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To elucidate the effect of particle shape on the rheology of a dense, viscous suspension
of frictional, non-Brownian particles, experimental measurements are presented for
suspensions of polystyrene particles with different shapes in the same solvent. The
first suspension is made of spheres whereas the particles which compose the second
suspension are globular but with flattened faces. We present results from steady shear
and shear-reversal rheological experiments for the two suspensions over a wide range of
stresses in the viscous regime. Notably, we show that the rheology of the two suspensions is
characterised by a shear-thinning behaviour, which is stronger in the case of the suspension
of globular particles. Since the shear-reversal experiments indicate an absence of adhesive
particle interactions, we attribute the shear thinning to a sliding friction coefficient
which varies with stress as has been observed previously for systems similar to the first
suspension. We observe that the viscosity of the two suspensions is similar at high shear
stress where small sliding friction facilitates particle relative motion due to sliding. At
lower shear stress, however, the sliding friction is expected to increase and the particle
relative motion would be associated with rolling. The globular particles attain a higher
viscosity at low shear stress than the spherical particles. We attribute this difference to a
shape-induced resistance to particle rolling that is enhanced by the flattened faces. Image
analysis is employed to identify features of the particle geometry that contribute to the
resistance to rolling. It is shown that the apparent rolling friction coefficients inferred from
the rheology are intermediate between the apparent dynamic and static rolling friction
coefficients predicted on the basis of the image analysis. All three rolling resistance
estimates are larger for the globular particles with flat faces than for the spherical particles
and we argue that this difference yields the stronger shear thinning of the globular particle
suspension.
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1. Introduction

Non-Brownian suspensions made of relatively rigid particles are ubiquitous in industry
(fresh concrete, civil engineering, rocket fuel, etc.) and in natural flows (mud, lava
flows, submarine avalanches, etc.). This widespread occurrence has encouraged active
research in the past years that has revealed great complexity in the behaviour of these
systems, which are usually composed of particles with irregular shape. Notably, it has
been shown that even the simplest suspension, a non-Brownian suspension made of
relatively rigid, single-sized rough spheres (of radius a) with negligible colloidal forces
(no adhesion), suspended in a density-matched (no effect of gravity) Newtonian fluid (of
viscosity no) and sheared in a viscous creeping flow (no inertial effect), can exhibit a
rich variety of rheological behaviours. The best known feature is the divergence of shear
viscosity, 1, when the solid volume fraction, ¢, tends to a maximum value known as the
jamming volume fraction, ¢,,. However, the range of complex rheological behaviours can
also include the occurrence of a yield stress (Dagois-Bohy et al. 2015; Ovarlez et al.
2015), shear-thinning (Vazquez-Quesada, Tanner & Ellero 2016; Lobry et al. 2019) or
shear-thickening behaviours (Barnes 1989; Mari et al. 2014; Guy, Hermes & Poon 2015;
Comtet et al. 2017; Madraki et al. 2017; Madraki, Ovarlez & Hormozi 2018; Madraki et al.
2020), normal stress differences, irreversibility under oscillating shear (Pine e al. 2005;
Blanc, Peters & Lemaire 2011a), shear-induced microstructure (Gadala-Maria & Acrivos
1980; Blanc et al. 2011a, 2013) and particle migration (Phillips et al. 1992; Snook, Butler
& Guazzelli 2016; Sarabian et al. 2019; Rashedi, Ovarlez & Hormozi 2020).

Owing to the complexity already present in the ‘simplest system’, suspensions made
of spheres have been studied extensively for decades. In contrast, the role played by the
particle shape has only started to be investigated recently and still suffers from a dearth of
experimental data. Yet, many suspensions found in industry and in nature are composed
of globular particles, which have an irregular compact form with a global aspect ratio
close to 1 (see figure 1). These particles are predominantly convex due to erosion. The
present paper describes an experimental work that aims at reducing this deficit by studying
the rheology of a viscous non-Brownian frictional suspension made of globular particles
(2a ~ 40 pm) and comparing it with a suspension of spheres made of the same solid
material and suspended in the same solvent. For this purpose, some polystyrene (PS)
beads have been crushed, while others have not, in order to create two similar suspensions
(described in § 2): one made of beads (see the first sketch from the left in figure 1) and the
other made of particles with irregular globular shapes (see the third sketch from the left
in figure 1). Since the recent works of Le ef al. (2023) have shown that the rheology of a
suspension depends strongly both on the type of particles and the solvent, it is important
to note that both types of PS particles studied in the present paper are separately dispersed
in the same suspending liquid (silicone oil). Therefore, the only difference between the
two types of suspension studied in the present paper is the solid particle shape and we
investigate the role of shape disentangled from other factors.

In the last decade, the central role played by direct solid contact in the flow properties of
non-Brownian frictional suspensions has been revealed by Boyer, Guazzelli & Pouliquen
(2011), who succeeded in applying a granular paradigm to describe the rheological
behaviour of non-Brownian and non-colloidal spheres suspended in a Newtonian fluid
in the dense regime, showing the key role played by solid contact interactions between
particles, existing thanks to their asperities. Later, using a discrete-element method
(DEM)-like approach Gallier et al. (2014) have extensively studied the influence of
asperity height, 4,, and sliding friction coefficient, w, between spheres on the rheology of
suspensions. They have notably shown that p, is a key parameter that governs the flow
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Figure 1. Schematic of different types of 2D-projected particle shapes (from the left to the right): a simple
sphere (disc), a regular polyhedron (polygon) and a globular/crushed particle that possesses flat faces and
spherical arcs.

properties of frictional suspensions of spheres in the concentrated regime (¢ > 0.40).
Several numerical studies (Gallier et al. 2014; Mari et al. 2014; Wyart & Cates 2014; Peters
et al. 2016; Singh et al. 2018) have then shown that s changes the value of the jamming
volume fraction, ¢,,. For instance, Seto er al. (2013) and Mari et al. (2014) have shown
that the proliferation of frictional contacts is known to be the cause of the discontinuous
shear-thickening (DST) observed in highly concentrated suspensions of spheres when the
shear stress is high enough to overcome repulsive interactions between particles and push
them into contact. As a consequence, the authors have measured, in the case of spherical
particles, a decay of ¢,, from 0.66 to 0.58 when p; increases from O (frictionless case)
to 1 (frictional), in qualitative agreement with the experimental values from the literature
for frictional suspensions of spheres: ¢,, € [0.54; 0.62] (Zarraga, Hill & Leighton 2000;
Ovarlez, Bertrand & Rodts 2006; Boyer et al. 2011; Blanc, Peters & Lemaire 20115; Blanc
et al. 2018). Later, Peters et al. (2016) numerically found that ¢,, decreases from 0.7 to 0.56
for the same variation of ug (0 < uy < 1), in quite good agreement with these previous
works. Moreover, recent experimental studies have directly measured the values of u by
atomic force microscopy (AFM) measurements between pairs of PS beads suspended in
silicone oil (Arshad et al. 2021; Le et al. 2023). They found that 0.1 < uy < 4, which
confirms the considered range of the values of 1, in the numerical studies.
Shear-thinning is common in viscous non-Brownian suspensions (Gadala-Maria &
Acrivos 1980; Zarraga et al. 2000; Dbouk, Lobry & Lemaire 2013; Vazquez-Quesada
et al. 2016, 2017; Blanc et al. 2018; Gilbert, Valette & Lemaire 2022) and can have
different physical origin, depending both on the physical properties of the suspension
and the range of applied shear stress, X'1» (the indices 1, 2 and 3 referring to the flow,
gradient and vorticity directions, respectively). By studying a non-Brownian suspension
made of polyvinyl chloride (PVC) particles suspended in a 1,2-cyclohexane dicarboxylic
acid diisononyl ester (DINCH, Newtonian oil), Chatté et al. (2018) have notably proposed
the possible existence of two successive regimes of shear-thinning behaviour separated
by a shear-thickening regime related to the frictionless—frictional transition. The first
shear-thinning regime occurs at small stress, when the suspension remains frictionless
since repulsion prevents direct solid particle contacts. This system can be actually seen
as a suspension of ‘soft’ particles, composed of a ‘hard core’ (of diameter d = 2a) to
which a frictionless jacket of thickness, &, is added. The gap 2§ between neighbouring
particles is determined by balancing the normal force Fy induced by the applied stress with
the colloidal repulsive force, fiy. When X'1> (and therefore the normal force F between
particles) increases, £ decreases, and so the apparent size of the particles decreases,
agpp = a + &(fn), inducing a decay of the apparent volume fraction of the suspension
and, in fine, a decay of n (Krieger 1972; Maranzano & Wagner 2001a). When the particle
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pressure increases more and overcomes the repulsive forces (Fy > fA?), the particles
enter increasingly frequently into direct solid contact thanks to their asperities and the
suspension passes from a frictionless state to a frictional one.

Interestingly, Mari et al. (2014) have shown that the onset of this frictionless—{rictional

transition (‘fft’) occurs for a critical shear stress (and not a shear rate, y): O{r{t ~ 0.3 x
fﬁ /(67a?) for spheres, whose value is independent of ¢ as already observed in many
experiments (Bender & Wagner 1996; Frith et al. 1996; Maranzano & Wagner 2001a,b;
Lootens et al. 2005; Fall et al. 2010; Larsen et al. 2010; Brown & Jaeger 2012, 2014).
The authors have also shown that the stress range over which thickening occurs remains
constant. This has motivated us to control the applied shear stress in the present study,
instead of the shear rate. Once the load Fy is large enough (Fy > fﬁ), the direct solid
contacts between particles saturate since all the particles in the suspension have contacts
with their neighbours: the system is in the frictional state. Mari et al. (2014) have measured

the occurrence of this second regime at agft ~ flg /a?.

In the frictional state, if X5 increases further, then a potential second shear-thinning
regime can be observed. We want to emphasise that it is precisely this second
shear-thinning regime (when the suspension is frictional) that will be explored in the
present paper. The physical origin of this complex behaviour remains an open question.
For instance, Acrivos, Fan & Mauri (1994) suggested that the apparent shear-thinning
behaviour observed in Couette flow can be due to a difference of density, Ap, between the
solid particles and the suspending fluid. Indeed, solid particles heavier than the suspending
fluid settle because of gravity and form a more concentrated layer. Then, shear-induced
viscous resuspension (Gadala-Maria 1979; Acrivos, Mauri & Fan 1993; Zarraga et al.
2000; Saint-Michel et al. 2019; d’ Ambrosio, Blanc & Lemaire 2021) tends to homogenise
the suspension when X, increases, which induces an apparent decay of the viscosity.
However, while this mechanism may arise in some experiments with Couette rheometers,
it cannot explain the shear-thinning behaviour observed in other types of flow. For instance,
in the case of a parallel plates geometry, the shear-induced viscous resuspension would
tend to increase the viscosity. In addition, we show that X5 in the present study is large
enough so that gravity would not cause significant deviation from uniform volume fraction,
so the effect of any shear rate dependence related to gravity is absent.

Lastly, numerical simulations (Lobry ef al. 2019) and experimental studies (Chatté et al.
2018; Arshad et al. 2021; Le et al. 2023) have shown that the shear-thinning behaviour
observed for concentrated viscous non-Brownian frictional suspensions (i.e. beyond the
DST) could be related to a sliding friction between solid particles that varies with the
normal force Fy. Following the model from Brizmer, Kligerman & Etsion (2007), Lobry
et al. (2019) have considered that the contact between particles is elastic and occurs only
through a few hemisphere-like asperities. In these conditions and according to the Hertz

theory, the elastic contact area A opsqcr 1S proportional to FIZ\,/ 3 which gives

F Acontac _
_r . contact o FN1/3, (1.1)

s = Fy Fx
where Fr denotes the tangential force. This model is in good agreement with experimental
works (Chatté et al. 2018; Arshad er al. 2021; Le et al. 2023) which have directly
determined the decay of ug with the normal force Fy by conducting AFM measurements
between pairs of particles. Arshad et al. (2021) and Le et al. (2023) have conducted AFM
measurements to measure the pairwise friction between pairs of PS beads (d &~ 40 pm)
immersed in an aqueous liquid and silicone oil, respectively. Note that the system of
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suspension studied by Le ef al. (2023) is the same as that studied in the present paper.
The different studies (Lobry et al. 2019; Arshad et al. 2021; Le et al. 2023) performed on
suspensions of spherical particles have all converged to the following equation based on
the works from Brizmer et al. (2007):

Fy\™
ts = pg° x coth |:M?O (L_> :| ; (1.2)
C

where L. corresponds to the critical normal force which scales the saturation of . In
other words, the sliding friction coefficient becomes constant and equal to p©° when
Fn > L, because of an elastic to plastic transition of asperities deformation (Lobry et al.
2019). In the case of a contact between a perfectly smooth half sphere and a flat surface,
Brizmer et al. (2007) determined: u{° = 0.27 and m = 0.35, whereas Lobry et al. (2019)
estimated L. = 20 nN based on the material properties (PS particles). More recently,
Arshad et al. (2021) directly measured p;° = 0.18 by AFM measurements and determined
L. = 33.2 nN and m = 0.54 by fitting their experimental results obtained for PS particles
in an aqueous liquid by (1.2). On the other hand, Le et al. (2023) measured for PS beads in
silicone oil: u$° = 0.15 (m = 0.4). Note that, since the particles of the suspensions studied
in the present paper are of the same chemical composition found in these studies from the
literature (and even the same solvent for Le e al. 2023), we reuse (1.2) coupled with the
latter constants to characterise the shear-thinning behaviour of the studied suspensions.
Lobry et al. (2019) have numerically determined the relationship between the
normal force applied on spherical particles and the shear stress: Fy = 6ma’X12/1.69.
Equivalently, a critical shear stress, X, can be defined as L. = 6na22c/ 1.69, which
allows one to obtain the following updated equation for the variable sliding friction

coefficient:
o0 oo (Z12\"
s =ty x coth | pu . (1.3)
pI

It is known in granular media that the two possible motions for a particle are sliding
(characterised by ;) and rolling. The one offering the least resistance will be favoured
but both can obviously occur at the same time in a sheared suspension (Estrada, Taboada
& Radjai 2008). One can easily understand that the particle shape might have a significant
effect on one or even both of these motions, depending on the contact between particles.
A decade ago, the numerical simulations of Estrada er al. (2011) in granular media
have shown that the way a non-spherical shape provides resistance to rolling can be
essentially modelled by approximating the non-spherical particle (like a globular one)
by a sphere ‘equipped’ with an apparent rolling resistance torque, I'F, (see figure 2).
This shape-induced rolling resistance would be therefore characterised by a rolling friction
coefficient, u,, defined from a Coulomb-type law:

Fy < u,Fy. (1.4)

This is the sense in which we will consider rolling friction in the present paper. It is
important to note that the main assumption that we make in the present paper is then to
approximate the three-dimensional (3D) globular particles (irregular polyhedra) by their
two-dimensional (2D)-projected shapes (irregular polygons).

