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ABSTRACT

The growing demand for Large Language Models (LLMs) in applications such as content generation, intelligent

chatbots, and sentiment analysis poses considerable challenges for LLM service providers. To efficiently use

GPU resources and boost throughput, batching multiple requests has emerged as a popular paradigm; to further

speed up batching, LLM quantization techniques reduce memory consumption and increase computing capacity.

However, prevalent quantization schemes (e.g., 8-bit weight-activation quantization) cannot fully leverage the

capabilities of modern GPUs, such as 4-bit integer operators, resulting in sub-optimal performance.

To maximize LLMs’ serving throughput, we introduce Atom, a low-bit quantization method that achieves high

throughput improvements with negligible accuracy loss. Atom significantly boosts serving throughput by using

low-bit operators and considerably reduces memory consumption via low-bit quantization. It attains high accuracy

by applying a novel mixed-precision and fine-grained quantization process. We evaluate Atom on 4-bit weight-

activation quantization in the serving context. Atom improves end-to-end throughput (token/s) by up to 7.73×

compared to the FP16 and by 2.53× compared to INT8 quantization, while maintaining the same latency target.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly being in-

tegrated into our work routines and daily lives, where we

use them for summarization, code completion, and decision-

making. Studies report that ChatGPT has over 100 mil-

lion users, with more than 1 billion website accesses per

month (Duarte, 2023). Furthermore, the size and capabilities

of LLMs continue to grow to accommodate a broader range

of tasks. The high inference demand and model complexity

have significantly increased the operational costs, i.e., com-

pute/memory and energy, for LLM service providers to near

$1 million daily (Elimian, 2023).

Unsurprisingly, optimizing LLM serving is becoming a

pressing concern. Most efforts have focused on improv-

ing LLM serving throughput, which is typically achieved by

batching requests from various users (Yu et al., 2022; Chen,

2023; Kwon et al., 2023). Batching multiple requests in-
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creases compute intensity and amortizes the cost of loading

weight matrices, thereby improving throughput. Prior work

has explored LLM quantization techniques to further im-

prove batching efficiency. These techniques employ smaller

data types to replace 16-bit floating point (FP16) values,

thereby reducing memory consumption and accelerating

computation (Lin et al., 2023; Xiao et al., 2023).

However, current quantization schemes do not leverage the

full extent of capabilities provided by emerging efficient

low-bit hardware support (e.g., Nvidia Ampere (Abdelkha-

lik et al., 2022) and Qualcomm Hexagon (Wikipedia contrib-

utors, 2023)). For instance, several prior approaches have

explored weight-only quantization (Lin et al., 2023; Frantar

et al., 2023). In these quantization schemes, weights are

quantized to a low-bit representation (e.g., INT3), whereas

activations remain in a floating point representation (e.g.,

FP16). Consequently, weights must be dequantized to the

appropriate floating point representation (e.g., FP16) be-

fore being multiplied with activations using floating point

representation. Therefore, even though weight-only quanti-

zation reduces memory consumption, it still requires costly

floating-point arithmetic, which is inefficient, especially for

large batch sizes.

Another prominent quantization scheme is weight-activation

quantization, where both weights and activations are quan-

tized to low-bit representations. In this scheme, weights and

activations can be directly multiplied using low-precision
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indicates that the V cache exhibits the outlier phenomenon

less frequently, rendering it more suitable for quantization.

Therefore, Atom directly applies asymmetric low-bit quan-

tization with the granularity of attention head and preserves

high accuracy as shown in §5.4.

4.5 Implementation of quantization workflow

To demonstrate the feasibility of our design choices, we im-

plement Atom on Llama models (Touvron et al., 2023a), as

shown in Figure 6. To leverage the benefit of quantization,

Atom manages the overhead of the additional operators by

kernel fusion: Atom fuses quantization operators, including

reordering, quantization, and dequantization, into existing

operators. For the compute-bound dense layer, Atom uti-

lizes the low-bit units to boost throughput. For the memory-

bound self-attention layer, Atom fuses dequantization with a

kernel library for LLM serving, FlashInfer (Ye et al., 2024),

so that only low-bit values from KV-cache are loaded. Atom

also incorporates PageAttention (Kwon et al., 2023) for effi-

cient memory usage to enable large batch sizes.

