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ABSTRACT

Natural Adversarial Examples (NAEs), images arising naturally from the envi-
ronment and capable of deceiving classifiers, are instrumental in robustly eval-
uating and identifying vulnerabilities in trained models. In this work, unlike
prior works that passively collect NAEs from real images, we propose to ac-
tively synthesize NAEs using the state-of-the-art Stable Diffusion. Specifically,
our method formulates a controlled optimization process, where we perturb the
token embedding that corresponds to a specified class to generate NAEs. This
generation process is guided by the gradient of loss from the target classifier, en-
suring that the created image closely mimics the ground-truth class yet fools the
classifier. Named SD-NAE (Stable Diffusion for Natural Adversarial Examples),
our innovative method is effective in producing valid and useful NAEs, which is
demonstrated through a meticulously designed experiment. Code is available at
https://github.com/linyueqian/SD-NAE.

1 INTRODUCTION

Robustly evaluating deep image classifiers is challenging, as existing standard test sets such as Im-
ageNet (Deng et al., 2009) often feature simpler image compositions (Recht et al., 2019) and “spu-
rious features” (Geirhos et al., 2019), which can lead to an overestimate of model performance.
To address this issue, Hendrycks et al. (2021) introduce “Natural Adversarial Examples” (NAEs),
where they employ adversarial filtration over extensive real images to pinpoint challenging natural
images that deceive classifiers. NAEs are valuable in assessing worst-case performance and uncov-
ering model limitations. Their approach to obtaining NAEs, however, is limited by its passive nature
and lack of control over the selection of specific types of challenging examples, thereby restricting
the ability to fully explore classifier weaknesses in diverse scenarios.

In this work, we propose to actively synthesize NAEs with a controlled optimization process. Lever-
aging a class-conditional generative model, particularly Stable Diffusion (Rombach et al., 2021), we
optimize the class token embedding in the condition embedding space. This process is guided by
the gradients of classification loss from the target image classifier to ensure the adversarial nature
of the generated examples. Our method, termed SD-NAE (Stable Diffusion for Natural Adversarial
Example), not only achieves a non-trivial fooling rate against an ImageNet classifier but also offers
greater flexibility and control compared to previous methods, highlighting SD-NAE’s potential as a
tool for evaluating and enhancing model robustness.

2 METHODOLOGY

We introduce the SD-NAE method (Figure 1), which is motivated by the concept of NAEs and
uses Stable Diffusion to approximate natural-looking images (see Appendix A for background in-
troduction). Our exploration focuses on how adversarial optimization can enhance this approach,
comparable to the creation of pixel-perturbed adversarial examples (Szegedy et al., 2013). The core
of SD-NAE lies in the strategic optimization of class-relevant token embedding to trick the classi-
fier into misclassifying the generated image. Consider, for instance, an image of a cat generated
by Stable Diffusion G following the text condition “A high-quality image of a cat”. Initially, the
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Figure 1: Guided by the loss gradient backpropagated from the classifier, SD-NAE generates NAEs
by optimizing only the class-related token embedding, while keeping all models frozen. The letters
in the parentheses are notations used in Equation (1).

Figure 2: NAEs generated by SD-NAE. In each pair, the left initialization image is correctly clas-
sified by the model, yet the right one optimized by our method gets misclassified with the wrong
prediction marked in red. See more samples in Figure 4.

image can be correctly identified as a cat by the classifier F , given Stable Diffusion’s accurate gen-
eration capability. However, through subtle alterations of the token embedding of “cat”, we expect
to induce misclassification (e.g., towards a target class y, y �=“cat”) over the generated image while
maintaining its ground-truth as “cat”. This process is governed by the optimization equation:

min
êk

token

L(F (G(z; etext)), y) + λ ·R(êktoken, e
k
token),where etext = E(e0token, ..., ê

k
token, ..., e

K−1
token ). (1)

We mark the notations in Figure 1, while leaving a detailed discussion of Equation (1) in Ap-
pendix B. In general, the optimization variable êktoken is the class-relevant token embedding (corre-
sponding to “cat” in our example). The first term encourages the produced image to be adversarial,
while the second term makes sure that the perturbation on êktoken is only moderate, retaining the
natural appearance of the generated image and preserving its ground-truth label as “cat”.

