £=0

dy

= 3 (k= Of () fol0 + 1),
k=0
1 &

= 5 fv(€+ 1) fv(k+ l)fv(g))(pkq)i > 07
kL 0

where the last step is because of the log-concavity assumption of f,. Therefore Eq. (3.3) holds as desired, and
Eq. (3.4) is an immediate consequence of Eq. (3.3). O

We are now ready to prove Proposition 3.1 on spectral independence.

Proof. [Proof of Proposition 3.1] We prove spectral independence via Lemma 2.1. Let 7 be a pinning on A C E
and let e = {u,v} € E\A such that 0 < (1) < 1. For two pinnings 7/ = 7U {e « 0}, 7" = 71U {e + 1} on
A U {e} which differ only at e, we consider the two conditional distributions

p =peralloa=T70e=0)=pz 55

"

P o= pesallon =700 =1) = bap p, 550

where G = G\A\{e}, f =D, f, and A= AE\A\{e}. By Proposition 3.2 and the triangle inequality, we deduce
that

WI(MT 7/1’7- ) S Wl (ﬂé,f’Xvﬂé_’Duf,X) + Wl (ﬂé,pu.ﬁ;\7ﬂé7pvpufvx> S 2(Pmax - ]-)

Note that all these Holant sub-problems under downward shifting operators still satisfy the assumptions of
Theorem 3.1 by Observation 3.1. Therefore, by Lemma 2.1 pg f,x is 2(Pmax — 1)-spectrally independent. 0

3.2 Marginal bounds We first lower bound the probability that all adjacent edges of a vertex are unoccupied,
which justifies Eq. (3.2).

LEMMA 3.2. Let (G, f, ) be a Holant problem satisfying the assumptions of Theorem 3.1. Then for any vertex
v, we have

1

gD)g> ——
18,(0) 2 g S

Proof. For any o € 2F\Fv and 7 € 2P viewed as subsets, suppose 7 = {ey,...,ex} C E, where k = |7| and
e; = {u;,v} for each i, and we have that
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Summing over ¢ and 7, we obtain that

1= Z Z (curT)

s€2E\Ey r€2Pv

<> 3 B ) i)

Z Z fv rmax)\max)l‘r‘

cE2E\Ey T€2Ev

< uE, (O)Pv (Tmax)\max)a

as claimed. O

We now give marginal lower bounds.

PROPOSITION 3.3. (MARGINAL BOUNDEDNESS) Let (G, f, ) be a Holant problem satisfying the assumptions of
Theorem 3.1. Then for any pinning T on a subset A C E and for any edge e € E\A that can be occupied, we have

2 .
and p" (0, =1) > Tinin Amin

Pmax - Pr%lax

p(oe=0) >

Proof. By the monotonicity of pinning given in Observation 3.1 it suffices to focus on the no-pinning case. Let
e = {u,v}. The first part follows from Lemma 3.2. Let us prove the second part.
By applying Lemma 3.2 twice, we have

1
woe,ue, =0)=uloe, =0)-ulog\p, =0]0op, =0) 2 55—,
max
where we note that u(- | og, = 0) corresponds to an induced Holant problem whose Pp.x is no bigger by

Observation 3.1. Then we have

ploe =1) > p(oe = 1,0m,08,\ (e} = 0)
~ fu(D) fu(1)
~ fu(0)£,(0)

2
Tmin )\min
P2

max

= - (og,uE, = 0)

Y

This verifies the second part. 0

The following lemma provides an upper bound on P,,x which in turn gives simple and clean constant bounds
on spectral independence and marginal boundedness.

LEMMA 3.3. For a Holant problem (G, f, ) with log-concave signatures and f,(0) > 0 for all v € V', we have

Prax < (7"2 A +1)A

max’/'‘max

Proof. We note that for any vertex v,

k
o H POY <ok
»(0) fv (i — 1 f2(0)
by the log-concavity of f,. Hence, we deduce that

va<x>=f;0)i(d> Z( )bt = (15 )

k=0 k=0
Letting * = rmaxAmax and taking maximum over v gives the desired bound. |
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3.3 Proofs of main results

Proof. [Proof of Theorem 3.1] By Proposition 3.1, p is O(Pupax)-spectrally independent. By Proposition 3.3, p is

b-marginally bounded for b = b(Puax, "min, Amin) > 0. Using Theorem 2.1, we finish the proof. a