5 EVALUATION

We conduct a comprehensive evaluation of Atom’s accuracy

and efficiency. For accuracy, we evaluate Atom on widely

used metrics, generation perplexity and zero-shot accuracy.

For efficiency, we evaluate Atom from the bottom up, start-

ing with per-kernel performance, followed by end-to-end

throughput and latency. We also perform ablation studies

to understand how different techniques affect Atom, which

pinpoints the trade-off between the efficiency and accuracy

of each design choice.

5.1 Quantization setup

Atom uses symmetric quantization on weights and activa-

tions while using asymmetric quantization on the KV-cache.

We evaluate Atom using a group size of 128. To identify

outlier channels, we use 128 randomly sampled sentences

from WikiText2 (Merity et al., 2016) as calibration data,

following prior works (Lee et al., 2023; Shao et al., 2023;

Liu et al., 2023a). We select 128 channels with the highest

square sum values as outlier channels and keep them in

INT8. We then reorder activation and weight matrices ac-

cording to the indices of outlier channels. After reordering,

Atom adopts GPTQ (Frantar et al., 2023) for the quantiza-

tion on weight matrices. For clipping, we use a grid search

to find optimal clipping factors 0.9 and 0.85 for activation

and weight quantization, respectively.

For the preprocessing of weight quantization and outlier

identification, we run Atom on a single RTX Ada 6000 and

quantize the model layer-by-layer. For large Llama-65B,

Atom takes roughly 4 hours to complete the process.

5.2 Accuracy evaluation

Benchmarks. We evaluate Atom on popular open-sourced

Llama (Touvron et al., 2023a) models. We focus on low-bit

settings, INT4 and INT3 weight-activation quantization. We

adopt commonly used metrics of model accuracy, perplexity,

and zero-shot accuracy. For perplexity, we evaluate on

WikiText2 (Merity et al., 2016), PTB (Marcus et al., 1994),

and C4 (Raffel et al., 2020) datasets. For zero-shot tasks, we

use lm-eval (Gao et al., 2021), based on which we evaluate

Atom on PIQA (Bisk et al., 2019), ARC (Clark et al., 2018),

BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019),

and WinoGrande (Sakaguchi et al., 2019) tasks.

Baselines. We compare Atom to recently released post-

training quantization techniques: SmoothQuant (Xiao et al.,

2023), OmniQuant (Shao et al., 2023), and QLLM (Liu et al.,

2023a). For SmoothQuant, we implement our own version

as the official code does not support Llama models and only

has W8A8 quantization. We conducted a grid search on the

alpha value defined in SmoothQuant and reported the best

numbers for each benchmark. For OmniQuant, we use their

pre-quantized weights for W4A4 evaluations and evaluate

W3A3 by running their official code. To obtain the best

W3A3 results for OmniQuant, we conduct a hyperparameter

search and identify lr = 1e−4 and alpha = 0.75 for their

quantization process. We skip W3A3 OmniQuant on Llama-

30B and Llama-65B due to the large resource requirement

of its quantization process. For QLLM, we report the W4A4

numbers in their paper but do not evaluate W3A3 as their

code was unavailable when we conducted experiments.

Zero-shot accuracy. Table 1 compares the zero-shot ac-

curacy of six tasks between Atom and baselines on Llama

models. Atom significantly outperforms the other weight-

activation quantization methods. For W4A4, Atom shows

only a 2.3%, 1.7%, 0.4% and 1.4% average accuracy loss

for Llama at 7B, 13B, 30B and 65B sizes when compared

to FP16. At the same time, previous works showed a 9.6%

to 23.8% accuracy loss under the same settings.