3 EXPERIMENT

We evaluate SD-NAE using a carefully designed experiment. Please see details in Appendix C.
Essentially, we focus on 10 categories of ImageNet whose semantics is clear. We take them as
the ground-truth and generate 20 samples using SD-NAE for each of the 10 classes, resulting in
20 * 10 = 200 total optimization processes. An optimization is deemed successful if the image at
any optimization step gets misclassified by the target classifier, which is a ResNet-50 pretrained
on ImageNet. Importantly, we make sure that all initialization images (prior to optimization by
SD-NAE) are correctly classified. In such a setting, our SD-NAE achieves a noteworthy success
rate of 43.5% (which is actually a lower bound; see Appendix C), demonstrating its capability to
effectively generate NAEs. Furthermore, as can be seen in Figure 2, the images generated by SD-
NAE display variations in color, background, view angle, and style, underscoring its potential as a
tool for examining model generalization among various covariate shifts. For comparison with the
prior work of Song et al. (2018), please see Appendix D.

4 CONCLUSION

SD-NAE, by leveraging Stable Diffusion, effectively generates Natural Adversarial Examples and
demonstrates its significant potential in the field of robustness research. As deep learning models
continue to evolve, we believe that SD-NAE presents a novel approach for evaluating and under-
standing these complex systems, thereby emphasizing its profound role in future research. We
discuss related works and limitations of SD-NAE in Appendix A and Appendix E, respectively.
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APPENDIX

A BACKGROUND AND RELATED WORK

In this section, we provide background information and discuss related works to facilitate the presen-
tation of our method. We first introduce the definition of NAEs, then distinguish our study from prior
works on generating NAEs, and finally give an overview of the functionality of Stable Diffusion.

A.1 NATURAL ADVERSARIAL EXAMPLES

Formally, NAEs are defined as a set of samples w.r.t. a target classifier F (Hendrycks et al., 2021;
Song et al., 2018):

A � {x ∈ S|O(x) �= F (x)}. (2)

Here, S contains all images that naturally arise in the real world and look realistic to humans. O is an
oracle that yields the ground-truth semantic category of the image and relies on human evaluation.

Notice that NAEs are less restricted than pixel-perturbed adversarial examples (often referred to
as “adversarial examples”) (Szegedy et al., 2013), which are samples artificially crafted by adding
minor perturbations to image pixels. Both NAEs and adversarial examples (AEs) can expose the vul-
nerability of a given classifier. However, since AEs are artificial rather than natural, they are mostly
studied in the security context where there is assumed to be an attacker that intentionally attempts to
compromise a model. In contrast, studies of NAEs, including ours, focus on a broader setting where
the samples naturally occur within the environment but are misclassified by the classifier.

A.2 GENERATING NAES

As previously mentioned, we contend that the passive filtering of NAEs from real images, as demon-
strated by Hendrycks et al. (2021), lacks flexibility; in contrast, we utilize a generative model to
synthesize NAEs. In this regard, our work is closely related to but also has essential distinctions
with the work by Song et al. (2018). While they optimize the latent of a class-conditional GAN with
a fixed condition, we propose perturbing the condition while keeping the latent fixed within Stable
Diffusion. In fact, it is later found that GAN can be sensitive to the latents, and generated images
may be of low quality when the optimized latents land outside the well-defined support (Dai et al.,
2023). We will show that applying their concept to Stable Diffusion is less effective in producing
NAEs compared to our method.

Building upon this comparison, it is pertinent to discuss a concurrent work by Dai et al. (2023), who
also apply the diffusion model to generate NAEs. However, their method is to enforce classifier
guidance (Dhariwal & Nichol, 2021) to be adversarial, which requires sophisticated modification
to the default classifier-free guidance sampling (Ho & Salimans, 2021) and may need extra care
to adapt to different samplers. In contrast, our method can readily generalize to various diffusion
models as it only perturbs the condition embedding without interfering with the sampling process.