Proof. [Proof of Theorem 1.1] Because [1,...,1,0,...,0] is a log-concave signature, we can apply Theorem 3.1.
For the b-matching problem (G, b, \), we have rmax = rmin = 1 and Apmax = Amin = A. Therefore Ppax is upper
bounded by a function of A and A. So Theorem 1.1 is a corollary of Theorem 3.1. a0

REMARK 3.1. Note that for uniformly random b-matchings on a graph of mazximum degree A where 1 < b < A,
we have Tmax = Tmin = 1, Amax = Amin = 1, and

b
A
Prax < )
SES
k=0
Hence, for small b < A we have O(AY)-spectral independence, and for all b we have O(QA)-spectml independence.

3.4 Further discussions Theorem 3.1 establishes spectral independence for a broad class of Holant problems
with log-concave signatures. The support of the corresponding Gibbs distribution is over all b-matchings for some
b € NV. Note that O(1)-spectral independence fails for the signature [0, 1,0, ..., 0] which corresponds to perfect
matchings. Moreover, it also fails for the signature [0, 1,...,1,0] in the £, sense (maximum absolute row sum of
influence matrices), as illustrated by the examples below.

e Consider a path vg <> v; > -+ <> v,. Suppose the signature at vq;—1 is [1,1, 0] for all ¢ > 1, i.e., requiring at
least one adjacent edge unoccupied, and the signature at v; is [0, 1, 1] for all ¢ > 1, i.e., requiring at least one
adjacent edge occupied. If o(vgv1) = 1, then there is only one feasible configuration where o (vg;—1v2;) = 0
and o(vg;v2;41) = 1. If o(vgv1) = 0, then one can check that there are n feasible configurations. The
absolute sum of influences of edge vov; on all other edges is Q(n).

e Consider a path vy <> v1 <> -+ < v, together with edges u;v; where 1 < i < n. Suppose every vertex v; has
signature [0,1,1,0] for ¢ > 1. Fix o(ug;—1v2;—1) = 1 and o(ug;ve;) = 0 for all ¢ > 1 as a pinning, then the
resulted Holant problem is equivalent to the previous example. So the absolute sum of influences of vguy is

4 Hardcore model on claw-free graphs

In this section we prove Theorem 1.3 from introduction. The proof idea is similar to Theorem 3.1 on a high level.
We establish an upper bound on the Wasserstein W distance between distributions under different pinnings,
which implies spectral independence and fast mixing via Lemma 2.1 and Theorem 2.1. The W; upper bound is
proved using a recursive coupling (Algorithm 2), which shares some similarities with Algorithm 1 but requires
new ideas to utilize claw-freeness of the graph.

While the hardcore model is a distribution on 2V rather than 2%, notations in Section 2 can be applied
here with simple changes. For example, we view a subset I C V equivalently as a binary indicator vector
o = 1; € {0,1}V. We similarly define pinnings, marginal boundedness, influence matrices, and spectral
independence for the hardcore model; importantly, Theorem 2.1 and Lemma 2.1 still hold. We refer to
[ALO20, CLV21] for formal definitions and precise statements.

4.1 Preliminaries on claw-free graphs A graph is called claw-free if it does not contain K 3 (that is, a star
graph comprising three edges, three leaves, and a central vertex) as an induced subgraph. Note that any induced
subgraph of a claw-free graph is still claw-free by definition. The class of claw-free graphs includes in particular
all line graphs.

For a vertex v of a graph G = (V, E), let N, = {u € V : (u,v) € E} denote the neighborhood of v, and let
N = vUN, denote the closed neighborhood including v itself. We say a vertex v is simplicial if its neighborhood
N, (or, equivalently, its closed neighborhood N) forms a clique, i.e., every two neighbors of v are adjacent. The
following simple lemma is very helpful to us.
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CrLam 4.1. Suppose G = (V, E) is a claw-free graph and v € V' is a vertex. Let u € N, be a neighbor of v. Then
the subgraph G\(N;\u) is claw-free and u is a simplicial verter of G\(N;\u).

