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Abstract. We develop implicit-explicit (IMEX) schemes for neutrino transport in a
background material in the context of a two-moment model that evolves the angular moments
of a neutrino phase-space distribution function. Considering the upper and lower bounds that
are introduced by Pauli’s exclusion principle on the moments, an algebraic moment closure
based on Fermi-Dirac statistics and a convex-invariant time integrator both are demanded.
A finite-volume/first-order discontinuous Galerkin(DG) method is used to illustrate how an
algebraic moment closure based on Fermi-Dirac statistics is needed to satisfy the bounds. Several
algebraic closures are compared with these bounds in mind, and the Cernohorsky and Bludman
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closure, which satisfies the bounds, is chosen for our IMEX schemes. For the convex-invariant
time integrator, two IMEX schemes named PD-ARS have been proposed. PD-ARS denotes a
convex-invariant IMEX Runge-Kutta scheme that is high-order accurate in the streaming limit,
and works well in the diffusion limit. Our two PD-ARS schemes use second- and third-order,
explicit, strong-stability-preserving Runge-Kutta methods as their explicit part, respectively,
and therefore are second- and third-order accurate in the streaming limit, respectively. The
accuracy and convex-invariance of our PD-ARS schemes are demonstrated in the numerical tests
with a third-order DG method for spatial discretization and a simple Lax-Friedrichs flux. The
method has been implemented in our high-order neutrino-radiation hydrodynamics (thornado)
toolkit. We show preliminary results employing tabulated neutrino opacities.

1. Introduction
Core-collapse supernovae (CCSNe) are the explosions of massive stars that end their lives. They
are directly or indirectly responsible for the lion’s share of elements heavier than oxygen and play
important roles in many astrophysical phenomena, such as neutron star and black hole formation.
Furthermore, these explosions occur at energies and densities relevant to address fundamental
questions in nuclear, particle, and gravitational physics. A solid theoretical framework for the
CCSN explosion mechanism may help answer important questions in fundamental physics [1].

One essential part of the explosion mechanism is neutrino transport. Neutrino energy
deposition is believed to be the major driver of CCSN explosions, except in peculiar cases
where rapid rotation is present and magnetohydrodynamic effects may dominate (for reviews,
see [2, 3, 4, 5]). Ideally, neutrino transport would be modeled by the Boltzmann transport
equation, which is an integro-partial-differential equation evolving a phase-space distribution
function f (e.g., see [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] for studies of CCSN with
Boltzmann transport in various approximate settings). Simulating the neutrino transport implies
finding a solution of the Boltzmann equation for a specific domain and period, with acceptable
accuracy.

However, solving the Boltzmann transport equation with sufficient phase-space resolution
and full weak interaction physics is at present too expensive. To balance physical fidelity and
computational expediency, an approximate method called the two-moment method has been
adopted (e.g., see [19, 20, 21, 22]). Using the two-moment method, the evolved variables are the
zeroth and first angular moments of the distribution function f – the spectral particle density
J and flux H, respectively. However, the equation of H includes the second angular moment
K. Knowledge of K is needed to close the two-moment system. Therefore, a closure that gives
K consistent with J and H is needed. The better the closure predicts K, the more accurate
the two-moment method will be. The two-moment method has been widely applied in the
CCSN modeling community with different algebraic closures, such as the Minerbo [23] closure
(e.g. O’Connor and Couch [24], Pan and et al. [25], Glas et al. [26], and Just et al. [21]) and the
Levermore [27] closure (e.g. Vartanyan et al. [22], Cabezon et al. [28], and Kuroda et al. [19]).

Applying the two-moment method does simplify the problem, but doesn’t guarantee an
affordable solution. To be precise, how to discretize the continuous system of equatio ns given by
the two-moment method and solve the discretized system efficiently remains a question. In fact,
the time scales of neutrino interactions with the background (they can be ∼ O(10−13) second)
is short compared to the duration of the CCSN explosion (∼ O(1) second). This means that
∼ O(1013) time steps could be needed for solving the system fully explicitly. On the other
hand, solving the moment equations fully implicitly requires inverting global band-structured
matrices whose sizes depend on the phase-space discretization. Such a global inversion is both
expensive and unfriendly to parallelization. To circumvent these challenges, implicit-explicit
(IMEX) methods are taken into consideration. By treating the transport terms in the two-
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moment equations explicitly and the collision terms implicitly, IMEX methods are subject only
to a time step governed by the explicit transport terms, and the matrices to be inverted are
block diagonal. Therefore, IMEX methods require far fewer time steps compared with a fully
explicit method, and the computation for each step is easily parallelizable. For the relativistic
setting that we have, where the fluid and the neutrinos have comparable propagation speeds,
IMEX methods can be efficient.

To model neutrino transport using a two-moment method, two (or at least two) things need
to be chosen carefully: an algebraic closure based on Fermi-Dirac statistics for closing the two-
moment equations and a convex-invariant, diffusion-accurate IMEX scheme to ensure a physical
result. A convex-invariant scheme has the following property: if the solution un ∈ W and W is
a convex set, then un+1 ∈ W . Since the neutrino distribution function is bounded (f ∈ [0, 1])
by the Pauli exclusion principle, its moments as weighted integrals of a bounded function
over the domain ω ∈ S2 are also bounded. We call the moments satisfying the constraints
due to Fermi-Dirac statistics realizable moments and the realizable J and H define a convex
set [29]. The algebraic closure should give a realizable K, and the well-posedness of the closure
requires realizable J and H. This explains why an algebraic closure based on Fermi-Dirac
statistics is needed. Realizability of J and H after each time step requires a convex-invariant
IMEX scheme. Since the realizable moments form a convex set, it is possible to construct a
realizability-preserving method using a convex-invariant IMEX scheme for two-moment neutrino
transport. In addition, the physics of neutrino transport in CCSNe requires the IMEX scheme
to be diffusion-accurate.