Recent numerical simulations from Singh et al. (2020) have notably predicted a decay of
¢, when p, increases, but a dearth of experimental data remains preventing verification
of this important insight. Thus, in the present paper, after describing the experimental
process in §2, we first aim (in §3) at measuring the jamming volume fraction, ¢y,
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Figure 2. Schema of rolling on a plane from the left to the right for a regular octagon (on the left) and a disc
(on the right), thanks to a tangential force, Fr, applied at the centre of mass G of the particles. The two particles
have the same perimeter. The two systems can be considered equivalent if the disc is ‘equipped’ with a rolling
resistance torque, I, directly related to a ‘rolling resistance force’, thv defined from the normal force, Fy,
applied on G as F I’V < prFn. Here, u, is the rolling friction coefficient (Estrada ef al. 2008, 2011).

of the two studied suspensions, in order to characterise the rheological behaviour of
non-Brownian viscous suspensions made of frictional particles with irregular shapes and
compare it with the rheology of a basic suspension made of spheres of the same material.
In the second part, we then determine by an image analysis process (see §4) the rolling
friction coefficient, u,, of the studied globular particles in order to compare the numerical
predictions of ¢,, from the literature with our own experimental data.

2. Experimental methods
2.1. Suspensions

In this paper, the rheological behaviour of two different non-Brownian viscous suspensions
are investigated. The two suspensions are very similar: they are both made of the same PS
particles (TS40, Microbeads) with a density measured as p, = 1.06 g cm™> and sieved
between 36 and 45 pwm in order to reduce the initially large size distribution, dispersed
separately in the same solvent, a Newtonian silicone oil (Sigma-Aldrich) of density or =
0.97 g ecm™3 and viscosity 79 = 0.98Pa s measured at T = 23°C. To prepare a given
suspension, a known mass of solid particles is carefully mixed with a known mass of
liquid. The air bubbles are then removed by putting the sample in an ultrasound bath.
The suspension is finally gently stirred in order to resuspend the particles that would have
settled during the degassing procedure.

The only difference between the two suspensions remains in the shape of the PS
particles. For the first suspension, labelled Spsao, the solid particles are spheres and to
make the second suspension labelled Cpsap, the PS particles have been crushed by a
process described in Appendix A. Figure 3 shows examples of these particles captured
with a basic microscope: some spherical particles are presented in figure 3(a) whereas
a sample of crushed particles is shown in figure 3(b). One can already note that the
population of crushed particles is slightly heteroclyte, being composed of different shapes
classified from simple spheres to more facetted particles and particles having both
spherical and flat surfaces (see the rightmost schematic in figure 1). It is this appearance,
combining spherical arcs and flat surfaces similarly to a quidditch ball (the so-called
quaffle), which motivated us to choose the title for the present paper. Figure 4 displays an
enlarged image of a sample of crushed PS particles, which allows one to better appreciate
this heteromorphism.
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.
Figure 3. (a) Spherical PS particles. (b) Crushed PS particles. Scale ~ 1.75 px (wm) 1. Particle diameter:
d =2a~ 40 pm.

Figure 4. Globular/crushed PS particles composing Cpsao.

A quantitative study by image analysis has been conducted over a few hundred images
captured with a microscope such as those presented in figure 3 in order to characterise the
size distribution of the two types of particles, displayed in figure 5. One can observe that
the spherical and crushed PS particles have roughly the same size, and both populations
can be considered monodisperse with mean and standard deviation of the diameter of
(d)SPs# ~ (42 £ 1) pm and (d)CPs* ~ (43 £4) pm. If the crushed particles appear
slightly larger than the spherical particles, it is likely due to the fact that the diameter
d is calculated from the projected area of the particle.

2.2. Rheometry experiments

Rheometric experiments are carried out in a controlled-stress rheometer HR30 (TA
instruments) with a smooth rotating parallel plate of radius R = 20 mm. The temperature
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Figure 5. Size distribution of spheres (blue) and crushed particles (orange). For a crushed particle, the
projected area, denoted A, is measured by microscopic image analysis. The diameter d corresponds to the
diameter of a disc having the same area as the projected crushed particle: d = 2 x \/A, /7.

is controlled by the static lower plate and is set at 7 = 23 °C for all the experiments. The
gap is imposed at | mm < /2 < 2 mm, which allows one to have enough particles (20 <
h/d < 50) to minimise phenomena of layering and sliding. The preference of working in a
parallel rotating disc is led by the near absence of shear-induced particle migration in such
a geometry (Chow et al. 1994; Merhi et al. 2005), which helps in keeping a homogeneous
suspension across the gap. However, the drawback of this geometry is that the shear rate
is not constant. Indeed, y increases from O at the centre to ygp = 2R/h at r = R, with 2
the angular velocity of the upper rotating plate. In the case of a non-Newtonian behaviour,
this variation can be problematic since the viscosity of the suspension, 1, depends on the
shear rate, y. In order to take into account this experimental bias and deduce the correct
values of 7, we use the well-known Mooney—Rabinowitsch correction:

l d ln(napp) i|

1 = Napp |: + 4 dIn() 2.1

where 174, is the apparent viscosity deduced by the rheometer from the measurements of
shear rate at the rim of parallel plates, yg, and applied torque, I,

2 r
napp = m% (22)
We studied the rheological behaviour of each suspension over a wide range of shear
stress, X'1o € [5, 100] Pa, and solid volume fraction, ¢ € [0.43, 0.51]. Note that we work
with a volume-imposed geometry and being sure of the volume fraction ¢ present in the
gap is critical for our experiments. It is very difficult to prepare a proper sample with a
known volume fraction when ¢ is close to the jamming volume fraction, ¢;,. This could be
due to the presence of air bubbles hard to remove, instantaneous shear-induced migration
when the sample is poured into the gap or even a yield stress which may prevent the
suspension from flowing into the gap by gravity. For these reasons, the maximum value for
¢ in the experiments was kept at 0.51. For each X'1; and each ¢ (in total, 50 combinations
of (¢, X12)), a shear reversal experiment was performed. We encourage the readers to
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consult Blanc et al. (2018) for details on the protocol. Briefly, the suspension is simply
sheared at a given constant X'15. Once the steady state has been reached (7 is constant),
the flow direction is reversed while the value of X5 is kept constant. Then, the suspension
is sheared in this new direction until the steady value of 7 is retrieved. For each ¢ on
both types of suspension, a series of shear-reversal experiments was performed on two
independent samples. The results in the following correspond to the average of these two
independent measurements.

Within these conditions, the values of the Péclet and Reynolds numbers characterise
the suspension as non-Brownian and its flow as viscous (inertial effects are negligible),
respectively:

6 na’ Yioh?
62M>108 and Re:&

0.1, 2.3a,b
= s (2.3a.b)

with kp the Boltzmann constant. At the same time, note that the Stokes number is kept
small throughout all the experiments: St = (lis) ppd2212 /n? < 1073, It is thus expected
that only viscous and contact forces govern the suspension behaviour.

The maximum shear stress (X2 = 100 Pa) is set by the occurrence of edge fracture
which is expected for a first normal stress of the order of the capillary pressure (Keentok &
Xue 1999): N1 = 2y,ir-0i1/h, with the surface tension of silicone oil, y,r-0ir & 30 mN m L.
Since the literature shows N < 0.5X, we obtain the following criterion to avoid edge
fracture: X5 < 120 Pa, a value close to experimental observations. On the other hand,
the minimum stress (X» =5 Pa) is chosen in such a way that the Shield number,
denoted Sh, is large enough (Sh >> 1) to ensure that the particles do not settle due to the
slight difference of density, Ap, between the solid and liquid phases, and that a vertical
homogeneous suspension is maintained throughout the entire experimental procedure:

212 2 . -3
Sh=—— 210 with Ap = p, — py = (0.09 +£0.02) gcm™". (2.4)
Apgd

We want to underline that AFM measurements found in the literature (Le et al. 2023) do
not observe any repulsive forces before contact for PS particles (also from Microbeads)
in a silicone oil (from Merck, pr =0.95 g cm 3, no ~ 20 mPa s at 25 °C), meaning that
we are already in the frictional regime for the range of X', studied in the present paper,
and that particles are in contact even when y — 0. This will be confirmed later by the
measured values of ¢,, and the comparison with the literature (Gallier et al. 2014; Mari
et al. 2014; Peters et al. 2016).

To conclude this section on the theometry, we want to emphasise that the plate surfaces
are smooth and we made sure that there was no wall slip phenomenon by measuring the
viscosity of the suspensions at the largest volume fraction for different gap size. A viscosity
found to be independent of the height of the upper plate indicates that there is no detectable
wall slip (Yoshimura & Prud’homme 1988).

3. Results and discussion on macroscopic rheological measurements
3.1. Rheological measurements

In this section, we aim to characterise the rheological behaviour of the suspension made
of crushed PS particles (Cpsao) and compare it with our measurements of the rheology
of the suspension made of spherical PS particles (Sps40), which is more common in the
literature.
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Figure 6. Variation of the measured relative steady viscosity, n, = n/ng, with applied shear stress X', for
(a) the suspension Spsao made of spherical PS beads and (b) Cpsso made of crushed PS particles. Each colour
labels a solid volume fraction ¢: 0.43 (blue), 0.45 (orange), 0.47 (green), 0.49 (red) and 0.51 (purple). For
each given ¢, the experimental measurements (coloured dot) are fitted by a power law (coloured straight line):
Y12 = Ky" with y = X12/n. The resulting parameters of these fits are shown in figure 8.

3.1.1. Steady viscosity

Figure 6 displays the variation of the measured relative steady viscosity, n, = n/no, with
applied shear stress, X2, for (a) the suspension Spss9 made of spherical PS particles
and (b) Cpsso made of crushed PS particles. Each coloured point corresponds to an
experimental measurement of 7, (relative viscosity corrected by (2.1)) at a given ¢ and
a given X». The relative uncertainty for each measurement, not represented on the graphs
in figure 6 in order to keep them clear, is always smaller than 5 %.

The values of viscosity measured on Spgsg within the explored range of X'j» are in
quite good agreement with other previous works present in the literature (Blanc et al.
2018; Lobry et al. 2019; Le et al. 2023) and conducted on an identical system (i.e. PS
spheres of size close to 40 wm dispersed in silicone oil). It appears in figure 6 that Cpgag
exhibits a rheological behaviour which is broadly similar to that which characterises Sps4g.
In particular, we observe for both suspensions that:

(1) as expected, n, increases with ¢ for a given X'17;

(i1) n, decreases with X1 for a given ¢, qualifying the non-Newtonian behaviour
in the range of applied shear stress (X'1; € [5-100] Pa) for both suspensions as
shear-thinning;

(iii) as expected, the decay of n, with X is steeper (meaning the shear-thinning
behaviour is more pronounced) at large ¢.

On the other hand, the primary distinction between the suspensions is that the
shear-thinning behaviour is stronger for Cpgao compared with Spgao for a given ¢. Figure 7
displays the normalised difference of relative viscosity between the two suspensions,

(nrc Psa0 _ nf” 540y / an 540 "as function of the applied shear stress X'j5. One can then easily
observe that the suspension made of crushed particles is more viscous than the suspension
made of spherical particles at low shear stress, whereas the viscosities of the two
suspension are nearly the same at high shear stress.