Proof. The subgraph G\(N;\u) is claw-free since it is an induced subgraph on V\(N\u). Suppose for
contradiction that u is not simplicial in G\(N;\u). By definition there exist two neighbors wi,wy of w in
G\(N}\u) that are not adjacent. Then, {u,v,w1,ws} forms a claw centered at u in G: wu is adjacent to all of
v, w1, ws by our choice, and wy,wq are not adjacent to v since wy, ws ¢ N;¥. This is a contradiction and hence u
must be simplicial. 0

4.2 Spectral independence We establish spectral independence in this subsection. For a vertex v and a spin
i € {0,1}, we use the notation v < i to represent the pinning o, = i. Hence, if A C V is a subset of vertices, 7
is a pinning on A, and v € V\A, then u™v*¢ represents the conditional Gibbs distribution on the subset V\A\v
conditioned on both op = 7 and o, = 1.

PROPOSITION 4.1. (SPECTRAL INDEPENDENCE) Work under the setting of Theorem 1.3. For any pinning T on
a subset A CV and any vertex v € V\A, we have

W1 (u'r,ve()"u'r,vel) S 2(1 4 A>\Inax)~
In particular, p is 2(1 + Adpax)-spectrally independent.

As a standard trick for the hardcore model, we can view the the conditional Gibbs distribution under a
pinning 7 on A C V as a hardcore model on an induced subgraph by removing all pinned vertices in A together
with all neighbors of those fixed to be occupied (pinned to spin 1). Note that the maximum degree of the resulting
subgraph does not increase. Thus, for simplicity we consider the case without pinnings except at v.

We first argue that for claw-free graphs, to prove Proposition 4.1 it suffices to consider only when v is a
simplicial vertex. Sample £ ~ ,u”NTO and & ~ ,qujl two configurations on the neighborhood of v. Observe that we

must have & = 0 since v is occupied. Suppose ||¢][1 = m and denote the occupied vertices in & by {u1,...,umn}
under any ordering. We must have m < 2; otherwise, since there can be no edge between any pair of occupied
vertices, the set {v,u1,us,us} forms a claw. For 0 < ¢ < m, let £ be the configuration on N, with {u,...,u;}

occupied and all other vertices in IV, unoccupied, so £ = & = 0 and ™ = £. We note that each ¢ is feasible
because ¢ is feasible. We then deduce from the triangle inequality that

Wy (0, 1" ) S EJlE = €] + B [Wh (=o€, )|

ZIEmﬁ-—EWh]+JE{wq(u“+ﬂém7uw—m@)}

i i—1 i
ZWl (NW_M 0 )] .
i=1

For each i, the Wasserstein distance Wy (,u“‘_o’fifl, /ﬂ‘_ovgi) corresponds to a hardcore model on the subgraph

(4.5) <2+E

G\(N{f\ul)\u;ll Ny, under two pinnings u; < 0 and u; < 1; the pinning on v does not matter since the
configuration on N, is fixed. In particular, u; is a simplicial vertex in this subgraph since it is already simplicial
in G\(N;\u;) by Claim 4.1. Thus, Eq. (4.5) shows that it suffices to consider the case where the disagreeing
vertex is simplicial.

We show in the next proposition that the Wasserstein distance is constant between Gibbs distributions under
different pinnings on a simplicial vertex.

PROPOSITION 4.2. Work under the setting of Theorem 1.3. If v is a simplicial vertez, then we have
Wi (5% 1) < Adimax.
We can then deduce Proposition 4.1 from Proposition 4.2 by the arguments above.
Proof. [Proof of Proposition 4.1] Combining Eq. (4.5) and Proposition 4.2, we deduce that
Wi ("0 u" 1) <24+ 28

Spectral independence then follows from Lemma 2.1 and the bound on Wj. 0
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Algorithm 2 Coupling procedure for the hardcore model on claw-free graphs

1: procedure COUPLE(G, X, v)
2: Input: G = (V,E) a claw-free graph, A € RY a vector of fugacity, v € V a simplicial vertex which is

disagreeing

3: Output: A pair of random configurations (o, 0’) € 2¥\¥ x 2¥\¥ drawn from a coupling between péy and
HEN

4: if v is isolated then

5: Sample o ~ g

6: return (o,0)

7. Sample o, ~ (u&y) . and ofy, <0

8: if o, = 0 then

9: Sample o\ yx ~ ,um_o Ny+0

10: return (o,0)

11: else > We must have

12: Let u € N, such that o, =1

13: (UQ/\(N;\U), UV\(N;;\u)) <+ COUPLE (G\(le\u), )‘V\(Nf, \u)s u) > Claim 4.1

14: return (o,0’)

It remains to prove Proposition 4.2, which is again proved by a recursive coupling.