The study of moment realizability and realizability-preserving methods with diffusion-
accurate IMEX schemes motivates this work. Gottlieb et al. [30] showed that standard strong-
stability-preserving IMEX schemes cannot have an order higher than first without a restricted
time step. One way to obtain the second-order (or higher-order) accuracy is to add some
correction steps after the standard step [31, 32]. Unfortunately, the correction steps can
deteriorate the accuracy of the IMEX scheme in the diffusion limit or restrict the time step.
To keep things simple, we focus on IMEX schemes without correction steps and require them
to be high-order (second or higher order) in the streaming limit and diffusion-accurate. We call
these IMEX schemes PD-ARS.

thornado is our toolkit for high-order neutrino-radiation hydrodynamics based on high-order
Runge-Kutta Discontinuous Galerkin (RKDG) methods. It is being developed at the University
of Tennessee, Knoxville and Oak Ridge National Laboratory. It currently includes solvers for the
Euler equations for fluid dynamics and the two-moment approximation of the radiative transfer
equation [33]. In this paper, we focus on the transport methods in thornado with emphasis on
IMEX.

This paper is organized as follows: Section 2 discusses the mathematical model, algebraic
closures, and the constraints on the moments and algebraic closures imposed by Fermi-Dirac
statistics; Section 3 gives a first-order finite-volume spatial discretization and shows how the
spatial discretization preserves constraints in an IMEX step; Section 4 discusses how to use
convex combination to construct two PD-ARS schemes, one with second-order accuracy in the
streaming limit and the other with third-order accuracy in the same limit; Section 5 presents
the results of the numerical tests, which demonstrate the properties of the PD-ARS schemes;
Section 6 summarizes the achievements of this paper and discusses future work.

2. Two-Moment Model
2.1. Transport Equations
We consider neutrino transport through a static background in a non-relativistic framework.
For simplicity, we only include neutrino–matter interactions due to emission, absorption, and
isoenergetic scattering. It is possible to include other interactions, such as neutrino–electron
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scattering and pair processes, in the two-moment model. However, these interactions result
in dense coupling across neutrino energies and across neutrino species, and we have not yet
considered the realizability-preserving property of our scheme in this case. We leave this for
future work.

After scaling to dimensionless units, the Boltzmann equation can be written as

∂tf + ℓ ·∇f =
1

τ
C(f), (1)

where the distribution function f = f(ω, ε,x, t) gives the number of neutrinos propagating in
the direction ω ∈ S2, with energy ε ∈ R+, at position x ∈ R3 and time t ∈ R+. ℓ(ω) ∈ R3 is
the unit vector parallel to the neutrino three-momentum: p = ε ℓ. On the right-hand side, τ is
a collision time scale. In opaque regions, where neutrinos have frequent interactions with the
background, τ ≪ 1. In transparent regions, where neutrinos rarely interact and stream freely,
τ ≫ 1. The collision term, C(f), which models emission, absorption, and isoenergetic scattering
is given by

C(f) = ξ
(
f0 − f

)
+ (1− ξ)

( 1

4π

∫

S2
f dω − f

)
, (2)

where ξ = σA/(σA + σS) is the ratio of the absorption opacity σA to the total opacity. The
scattering opacity is σS. The limit ξ = 1, when σS = 0, corresponds to pure absorption, while
ξ = 0, when σA = 0, corresponds to pure scattering. The equilibrium distribution function for
neutrinos is given by the Fermi-Dirac distribution:

f0(z) =
1

e(ε−µ(x))/T (x) + 1
, (3)

where z := {ε,x}, T is the material temperature in energy units and µ is the neutrino chemical
potential. Both T and µ depend on the spatial position x.

2.2. Two-Moment Model
Approximate solutions to the Boltzmann equation, Eq. (1), can be found by solving the two-
moment model. To this end, define the angular moments of the distribution function as follows:

{
J ,H,K

}
(z, t) =

1

4π

∫

S2
f(ω, z, t) { 1, ℓ, ℓ⊗ ℓ } dω. (4)

The zeroth moment, J , is referred to as the particle density. The first moment, H, is the particle
flux, and the second moment, K, is proportional to the stress tensor. By integrating Eq. (1)
over the momentum-space angular dimension we obtain equations for the zeroth and the first
moments:

∂tM+∇ ·F =
1

τ
C(M), (5)

with M = (J ,H)T , F = (H,K)T , and

C(M) = η −DM, (6)

where η = (ξ f0,0)T , D = diag(ξ, I), and I is the identity matrix. Hence, the process of solving
the Boltzmann equation, Eq. (1), for the neutrino distribution function f(ω, z, t), is replaced by
solving the two-moment equations for the neutrino number density, J (z, t), and flux, H(z, t).
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2.3. Algebraic Closures
The moment equation for H involves the higher moment K and the two-moment model is open.
To close the two-moment model, we consider algebraic closures. For the two-moment model,
algebraic closures give an approximation to K using the lower moments:

K = kJ , (7)

where k is the Eddington tensor. By assuming that the distribution function is symmetric about
a preferred direction ĥ = H/|H|, Levermore [27] proposed a simple form for the Eddington
tensor:

k =
1

2

[ (
1− χ

)
I +

(
3χ− 1

)
ĥ⊗ ĥ

]
, (8)

where χ = χ(J , |H|) is the Eddington factor. Thus, the two-moment model is closed by
specifying the scalar χ in terms of J and |H|.