Perplexity. Table 2 reports perplexity results of Atom and

baselines on Llama models. As the table shows, though

recent methods such as OmniQuant and QLLM successfully

reduce the perplexity of W4A4 to around 10, the accuracy

loss is still significant. Atom further reduces the perplexity

and achieves less than 0.4 perplexity increase on all three

datasets with Llama-65b. For W3A3, Atom still largely

maintains the perplexity, with an average 2.3 perplexity

increase for Llama-65B. At the same time, existing works

do not achieve acceptable perplexity. Note that Atom has

less accuracy loss when quantizing larger models.
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Table 1. Zero-shot accuracy of quantized Llama models on six common sense tasks.

Zero-shot Accuracy ↑
Size #Bits Method

PIQA ARC-e ARC-c BoolQ HellaSwag Winogrande Avg.

FP16 - 77.37 52.53 41.38 73.12 72.99 66.85 64.04

SmoothQuant 63.11 40.03 31.57 58.47 43.38 52.80 48.23

OmniQuant 66.15 45.20 31.14 63.51 56.44 53.43 52.65

QLLM 68.77 45.20 31.14 - 57.43 56.67 51.84
W4A4

Atom 76.28 52.10 38.99 69.79 69.81 63.69 61.78

SmoothQuant 48.69 25.97 28.16 45.26 26.02 49.57 37.28

OmniQuant 49.78 27.19 27.22 37.86 25.64 49.96 36.28

7B

W3A3

Atom 65.56 41.41 30.72 61.77 53.19 55.56 51.37

FP16 - 79.05 59.85 44.62 68.53 76.22 70.09 66.39

SmoothQuant 64.47 41.75 30.89 62.29 46.68 51.70 49.63

OmniQuant 69.69 47.39 33.10 62.84 58.96 55.80 54.63

QLLM 71.38 47.60 34.30 - 63.70 59.43 55.28
W4A4

Atom 77.69 57.58 42.92 67.46 73.77 68.51 64.66

SmoothQuant 47.99 26.30 27.65 46.91 25.65 49.64 37.36

OmniQuant 50.22 26.77 27.82 37.83 25.77 51.07 36.58

13B

W3A3

Atom 70.08 47.94 33.70 63.46 62.93 56.75 55.81

FP16 - 80.20 58.92 45.31 68.38 79.23 72.69 67.46

SmoothQuant 59.30 36.74 28.58 59.97 34.84 49.96 44.90

OmniQuant 71.21 49.45 34.47 65.33 64.65 59.19 57.38

QLLM 73.83 50.67 38.40 - 67.91 58.56 57.87
W4A4

Atom 78.73 58.92 45.82 68.47 77.40 73.09 67.07

SmoothQuant 49.46 27.53 28.16 39.42 26.05 51.38 37.00

30B

W3A3
Atom 72.47 49.54 37.80 65.75 66.99 60.14 58.78

FP16 - 80.79 58.71 46.33 82.26 80.71 77.03 70.97

SmoothQuant 60.72 38.80 30.29 57.61 36.81 53.43 46.28

OmniQuant 71.81 48.02 35.92 73.27 66.81 59.51 59.22

QLLM 73.56 52.06 39.68 - 70.94 62.90 59.83
W4A4

Atom 80.41 58.12 45.22 82.02 79.10 72.53 69.57

SmoothQuant 49.56 26.64 29.10 42.97 26.05 51.14 37.58

65B

W3A3
Atom 75.84 51.43 41.30 74.07 72.22 64.33 63.20

Table 2. Perplexity of quantized Llama models on WikiText2, PTB and C4 dataset.