According to the literature (Coussot & Piau 1994; Schatzmann, Fischer & Bezzola
2003; Sosio & Crosta 2009; Mueller, Llewellin & Mader 2010; Vance, Sant & Neithalath
2015), we can quantify the non-Newtonian behaviour of such suspensions by fitting the
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Figure 7. Variation of the measured relative steady viscosity difference between Cpgao and Spsao, n,CP 540

nfp 540 normalised by the measured relative steady viscosity for the suspension made of spherical PS particles,

nf” 40 " as function of the applied shear stress X15. Each colour labels the solid volume fraction ¢: 0.43 (blue),
0.45 (orange), 0.47 (green), 0.49 (red) and 0.51 (purple).

experimental measurements by a power law (coloured straight lines in figure 6):
Y =Ky", (3.1

where K and n are the consistency factor and the shear-thinning index, respectively. Their
values resulting from the fits of the experimental data in figure 6 are displayed as functions
of ¢ in figure 8. We observe in figure 8(a) that K increases with ¢ as expected. This
reflects the increase of the viscosity with volume fraction. On the other hand, we observe in
figure 8(b) that n decreases with ¢, which accounts for the more pronounced shear-thinning
behaviour at large ¢. One can also note that n is systematically smaller in the case of
Cpsao at a given ¢, which reflects the more pronounced shear-thinning behaviour for
the suspension made of crushed particles. More precisely, we observe that the relative
variation of n over the range of studied ¢ is roughly twice as large for Cpsag than for Spsag
(An/(n) ~ 0.2 for crushed particles whereas An/{(n) ~ 0.1 for spheres). Regarding the
consistency factor, K, it is interesting to see that apparently KCPs¢0 ~ KSPs40 at a given
¢. However, any further interpretation of this comparison in K can be difficult since
its units are not exactly the same between the two suspensions because nCPs4 - pSrs4o
([K] = Pas").

From figures 6 and 8, it can be seen that the more pronounced shear-thinning behaviour
which characterises the suspension Cpgqg compared with the same suspension made of

spheres (Sps40) results from the observations that anP $40 nf” 540 at large X|, whereas
anps4o > nf”s‘“’ at small X)».

To conclude this section, we discuss why we have not considered the existence of a yield
stress for either suspension. It is true that it is more relevant to characterise the rheological

behaviour for some non-Brownian suspensions by using the Herschel-Bulkley (H-B) law:
212 =T, + K])n (3.2)

instead of (3.1). According to the literature (Pantina & Furst 2005; Guy et al. 2018;
Richards et al. 2020), it is known that the existence of a yield stress, 7., may be caused by
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Figure 8. Variation of (@) the consistency factor K and (b) the shear-thinning index n with solid volume

fraction ¢ for the suspensions Spsso made of spherical PS particles (blue discs) and Cpgag made of crushed PS
particles (orange squares), deduced from (3.1).

the presence of weak adhesive forces between solid particles which would lead to particle
aggregation. Thus, the value of 7, may be understood as the minimum stress required to
break these aggregates. Furthermore, it is expected that the crushed particles, which have
some flat faces, favour Van der Waals interactions since they offer a much larger contacting
surface between particles compared with spheres, leading to a higher yield stress. In view
of this, we have also fitted our experimental measurements in figure 6 by (3.2). The results
have shown that the impact of the third fitting parameter . on K and n is negligible,
since we found 7, < 1 Pa for both suspensions and all explored ¢. For Spssg, one can
note that this is in good agreement with the works of Le et al. (2023) who measured
7. = 0.3 Pa for a very dense suspension made of PS beads having a size of 40 wm and
concentration ¢ = 0.55 in a silicone oil (the same system as studied in the present paper).
The largest volume fraction studied in the present work being ¢ = 0.51, one can expect
that the values of 7, for Spsao are even smaller than this value within the range of studied
¢. Thus, we can advance with enough confidence that the minimum applied shear stress in
our study (X2 = 5 Pa) is at least 10 times larger than 7. for Sps4g and Cpgag. We confirm
by some measurements from the shear-reversal experiments that adhesive forces do not
play a significant role in the rheological behaviour of the studied suspensions within the
applied range of shear stress X'j5.

3.1.2. A stress-dependent jamming volume fraction

We want to recall that the shear-thinning regime observed for a frictional non-Brownian
suspension is common and has already been observed extensively in the literature for
suspensions made of spheres (Gadala-Maria & Acrivos 1980; Zarraga et al. 2000; Dbouk
et al. 2013; Vazquez-Quesada et al. 2016, 2017) or even facetted (sugar) particles (Blanc
et al. 2018). As explained in the introduction of the present paper, the physical origin
of this complex behaviour remains an open question. Some recent works, including an
experimental study from Chatté et al. (2018) and numerical simulations from Lobry et al.
(2019), have demonstrated that the shear-thinning behaviour for frictional spheres could
come from a decay of the sliding friction coefficient, ©s, when the shear stress, X2,
increases, which induces an increase of the jamming volume fraction, ¢,, (Wildemuth
& Williams 1984; Zhou, Uhlherr & Luo 1995; Blanc et al. 2018; Lobry et al. 2019; Gilbert
et al. 2022). The introduction of a stress-dependent jamming fraction ¢,,(X'12) is thus very
useful to describe accurately the complex rheological behaviour of a suspension. Figure 9
displays the evolution of n, with ¢ for each applied X'j» (see colour code). The coloured
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Figure 9. Variation of measured relative steady viscosity 7, with solid volume fraction ¢ for suspensions
(a) Spsap made of spherical PS and (b) Cpsso made of crushed PS particles. Each colour labels the applied
shear stress Xj2: 5 (blue), 10 (orange), 15 (green), 20 (red), 28 (purple), 36 (brown), 45 (pink), 60 (grey),
80 (yellow) and 100 (cyan). For each given X|,, the experimental measurements (coloured dot) are fitted by
a Maron—Pierce-type law (see (3.3)). The measurements of ¢,,(X'12) resulting from these fits are shown in
figure 10.

points correspond to the experimental data and, for each applied X2, the variation of the
reduced viscosity, n,, with the volume fraction, ¢, is fitted by a Maron—Pierce-type law:

(0]

! 2°

Note that the parameter « in (3.3) is used in order to get an accurate fit of our experimental
data. If one were to apply (3.3) over the full range of particle volume fractions, ¢ would
need to be 1 in order that , = 1 when ¢ — 0. However, this fit only works in the dense
regime, typically for ¢ = 0.3 in the case of frictional spherical particles, and hence «g can
have a value different from 1 in order to describe the variation of 1, with ¢ accurately
within this regime (Lobry et al. 2019). In our case, a very good fit for each applied shear
stress (plotted as coloured lines in figure 9) is obtained for cp = 0.85 for both suspensions,
a value not too far from the one used in the original equation of Maron & Pierce (1956):
apg =1 when ¢, ~ 0.64. The value chosen here is also in good agreement with the
numerical simulations of Lobry et al. (2019) who have found that 0.65 < ag < 1 when
0 < us < 2, which are the typical values of us for common materials such as PS (Arshad
et al. 2021; Le et al. 2023), polymethyl methacrylate, glass and rubber. In figure 9(b), we
can observe that it satisfactorily fits the experimental data for crushed particles.

The good fit obtained with this given value of «g for both suspensions is not so
surprising as it is known that the values of 1, when ¢ — ¢,, are controlled primarily
by the value of ¢, (Blanc et al. 2018; Lobry et al. 2019). Figure 10 displays the variation
of ¢, with X1, determined by (3.3) with ag = 0.85 for the suspensions Sps4p made of
PS beads (blue circle) and Cpsao made of crushed particles (orange squares). As expected,
we observe that ¢, increases with X|» for both suspensions. This increase is larger for
Cpsao when compared with Spgag, which illustrates the more pronounced shear-thinning
behaviour for the suspension made of crushed particles. To be precise, we observe that

qbnc;” S0 qb,ff %40 within the smaller end of the X1, range whereas qﬁnc;” S40 qﬁ,ff 40 at
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Figure 10. Variation of the jamming fraction ¢,, with shear stress X1 for the suspensions Spsso made of
spheres PS (blue circle) and Cpgsg made of crushed PS particles (orange square), deduced from figure 9
and (3.3) with g = 0.85. The coloured area for each suspension is related to the possible range of «p:
0.65 < ap < 1.

the largest X1 values. This mirrors the previous observation made from the viscosity
comparison between the two suspensions.

It is easy to understand that the values of ¢,, determined by (3.3) might depend slightly
on the value of o, and hence we have also fitted our experimental data of 1,(¢) by (3.3)
with the two known extreme values of «g (Lobry et al. 2019): op = 0.65 and o9 = 1 (the
corresponding curves are not plotted in figure 9 in order to keep the graph clear). The
confidence areas plotted in figure 10 for each suspension represent this influence of o on
¢m. Thus, one can observe that the values of ¢, for Sps4g are between 0.560 £ 0.005 and
0.595 £+ 0.009 in very good agreement with Lobry et al. (2019), whereas they are between
0.550 = 0.004 and 0.595 % 0.009 for Cpsap. It is quite satisfying that these values of ¢,
for both types of suspension are globally in very good agreement with the literature when
non-Brownian frictional (s # 0) suspensions are considered (Zarraga et al. 2000; Ovarlez
et al. 2006; Boyer et al. 2011; Mari et al. 2014; Peters et al. 2016; Singh et al. 2018; Lobry
et al. 2019; Singh et al. 2020). Furthermore, it is noteworthy that the primary observations
that the jamming volume fraction ¢,, is smaller in the case of non-spherical particles at low
shear stress whereas the rheological behaviours of non-spherical and spherical particles are
characterised by the same ¢,, at high shear stress is not altered by the value of o within
its known range.

The rest of the paper focuses on finding a physical mechanism to explain the
observed rheological difference between the suspension made of crushed particles and
the suspension made of spheres.

3.2. Physical origin of the stronger shear-thinning regime for crushed particles

In this section, we want to understand the physical origin of the higher viscosity in the
suspension of crushed particles (Cpssg) for small shear stress, as well as the reason that
the viscosity of the two types of suspension are similar when X', is increased. Since the
only difference between the suspensions is the shape of particles present in them, it is
obvious that this difference in viscosity is related to it. Two different possible physical
origins will be thus investigated. First, we show in § 3.2.1 that it is unlikely that the small
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remaining adhesion between particles (which is expected to be stronger for the crushed
particles at a given shear stress) explains this observation. Second, we discuss in §§ 3.2.2
and 3.2.3 whether changes in viscosity can be explained by a variable sliding friction
between particles coupled with a rolling resistance of particles related to the particle shape
itself. To end this section, we study in § 3.2.4 the rheological behaviour of the suspensions
in a frictionless case in order to confirm some assumptions of the considered model.

3.2.1. Shear reversal experiments and absence of adhesion

As mentioned previously in this paper, shear-thinning behaviour of a suspension is
common and can have different possible physical origins depending on the studied system
(Gadala-Maria & Acrivos 1980; Zarraga et al. 2000; Dbouk et al. 2013; Vazquez-Quesada
et al. 2016, 2017; Blanc et al. 2018; Chatté et al. 2018; Lobry et al. 2019; Gilbert et al.
2022). One of them is adhesion. Weak adhesive forces exist between solid particles that
would lead to particle aggregation. In this scenario, two main features would appear.
First, a suspension would exhibit a yield stress 7, (Brown et al. 2010), which may
be understood as the minimum stress needed to break these aggregates. Second, they
would exhibit shear-thinning behaviour, related to the fact that increasing X' would
break more and more aggregates, which would produce as a result a decrease in the
viscosity of the suspension. Furthermore, this explanation would be suitable to explain
the highest viscosity at low X for crushed particles while the viscosity of the two
types of suspensions (Spsao and Cpsao) would tend to be similar at large X'15. As already
mentioned previously in § 3.1.1, flat surfaces of crushed particles favour particle adhesion.
Potential aggregates are then less likely to be destroyed in Cps4g than in Spsso when both
suspensions are sheared at a given small enough X'15. This would make Cpgsg more viscous
than Sps4p when X'15 is small. In contrast, when Y12 > 7., all the aggregates are destroyed
by shear, even in the case of Cpgag which then flows similarly to Spsao.

The first flaw in this explanation has already been presented in § 3.1.1. Indeed, we have
seen that the smallest value of X', that we apply to shear the suspension is at least 10
times larger than .. At X1 = 10 Pa (second lowest value of applied shear stress), we have
Y12 2 20 x .. Yet, a significant difference of viscosity between the two suspensions still
remains at large ¢, which raises doubt that adhesion could be the main physical origin of
the stronger shear-thinning for Cpgao. For instance, at ¢ = 0.51 and X1, = 10 Pa, n, =
(110 £ 5) Pa s for Cpsag whereas n, = (80 £ 5) Pa s for Spsao (see figure 9), which gives
a difference of the order of 30 %. Nevertheless, we understand that this argument about
Y12 and 7, alone is insufficient to support the statement that the adhesion is not mainly
responsible for the more pronounced shear-thinning for Cpgap. It is indeed very difficult to
estimate precisely when the adhesive forces can be neglected only from 7. To go further,
we have conducted a series of shear-reversal experiments on both types of suspension by
following the procedure of Blanc et al. (2018).