A.3 STABLE DIFFUSION

Stable Diffusion represents a family of latent diffusion models (Rombach et al., 2021) with the ca-
pability of conditional generation. Using G to represent the Stable Diffusion model, the formulation
that best describes its functionality in the context of our work is

x = G(z; etext), (3)
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where x is the synthesized image, z is a (random) latent vector, and etext is the text embedding which
serves as the condition for the generation. More specifically, etext is the output of a transformer-based

text encoder E where the input is the token embedding sequence e0:K−1
token corresponding to the raw

text description after tokenization, i.e.,

etext = E(e0token, e
1
token, ..., e

K−1
token ). (4)

where K denotes the maximum padded length specified by the encoder E.

0 5 10 15 20 25
Figure 3: Empirical evidence that constraining the magnitude of token embedding perturbation can
help preserve the image ground-truth. From left to right of each row, we move the initialized class
token embedding along a random yet fixed Rademacher vector (i.e., each element has equal proba-
bility of being +1 or –1) with increasing magnitude. The bottom axis denotes the relative magnitude
of the perturbation, and the real magnitude has a factor of 1e-3. It can be noticed that the image
semantic is well-preserved when the perturbation is small.

B EXPANDED DISCUSSION ON SD-NAE

First, we provide a more detailed explanation of our optimization objective in Equation (1). Let us
explain the variables with a concrete example for clarity. Suppose we want to generate an image
of a cat with a text condition being “A high-quality image of a cat” (other prompts can also work
here as long as it contains the keyword “cat”), such that the image is misclassified by F as some
category other than “cat”. Equivalently and more formally, the goal is O(G(z; etext)) = “cat” �=
F (G(z; etext)).

The optimization variable, denoted as êktoken in Equation (1), corresponds to the token embedding of

the word “cat” We initialize êktoken with the original token embedding ektoken and optimize it with two

5
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terms. The first term aims to encourage the generated sample G(z; etext) to deceive the classifier F
into making an incorrect prediction. Specifically, if we want to induce a targeted misclassification
towards a specific class y (y �= “cat”), we can simply use the cross-entropy loss as L. For untargeted
misclassification, one can set y to “cat” and use negative cross-entropy as L (i.e., maximizing the
classification loss of class “cat”).

The second term serves to regularize êktoken, ensuring that the ground truth O(G(z; etext)) remains
unchanged during optimization; otherwise, the unintended equality O(G(z; etext)) = F (G(z; etext))
may occur, contradicting the definition of NAEs. To achieve this, we can let the regularization R be
a distance metric (e.g., Euclidean distance or cosine similarity) to enforce êktoken to stay in the vicinity

of its unmodified counterpart ektoken. In other words, we are only inducing moderate perturbation to
the token embedding, which intuitively helps O(G(z; etext)) remain unchanged (e.g., being “cat”
all the time in our example). We empirically justify this intuition and design in Figure 3. The λ
that accompanies the second term is just a weighting factor. It is worth noting, however, that in
practice, when the number of optimization steps is small, it often suffices to set λ = 0 since the
overall magnitude of the perturbation (i.e., the distance between êktoken and ektoken) is bounded.

Why token embedding? We next discuss why we choose the token embedding ektoken instead of
the latent z or the text embedding etext as the optimization variable here. Empirically, we find
that perturbing the latent or text embedding is significantly less effective and efficient in generating
NAEs compared to perturbing the token embedding, which has fooling rates of 10%, 20%, and
43.5% respectively (refer to Appendix C for the definition of fooling rate and experiment setup).
Our hypothesis for this observation is as follows. Firstly, in a diffusion model, the latent undergoes
an iterative multi-step reverse diffusion process, potentially impeding the gradient flow from the
classifier back to the latent. Secondly, as the text embedding integrates all tokens, perturbations on
the text embedding might disperse across all tokens. Intuitively, perturbing some class-irrelevant
tokens (e.g., the meaningless padding tokens) is not likely to induce significant change to the image
content, meaning that there is less chance the generated sample will fool the classifier. In contrast,
perturbing the class-relevant token (i.e., ektoken) directly targets the semantic-related content of the
image, which we will further demonstrate to be effective with the following experiment results.