Proof. [Proof of Proposition 4.2]

We construct a coupling between pg " and u“‘l for configurations on V\v using Algorithm 2, and upper
bound the W; distance via claw-freeness of the graph

Coupling. We prove that Algorithm 2 produces a valid coupling by induction on the number of vertices in G.

If v is isolated then the configuration on V\v is independent of o, and hence MC’S\O = MUG%}, this justifies Line 6

and also the base case for our induction. For non-isolated v, we sample oy, (u%ﬁ\o) N, and oy~ (/féﬁ\l)

U<—0

note that we must have oy = 0 for the latter since v is occupied. If oy, = 0 = o7y , then the configuration on

the remaining graph is independent of ¢,, namely MUHO Nue0 ugi\l’N'”eo, which justifies Line 10. Otherwise,

we have oy, # 0. Since v is simplicial, N, is a clique and hence theré is exactly one vertex in N, that is occupied
under oy, , which we denote by u. Let A = N \u be the closed neighborhood at v excluding u, and we have
04 = 0. By the induction hypothesis we have in Line 13 that

_ v<0,Ny+on, .
ov\a ~ :uG\A Avva = Haa )

’ w0 v+1,N, <—(7N
Ivva ~ Ba\A 4 = Paa

Notice that we can recursively call Algorithm 2 on the input (G\A, Ay\ 4, u) because G\A is a claw-free graph
and u is a simplicial vertex by Claim 4.1. Thus, (Uv\ A, U(/\ ) comes from the desired conditional distributions
and therefore the output of Algorithm 2 is from a coupling of ;L”“O and ,u”“l by induction.

W; distance. Next, we bound the expected ¢; distance under the Couphng generated by Algorithm 2 by
induction on the number of vertices. Base case is when v is isolated, in which case the ¢; distance is 0. Now
suppose that v is not isolated. Observe that in one run of Algorithm 2: either oy, = 0 and the ¢; distance is 0,
or |lon, || =1 and it recursively calls Algorithm 2 in Line 13 on a smaller instance so that the combined expected
¢1 distance is at most 1 + Alyax by our induction hypothesis (1 for the discrepancy at u and Alyax for the
recursive call). We note that the first case happens with probability exactly ,u““o(a N, = 0), the probability that
all neighbors of v are unoccupied. Therefore, the expected ¢, distance produced by the root call is at most

(4.6) (1= p& X (on, = 0)) (14 Admax)-

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

4984



Downloaded 08/22/24 to 128.112.200.82 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

It remains to lower bound u”d;\o(am = 0). Since v is simplicial, every feasible configuration £ on N, satisfies

&=0or |[£][s = 1. We have

T=pgon, =00+ > uEl(on, =€) < (1+ M) - 15X (o8, =0),
ge2lvig]l1=1

and thus ,ug’j\o (on, = 0) > (1 + Adpax) "t Plugging into Eq. (4.6) finishes the proof. 0
4.3 Marginal bounds In this subsection we give marginal bounds that are needed.

PROPOSITION 4.3. (MARGINAL BOUNDEDNESS) Work under the setting of Theorem 1.3. For any pinning T on
a subset A CV and any vertex v € V\A that can be occupied, we have

)\min

(U Amin) (14 D + (3) M)

u (o, =0) and p© (o, =1)>

>
- 1+)\max

Proof. For any configuration o; € 2V \(AU?) with non-zero probability under x”, we have
p (01,00 =1) < Ay’ (01,0, = 0).

Therefore

1 1 1
T v =0)= T 3 Ou =0 Z T - Z .
1 (0 ) E 1% (0'1 (o2 ) 1 +>\v : : H (Ul) 1 +)\v 1 +>\max

o €2V \(ALY) o1 €2V \(AUY)
This proves the first part.

For the second part, note that for claw-free graphs, at most two neighboring vertices of v can be occupied at
the same time, and hence we have

1= > ulon,=8< (1 + Anax + (2) Afnax> w(on, = 0).

ge2Nv:|g]|1<2
1
So u"(on, =0) > (1 + Admax + (g) )\fnax) and it follows that

woy=1)>pu" (o, = Lion, = 0)

>\min

(1 min) (14 A + (3) Vo)

\

This proves the second part. 0

We are now ready to prove Theorem 1.3.

Proof. [Proof of Theorem 1.3] Follows from Propositions 4.1 and 4.3 and Theorem 2.1. d
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