A shear-reversal experiment may turn out to be very interesting. It is a very basic
experiment (the suspension is simply sheared at a given X', in a given direction before
the flow direction is reversed whereas X1, is kept constant), characterised by a very
specific transient response of 1 which has been observed in all shear reversal experiments
(Gadala-Maria & Acrivos 1980; Blanc ef al. 2011a) and in simulations (Ness & Sun 2016;
Peters et al. 2016). Figure 11 displays an example of the transient response of 7 for Spsag (in
blue) and Cpgsg (in orange) at X1 = 10 Pa and ¢ = 0.51. As can be observed, a step-like
drop of 1 occurs just after the shear reversal and the viscosity of the suspension reaches a
minimum value, 7y, at a strain y = Yy (¥ = 0 corresponds to the moment of reversal).
This drop is then followed by a rebound of the viscosity which reaches the steady value,
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Figure 11. Example of transient viscosity response as a function of the accumulated strain y during a
shear reversal experiment for Spsag (in blue) and Cpsag (in orange) with X1 = 10 Paand ¢ =0.51. y =0
corresponds to the moment when the flow is reversed. Inset: Enlarged view to better visualise the minimum
value of viscosity, nmin reached during the transient when y = .

ns = nonr, it had before the shear reversal, over an accumulated strain, y, roughly equal
to yy ~ 10. Interestingly, the numerical simulations from Ness & Sun (2016) and Peters
et al. (2016) have shown that the hydrodynamic and contact contribution to the viscosity,
denoted respectively 5 and 5, are connected directly to the values of 1 and 7,,;,. More

precisely, with n; = n + €, Peters et al. (2016) have numerically shown in the case of a
non-Brownian suspension made of (frictional or frictionless) beads the following relations:

C_ Ns — Nmin and H _ Nmin — 0-1577s.

3.4ab
0.85/m0 7 0.85/0 (34a.0)

n

Roughly, 1 ~ n,nin/10 and n€ ~ (15 — Nmin) /0. We refer readers to the numerical work
of Peters et al. (2016) to better understand the physical origin of this result. In brief, the
particles in contact tend to separate when the shear is reversed. The microstructure of
the suspension is thus broken, which induces the drop of the viscosity. Progressively, the
microstructure of the suspension is then rebuilt (mirroring the microstructure before the
shear reversal since the flow direction has been reversed), which induces the rebound of n
to its steady value.

In the present study, the transient viscosity induced by a shear reversal can be very
interesting because, if a stress-dependent particle aggregation occurs, then it should also
affect the values of 1,,;;, and the characteristic strains, y. Notably, Gilbert (2021) has
studied the rheology of a non-Brownian frictional suspension composed of homemade
soft PDMS particles (Young modulus, Eppys = 1.8 MPa <« Epg ~ 3 GPa) suspended in
Span 80 (Newtonian liquid). By using the JKR theory (Johnson, Kendall & Roberts 1971),
the author has observed for this suspension that adhesion plays a role if X5 < 7, ~ 10 Pa.
By doing shear reversal experiments, he has then shown (see figures 86-2 of Gilbert 2021)
that nnfl}rfq“ > nnfi'npr", and that the characteristic deformation of the transient response
for a shear reversal, y;, was much larger than 10 (y, ~ 50 for ¢ = 0.4 and X1, = 7, in the
case of his suspension).

Figure 12 displays the experimental measurements (coloured symbols) of 9uin/n0
within the studied range of X'1; for (a) Spsao and (b) Cpsao, and one can see it is not similar
to what has been observed by Gilbert (2021) for a non-Brownian suspension made of
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Figure 12. Variation of the measured relative minimum value of the viscosity, n,in/n0, With applied shear
stress X1 for (a) the suspension made of spherical PS and (b) the suspension made of crushed PS particles.
The colour code labels the solid volume fraction ¢ of the suspension in the same way as in figure 6. For
each given ¢, the experimental measurements (coloured symbols) for X1, < 45 Pa are fitted by a power law
(coloured straight line): X2 = Kyip X yVmin with y = X'12/0min. The parameters resulting from these fits are
shown in figure 13.

adhesive beads. First, n, "% ~ "% at a given X, and a given ¢. Second, 1, is weakly

dependent on X'y, for a given ¢ in the studied range of applied shear stress. Thus, it is likely
that X2 > 1, for both suspensions in the present study and that adhesion can then be
neglected. We also want to underline that, based on (3.4a,b), we can determine nH ~ 5-6
for Spsag concentrated at 45 % from the experimental data (roughly independent of X'}5),
which is in very good agreement with numerical simulations from Gallier et al. (2014)
which shows 1! & 14, &~ 5-6 for a non-Brownian viscous suspensions of (frictionless or
frictional) spheres at ¢ = 0.45. Here 1 is the high-frequency dynamic viscosity (Van der
Werff & De Kruif 1989).

Note that, in figure 12, the experimental data for 7,,; of each suspension for X1 <
45 Pa have been then fitted by a power law, based on (3.1) where now K = K,;;;, and n =
Nmin» to quantify these observations of 7,,;,. The fitting parameters Kj;;, and n,;, resulting
from this fit are presented in figure 13. The upper limit for the shear stress considered here
for the fit (X{5** = 45 Pa) is imposed due to the poor resolution of the measurement of
Nmin When X5 > X{%*. Thus, the apparent plateau of 7,,;, observed at large X, has no
physical meaning. It is an experimental artifact. Therefore, one can clearly see in figure 13
that 7, for the suspensions Spsag and Cpsag are characterised by the same rheology, as we
observe that both K, and n,,;, are independent of the considered suspension. In addition,
Spsao and Cpsgo are both characterised by a Newtonian behaviour when n = n,: 0.94 <
nmin S 1 for both suspensions, when 0.43 < ¢ < 0.51 and 5 < Xj» < 100 Pa. Moreover,
the i, results indicate that hydrodynamic interactions are not significantly affected by
particle shape.

Figure 14 displays the experimental values of characteristic strains, ¥, (open symbols)
and yp.5 (closed symbols) for the suspension made of PS spheres (blue) and that made
of crushed particles (orange), as a function of ¢ when X1 = 10 Pa. Whereas i,
corresponds to the accumulated strain from the moment of shear reversal to when
N = Nmin, Y0.5 18 defined as the accumulated strain from the minimum state (7 = 9in)

974 A36-17


https://doi.org/10.1017/jfm.2023.756

https://doi.org/10.1017/jfm.2023.756 Published online by Cambridge University Press

E. d’Ambrosio, D.L. Koch and S. Hormozi

(@) ()
15 1.02
® Spheres PS 8
134 Crushed PS ® 1.00 3 7>
s 11 Py 5 098
91 ] 0.96 4 ® 3
71 [ 0.94 -
| J
5 . . ] ! . 0.92 | | . ] |
043 045 047 049 051 043 045 047 049 051
¢ ¢

Figure 13. Variation of (a) the consistency factor, denoted K, and (b) the shear-thinning index, denoted
Nmin, With the solid volume fraction ¢ for the suspension made of spherical PS particles (blue discs) and the
suspension made of crushed PS particles (orange squares), when 1 = 1,,;, and X1, < 45 Pa.

to the moment when the viscosity has recovered 50 % of its reversal-induced deficit:

77()/0.5) = Nmin + 0.5 x (ns - 77min) . (35)

The uncertainties of the experimental measurements for the characteristic strains are
estimated at +5 x 1072, The experimental data are also compared with numerical (Pine
et al. 2005; Peters et al. 2016) and experimental (Pine et al. 2005) results from the
literature. We recall that Pine et al. (2005) have shown that a particle in a non-Brownian
suspension subjected to oscillatory shear flow returns to its initial position at each
oscillatory cycle consistent with Stokes flow reversibility as long as the strain amplitude
does not exceed a critical value, denoted y,.. As explained by Peters er al. (2016),
0.5 corresponds to the strain necessary for spherical particles to form a significant
amount of solid contacts which would then lead to displacements that violate Stokes flow
reversibility.

One can observe that v, decreases with ¢ for both suspensions and that Crsao

Ymin

~

yrflfrf“o for a given ¢. A closer examination shows that y,i’;ls“o is nearly equal to ynifrf“o
at the highest volume fraction (¢ = 0.51) whereas it is smaller than yr‘flgf“o at smaller

volume fractions with the largest difference occurring ¢ = 0.43, the lowest volume
fraction studied. Furthermore, one can note that the experimental data are well-predicted
by the simulations from Peters e al. (2016), conducted on a non-Brownian suspension
of frictional spheres, characterised by a combination of a sliding friction coefficient,

0 < g < 1, and a relative roughness height, 4, /d = 1072,

Analogous to y,in, we observe that yp s decreases when ¢ increases, which is in good
agreement with the literature. In addition, the experimental values for Sps4g at X1, = 10 Pa
(filled blue discs) are well-captured by the numerical simulations from Peters et al. (2016)

(us = 0.5, h,/d = 107%). One can also note that )/Oc_gs“o > y(f’gs‘“’ for a given ¢ even
though both are still of the same order and follow the same trend. This slight difference is

interesting for two different reasons. First, as we have seen from the work of Gilbert (2021),

having y(f 540 ~ yg 2% (and y; ~ 10 as can be observed in figure 11) is consistent with the

inference that adhesion forces do not play a predominant role in the rheology of Cpsag
compared with Spgsg, within the applied range of X'15. Second, Peters et al. (2016) have
explained that the force network is reestablished over a typical strain equal to yg 5 during
a shear reversal experiment. According to this assertion, it would be a little harder for the
particles in Cpsag to rearrange during the transient in order to rebuild the microstructure
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Figure 14. Characteristic strains y,,;, for the minimum viscosity (open symbols) and yp 5 for the partial
recovery (filled symbol) as a function of volume fraction ¢. The graph on the right is just an enlarged view of the
left graph. The experimental measurements (X1 = 10 Pa) from this study are represented for the suspensions
Spsao (blue discs) and Cpgsao (orange squares). From the literature, Peters er al. (2016) have performed several
numerical simulations to study the influence of the sliding friction coefficient us and the relative roughness
hr/d on Y, and yps5. Some of their results are also plotted (black symbols) on the graph for h,./d = 1072
(empty symbols for y,;, and filled symbols for yp5): (A) g = 0; (o) s = 0.5; (V) gy = 1. Some experimental
measurements (x) from Pine ez al. (2005) of the critical strain y, for which irreversibility occurs are also plotted,
as well as the power law (—) resulting from their numerical simulations: y, = 0. 14¢_1'93.

leading to contact forces (see the works from Peters et al. (2016) for details on the physical
mechanism). We think this is related to the shape-induced rolling resistance and it could be
interesting to study it using numerical simulations, because shear reversal gives access to
the separate hydrodynamic and contact contributions to the stress. More generally, Peters
et al. (2016) have studied the influence of @ and A, /a on the values of characteristic strains
and we think it could be interesting to also quantify the role played by u,, if any, in the
transient of a shear-reversal experiment.

3.2.2. Variable sliding friction coefficient

In the previous section, we have seen that adhesion cannot account for the shear-thinning
behaviour of the two suspensions and that there is no evidence from shear reversal
experiments of stronger adhesion in Cpgso than Spsao. In this section, we show that,
unlike adhesion, a variable sliding friction model allows us to explain the shear-thinning
behaviour of the suspensions.

From the numerical works of Mari ef al. (2014) and Gallier et al. (2014), it is well
known that the jamming volume fraction, ¢,,, is strongly dependant on the sliding friction
coefficient, uy. In addition, as presented in the introduction of the present paper, the recent
literature (Chatté et al. 2018; Lobry et al. 2019; Arshad et al. 2021; Le et al. 2023) relates
the shear-thinning behaviour of a non-Brownian frictional suspension to a decay of g
when the normal force Fy between particles (directly proportional to X'17) increases:

2\ Tirseo
15 = uS° x coth [u;” ( ;) ] with f1g —27%% %0, (3.6)

c

We recall that X, is a critical value which characterises the elastoplastic transition of
asperities deformation (Lobry et al. 2019) and u{° is the constant value reached by s
when X1y > X.. As for the exponent m, its value is directly related to the fact that
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Figure 15. (@) Variation of the sliding friction coefficient pg with X5 (see (3.6)) as computed by Brizmer
et al. (2007) and Lobry et al. (2019) (- - ) and the variation used to fit the experimental data ¢,,(X12) (——).
The solid part of the curve corresponds to the experimentally studied range of X1>. (b) Jamming volume
fraction ¢,, as function of shear stress X'15. The experimental measurements for Spsag (blue discs) and Cpsap
(orange squares) are fitted by the model obtained by combining (3.6) and (3.7), where 1$° = 0.2, X = 10 Pa,
m = 0.5 and ¢31 = 0.65. Here ¢.° and X? are free parameters. The best fit gives ¢, = 0.555 and X? = 2.3 in
the case of Spsag. For Cpsap, we determined ¢, = 0.536 and X” = 1.8. The two vertical dashed red straight
lines on each graph delimit the range of X', explored experimentally.

the model (Lobry et al. 2019) considers that the contact between two particles occurs
at only one or two asperities (mono-asperity contact) and that the particle asperities are
supposed to be close to hemispheres (for which m ~ 1/3, Brizmer et al. 2007). Recent
AFM measurements performed on PS beads (d ~ 40 pwm) suspended in an aqueous liquid
(Arshad et al. 2021) or in silicone oil (Le et al. 2023) have given u*° ~ 0.2, X, ~ 10 Pa
and m = 0.5. Figure 15(a) displays the variation of wg with X1> based on these values
(=)

Our main assumption is that (3.6) can describe the variation of g with X1, in both
suspensions. In addition to the form of the function, we assume that the values of uJ°, X
and m are also identical for both types of particles: spheres and crushed. We understand
that this statement is critical but several arguments tend to support it. We recall that sliding
friction should depend on the local interaction of two surfaces. In the present study, the
same PS particles (in size and material) constitute the two studied suspensions and, even
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though the crushing process does change the radii of curvature of particles in some places,
we assume that it does not significantly affect the topology of the asperities. Thus, as
considered from Peters et al. (2016) for spheres, we assume that the solid contact between
particles occurs through only a few asperities even to the crushed particles in Cpgsg. In
this scenario, the value of m determined by Arshad et al. (2021) and Le et al. (2023) for
PS spherical particles (m ~ 0.5) can be applied for the crushed ones. Moreover, the values
of u° and X, determined for PS beads (i ~ 0.2 and X = 10 Pa) by Arshad et al.
(2021) and Le et al. (2023), depending on the properties of the solid particle material
(Young’s modulus E, Poisson’s ratio v, yield strength Y() and asperity height 4,, can also
be kept the same for the crushed PS particles. We want to underline that the assumption
that MSCP S0(X1p) ~ pcfp $40(X1,) is also consistent with the results displayed in figure 14
for the characteristic strain, y,,;,. Indeed, Peters et al. (2016) have shown the role played
by ws on Yuin, and the experimental data from the present study tend to show that the
values of ug are between 0 and 1 for the studied suspensions and are very similar between
the two.