Other application scenarios. Lastly, notice that SD-NAE can be easily adapted to create other
types of NAEs beyond in-distribution (ID) misclassification. For instance, a deployed model in
the real world will inevitably encounter Out-of-Distribution (OOD) samples, which are samples not
belonging to any known category (Zhang et al., 2023a;b), necessitating an accurate OOD detector
to flag unknown inputs. With SD-NAE, one can generate NAEs that fool the OOD detector into
ID → OOD or OOD → ID misclassification by playing with the loss L in Equation (1). Specifically,
notice that an OOD detector often operates by thresholding the maximum softmax probability. To
generate an OOD image predicted as ID by the detector, we can employ cross-entropy loss as L and
use any one-hot label as y, thereby encouraging the classifier to make a confident prediction on the
synthesized image. Reversely, the ID → OOD misclassification is also achievable if we minimize
the maximum classification probability by minimizing the cross-entropy between the softmax prob-
ability distribution and uniform distribution (Zhang et al., 2023a). Overall, SD-NAE demonstrates
flexibility in producing NAEs for various purposes.

C EXPERIMENT DETAILS

Models and setup. The target classifier, which we aim for the NAEs to fool is an ImageNet-
pretrained ResNet-50 hosted by Microsoft on Hugging Face (model tag: “microsoft/resnet-50”).
We utilize a nano version of Stable Diffusion, finetuned from the official 2.1 release (model tag:
“bguisard/stable-diffusion-nano-2-1”). We generate 128x128 images to ensure the optimization
is manageable with a single 24GB GPU; these images are then resized to 224x224 before being
fed to the classifier, matching its default resolution. DDIM sampler with 20 sampling steps is used
for Stable Diffusion. The guidance scale is set to the default value of 7.5. In the optimization of
SD-NAE, we use Adam as the optimizer with a learning rate of 0.001. The number of iterations or
gradient steps is 20.

Workflow and metric. We use fooling rate as the quantitative metric for SD-NAE. To ensure a fair
and meaningful evaluation, we first do several careful preprocessing as follows. We start with 100
random classes from ImageNet. For each class, we generate 100 samples from Stable Diffusion with
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random latent and measure the accuracy of the classifier on those samples. Subsequently, we remove
the classes whose accuracy is lower than 90%, which leaves us 25 classes. After that, we manually
pick ten classes whose semantics are clear and unambiguous to our human evaluators (the authors
of this work) to make it easy for later human inspection (to get the oracle prediction O(x)). The
selected classes are broccoli, candle, forklift, fountain, gorilla, strawberry,
hamster, jellyfish, lion, and microphone. Finally, for each of the ten classes, we prepare
20 different random latent vectors z, with which the generated image G(z; etext) (without SD-NAE
optimization yet) is correctly classified by the ResNet-50. This step ensures that the initialized
sample is not already an NAE, allowing us to isolate the effect and confidently attribute the NAEs
to our SD-NAE optimization rather than to other factors inherent in the generative model.

After the preprocessing, we perform 20 * 10 = 200 optimization processes, each corresponding to
one class and one prepared latent. In each multi-step optimization process, if any one of the sample
x generated at a certain step satisfies O(x) = current desired class �= F (x), we count this optimiza-
tion as success in fooling the classifier. The final fooling rate is calculated as the ratio of successful
deceptions to the total number of optimizations, amounting to 200 in our study. It is noteworthy that
we adopt a stricter definition of NAE than that in Equation (2) to explicitly demonstrate the efficacy
of SD-NAE. In practice, one does not need to enforce O(x) = current desired class: Even if O(x)
deviates from the expected class, e.g., the synthesized image is not a broccoli while the current
text prompt is “An image of a broccoli”, x is still a valid NAE as long as O(x) �= F (x). Therefore,
the fooling rate reported in our experiment represents only a lower bound of the actual fooling rate.

Result. As discussed in the main text, SD-NAE achieves a non-trivial 43.5% fooling rate/success
rate. The generated NAEs are visualized in Figure 4.

D COMPARISON WITH PRIOR WORK

Here, we compare our SD-NAE with the method proposed by Song et al. (2018). As mentioned
in Appendix A.2, they perturb the latent vector of class-conditional GANs to curate NAEs, while
our design is to optimize the conditional token embedding of Stable Diffusion models (and keep the
latent fixed). In Appendix C, we have shown by empirical results that directly applying the previous
method (i.e., updating the latent of Stable Diffusion) yields a much worse attack success rate/fooling
rate, indirectly justifying our design. Here, we perform a straight comparison between SD-NAE and
the work of Song et al. (2018).