Perplexity ↓
Size Bits Method

WikiText2 PTB C4

FP16 - 5.68 8.80 7.08

SmoothQuant 22.62 40.69 31.21

OmniQuant 11.59 20.65 14.96

QLLM 9.65 - 12.29
W4A4

Atom 6.16 9.62 7.70

SmoothQuant 2.7e4 3.5e4 2.6e4

OmniQuant 3.4e3 7.5e3 6.3e3

7B

W3A3

Atom 11.77 20.84 15.43

FP16 - 4.10 7.30 5.98

SmoothQuant 109.85 142.34 87.06

OmniQuant 10.34 14.91 12.49

QLLM 8.37 - 11.51
W4A4

Atom 4.54 7.69 6.35

SmoothQuant 1.5e4 1.6e4 1.5e4

30B

W3A3
Atom 6.94 12.12 9.14

Perplexity ↓
Size Bits Method

WikiText2 PTB C4

FP16 - 5.09 8.07 6.61

SmoothQuant 33.98 73.83 41.53

OmniQuant 10.90 18.03 13.78

QLLM 8.41 - 10.58
W4A4

Atom 5.46 8.60 7.03

SmoothQuant 1.3e4 1.6e4 1.5e4

OmniQuant 7.2e3 1.6e4 1.3e4

13B

W3A3

Atom 8.40 15.84 10.81

FP16 - 3.53 6.91 5.62

SmoothQuant 88.89 278.76 283.80

OmniQuant 9.18 16.18 11.31

QLLM 6.87 - 8.98
W4A4

Atom 3.89 7.22 5.92

SmoothQuant 6.6e8 3.7e8 4.4e8

65B

W3A3
Atom 5.89 9.71 7.94
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Table 4. WikiText2 perplexity for Llama-2 and Mixtral.

Llama2 Mixtral
# Bits Method

7B 13B 70B 8x7B

FP16 - 5.47 4.88 3.32 3.84

SmoothQuant 83.12 35.88 - -

OmniQuant 14.61 12.3 - -

Atom (INT) 6.03 5.27 3.68 4.41
W4A4

Atom (FP) 6.14 5.35 3.78 4.50

high accuracy are mixed precision for outliers and fine-

grained quantization for normal values. We empirically

find these are generalizable to newer transformer-based

LLMs. In Table 4, we show the perplexity results of two

relatively new LLMs, Llama-2 (Touvron et al., 2023b) and

Mixtral (Jiang et al., 2024). To generalize on MoE models,

Atom only needs to adapt to using different reorder indices

for different experts’ FFN4. As Table 4 shows, Atom still

outperforms baselines and maintains high accuracy.

Generality on data formats. With the support for emerg-

ing data formats such as FP4 and MX (Liu et al., 2023b;

Rouhani et al., 2023) on new hardware, we also evaluate

the effectiveness of Atom in FP4. As shown in Table 4,

Atom maintains a similar accuracy to INT4 when quantiz-

ing both weights and activations into FP4. We conclude

that the representation capability between INT4 and FP4 is

similar. Additionally, group quantization with the MX for-

mat is supported by NVIDIA Blackwell GPUs. We expect

this hardware feature can mitigate the group quantization

overhead of Atom as described in § 5.4.2.

7 RELATED WORK

LLM serving. Various works have been explored to im-

prove LLM serving throughput. (Pope et al., 2022) investi-

gated the batching effect when scaling up LLMs. Orca (Yu

et al., 2022) proposed continuous batching to improve GPU

utilization by refilling the on-the-fly batch. vLLM (Kwon

et al., 2023) utilized page tables to manage KV-cache,

which significantly increases GPU memory utilization. Flex-

Gen (Sheng et al., 2023) proposed an offload mechanism to

support larger batches for high serving throughput. How-

ever, unlike prior works, in this paper, we delve deep into

the intersection between quantization and LLM serving.

Weight-only quantization. For LLMs, weight matrices

lead to large memory movement, limiting decode efficiency.

Weight-only quantization uses low-bit precision to approxi-

mate weight matrices. For instance, GPTQ (Frantar et al.,

2023) used 4-bit to quantize the weight based on the approx-

imate second-order information. AWQ (Lin et al., 2023)

4In practice, we find that accuracy is similar when Atom share
reorder indices across all experts in an MoE layer. Therefore, we
use shared indices for efficiency consideration.

further advanced accuracy by preserving salient weights.