2.4. Constraints on the Moments
Neutrinos are fermions and obey the Pauli exclusion principle. Because of this, the neutrino
distribution function is bounded; i.e. f ∈ [0, 1]. As a result, the angular moments J and H and
the Eddington factor χ satisfy the following bounds [27, 34, 35, 36]:

J ∈ [0, 1], (1− J )J − |H| ≥ 0, (9)

χmin = max
(
1− 2

3J , h2
)
≤χ ≤ min

(
1,

1

3J − J
1− J h2

)
= χmax, (10)

where h = |H|/J is the flux factor. The inequalities in Eqs. (9) and (10) hold for moments as
defined in Eq. (4) with f ∈ [0, 1]. In a relativistic model (e.g., [37, 38]), the evolved quantities
— functions of the moments in Eq. (4) — satisfy different bounds. We are currently exploring
extensions of the realizability-preserving scheme presented here to the relativistic case.

The constraints in Eq. (9) define realizable moments M. For fermions, realizable moments
can only be constructed from a distribution satisfying the bounds f ∈ [0, 1]. Moreover, the
set of realizable moments is convex: let R be the realizability set and M1,M2 ∈ R, then
λM1 + (1− λ)M2 ∈ R for any λ ∈ [0, 1] [29]. As we will see later in Section 3, this convexity
makes it possible to design a realizability-preserving discretization for solving the two-moment
model numerically.

The inequalities in Eq. (10) deserve further attention. They are as important as those in
Eq. (9), in maintaining consistency of the two-moment model with respect to Fermi-Dirac
statistics. When designing a numerical scheme for the two-moment model that maintains
realizable M, it is also necessary for the Eddington factor to satisfy the bounds in Eq. (10).

However, recently reported CCSN simulations using two-moment neutrino transport with
algebraic closures have employed Eddington factors that can violate the bounds in Eq. (10). As
examples, we consider the Eddington factors discussed in [39], where the suitability of several
algebraic closures for two-moment neutrino transport was evaluated. In Fig. 1, we plot the
Eddington factor versus the flux factor for two occupancies: J = 0.1 (low occupancy) and
J = 0.9 (high occupancy). Of the algebraic closures plotted, few satisfy the bounds on the
Eddington factor in Eq. (10). Kershaw [35], Wilson [40, 41], Levermore [27], Minerbo [23], and
Janka 2 [42] closures may work fine when the occupancy is low. When the occupancy is high, the
Eddington factor due to these closures exceeds the upper bound for Fermi-Dirac statistics. The
Eddington factor of Janka 1 [43] may violate both the upper and lower bound on the Eddington
factor. Only the closure due to Cernohorsky & Bludman [44] satisfies both the upper and
lower bounds. This is not surprising as this is the only closure based on Fermi-Dirac statistics.
Although the Levermore and Minerbo closures do not satisfy the bounds in Eq. (10), they are
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widely used in simulations of neutrino transport in CCSNe and compact binary mergers; e.g.,
O’Connor & Couch [24], Pan et al. [25], Glas et al. [26], Just et al. [21], and Foucart et al. [45]
use the Minerbo closure, while Vartanyan et al. [22], Cabezon et al. [28], Kuroda et al. [19], and
Fujibayashi et al. [46] use the Levermore closure. When employing these closures in conditions
of high occupancy, a numerical scheme may evolve the moments outside the realizable domain
of Fermi-Dirac statistics given in Eq. (9). If this were to happen, the update step may give
J > 1. Considering the fact that the collision term contains blocking factors — i.e. (1 − J )×
something positive — J > 1 would change the blocking factors’ sign, and it would be difficult
to predict the impact of the subsequent induced errors on the simulation outcome. Besides,
even with the simplified collision term Eq 6, J > 1 could result in information loss (such
as loss to the neutrino distribution for the groups that exceed the bounds), closure failure, and
other unpredictable consequences. If treatments are developed to map the unrealizable moments
into the realizable domain, they should be developed to conserve lepton number, energy, and
momentum.

Figure 1. Plot of Eddington factors χ versus flux factor h for different values of J for
various algebraic closures: J = 0.1 (left panel, low occupancy) and J = 0.9 (right panel,
high occupancy). In each panel we plot the Eddington factors of two-moment closures due
to Kershaw (red), Wilson (yellow), Levermore (green), Minerbo (light blue), Cernohorsky &
Bludman (blue), Janka 1 (purple), and Janka 2 (pink) . We also plot χmin and χmax, defined in
Eq. (10) (lower and upper dashed black lines, respectively).

3. Spatial Discretization
We discretize the two-moment model with a simple first-order finite volume method to illustrate
how the closure affects the realizability-preserving property of the method. By assuming that
the moments at time level tn (Mn) satisfy the bounds in Eq. (9), our goal is to identify sufficient
conditions such that the moments at time level tn+1 (Mn+1) also satisfy the bounds. To simplify,
we limit the discussion to one spatial dimension and employ a uniform Cartesian mesh. (The
extension to multiple spatial dimensions and high-order discretization using the discontinuous
Galerkin method is given in [29].)