Lobry et al. (2019) have proposed the following phenomenological function ¢, (s)
relating the jamming volume fraction to the sliding friction coefficient:

exp(—X? atan(uy)) — exp(—nX?/ 2)]

(3.7)
1 — exp(—mXP/2)

¢m=¢;°+(¢3—¢;°)[

. . . X 0
where ¢°° and ¢,91 are specific values of ¢,,, when the particles cannot slide (g el 00)

and when the suspension is frictionless (s — 0), respectively. The expression contains a
fitting parameter X?. Figure 15(b) redisplays the variation of the jamming volume fraction,
®m, with shear stress, X 1> (already shown in figure 10). In this new figure, the experimental
data (represented as blue discs for Spssp and orange squares for Cpsag) are fitted by the
model described by (3.6) and (3.7). Additionally, ¢>° and X? are left as free parameters
while ¢ is set equal to 0.65, in good agreement with the literature when the frictionless
(ms = 0) regime is considered (Gallier et al. 2014; Mari et al. 2014; Gallier, Peters & Lobry
2018; Singh et al. 2018; Le et al. 2023). We show later in the present paper (in § 3.2.4) that
it is also in very good agreement with the rheology of Spssg and Cpgsp sheared in the
frictionless regime.

We observe that the experimental data are well-predicted by the model within the
experimentally explored range of shear stress (X2 € [5-100] Pa, coloured solid lines in

figure 15b). By coupling figures 15(a) and 15(b), one can note that @5’ ~ (0.585 +

0.008) when g ~ 0.5 (X, ~ 45 Pa) and qﬁ,‘f{’m = (0.568 4+ 0.006) when g = 1 (Xp ~
10 Pa) for the suspension made of spheres, which is in quite good agreement with
numerical simulations from the literature. For instance, Peters et al. (2016) and Gallier
et al. (2018) found ¢,,, ~ 0.59 and ¢, =~ 0.58, respectively, when g = 0.5. The numerical
simulations of Mari et al. (2014) and the ones from Peters et al. (2016) predict ¢,,, ~ 0.58
and ¢,, &~ 0.56 for s = 1, respectively.

Then, one can observe in figure 15() that the variation of ¢,, with ¥X|» deduced from
the fit exhibits two plateaus (——), each located at extreme values of shear stress: the first
when X1 < 107! Pa and the second when X5 > 103 Pa. According to (3.6) (Lobry et al.
2019), the plateau when X1 — 400 is due to the saturation of w (plastic regime) when
X12/X: > 1 (see figure 15a). The other plateau predicted by the fit when X1 — 0 is
explained by the weak influence of 1ty on the values of ¢, when i is larger than 1 or 2, as
demonstrated by the numerical works of Mari et al. (2014), Peters et al. (2016) and Lobry
et al. (2019).
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In figure 15(b), the function ¢,,(X'12) deduced from the fit is then characterised by:

@) dm =222 9% = (0.555 £ 0.005) for Spsuo and 2 = (0.536 = 0.004) for Cpsao:
g—>00

(i) dm 512—?} $22 = (0.61 =+ 0.01) for Spsso and Cpsg.
Ms—U.

Note that the estimated values of ¢,° and qb,%z for Spsap are in very good agreement
with the literature (Fernandez et al. 2013; Gallier et al. 2014; Mari et al. 2014; Peters
et al. 2016; Lobry et al. 2019; Le et al. 2023). Mari et al. (2014) and Lobry et al. (2019)
determined ¢, ~ 0.56 and ¢,, ~ 0.546 when u; — +o00, respectively, whereas Le et al.
(2023) obtained ¢,° = 0.55 by studying experimentally the same suspension as Spso.
Peters et al. (2016) found ¢, =~ 0.61 when pu; = 0.3 and Lobry et al. (2019) determined

Yp—>00 .
bm 12—027> ,91'27 = 0.625. Regarding Cpgsap, one can observe that
Hs—>U.

0.2 ~ 0.2
O [Cpsao < P ISpsao A0 G| Cpsao X By IS psan» @ expected.

To sum up, we have observed by fitting the experimental data ¢,,(X12) by (3.6) and
(3.7) that the shear thinning behaviour of the two studied suspensions (Spsao and Cpsap)
is induced by the same variable friction law, us(X12). The main difference between
the two is in ¢,°, whose value is smaller in the case of globular/crushed PS particles
compared with the PS spheres. One can note that X”|c,s,, ~ XP|spgse ~ 2, Which supports
the statement about the sliding friction being the same for the two types of particles.
Moreover, X |s,,, 2 2.3 is a value which is in good agreement with the literature (Lobry

et al. 2019; Arshad et al. 2021; Le et al. 2023).

3.2.3. Geometry-related rolling resistance

A decade ago, Estrada et al. (2008, 2011) have simulated rolling regular polygons and
shown that the stress was the same as discs (with the same ¢) equipped with a rolling
friction coefficient, u, (see the schema in figure 2). This would then mean that the
geometric effect is a rolling resistance which, in the case of equivalent discs, can be
obtained with a ;.

More recently, in the frame of a study characterising the shear-thickening behaviour of
suspensions made of hard spheres (for which . is kept constant), Singh et al. (2020) have
numerically studied the role of torque-activated (or stress-activated) rolling resistance,
which can be simply induced by the ‘rough’ particle shape of particles in real-life
suspensions. Note that adhesive surfaces can also induce a resistance to rolling motion
but we eliminated this physical origin in § 3.2.1. To this aim, the authors have simulated
spherical particles with a rolling resistance characterised by a rolling friction coefficient,
Ur. Singh et al. (2020) have then studied the role played by different combinations of
ur and wy in determining the value of the jamming volume fraction, ¢,,. As shown in
figure 16, which displays their result, Singh et al. (2020) demonstrated interestingly on the
one hand that ¢, depends weakly on 1, when g is small enough (typically, u; < 0.35).
For instance, their results show that ¢,, decreases from 0.62 to 0.60 when p, increases
from 103 (vanishing rolling resistance) to 10 (extremely strong rolling resistance), and
s = 0.2 (see the blue curve in figure 16). Note that we determined in the present work:
¢m = 0.61 £ 0.01 when g = 0.2 (see figure 15), which is in very good agreement with
this observation. On the other hand, Singh ef al. (2020) have predicted that ¢, is strongly
dependent of u, when pg 2 0.5. For instance, within the same range of rolling friction
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coefficient (i, € (1073 — 10]), the authors showed that ¢, decreases from 0.57 to 0.36
when pg = 10 (see the purple curve in figure 16). Typically, this corresponds to the case
where sliding is prevented and only rotation can occur (i, < (s — 00). In the frame of
the present study, this latter result from the literature (Singh et al. 2020) is very interesting
since, based on the assumption that ;| cpgg > Mrlspgy- it can explain the main observation
obtained in the previous section: ¢, |Cps0 < @ |Spsso and ¢21'2|CPS40 ~ ¢,91'2|SPS40. To go
further, we plotted in figure 17 the variation of ¢,, with (s, determined by our experimental
data in the case of the suspensions Spsag (blue solid line) made of spherical particles and
Cpsao (orange dashed line) made of crushed particles. We compared these two different
variations with the numerical simulations from Singh et al. (2020) for suspensions of
spheres with two values of the rolling friction coefficient p, = 0.03, and x, = 0.10 (i.e.
the two values of 1, that we determined in figure 16 with the corresponding value of ¢2°
for the two suspensions). One can observe very good agreement between our experimental
results and the numerical simulations from Singh ez al. (2020), which tends to confirm
the assessment already formulated by Estrada et al. (2008, 2011) that the non-spherical
globular particles can be approximated as spheres as long as the effect of their shape
is reflected by a rolling resistance, characterised by w,. In the case of the rheological
measurements, it is then captured by the value of ¢°.

To sum up, the rheology of the suspensions (Sps4o and/or Cpsap) is solely determined
by p, (induced by the non-spherical particle shape) when ¢, — ¢5° (15 22l 0),

whereas it is nearly independent of shape when ¢,, — ¢%2 (s 2127209 us® =0.2) or
O — ¢,(’)1 (s — 0). Estrada et al. (2008) have indeed demonstrated in the frame of a
numerical study on granular material that the dominant mode of relative motion at the
contacts (sliding or rolling) is that which minimises the coefficient of internal friction.
This simply means that the particles prefer rolling if u, < g or sliding if p, > ;.
The case where u, ~ s is obviously more complex since it involves rolling and sliding
motion at the same time. Thus, by considering the most extreme case where g = 10 in
figure 16 (rolling mode) and having deduced the values of ¢_° for each type of suspension

(see §3.2.2), a value of the rolling friction coefficient u(rp'?'o for each suspension can be
predicted from the rheological measurements: ,u;p’" |Spsso = 0.03 £ 0.02 and M?m |Cpsao =

0.10 £ 0.01. Note that the uncertainty in ,u(f;‘O for each suspension is due to the uncertainty
in the value of ¢:° related to the possible range of «g (see (3.3)).

3.2.4. Frictionless suspensions made with the same particles

We have briefly studied the rheology of the frictionless case (us = 0) of the two
suspensions studied in the present paper, by dispersing the same PS particles present
in Spsag and Cpgqo in an aqueous solution, labelled AQO, and shearing the suspensions
in a vane tool geometry. The aqueous solution is a mixture of deionised water with a
small amount (less than 3wt%) of Triton-X-100 (surfactant, Sigma Aldrich) and sodium
iodide. We encourage the reader to see the supplementary material of Madraki et al.
(2020) for more details about this experimental procedure. Furthermore, the critical
normal load fﬁ (occurrence of the frictionless—frictional transition) has been measured
by AFM measurements by Madraki et al. (2020) for PS beads (d ~ 140 pm) in this

aqueous solution AQQ. The authors found f[\(; = (12 = 4) wN, which gives agt ~ 0.3 x
f]g /(67a*) ~ 40 Pa (Mari et al. 2014) for this type of suspension (PS beads in AQO).
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Figure 16. The jamming volume fraction ¢,, as a function of the sliding friction coefficient, us, and rolling
friction coefficient, u,, as computed by Singh e al. (2020). Their data can be obtained at: https://acdc.alcf.
anl.gov/mdf/detail/singh_rolling_friction_prl_2020_v1.4/. Bottom right: Variation of ¢,, with u, for g = 0.2
(blue) and g = 10 (purple). The latter allows one to predict the values of w, for Spsap and Cpsso from the

experimental values of 5¥ spg., (light blue) and ¢5°|cyg,, (orange), respectively: 117" |spg,, = 0.03 % 0.02 and
1P | epesy = 0.10 £ 0.01.

Figure 18 displays the experimental measurements of 7, (coloured symbol) for spherical
PS particles (blue discs) and crushed PS particles (orange squares) in aqueous solution
AQO, when Xy ~ 1072 Pa (frictionless case: Xy < a{,{t < us = 0). As expected, the
variation of the reduced viscosity n, with the volume fraction ¢ follows a Maron—Pierce
law (coloured solid straight lines in figure 18, see (3.3)) (Peters et al. 2016; Lobry
et al. 2019). Analogous to § 3.1.2, the fit using (3.3) has been done for « = 0.85 and a
confidence area is displayed according to the fits of the experimental data when o = 0.65
and o = 1. The result of the fit of n, as function of ¢ gives ¢,, ~ 0.66 & 0.01 for the
suspension made of spherical particles (blue solid line) whereas ¢,, ~ 0.66 & 0.02 for the
suspension made of the non-spherical particles (orange dashed line). Several observations
can be underlined from this result. First, in the case of frictionless spherical particles, the
value of the jamming fraction is in good agreement with the literature (Mari et al. 2014;
Gallier et al. 2018; Singh et al. 2018) and this confirms that the suspension is frictionless.
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Figure 17. Variation of the jamming volume fraction, ¢,,, as a function of the sliding friction coefficient,
Ws. The coloured symbols are deduced from the experimental determination of ¢,, for Spsao (blue circles)
and Cpsso (orange squares), and ji, is determined from (3.6) with u$° = 0.2, X, = 10 Pa and m = 0.5. The
coloured lines are displayed from the variable sliding friction model (see (3.6) and (3.7)) used to fit the
experimental data in figure 15 for the suspensions Spsso (blue solid line) and Cpssap (orange dashed line).
The variation of ¢,, (1) is compared for each suspension with the numerical results from Singh er al. (2020)
(open black symbols) for p, = 3 x 1072 (circles) and wr=1x 107" (squares).