Setup. We use a class-conditional BigGAN (Brock et al., 2019) pre-trained on ImageNet, which to
our knowledge is one of the most powerful GANs for ImageNet. The experiment workflow remains
the same as with our method: Denoting the GAN as G and the target ResNet-50 classifier we want
to attack as F , for each image category we prepare 20 randomly-initialized latent vectors z where
the prediction on each generated image F (G(z)) matches the ground-truth or the oracle prediction
O(G(z)). Then using the same loss function as in Song et al. (2018), we optimize the latent vector
of the GAN to generate NAEs. We try our best to vary the hyperparameters and report the best result
that we observe. It is also worth noting that in the original work of Song et al. (2018), they only did
experiments on small-scale and simple datasets like MNIST, SVHN, and CelebA, while here we are
looking at ImageNet with images consisting complex, real-world objects/scenes.

Result. The best fooling rate/attack success rate of Song et al. (2018) is 14.0%, which is much
lower than ours (43.5%). Specifically, in some cases the optimized image does not change much
from the initialization and thus fails to deceive the classifier. In other cases, the optimization goes
wild and leads to nonsensical images. The latter case is in line with the finding that GANs can
be sensitive to perturbed latents (Dai et al., 2023), since they might be “out-of-distribution” w.r.t.
the well-regularized latent distribution that the model sees during the training. We visualize the
synthesized samples in Figure 5. Qualitatively, SD-NAE results in higher-quality samples than the
compared method.

E LIMITATIONS

Since SD-NAE is based upon Stable Diffusion, it inherits a few limitations from its underlying
framework. First, the computational cost of SD-NAE could be high and the optimization could be
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Figure 4: Examples generated by SD-NAE. From top to bottom, the ground-truth is broccoli,
candle, forklift, fountain, gorilla, strawberry, hamster, jellyfish, lion,
and microphone, respectively. In each pair, the left one is generated with the initialized token
embedding. Importantly, we make sure that all left images are correctly classified by the ImageNet
ResNet-50 model in the first place. The right ones are the result of SD-NAE optimization when using
the corresponding left one as initialization, and we mark the classifier’s prediction in red above the
image.

slow. For instance, generating a single 128x128 natural adversarial example with SD-NAE under our
experiment setting (i.e., 20 steps for diffusion sampling and 20 steps for SD-NAE’s optimization)
requires approximately 22GB of GPU memory and takes about 1 minute. However, we note that
both the memory footprint and time cost can be significantly reduced if sampling-efficient diffusion
models are used, e.g., Latent Consistency Models (Luo et al., 2023) and SD-turbo (Sauer et al., 2023)
which only require 1 to 4 diffusion sampling steps. Meanwhile, empirically we find that SD-NAE
does not really require as many as 20 optimization steps to succeed: In our experiment, the average
number of steps for finding the first adversarial example is around 10 (9.66).

8



Published as a Tiny Paper at ICLR 2024

Figure 5: Examples generated by Song et al. (2018) using GAN. Following our experiment setup,
each initialized image is correctly classified by the target ResNet-50 classifier. The first row shows
examples that we count as successfully generated NAEs, whereas the second row shows failure
cases where the optimized images exhibit unnatural looking. Note that some successful NAEs here
actually do not look that natural, and the quality in general lags behind those generated by SD-NAE
(Figure 4). Still, despite counting them as success, we observe a mere 14.0% success rate compared
with 43.5% achieved by SD-NAE.

Second, in some cases, we find that the generated image is absurd and diverges significantly from
a natural appearance. Such cases can arise either inherently from Stable Diffusion or from our
SD-NAE optimization process. Taking the category broccoli as an example, out of the 100
initialization images (generated by Stable Diffusion with random latents), there are 8 of them which
exhibits a weird, unnatural looking of a broccoli (an 8% “failure” rate). Then, during SD-NAE
optimization, there are 24 out of 400 images that fail to present the normal looking of a broccoli (an
6% “failure” rate). However, we remark that having unnatural images at a few steps does not mean
that SD-NAE is compromised; instead, it can be considered success as long as there is at least one
natural-looking adversarial example produced during the multi-step optimization, which is typically
the case in our experiment.

9