We divide the spatial domain D into N uniform cells and denote the i-th cell by Ki, with
i = 1, . . . , N ; i.e.,

D = ∪N
i=1Ki with Ki = {x : x ∈ (xi−1/2, xi+1/2)},
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and cell width ∆x = D/N . The cell-average of the moments is defined as

Mi =
1

∆x

∫

Ki

Mdx. (11)

Integrating Eq. (5) over each cell Ki gives

dMi

dt
= − 1

∆x

(
F̂(Mi,Mi+1)− F̂(Mi−1,Mi)

)
+

1

τ
C(Mi), (12)

where F̂(Ma,Mb) is the numerical flux and 1
τ C(Mi) is the collision term evaluated with Mi.

In this paper we use the global Lax-Friedrichs flux (setting the largest absolute eigenvalue of
the flux Jacobian to one):

F̂LF(Ma,Mb) =
1

2

(
F(Ma) +F(Mb)− (Mb −Ma )

)
. (13)

By treating the transport term explicitly with forward Euler and the collision term implicitly
with backward Euler, we have

Mn+1
i = M̃n

i +
∆t

τ
C(Mn+1

i ), (14)

where we have defined

M̃n
i = Mn

i − ∆t

∆x

(
F̂LF(Mn

i ,Mn
i+1)− F̂LF(Mn

i−1,Mn
i )
)

= (1− β)Mn
i + β

[
1

2

(
Mn

i+1 −F(Mn
i+1)

)
+

1

2

(
Mn

i−1 +F(Mn
i−1)

)]
, β =

∆t

∆x
. (15)

Considering Eqs. (14) and (15) and assuming that Mn
i is realizable for all i, it can be

shown (Lemma 3 in [29]) that Mn+1
i is realizable provided ∆t

τ > 0. In Eq. (15), if β ∈ [0, 1],

M̃n
i is expressed as a convex combination of Mn

i and the expression in the square brackets

on the right-hand side of Eq. (15). It follows that M̃n
i is realizable if the expression inside

the square brackets is realizable. It can be shown (Lemma 2 in [29]) that the expression in
square brackets is realizable for a distribution satisfying f ∈ [0, 1]. For the two-moment model
considered here, realizability depends on the algebraic closure. Specifically, if Mn

i is realizable
and the Eddington factor satisfies the bounds in Eq. (10), then Mn+1

i is realizable provided
β ∈ [0, 1]. Thus, realizability of Mn+1

i requires both a closure based on Fermi-Dirac statistics
and a Courant-Friedrichs-Lewy (CFL) condition ∆t ≤ ∆x.

4. Time Integration
Suppose that an algebraic closure based on Fermi-Dirac statistics is used (i.e., the Eddington
factor satisfies Eq. (10)). Here we consider the construction of an Implicit-Explicit (IMEX)
time integration scheme that maintains the bounds in Eq. (9). The semi-discretization of the
two-moment model results in a system of ordinary differential equations of the form

u̇ = T (u) +Q(u), (16)

where the solution vector
u(t) = (M1(t), . . . ,MN (t))T (17)
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is the collection of all cell-averaged moments, T is the transport operator, corresponding to the
first term on the right-hand side of Eq. (12), and Q is the collision operator, corresponding to
the second term on the right-hand side of Eq. (12).

Since the set of realizable moments is convex, convex-invariant schemes, which map the
initial values into this set, can be used to design realizability-preserving methods for the two-
moment model. Ideally, the scheme should also be high-order accurate and work well in the
asymptotic diffusion limit (characterized by frequent collisions and long time scales). The
following discussion considers the construction of such convex-invariant schemes.

4.1. Standard IMEX Schemes
Treating the transport operator explicitly and the collision operator implicitly, a standard s-stage
IMEX scheme takes the following form [47]:

u(i) = un +∆t
i−1∑

j=1

ãij T (u(j)) +∆t
i∑

j=1

aij Q(u(j)), i = 1, . . . , s, (18)

un+1 = un +∆t
s∑

i=1

w̃i T (u(i)) +∆t
s∑

i=1

wiQ(u(i)), (19)

where (ãij) and (aij), coefficients of the i-th stage, are elements of matrices Ã and A, respectively.
The matrices Ã and A are lower triangular. (Ã is strictly lower triangular so that the transport
part is explicit.) The vectors w̃ = (w̃1, . . . , w̃s)T and w = (w1, . . . , ws)T are the weights in the
assembly step in Eq. (19). These coefficients and weights must satisfy certain order conditions for
consistency, accuracy, and other properties. For second-order temporal accuracy, the following
conditions are required [48]:

s∑

i=1

w̃i =
s∑

i=1

wi = 1, (20)

and
s∑

i=1

w̃i c̃i =
s∑

i=1

w̃i ci =
s∑

i=1

wi c̃i =
s∑

i=1

wi ci =
1

2
, (21)

where c̃i =
∑s

j=1 ãij and ci =
∑s

j=1 aij .
The IMEX scheme is called globally stiffly accurate (GSA) if the coefficients satisfy [49]:

asi = wi and ãsi = w̃i, for i = 1, . . . , s. (22)

Then, un+1 = u(s), which is simplifying because the assembly step in Eq. (19) is omitted. IMEX
schemes are further classified by the structure of the implicit matrix A. If A is invertible, the
IMEX scheme is of type A [47]. If ai1 = 0 for i = 1, . . . , s, w1 = 0, and the submatrix consisting
of the last s− 1 rows and columns is invertible, the IMEX scheme is of type ARS [50, 47].