Second, it confirms our previous choice to have assumed @9 ~ 0.65 in order to fit the
experimental data for ¢,,(X2) of the suspensions Cpssg and Spsao by (3.6) and (3.7).
Finally, ¢31 A P lcrushed PS in AQO ~ @mlspheres PS in AQ0 18 consistent with the numerical
results of Singh et al. (2020) who found that ¢,, is independent of 1, when s — 0.

We mention that some literature (Donev ef al. 2004; Baule & Makse 2014; Kallus
2016) shows that particles having a shape which deviates slightly from spheres are
characterised by a random close packing concentration, d)ﬁcp , which is slightly larger than

the known value for spheres, qbﬁcp Ispheres = 0.64. To the best of the authors’ knowledge,
there is no strong evidence in the literature showing that the jamming volume fraction
¢,91 (frictionless case: puy = 0) and ¢,ﬁcp have to be equal, even though it is known that
both have the same value in the case of spherical particles. In the present paper, we
find that ¢,91|Crushed pPS ~ ¢,91|Spheres ps, but it is possible that a slight difference is hidden
by the uncertainties. Nevertheless, we want to emphasise that, although the value of
(1),?1 in (3.7) plays a significant role in the high-shear-stress regime (X1, > 10 Pa), the
shape-induced rolling resistance, related most strongly to ¢;° rather than d),gl, dominates
the low-shear-stress regime (X2 < 10! Pa).

In the second part of the present paper, we describe how we can determine a value of
wur for each type of particles (spheres and crushed), based on image analysis. The goal is
to compare these new values with the ones predicted by the combination of the numerical
works of Singh et al. (2020) based on shear rheology measurements coupled with the

experimental data ¢,,(X12) (see in §§ 3.2.2 and 3.2.3) that we recall here: ;L,’C’)10|SPS40 =
0.03 +0.02 and /Lf’" |Cpsso = 0.10 £ 0.01.
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Figure 18. Variation of the shear viscosity, 7,, against volume fraction, ¢, for two different suspensions: the
first made of the same spheres as in Spssg (blue circles) and the second made of the same crushed particles
as in Cpgqo (orange squares). Here, the PS particles are dispersed in an aqueous solution (79 = 1073 Pas).
The two suspensions sheared at X'jp = 10~2 Pa in a vane tool geometry are frictionless (g = 0). A fit of the
experimental data by (3.3) (0.65 < ag < 1) gives ¢, = 0.66 £ 0.01 for the suspension made of spheres (blue
solid line) whereas ¢, ~ 0.66 £ 0.02 for the suspension made of the non-spherical particles (orange dashed
line).

4. Image analysis study

In this section, we focus on the direct determination of the value of the rolling friction

coefficient, w,, to be compared with the value, M?’”, inferred from our rheological

measurements and the simulations of Singh et al. (2020) (see figure 16). Nevertheless, we
note that the treatment of a non-spherical particle by a single rolling friction coefficient
on a sphere is an approximation. It would not be exact for two reasons. One is that the
resistance to rolling of the non-spherical particle would be different at different parts of
the surface. The other is that the static rolling resistance one needs to overcome to initiate
rolling could be larger than the time-averaged dynamic rolling resistance one needs to
balance to maintain rolling. This difference was minimised by Estrada et al. (2011) by
considering a uniform polygon. We want to determine how well either of these rolling
friction coefficients helps to describe a more irregular but still compact particle rolling
resistance.

4.1. Characterising quantities of particle shape

To the best of the authors’ knowledge, a precise measurement of w, between a pair of
particles is much more difficult than the measurement of 15, which can be done by AFM
measurements (Chatté et al. 2018; Hsu et al. 2018; Arshad et al. 2021; Le et al. 2023).
It is even more difficult for crushed particles with irregular shapes which require even
more statistics. It is common in granular media to determine p, by letting a particle roll
over a slope (Agarwal et al. 2021). But the determination of i, by this method can be very
complicated or nearly impossible for small particles or particles with a large deviation from
spherical shape. Because of these experimental limits, we have chosen here to use a novel
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Figure 19. Sketch of a crushed particle (blue area), considered as an irregular convex polygon with a centre of
mass G. The sides of the polygon/crushed particle are outlined in a darker blue. The vertices connecting each
side are displayed as dark points. Here, L;; is the length of a side connecting two successive vertices, V; and
V;. The radius g; is the length of the segment connecting G to the vertex V;. We use h;; to denote the height of
the centroid G above the segment V;V;. The black point Ej; is on the bisector of the segment V;V; and at the
same height ; from the segment V;V; as G. The eccentricity of the particle/polygon related to its side V;V; is
defined as the ratio of the length of the vector e;;, denoted |e;;], to the projected diameter, d.

method introduced by Agarwal et al. (2021) and Tripathi er al. (2021), based on image
analysis of static grains to calculate the rolling friction coefficient without considering
any material properties of the particle. The basic principle of this novel method is to
approximate the projected image of a given particle as a polygon that we can characterise
by measuring:

(i) the aspect ratio, a4, defined as the ratio of the longest ‘height’ (i.e. the length
between the centre of mass, G, and a side V;V;) of the polygon over the smallest one:

Aratio = hg'mx/ hZ_un;
(i1) the number of sides, ng;
(iii) the internal angle of each vertex, o;;
(iv) the length of each side, L;;
(v) the eccentricity associated with each side, |e;|/d.

A qualitative schema of an irregular polygon is displayed in figure 19 to help visualise
the different characterising quantities that we aim to measure. Regarding the vector e;j,
we want to underline that e;; = GEj;. As we show later, the parameter e;;, the horizontal
component of e;; can be negative or positive depending on the relative positions of Ej;, G
and V;. The eccentricity is then defined as the magnitude of e;;.

4.1.1. Approximation of particles projected area as an irregular convex polygon

Figure 20 shows four examples of 2D approximations as irregular convex polygons for
the images of particles composing the suspensions Spsao (a,¢) and Cpsag (b,d). The basic
images are taken with a microscope (examples of basic photos shown in figure 3) with
an approximate scale of 80 pixels per particle (projected) diameter. We recall that the
projected diameter, d (see figure 5), for a crushed particle corresponds to the diameter of
a sphere having the same projected area as the non-spherical particle. Note that, from the
start, images with well-separated particles are captured, but if two or more particles are
not distinct enough (see figure 3), they are simply not taken into account to compute (.
Moreover, we want to emphasise that spherical particles, such as those in figure 20(a,c),
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Figure 20. Examples of 2D approximation by an irregular convex polygon for particles composing the
suspensions Spsao (a,c) and Cpsao (b,d). The sides of a polygon are coloured in blue whereas the vertices
are marked as black dots. The centre of mass G of the polygon/particle is also located and orange straight
lines connecting the centroid G to each vertex are displayed. The red pixels delimit the contour detected by the
segmentation process. Scale: ‘diameter’ of particle ~ 80 px.

are also present in Cpsag. In the end, the resulting characterising quantities of particles
presented above are determined for approximately 600 particles for each type of particle.

The image analysis process is described in Appendix B. The data for the physical
particles are compared with results for 10 000 ‘reference’ numerical spheres with similar
diameters as the real particles, i.e. in the range 70 < 2a < 90 px. This comparison allows
us to examine the effect of the image resolution on the properties of the particles, which
in all cases are approximated as polygons.

4.1.2. Image analysis results on characteristic quantities of particles shape

Once the coordinates (V; x, V; y) of each vertex V; for a given polygon/particle are known,
all the characteristic physical quantities for a captured polygon/particle (see schema in
figure 19) can be determined. In particular, the area A, and the location (xg, yG) of the
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centre of mass G of each particle/polygon are determined as follows:

ng—1 ng—1

Ap =3 ZO: det(Vi, Vj) = > ; [VixViy — VixViy] (4.1)
1 ng—1
i=0
ng—1
AT D [V o Vo) det(Vi, V] @3
i=0

withj =i+ 1, exceptifi =n; — 1, thenj = 0.

In addition to the size distribution already shown in figure 5 where we observed that
crushed and spherical particles have roughly the same size (d ~ 40 w,,, with a slight larger
degree of polydispersity for the crushed particles), figure 21 displays the distribution of the
values of characteristic physical quantities determined for the ‘reference’ perfectly smooth
spheres (in green), the real spherical particles in Spssg (in blue) and the real crushed
particles in Cpgao (in orange). One can observe that the particles from Spgso (in blue)
are mainly spheres since the differences from the reference data (in green) are small as
indicated by:

(i) the aspect ratio of the particles in Spgq is close to 1 (afgfi‘;o < 1.2 with 90 % of
@S < 1)

(i1) the number of segments per polygon and the length of the sides are comparable
between the spheres from Spsso and the ‘reference’ perfectly smooth spheres
(") ~ (i) = 35 and (L/d)*r5%0 ~ (L/d)" ~ 1071);

(iii) the angles are nearly the same ((aj)SPS40 ~ (aj)’ef ~ 170°);

(iv) the eccentricity for the beads of Spgso is very small ((|e;| /d)SPS40 < 107! including
90 % of (lej|/d)Srs® < 5.1072).

The comparison of the ‘reference’ spheres and the spherical particles of the suspension
Spsa0 on a;, L;j and |e;|/d allows us to characterise the slight deviation from perfect
spheres, which is much less than the deviation of crushed particles from spherical shapes.

At first glance, one can observe that the global shape of crushed particles does not
deviate much from a sphere. In particular, Figure 21(a) shows that a4, < 1.5 for crushed

particles, with two-thirds of aigf(‘)‘o < 1.2. In addition, the crushed particles from Cpsq

and the spheres from Spg40 are both globally approximated as polygons notably having:

(i) the same number of sides since (nS7540) ~ (n5P540) & 35;

(ii) the same global angle since 150° < o < 180° for ~88 % of ajC‘Ps4o and ~96 % of

aSPs4o.
] b
(iii) the same average length of polygon sides (((L;j/d)CPs%) ~ ((L;/d)5s%0) ~ 0.1).

Moreover, the mean normalised eccentricity ((|e;] /d)€Ps9) remains globally small.
For instance, approximately 60 % of the sides of polygon for crushed particles are
characterised by a ratio (|e;|/d) < 5 X 10~2 whereas it is 80 % for the spheres of Sps4p.

Approximately 85 % of the ratios |e;|/d are less than 10~! for crushed particles, whereas
95 % are less than 10~! for the spheres of Spgp.
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Figure 21. Distribution of the values of (a) polygonal aspect ratio a,4ip = h;j’f‘”‘ / hi’-’i", (b) number of segments
per particle nyg, (c) internal angle «; at each vertex Vi, (d) relative length L;;/d and (e) eccentricity |e;|/d
measured across all the particles for the suspensions Spsso (blue) and Cpsag (orange). For a4, and ng, the
statistics include roughly N ~ 600 particles for each type of suspension, whereas for o, L;j/d and |e;|/d, the
computation is done for all the vertices V; of all the polygons: (1) x N ~ 2 x 10* data for each suspension.
Inset in (c.,d,e): Logarithmic y-scale is used to highlight the smallest values of «; and the largest values of L;;/d
and |e;|/d, respectively. The data from real suspensions are compared with the results (in green) obtained by
doing the same image analysis process on a numerical image of perfectly smooth spheres that we use as a
reference.
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However, significant differences between the two types of particles are brought out at
the same time by figures 21(a), 21(c) and 21(e). On these three specific graphs, we observe
as expected that the crushed particles from Cpsao are indeed characterised by:

(i) an aspect ratio d,qyi, =, 1.2 for one-third of the particles;
(ii) a larger portion of ‘small’ angles than in the case of particles from Spsag (~15 % of

ajCPS“O < 155° against <4 % of oz].SPS4°);
(iii) a larger portion of high eccentricity (~30% of (|e;| /d)CPS40 > 6 x 1072 against
<10 % of (legj|/d)Srs+).

To sum up, all these observations show, in fact, that the shapes of crushed particles in
Cpsao do not deviate globally from a sphere. However, a small but non-negligible number
of their sides are very different from spherical arcs, likely at least enough to induce the
rheological differences between Cpssg and Spsao observed in § 3.1. More precisely, these
different measurements conducted to characterise the shape of particles tend to show that
the rheological differences between Cpsap and Spsag, if related to the particles shape, are
mainly due to the three following quantities: @,qrio, @; and (|e;;|/d). We show in the next
section how these are all connected to each other and to ;.