SqueezeLLM (Kim et al., 2023) handled outliers through

non-uniform quantization and used a sparse format to keep

outliers and sensitive weights at high precision. QuiP (Chee

et al., 2023) successfully represented weights using 2-bit

by an adaptive rounding method. Nonetheless, in the LLM

serving scenario, the overhead of loading the weight matrix

is amortized due to batching. Thus, the dense layer becomes

compute-bound, while weight-only quantization fails to use

efficient low-bit hardware to deliver ideal throughput.

Weight-activation quantization. Weight-activation quan-

tization quantizes both the weight and activation matrices,

which is considered more challenging due to the outlier

phenomenon of the activation. LLM.INT8 (Dettmers et al.,

2022) proposed mixed precision to preserve outlier values in

activation matrices. (Xiao et al., 2023; Shao et al., 2023; Yao

et al., 2022; Wei et al., 2023) used mathematical equivalent

transformations to manage activation outliers. RPTQ (Yuan

et al., 2023) rearranges the channels to reduce the variance

within one quantization group, further enhancing the ac-

curacy. Some works (Liu et al., 2023a; Wu et al., 2023)

used low-rank matrices to compensate for quantization error.

Others (Guo et al., 2023; Zhou et al., 2023) used algorithm

and architecture co-design to accommodate outliers. How-

ever, these approaches either suffer significant accuracy loss

at extremely low-bit precision or lack practical hardware

support. In this work, our method achieves notable accuracy

with low-bit representation and ensures practical speedup.

8 CONCLUSION

We presented Atom, a low-bit quantization method that

leverages the underlying hardware efficiently to achieve both

high accuracy and high throughput for LLM serving. We use

mixed-precision quantization with reordering, fine-grained

group quantization, dynamic quantization, and KV-cache

quantization to preserve accuracy while fully exploiting

emerging low-bit hardware support. We integrate Atom into

an end-to-end serving framework, achieving up to 7.73×

throughput enhancement compared to the FP16 baseline as

well as maintaining less than 1.4% zero-shot accuracy loss.
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Maleki, S., and Bianchini, R. Splitwise: Efficient genera-

tive llm inference using phase splitting, 2023.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J.,

Bradbury, J., Levskaya, A., Heek, J., Xiao, K.,

Agrawal, S., and Dean, J. Efficiently scal-

ing transformer inference. ArXiv, abs/2211.05102,

2022. URL https://api.semanticscholar.

org/CorpusID:253420623.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,

Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring

the limits of transfer learning with a unified text-to-text

transformer. J. Mach. Learn. Res., 21(1), jan 2020. ISSN

1532-4435.

Rouhani, B. D., Zhao, R., More, A., Hall, M., Khodamoradi,

A., Deng, S., Choudhary, D., Cornea, M., Dellinger, E.,

Denolf, K., Dusan, S., Elango, V., Golub, M., Heinecke,

A., James-Roxby, P., Jani, D., Kolhe, G., Langhammer,

M., Li, A., Melnick, L., Mesmakhosroshahi, M., Ro-

driguez, A., Schulte, M., Shafipour, R., Shao, L., Siu,

M., Dubey, P., Micikevicius, P., Naumov, M., Verrilli, C.,

Wittig, R., Burger, D., and Chung, E. Microscaling data

formats for deep learning, 2023.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.

Winogrande: An adversarial winograd schema challenge

at scale, 2019.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,

Zhang, K., Gao, P., Qiao, Y., and Luo, P. Omniquant:

Omnidirectionally calibrated quantization for large lan-

guage models, 2023.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin,

M., Fu, D. Y., Xie, Z., Chen, B., Barrett,

C. W., Gonzalez, J., Liang, P., Ré, C., Stoica, I.,
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