4.2. Convex-Invariant IMEX Schemes
To be convex-invariant, the coefficients and weights defining the IMEX scheme must satisfy
additional constraints. Our goal is to find constraints on aij , ãij , w̃i, and wi that enable each
u(i) in Eq. (18) to be expressed as a convex combination of realizable states. Following Hu et
al. [32], the stage values in Eq. (18) can be rewritten as

u(i) =
i−1∑

j=0

cij
[
u(j) + ĉij ∆tT (u(j))

]
+ aii∆tQ(u(i)), i = 1, . . . , s, (23)



ASTRONUM
IOP Conf. Series: Journal of Physics: Conf. Series 1225 (2019) 012013

IOP Publishing
doi:10.1088/1742-6596/1225/1/012013

9

where cij and ĉij ≡ c̃ij/cij are defined in terms of aij and ãij . For IMEX schemes of type ARS,
cij and c̃ij are given by [32]

ci0 = 1−
i−1∑

j=2

i−1∑

l=j

ailblj , cij =
i−1∑

l=j

ailblj ,

c̃i0 = ãi1 +
i−1∑

j=2

aij b̃j1, c̃ij = ãij +
i−1∑

l=j+1

ailb̃lj ,

(24)

bii =
1

aii
, bij = − 1

aii

i−1∑

l=j

ailblj , b̃ij = − 1

aii

(
ãij +

i−1∑

l=j+1

ailb̃lj
)
. (25)

Note that ci1 = c̃i1 = 0 in Eq. (24), so that
∑i−1

j=0 cij = 1.

If the IMEX scheme is GSA, un+1 = u(s). Moreover, if cij , c̃ij ≥ 0 and aii > 0, each stage in
Eq. (23) is a convex combination of explicit Euler steps (with time step ĉij∆t), followed by an
implicit Euler step. Each of the explicit Euler steps has a time step condition that ensures its
realizability given by ĉij ∆t ≤ ∆x; the CFL condition of the scheme. Using results proved in [29]
and discussed in Section 3, the IMEX scheme is convex-invariant and realizability-preserving for
the two-moment model in Section 3 provided

max(ĉij)∆t ≤ ∆x. (26)

(This CFL condition becomes more restrictive with high-order DG spatial discretization [29].)

4.3. Diffusion Accurate, Convex-Invariant IMEX Schemes
Accuracy in the diffusion limit is another important property to consider when an IMEX scheme
is applied to the two-moment model. In the diffusion limit, the distribution function is nearly
isotropic, so K ≈ 1

3 J I and H ≈ −1
3 τ ∇J , and the two-moment model is approximately

governed by (e.g., [51])

∂tJ +∇ ·H = 0 and H = −τ ∇ ·K. (27)

In the context of IMEX schemes, the above relationships imply that the following relations
should hold [29]:

eTi A
−1Ã e = 1, i = 1, . . . , s, (28)

where ei is the ith column of the s× s identity matrix, e is the vector of ones, and A and Ã are
the matrices of the coefficients (ãij) and (aij). Eq. (28) implies:

ci = c̃i, i = 1, . . . , s. (29)

We have proved in [29] that only IMEX schemes of type ARS can be both diffusion accurate
and convex-invariant. (Another short proof follows from the fact that IMEX schemes of type A
have c̃1 = 0 while ci ̸= 0.)

4.4. PD-ARS IMEX schemes
Unfortunately, coefficients satisfying the order conditions in Eqs. (20)-(21) and the conditions
for convex-invariance do not exist for the standard IMEX scheme in Eqs. (18)-(19), unless
a small time step is invoked that makes the scheme essentially explicit. To circumvent this
problem, correction steps can be introduced after the assembly step in Eq. (19) (e.g., [52, 32]).
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However, the correction steps can impose time step constraints for realizability or accuracy in
the diffusion limit that ruin the efficiency gains expected from the IMEX scheme. Because of
this, we sacrifice overall high-order accuracy, and aim for IMEX schemes that are high-order
accurate in the streaming limit, diffusion accurate, and convex-invariant. Combining these
requirements we seek GSA IMEX schemes of type ARS with coefficients satisfying the following
constraints [32, 29]:

(i) Consistency of the implicit coefficients:

s∑

i=1

wi = 1. (30)

(ii) High-order accuracy in the streaming limit. For second-order accuracy:

s∑

i=1

w̃i = 1 and
s∑

i=1

w̃i c̃i =
1

2
. (31)

For third-order accuracy:

s∑

i=1

w̃i = 1,
s∑

i=1

w̃i c̃i =
1

2
,

s∑

i=1

w̃i c̃i
2 =

1

3
and

s∑

i=1

w̃i ãij c̃j =
1

6
. (32)

(iii) Diffusion accuracy:
ci = c̃i, i = 1, . . . , s. (33)

(iv) Convex-invariance:

aii > 0, ci0, c̃i0 ≥ 0, for i = 2, . . . , s,

and cij , c̃ij ≥ 0, for i = 3, . . . , s, and j = 2, . . . , i− 1, (34)

with
∑i−1

j=0 cij = 1, for i = 1, . . . , s, and cSch := min i=2,...,s
j=0,2,...,i−1

1
ĉij

> 0.