4.2. Determination of the rolling friction coefficient

4.2.1. Theoretical approach

Studies of granular media by Wensrich & Katterfeld (2012), Wensrich, Katterfeld &
Sugo (2014), Agarwal et al. (2021) and Tripathi et al. (2021) have shown that an order
of magnitude of p, for usage in DEM simulations can often be obtained by measuring
the ratio of the average contact eccentricity (e) to the projected particle diameter d:
Uy = (e)/d. This ratio is plotted in figure 21(e) for the two studied suspensions in the
present paper. We have measured (|ejl /d)SPsi0 ~ 5 x 10-2 and (legl /d)Crso ~ 1071,
Interestingly, one can observe that these values are in quite good agreement with the
values previously predicted by the combination of the works of Singh et al. (2020) and

the determination of ¢,,(X12): ,u(f'” [Spao = 0.03 £0.02 and ,uf’” lcpgso =~ 0.10 £ 0.01,
which confirms the empirical proposition that the eccentricity can be used to estimate
ur. However, a drawback of this method to calculate w, is that it is limited to particles
whose shape does not deviate strongly from a sphere. For instance, it cannot be applied to
regular polygonal particles (Estrada ef al. 2011) for which we can expect obviously a higher
rolling resistance than spheres despite the fact that their eccentricities are zero. Thus, we
will follow and build upon the more fundamental approach of Estrada et al. (2011), in
which u, is derived based on the torque required for rolling which in turn is related to the
particle shape parameters.

Figure 22 displays a simple sketch of a crushed particle approximated here as an
irregular convex polygon with centre of mass G and number of sides n;, rolling from the
left to the right around one of its vertices (that named V; on the schematic in figure 22) as
aresult of a tangential force Fr applied at the centroid G. We consider the conditions such
that the irregular convex polygon/particle can only roll (g > w,, Estrada et al. 2008). As
shown in figure 22, a normal force Fy applied at G offers a resistance to the particle’s
rolling, and rotation occurs if and only if

Ty > Try, (4.4)

where I, is the torque which tends to make the particle roll, and is defined as I, =
aj x || frll. Here I'f, is the rolling resistance torque and is defined as I'r, = a; x || fn|l.
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Figure 22. Schema based on the first sketch drawn in figure 19 of a partial crushed particle (blue area),
considered as an irregular convex polygon with a centre of mass G. Here, the vertices V; and V; are the two
vertices considered initially in direct contact with another particle. The forces Fr and Fy are the tangential and
normal forces applied at G, respectively. The force fr is the projection of Fr on the tangent passing by G of the
circle of centre V; and radius g;. In other words, f7 is the component of Fr that makes the polygon roll from
left to right around V; by applying a torque I'z,. Similarly, fi is the component of Fp that offers a resistance
for the polygon to roll around V; by applying a torque I'Fy . In this scenario, it is important to understand that
the particle motion is from left to right and the particle can only roll (no sliding). In fact, a normal contact
force opposing Fy and a sliding friction force opposing Fr are acting at the contact point V; to prevent it from
sliding or moving vertically, but they are not represented here for simplicity. The angle 6;; corresponds to the
angle between the vectors GV; and Fy.

The forces fr and fjy are the parts of the applied forces Fr and Fy, respectively, which
contribute to the corresponding torques, and are defined as (see figure 22)

fr=Fr xcost; and fy=Fy xsinb;. (4.5a,b)

The angle 6;; corresponds to the angle formed by the vectors GV; and Fy when the
polygon/particle rolls around its vertex V; from left to right. By coupling (4.4) and (4.5a,b),
we obtain the following condition for the particle to roll around V; from left to right:

Fr > Fy x tan 6. (4.6)

Obviously, the value of 6; evolves during the rotation of the particle and, as a result, so
does the force required to make the particle roll. Figure 23 displays a qualitative sketch
of the horizontal force Fr that must be applied at the centre of mass G as function of the
rotation angle ¢, in order to make an irregular polygon/crushed particle (composed of five
sides) roll over its entire perimeter. One can then observe that the resistance for the particle
to roll around one of its vertices is locally maximum at the start of the rotation around the
given vertex.

According to the literature (Estrada et al. 2008, 2011; Singh et al. 2020), the rolling
friction law between two grains of radii a| and a, defines the maximum torque transmitted
by the contact from the rolling friction coefficient u, as I'yy;i* = u lFy, with [ = a; + as.
By assuming that a given particle rolls around its vertex V; on a mirror particle in the
studied suspensions Sps4g and Cpsao (consistent with suspensions roughly monodisperse
and @qsip ~ 1), we have [ = 2a; which then leads to I'))/* /a; = 2, Fy. Thus, the applied
tangential force Fr to roll a sphere equivalent to a crushed particle would have to be
greater or equal to I"'7* /a; (see figure 2). Thanks to this equation and (4.6), the static

roll
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Figure 23. Qualitative sketch of the variation of the ratio F7/Fy based on (4.6) for an irregular convex polygon
with five sides which rolls over its entire perimeter. Each coloured peak labels the rotation of the given pentagon
around one of its vertices. Each peak can have a different height because the pentagon is irregular. The height
of one peak corresponds to the configuration where the contact with the second particle is ‘flat’ (for instance,
when V; and V; are both in contact with a second particle in figure 22), for which 0; = 9; . Note that this
corresponds to the position where the rolling resistance around the corresponding vertex is maximum. Then,
after each coloured peak, Fr/Fy = 0 over an angle, Ag, with Ag; = — (o + Qi].c). This is because Fy

no longer induces a rolling resistance once G has been ‘vertically’ aligned with the vertex/centre of rotation
(0 = 0). Thus, it is no longer necessary to apply a force Fr to continue rolling around the vertex in the same
direction until the next vertex becomes the new contact point/centre of rotation of the particle.

rolling friction coefficient associated with the vertex V; when the particle rolls in a given
direction (here from left to right), denoted /ﬂ s> can be then described as (see figure 22)

ulo=(1/2)tan6; with 6 = max[6;], 4.7)

where Gl.jc is defined as the maximum possible value reached by ¢;; when the particle rolls

around a vertex V; in a given direction. As shown in figures 22 and 23, this occurs when
the side V;V; of the polygon is in contact with the mirror particle. Moreover, we want to

point out that, through the parameter Gijc , the static rolling friction coefficient related to it,
i, depends in fact on the length L;; of the segment V;V;, the parameter e;; and the height
h;j (see figure 22) because

(Lij/2) + e
It is important to note that the value of e; is directly related to the vector e; = GEjj,

and can be positive or negative depending on the relative x position of E;;, G and V; (see
figure 22) and the rolling direction:

tan e,.f = (4.8)

(i) if GE;; points in the direction opposite to rolling, then e; < 0;
(i) if GEj is the rolling direction, then e;; > 0.

Another example which shows the importance of the relative x position of these three
points (Ej;, G and V)) is that if G was located to the right of V; in figure 22 (with the particle

rolling from left to right), then y,? s = 0 (as qualitatively shown in figure 23) because the
force Fy applied on G no longer induces a resistance torque. We observe that the rolling
resistance is larger when:
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(i) the length of the side L;; is large; and/or
(ii) ej increases the value of (L;;/2) + e;j; and/or
(iii) the height /;; is small.

These observations from (4.8) are actually quite intuitive. For instance, in the simple case
of a regular (e;; = 0) 2D polygon with four sides, we can easily imagine that it is harder

to roll a cube (tan Qijc = 1) compared with a long rectangle laying on its small side (on the
width, tan Qijc — 0). On the other hand, the long rectangle on its long side will be much

harder to roll (,uii > 1 when Qi].c — 90°).

As observed in figure 23, the irregular shape of 2D polygons/crushed particles implies
that the static rolling friction coefficient p, ¢ associated with a given irregular convex
polygon/crushed particle is inhomogeneous in angular space. We have therefore chosen to

define i, 5 of a given particle as equal to the maximum value of 7,

prs = max [ud | VG j) € 10,05 =11, 4.9)
with:

(i) ifi <ng— 1,thenj= (i + 1);
(i) if i = ny, — 1, then j = 0.

The idea behind this choice follows the argument made by Estrada er al. (2008). We
consider an irregular polygon laid on its side V;V; on a plane inclined with an angle 6;;. In
order to make the polygon roll down the inclined plane (i.e. to change its side in contact
with the inclined plane), the angle of the slope must be larger than a critical value: 6;; 2 0¢

~ 7y N
By rolling (without inertia), if the new critical angle jS (associated with the new side V; Vi

in contact with the plane) is lower than the previous one (i.e. Gijc ), then rolling continues.
However, if a subsequent segment of the polygon has a higher value of critical angle,
the polygon stops rolling. In determining ., 5, we also consider the maximum resistance
between the two possible directions of rotation.

Thus, the static rolling resistance is related to the torque required to initiate rolling
(assuming the particle stopped rolling at its most resistant angle). However, it is important
to understand that another rolling resistance can be related to the work required to maintain
rolling at a constant angular velocity. Both should be important in different parts of a
sheared suspension (and at different times at the same location). Analogous to Estrada
et al. (2011), this second rolling resistance can be determined by calculating the total work
required to roll a non-spherical particle over its entire perimeter, Py, and then balancing
it with the total work of an equivalent sphere (of the same perimeter P, as the first one)
with a resistance for rolling motion (i.e. a work balance instead of a torque balance). The
resistance to rolling motion induced by the particle shape would be then characterised
by a dynamic friction coefficient, w, 4, instead of the static one, w, . In figure 23, it
would be then determined from the total (coloured) area under the curve Fr/Fy, instead
of the maximum peak, and one can expect that jt, 4 < 5. We describe the method of
calculating 1, 4 analogous to Estrada et al. (2011) in Appendix C, finally defined as

-1
1=,
hrd = 55 Z 5. (4.10)
j=0
with:
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Figure 24. Distribution of (@) the static rolling friction coefficient, u, and (b) the dynamic rolling friction
coefficient, . 4, both determined by image analysis for the reference perfectly smooth spheres (in green), the
spherical particles composing Spsag (in blue) and the crushed particles from Cpgag (in orange).

() 8y = a;— hyif ai < \JI2 + B2;

(i1) else 8y]’. =0.

In fact, one can note that u, 4 is related directly to the averaged particle dilatancy, which
is in agreement with the work of Estrada er al. (2011).

4.2.2. Image analysis results for the rolling friction coefficient
Figure 24 displays the measured distribution of (a) the maximum static rolling friction
coefficient p, ¢ and (b) the dynamic friction coefficient u, 4, based on (4.9) and (4.10),
respectively. Before discussing these graphs, we emphasise that our geometrical approach
to determine the coefficients p, s and w,4 is correct and independent of the method
of measurements or resolution. We point out that the measurements on the ‘reference’
perfectly smooth spheres (in green in figure 24) give a maximum resolution (i.e. lower
limit for the values) on the order of 10~} for Mrs and 102 for Wr.q- These limits for ¢
and u, 4 are induced by the discretisation process which divides a particle contour into a
finite number of segments and could be reduced by increasing the resolution of the images.
Nevertheless, the resolution is estimated to be sufficient here because the magnitudes of
the experimental data appear to be higher than these limits. Moreover, it is expected that
the value of w, should not be affected at all by the resolution limit because it takes
into account the maximum rolling resistance, unlikely induced by a spherical part of the
particle. It is true that the resolution limit might play a role in the determination of the
value of the dynamic rolling friction coefficient: the values of (i, 4 are likely overestimated
because the rolling resistance related to the spherical part of a particle would tend to
decrease the value of u, 4. This is the reason why the relative uncertainties on p, 4 are
quite large. Moreover, as we show later, the value of u, 4 is already lower than the value
of the rolling friction coefficient determined previously from ¢;°.

Figure 24(a) displays the measured distribution of the static rolling friction coefficient,
r.s. We observe that the values of u, ¢ associated with the crushed particles (in orange)
are globally larger and more broadly distributed than those associated with the spheres
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from Spsso (in blue). This result is quite intuitive because, for a given particle, we

consider only the maximum value of uf, to determine i, . As it is unlikely that the

spherical part of a crushed particle is taken into account following this, the difference

from spheres is then emphasised. One can even note that the values of Mff}s“o slightly

differ from those determined for perfectly smooth spheres (in green in figure 24), which
could come from real deformations of spheres composing Sps4p. The averaged value
of u, s for each suspension is measured to be 1L, s|spe, = 0.13 and 1, |cpg =~ 0.2.
Thus, on the one hand, we have ;Lff}s‘“) < ME’;S‘*O. On the other hand, it is actually quite

o0

satisfactory that u;" < u, s for the two studied suspensions (recall that we determined

u(rp’" |Spsso = 0.03 £ 0.02 and u(rp’” [Cpsso ~ 0.10 &= 0.01), because the static rolling friction
coefficient, 1, g, should characterise the maximum rolling resistance.

Figure 24(b) displays the measured distribution of the dynamic rolling friction
coefficient, 1, 4, associated with the crushed particles of Cpga (in orange) and the spheres

of Spsap (in blue). As expected, the values of u, 4 are smaller than the values of u, g

for each studied suspension, and we still observe that Mff’j40 is globally smaller and less

distributed than ME?““. We found the following averaged values: 7i, gspg,, ~ 0.02 and
r.d|Cpsso 2 0.03. Here, one can note that 1, 4 S M?’" for each studied suspension.
Finally, the results of this study show that the globular/crushed PS particle geometry

itself is enough to induce the rheological differences observed between Cpgsg and Spsao. To

o0

go further, it is quite satisfactory that u, 4 < ,uf’" < Wy s for the two studied suspensions.
We think that the experimental method described in the present paper to characterise the
resistance to rolling motion induced by particle shape can be considered as another step
to estimate the rolling friction coefficient for usage in DEM simulations, because it gives
a framework for the value of w, for real suspensions made of non-spherical particles. We
recall that, in agreement with the works of Agarwal ef al. (2021) and Tripathi et al. (2021)
in dry granular media, a more accurate estimation can be obtained by considering the
particle eccentricity defined by e/d. However, two limits of this ratio exist: it cannot be
considered for particles with a regular polygon shape (e = 0) or a shape that deviates too
much from a sphere. Therefore, the novelty of the present work is then to give a way of
estimating a framework of u,, particularly its upper (static) and lower (dynamic) bounds.