(Note that the greater the cSch, the larger the time step can be. And cSch ≤ 1.)

(v) Having less than five stages (s ≤ 4).

(vi) Are globally stiffly accurate: asi = wi and ãsi = w̃i, i = 1, . . . , s.

Fortunately, these IMEX schemes are easy to find. (The constraint in (v) is introduced from
efficiency considerations to limit the number of implicit solves.) We call the IMEX schemes
satisfying the above conditions PD-ARS (see also Definition 3 in [29]), and we provide two
optimal PD-ARS schemes below: PD-ARS2 and PD-ARS3, each limiting to the optimal second-
order and third-order SSPRK schemes from [53], respectively.

4.4.1. PD-ARS2 The optimal 3-stage PD-ARS, PD-ARS2, in the standard double Butcher
tableau form, with explicit tableau (Ã) on the left and implicit tableau (A) on the right, is given
by

0 0 0 0
1 1 0 0
1 1/2 1/2 0

1/2 1/2 0

0 0 0 0
1 0 1 0
1 0 1/2 1/2

0 1/2 1/2

(35)

Note its explicit tableau is SSPRK2. For this scheme, only two implicit solves are needed per
time step and cSch = 1, which implies that the time step restriction for preserving moment
realizability is only due to the explicit part.
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4.4.2. PD-ARS3 The optimal 4-stage PD-ARS, PD-ARS3, is given in its standard double
Butcher tableau form (explicit tableau on the left and implicit tableau on the right) by

1 1
1/2 1/4 1/4
1 1/6 1/6 2/3

1/6 1/6 2/3

0 0 0 0
1 0 1 0

1/2 0 1/4 1/4
1 0 1/6 1/6 2/3

0 1/6 1/6 2/3

(36)

Its explicit tableau is SSPRK3. This scheme requires three implicit solves per time step, and
cSch = 1. Since PD-ARS3 is not more accurate than PD-ARS2 in collision-dominated regions
(see our results in Section 5), it may not offer any practical advantage over PD-ARS2.

5. Numerical Tests
In this section we present numerical results obtained with the PD-ARS schemes in Section 4.
The tests in Section 5.1 are designed to compare the accuracy of the schemes in streaming,
absorption, and scattering-dominated regimes in one spatial dimension. The test in Section
5.2 demonstrates the convex-invariance of PD-ARS schemes. All the tests in this section were
computed with third-order accurate spatial discretization (polynomials of degree k = 2) and
time step ∆t = 0.1×∆x, using the DG scheme from [29].

5.1. Accuracy Tests
To compare the accuracy of the IMEX schemes, we applied our PD-ARS schemes and the
SSP2332 scheme from Pareschi & Russo [47] to problems with known smooth solutions in
streaming, absorption (damping), and scattering-dominated (diffusing) regimes in one spatial
dimension. All the tests in this subsection were computed with the maximum entropy closure in
the low-occupancy limit (i.e., the Minerbo closure). In the streaming test, the second- and third-
order accurate explicit strong-stability-preserving Runge-Kutta methods from [30] (SSPRK2 and
SSPRK3, respectively) are also included. To compare the numerical results to analytic solutions,
the averaged absolute error or the averaged relative error are computed in the L1-error norm.
We compute the absolute error for the streaming and diffusion tests and the relative error for
the damping test. They are averaged over the cell with an equal-weight quadrature for the cell
integrals. To examine the convergence, we let the number of elements (N ) vary from 8 to 128.

5.1.1. Sine Wave Streaming The sine wave streaming test is designed to test accuracy in the
free-steaming regime; i.e. σA = σS = 0. A periodic domain of unit length is used and the initial
condition is J0 = H0 = 0.5 + 0.49 × sin

(
2π x

)
. We evolve the test until the sine wave has

completed 10 crossings of the domain. Figure 2 plots the absolute error for the number density
versus the number of elements N . We see the errors obtained with SSPRK3 and PD-ARS3
are smallest and decrease as N−3, as expected for a scheme combining third-order accurate
time stepping with third-order accurate spatial discretization. For all the other schemes, using
second-order accurate explicit time stepping, the error decreases as N−2. Among the second-
order schemes, SSP2332 has the smallest error. In the streaming limit, the PD-ARS schemes
reduce to SSPRK schemes — PD-ARS2 to SSPRK2 and PD-ARS3 to SSPRK3, respectively.
Therefore, the absolute errors of PD-ARS schemes and SSPRK schemes are indistinguishable.

5.1.2. Sine Wave Damping The next test, adapted from [54], is designed for absorption-
dominated regimes, with σS = 0 and f0 = 0, which results in exponential damping of the
wave amplitude. A periodic domain D = {x : x ∈ [0, 1]} and initial condition J0 = H0 =
0.5 + 0.49 × sin

(
2π x

)
are used. The amplitude of the analytical solution decreases as e−σAt.



ASTRONUM
IOP Conf. Series: Journal of Physics: Conf. Series 1225 (2019) 012013

IOP Publishing
doi:10.1088/1742-6596/1225/1/012013

12

Figure 2. Absolute error versus number of elements, N , for the streaming sine wave test.
Results employing various time stepping schemes are compared: SSPRK2 (cyan triangles
pointing up), SSPRK3 (cyan triangles pointing down), SSP2332 (green crosses), PD-ARS2 (light
red circles) and PD-ARS3 (light red asterisks). Black dashed reference lines are proportional to
N−2 (top), and N−3 (bottom), respectively.