5. Concluding remarks

In this paper, two different but similar monodisperse suspensions have been sheared in a
parallel plate rheometer in order to study their rheological behaviours and characterise
their differences. More precisely, the main goal of the present paper was to study
the influence of particle shape on the rheology of non-Brownian viscous frictional
suspensions. Indeed, the rheology of suspensions composed of spherical particles has been
studied extensively in the literature. However, understanding of the rheological behaviour
of more complex suspensions composed of particles with irregular shape, which are
more common in nature, remains more elusive. We have made two different suspensions
composed of the same solid PS particles, separately dispersed in the same suspending
Newtonian liquid. The only difference between the two lies in the shape of the particles
present in each suspension: spheres in the first and crushed PS particles in the second.
We have then characterised the rheological behaviour of these different types of
suspension by studying the variation of the jamming volume fraction with shear stress.
Our main result shows that the suspension made of crushed particle is more viscous
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than the suspension made of spheres at small shear stress whereas the viscosity of
the two suspensions becomes equivalent at large shear stress. This results in a stronger
shear-thinning behaviour for the suspension made of crushed particles. This observation
is notably reflected by a jamming volume fraction smaller at low shear stress for crushed
particles whereas it is of the same order of magnitude as that for spheres when shear stress
increases.

To go further, we have tried to understand the physical mechanism behind this
observation, obviously induced by the different particle shapes. The literature pointed
out the influence of rolling resistance but two different origins could be related to it and
have been proposed: changes of adhesive force strength with particles’ local curvature
and rolling resistance induced by locally normal contact forces acting at a non-spherical
particle surface.

We have proposed two arguments which tend to demonstrate that adhesion is not
important for the present rheological measurements. The first has been to show that the
applied shear stress in the present study is much larger than the yield stress of suspensions
(spheres and crushed). The second (and main) argument has been based on conducting
shear reversal experiments and measuring the minimum value of viscosity, 9y, and
characteristic strains. The measurements of the same 7,,;, in the two types of suspensions
and characteristic strains typical for non-adhesive particles was in contradiction with what
could be expected if adhesive forces had played a significant role.

The second explanation relates the shear-thinning behaviour of both suspensions to
a variable sliding friction, ps, whereas the larger viscosity at low shear stress for the
non-spherical particles is assumed to be related to the particle shape. This physical origin
for the shear-thinning behaviour is notably supported in the case of the PS spherical
particles by the literature with the works of Lobry et al. (2019) coupled with the AFM
measurements on the same type of particles done by Arshad et al. (2021) and Le et al.
(2023). Regarding the crushed particles, we have assumed a variation of ug with X1
identical to the spherical particles, based on the fact that the crushed particles and the
spherical particles are from the same material and of the same size. Moreover, the global
aspect of the crushed particles does not deviate much from spheres. AFM measurements
performed on the crushed particles could validate this assumption in the future.

The recent numerical work of Singh et al. (2020) has shown that the rolling resistance
of solid particles plays a predominant role determining the jamming volume fraction, ¢,,,
when the sliding friction coefficient is large (s 2 0.5), but has almost no effect when g is
small. A quick comparison on the suspensions made of PS spheres and crushed particles
in the frictionless case (PS particles in an aqueous solution) has shown no rheological
differences, which is consistent with the absence of impact of u, when puy — 0. We
have shown that it is possible to fit the variation of the jamming volume fraction with
shear stress for both types of suspensions by the same variable sliding friction model
(Lobry et al. 2019), simply by predicting a smaller value of the jamming volume fraction
for crushed particles when the shear stress tends to zero (i.e. sliding friction coefficient
grows ‘infinite’). The obtained value of ¢;° (for which the predominant relative motion
is rolling) from the fit (Lobry et al. 2019) coupled with the simulations of Singh et al.
(2020) allowed us to obtain values of the apparent rolling friction coefficient for both

types of suspension: ;" = 0.03 & 0.02 and /A?’” = 0.10 £ 0.01 for spheres and crushed
particles, respectively.

The last part of the present paper has been focused on an experimental estimation of
the rolling friction coefficient for both types of particles studied in the present paper.
Faced with the difficulty of performing a direct experimental measurement for such
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small non-spherical particles, we decided to use an image analysis process consisting of
approximating particles as irregular convex 2D polygons to measure the characterising
shape parameters such as aspect ratio, internal angle and eccentricity, and finally calculate
the values of the static rolling friction coefficient associated with each side of each

polygon, /ﬂ The static rolling friction coefficient of each particle, u, s, has then been

defined as the maximum value of all u7.; characterising each particle. On the other hand,
we have also determined the value of the dynamic friction coefficient, 1, 4, from the work
needed to roll the particle over a distance equal to its own perimeter, analogous to Estrada
et al. (2011). Therefore, 1, 4 can be then seen as an averaged value to characterise the
shape-induced resistance of a particle to rolling motion based on the whole particle shape.
In addition to the fact that the particle geometry of the two studied suspensions is enough
to explain the rheological differences between the two, we have notably shown that the
calculation of these two coefficient values (i, s and p, 4) gives a framework to estimate
the value of u, for usage in numerical simulations.

Interestingly, a very good agreement with the recent works of Agarwal et al. (2021) and
Tripathi et al. (2021) has been found and we confirmed that the eccentricity, defined as the
ratio e/d, gives a very good estimation of the value of rolling resistance for usage in DEM
simulations, as long as the particle shape does not deviate too much from a sphere, and
that e #0.

To go further, the next step would be to find a way to directly measure the rolling friction
coefficient of the particles (as is done by AFM measurements for 1s), instead of deducing
it by an image analysis process. Other difficulties encountered here concern the irregular
shape of crushed particles, and the diversity of irregular shapes, which might invalidate the
2D approximation invoked here and make it harder to characterise the rolling resistance
for irregular crushed particles. It is also true that different types of solid contact between
the particles can exist in the crushed particles. In this paper, we have only considered
a scenario where a particle rolls over a ‘mirror’ particle, but the physics is probably
much more complex and it could be interesting to numerically study the distribution of
the types of contact in such a suspension. Being aware of this, we think it could be
interesting to compare the numerical results of Singh et al. (2020) with more regularly
defined shapes such as cubic particles or other regular polygonal particles (for which
e = 0). Small hard fibres (a4, < 2) could also be an interesting shape. One can note that
the angularity explored through the crushed particles in the present study remains close
to spheres (aj — 180°). Studying cubes or rectangular shapes may then be interesting to
explore smaller internal angles domains (o; — 90°). It would have the second advantage
of increasing the value of u,. Indeed, Singh et al. (2020) have shown that the influence
of i, on ¢y, is very large when 3 x 1072 < u, < 3. Cubes present this dual advantage of
having a well-defined shape and an expected higher friction coefficient: 1, is expected to
be between 0.1 (dynamic) and 0.5 (static), for which Singh et al. (2020) have predicted
a much lower jamming fraction, 0.44 < ¢5° < 0.53. Thus, determining ¢5° would show
whether static or dynamic is more important. A rectangular shape (a,qip < 2) offers two
very different side lengths and allows one to study further the influence of the angular
dependency of u,.
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meticulous work done by Yahya Al-Majali and Yasaman Madraki in order to get a few particles.
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Appendix A. Process to crush the PS particles

Compression molding by a series of successive loading phases were done in order to
crush the spherical PS particles. Figure 25 provides the schematics of the process. A dry
sample of roughly 2-4 ml of PS beads were put between 2 steel plates, forming a layer
about 10 particles thick and then compressed at room temperature by a load equivalent
to approximately 80 x 10° kg (80 tonnes) for roughly 10 min. The particles were then
observed under a microscope in order to check their shape. The process was then repeated
if the shape of the particles was not satisfactory. Eventually, the loading operation on
a given sample was repeated between 5 and 10 times. The particles were finally sieved
to decrease the size distribution. Note that different processes of crushing were tried
in order to get the non-spherical particles, notably by either increasing or decreasing
the temperature or/and the load force. The process was tedious and very long but was
determined to be the most appropriate in order to get the roughly 200 mg desired particle
shape at the end.

Appendix B. The image analysis process

The image processing is performed as follows. Each image taken with a microscope
is binarised with a local threshold whose value T(x,y) is calculated individually
for each pixel (x,y). Here, T(x,y) is a weighted sum (cross-correlation with a
Gaussian window) of a 501 x 501 px> neighbourhood of the pixel (x,y) (see
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the OpenCV cv2.adaptiveThreshold website: https://docs.opencv.org/2.4/index.html).
A rough delimitation of each particle in the picture is thus detected. However, the pixels
belonging to the interior of a particle, whose grey level can be similar to the background,
can be incorrectly identified as not being part of the particle. As a result, the interior
of particles is ‘filled” (see OpenCV cv2.floodFill) in order to correct it. The projected
particles and their well-defined contours (red pixels in figure 20) are then detected through
a watershed segmentation process (Vincent & Soille 1991, see OpenCV cv2.watershed).
Finally, the contour of each particle is approximated as an irregular convex envelope (see
OpenCV cv2.approxPolyDP, coloured in blue in figure 20) for which the (x, y) coordinates
of each vertex V; (black dot except G in figure 20) are known (0 < i < ny — 1, with ng the
number of sides of the polygon).

Appendix C. Theoretical approach to determine the dynamic rolling friction
coefficient

Let us consider that the centre of mass G travels left to right over a horizontal distance
which is given by xg = §x’ + 8x” (see figure 26). Under these conditions, the work
required to displace the crushed particle over this given distance can be calculated as

W,|i = En - y6 = Fy x 8y}, (CDh

where y¢ is the vertical vector displacement of the centroid G for which the force Fiy exerts
a rolling resistance, and its norm is equal to 8y’ = a;j — h;;. On the other hand, the work
needed to displace a disc, characterised by a dynamic rolling friction coefficient p, 4, over
a distance equal to x¢ is

Wa = Fr - x6 = 2jur.4 Fy x (8] + 8x]). (C2)

Assuming equal work, W[/, | = W4, we arrive at the following mapping for the dynamic
friction coefficient associated with the rotation from left to right around V;:

1 3y;
/ J
== — ], C3
/’Lr,d|J o) |:5x/.—|—8x/-/:| (C3)
J J
where 8yj/. =aj — hjj, 5)CJ/- = L;jj/2 + e;; and 8xj/f = Ljx/2 + eji (with e;; and ej; positive or
negative). Note that, in the case for which the particle rolls around V; from the right to the
left, w, 4 is defined as
18y
/" J
i==|— . C4
Hr.dl 2 |:8x; + ij/f €4)

where 8y} = aj — hjx. Obviously, if the polygon is regular (Lj = Ljk, ejj = ejx = 0, h;j =
hjx), then p, g = M’r di = //r/’ 41i and we arrive at the following mapping between ., 4 and
the dilatancy angle (¢ = wj/ = wj” Vj € [0 ng — 1]), already found by Estrada et al. (2011):

g = (/&) tany  with ¢ = ——. (C5)

’ 2ng
In our case, the polygons are irregular and, thus, the required work to roll around one
vertex is not the same for all the vertices of a particle, as is shown qualitatively in figure 23
(the volume of each coloured peak is different). Unlike the static friction coefficient, (s,
for which we have considered the maximum resistant torque to rolling motion, we define
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Figure 26. Sketch analogous to figure 22 of a partial crushed particle, considered as an irregular convex
polygon with a centre of mass G. Two sides of the polygon/crushed particle, V;V; and V;Vj, are outlined in
dark blue. Tangential and normal forces, Fr and Fjy (not represented here to avoid overloading the schema),
respectively, are applied on the centre of mass G of the particle as shown in figure 22 to create a rolling motion
from left to right around V;. Under these conditions, V; is the other vertex (with V;) considered initially in
direct contact with the mirrored particle, whereas Vj is that which will be in contact at the end of the rotation
around V;. The initial (prime) location of each point is displayed with a black point and annotated (), whereas
the final (second) position is displayed with a transparent dot and annotated (”). Analogous to figure 22, «;

corresponds to the internal angle of the polygon/particle at V; (o = \/,-/X/J\Vk), 0;j and 0 are the angles between
the segments /;; and GV}, and hj; and GV}, respectively. Here 4;; and hj; are the heights of G from the segment
ViV; and V;Vy, respectively. The eccentricity for the sides V;V; and V;Vj corresponds to the lengths |e;|/d and
lejx|/d, respectively. The angle v/ (respectively, ¥”) is the dilatancy angle when the particle rolls from the left
to the right (respectively, from the right to the left) around V;.

Wr.q4 by considering the whole particle. The sum of the work for rolling over all vertices
W[/7 |j (or WI’,/ |;) corresponds to the total work needed to displace a given particle over a
distance equal to its perimeter P, and the value of the dynamic friction coefficient ;4
associated with the given particle can then be determined by the equation

ng—1 ng—1
A l S

Hrd = Y Wy qli = Sp > sy, (C6)
j=0 P j=0

where:

() 8y =aj— hyifa; < \JLZ + h3;

(i1) else Syj’. =0.
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