For σA = 0.1, 1 and 10 we evolve the test until the initial condition has been damped by
a factor e−10. Figure 3 shows convergence results of the test in the relative error. Results for
σA = 0.1, 1, and 10 are plotted with red, green, and blue lines, respectively. SSP2332 is the most
accurate among these schemes for σA = 1 and 10. For σA = 0.1, PD-ARS2 is the most accurate
scheme for N = 8 and N = 16. We have seen the same behavior for the scheme proposed by
McClarren et al. [55] (PC2 in [29]). Since these are special cases for N = 8 and N = 16, we
do not recommend PD-ARS2 instead of SSP2332 for the damping problem. Only SSP2332, a
second-order accurate scheme, displays a second-order convergence rate. The PD-ARS schemes
are first-order accurate.

5.1.3. Sine Wave Diffusion The final test with known smooth solutions, adopted from [56], is
the sine wave diffusion test; i.e. σA = 0 and f0 = 0. A periodic domain D = {x : x ∈ [−3, 3]}
with initial conditions J0 = 0.5 + 0.49 × sin

(
π x
3

)
and H0 = − 1

3σS

∂J0
∂x are used. The reference

diffusion solution is given by J = J0 × exp
(
− π2t

27σS

)
and H = (3σS)−1∂xJ . We evolve with

σS = 102, 103, and 104, and adjust the end time so that tend/σS = 1, at which time the amplitude
of the sine wave has been reduced by a factor e−π2/27 ≈ 0.694 for all values of σS. Figure 4
shows the absolute error, obtained using different values of σS, for various IMEX schemes at
t = tend, versus N . Results for σS = 102, 103, and 104 are plotted with red, green, and blue
lines, respectively. SSP2332 and PD-ARS schemes display third-order accuracy for the number
density, J , and second-order accuracy for Hx, and their errors are difficult to distinguish. For
σ = 102, the errors in the number density J do not drop below 10−6 because of differences
between the two-moment model and the diffusion equation used to obtain the analytic solution.
For larger values of the scattering opacity, σ = 103 or 104, the two-moment model agrees better
with the diffusion model, and we observe convergence over the entire range of N . PD-ARS2
behaves as well as SSP2332 in the diffusion region but requires 33% less implicit solves per time
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Figure 3. Relative error versus number of elements, N , for the damping sine wave test. Results
for different values of the absorption opacity σA, employing various IMEX time stepping schemes,
are compared. Errors for σA = 0.1, 1, and 10 are plotted with red, green, and blue lines,
respectively. The IMEX schemes employed are SSP2332 (+), PD-ARS2 (triangles pointing up)
and PD-ARS3 (triangles pointing down). Black dashed reference lines are proportional to N−1

(top) and N−2 (bottom), respectively.

step.

Figure 4. Absolute error for the number density J (left) and the number flux Hx (right) versus
number of elements for the sine wave diffusion test. Results with different values of the scattering
opacity, σS, employing different IMEX schemes, are compared. Errors with σS = 102, 103, and
104 are plotted with red, green, and blue lines, respectively. The IMEX schemes employed are:
SSP2332 (+), PD-ARS2 (triangles pointing up), and PD-ARS3 (triangles pointing down). Black
dashed lines in the left plot are reference lines proportional to N−2 (top) and N−3 (bottom),
respectively. Black dashed line in the right plot is a reference line proportional to N−2 .
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5.2. Neutrino Stationary State Test
In this section we consider a more “realistic” test: two-dimensional multigroup neutrino
transport with emission, absorption, and isoenergetic scattering through a stationary
background. This test is designed to test the realizability-preserving properties of the PD-
ARS schemes. In the left panel in Figure 5 we plot the thermal state of the background, which
mimics a collapsed stellar core:

Mass Density: ρ = 4× 1014 × 7.5

(7.5 + (r/5 km)4)
g cm−3, (37a)

Temperature: T = 1.5× 1011 × 1

1 + (r/50 km)2
K, (37b)

Electron Fraction: Ye = 0.25×
(
1 +

1

1 + (r/50 km)−12

)
, (37c)

where the radius r =
√
(x1)2 + (x2)2 is in kilometers. In the right panel in Figure 5 we

plot the neutrino opacities, computed by interpolation in a pre-calculated opacity table based
on [57]. This test is computed using Cartesian coordinates on a two-dimensional domain
D = {x ∈ R2 : x1 ∈ [0, 200] km, x2 ∈ [0, 200] km}, using a grid of 128 elements in each
direction, 10 energy groups covering 0-300 MeV, reflecting inner boundaries, and outflow outer
boundaries. Because we use Cartesian coordinates in two spatial dimensions, this problem has
cylindrical geometry, and results in an artificial stratification of the radiation quantities. We
initialize the neutrino number density to J = 10−99, the number flux density to H = 0, and
evolve until an approximate steady state is reached (t = 5 ms). The background is kept fixed
during the entire run. For this test, we employed both CB and Minerbo closures. We attempted
to run this test with our PD-ARS schemes, SSP2332 from [47], IMEXRKCB2 proposed by
Cavaglieri & Bewley [58], and the IMEX PC2 scheme proposed by McClarren et al. [55]. Only
the PD-ARS schemes produce realizable moments and are able to evolve to a steady state with
either CB or Minerbo closure. SSP2332 and IMEX PC2 failed after a few time steps with either
CB or Minerbo closure because of the development of unrealizable moments. Even though
IMEXRKCB2 with Minerbo closure can run and reach a steady state in this test, its results are
different from that of PD-ARS schemes with CB closure, and there is no guarantee of stability.

Results obtained with the IMEX PD-ARS schemes are plotted in Figure 6 for various times:
t = 0.01 ms (top panels), 0.35 ms (middle panels), and 5.0 ms (bottom panels). In the left column
we plot the solution in the |H|J -plane. In the middle column we show scatter plots of the number
density J versus radius for select neutrino energies: 5 MeV (red lines), 16 MeV (magenta lines),
and 93 MeV (blue lines). In the right column we plot the flux factor |H|/J versus radius for the
same neutrino energies as in the middle column. In the left panels, each solution point in the
domain is marked as a red dot in the |H|J -plane, and the realizable domain is shown as the light
blue region. The figures show that all the states in the simulation with the PD-ARS schemes are
realizable. In the middle and right column, we can see how the neutrinos are generated near the
core, stream out, and eventually reach an equilibrium distribution over the phase space. The
oscillations in the flux factor seen in the right columns are associated with steep gradients in
the radiation field as the initial transient propagates through the computational domain. Note
that we do not apply any limiters to prevent oscillations in the numerical solution, and these
will likely go away when we implement slope limiters; e.g., as described in [59]. The fact that
we can still evolve the solution to a steady state speaks to the robustness of the scheme.

6. Summary and Outlook
We have developed IMEX schemes suitable for a two-moment model of neutrino transport
that obey Fermi-Dirac statistics. The scheme employs algebraic closure based on Fermi-Dirac
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Figure 5. Left panel: thermal state of the background versus radius in the neutrino stationary
state test; mass density (solid line), temperature (dashed line), and electron fraction (dotted
line). Right panel: corresponding opacities for select neutrino energies; absorptivity (σA) and
scattering opacity (σS).

statistics, high-order discontinuous Galerkin methods for spatial discretization, and convex-
invariant time integration to maintain realizability of the moments. Since the realizable domain
is convex and its convexity can be inherited by a convex combination, a scheme having convex
combinations as its stages can preserve the realizable domain. This encouraged us to construct
realizability-preserving time integrators, realizability-preserving IMEX schemes, and a method
with a realizability-preserving IMEX time integrator and high-order DG method.

In the applications that motivate this work, the neutrino distribution function can vary from
0 to 1. Hence, we have considered algebraic closures based on Fermi-Dirac statistics for both
low and high occupancy. Among the seven algebraic closures we considered – Kershaw [35],
Wilson [40, 41], Levermore [27], Minerbo [23], Janka 1 [43], Janka 2 [42], and Cernohorsky &
Bludman [44] – only the Cernohorsky & Bludman closure obeys Fermi-Dirac statistics for all
occupancies. As a result, we employed the Cernohorsky & Bludman closure for the neutrino
stationary state test in Section 5.2. We also ran our code with Minerbo closure, IMEX PC2,
IMEX SSP2332 and IMEXRKCB2 schemes, and the results show that only PD-ARS schemes
have stability. In addition, closures have impact on the simulation result. As we observed,
both using PD-ARS scheme, there are ∼ 30% difference in the neutrino number densities (and
relaxation time) between the results obtained with Minerbo closure and that with CB closure.
Even though RKCB2 with Minerbo closure luckily survived our test, the results it gave were
compromised: they were closer to the results of the PD-ARS scheme with Minerbo closure
than to the results of the PD-ARS scheme with CB closure. In what way and to what degree
the results are in fact compromised either by the closure or by a particular correction step for
unrealizable moments are difficult to determine fully and is left for further study.

Two PD-ARS schemes are proposed. The one with SSPRK2 has second-order accuracy while
the other with SSPRK3 has third-order accuracy, and both have the strong-stability preserving
property in the streaming limit. Their accuracy was demonstrated on problems with known
smooth solutions in streaming, absorption, and scattering-dominated regimes. The neutrino
transport test with emission, absorption, and isoenergetic scattering through a stationary
background, was designed to test the convex-invariance of our PD-ARS schemes. The neutrino
stationary state test shows that a method combining an algebraic closure based on Fermi-Dirac
statistics and convex-invariant time integration is promising for robust CCSN simulation.

In this work, we adopted Cartesian coordinates, a linear collision term, and a fixed material
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background. More realistic problems of scientific interest, such as with energy-exchanging
scattering and relativistic effects, are left for future research.
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Figure 6. Results from the neutrino stationary state test: moments relative to the realizable
domain (left column, the light blue domain is for f ∈ [0, 1], with the black-solid-line as its
boundary, while the light red domain is for f ≥ 0, with the thin-red-solid-line as its boundary),
the number density J versus radius (middle column), and the flux factor |H|/J versus radius
(right column), at t = 0.01 ms, 0.35 ms, and 5.0 ms. For the plots in the left column, each
M = (J ,H)T state is marked by a red dot, which are all inside the light blue region (the
realizable domain for fermions). The results of PD-ARS2 and PD-ARS3 are indistinguishable
in these plots.


