ACROBAT: OPTIMIZING AUTO-BATCHING OF
DYNAMIC DEEP LEARNING AT COMPILE TIME

Pratik Fegade' Tianqi Chen'!? Phillip B. Gibbons' Todd C. Mowry !

ABSTRACT

Dynamic control flow is an important technique often used to design expressive and efficient deep learning compu-
tations for applications such as text parsing, machine translation, exiting early out of deep models and so on. The
control flow divergence resulting from dynamic control flow makes batching, an important optimization enabling
high throughput and hardware utilization, difficult to perform manually. In this paper, we present ACROBAT,
a framework that enables efficient automatic batching for dynamic deep learning computations by performing
hybrid static+dynamic compiler optimizations and end-to-end tensor code generation. ACROBAT performs up to
8.5 better than DyNet, a state-of-the-art framework for automatic batching, on an Nvidia GeForce GPU.

1 INTRODUCTION

Deep Learning (DL) has come to play an increasing role
in a wide range of applications in the recent years. As
their applications have become more and more complex, DL
models themselves have increased in size and complexity.
For inference serving as well as for training, these models
place extreme demands on DL systems and hardware today.

An important source of complexity in DL computations
is the use of dynamic control flow as part of execution.
Unlike a static feed-forward model computation, the exe-
cution of a computation with dynamic control flow, or a
dynamic computation can differ across different inputs to
the model. Among other applications, this property has
been used effectively to (1) model structured data such as
parse trees (Socher et al., 2013a; 2012) and images (Shuai
et al., 2015), (2) perform better quality machine translations
and text parsing by employing beam search (Wiseman &
Rush, 2016; Koehn, 2004; Buckman et al., 2016), and (3)
exit early out of convolutional (Kaya & Dumitras, 2018;
Teerapittayanon et al., 2017) and transformer (Xin et al.,
2020; Elbayad et al., 2019) models for reduced inference
latency. The adaptability afforded by dynamic control flow
is thus useful in a variety of situations.

Batching is an important optimization that improves the
throughput and hardware utilization during training and in-

!Carnegie Mellon University, Pittsburgh, USA >OctoAl. Corre-
spondence to: Pratik Fegade <pratikfegade @gmail.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

ference of a DL model. While straightforward for static
DL computations, the presence of control flow divergence
in dynamic computations makes manual batching difficult
and error-prone. Thus, there has been significant past ef-
fort on performing automatic batching, or auto-batching,
for dynamic DL computations. In order to handle the lack
of execution knowledge of a dynamic computation during
compilation, past works usually either (1) heavily rely on
dynamic analyses, enabling them to handle general dynamic
control flow (Neubig et al., 2017b; Looks et al., 2017), or (2)
are specialized for specific control flow patterns or models,
thus relying more on static analyses (Xu et al., 2018; Fegade
etal., 2021). The former frameworks often incur high execu-
tion overheads caused by dynamic analysis, while the latter
ones lack the generality to support the wide range of existing
and future control flow patterns in DL computations.

Further, past work often heavily relies on vendor libraries
such as cuDNN (Chetlur et al., 2014) and oneAPI (Intel,
2022). However, as implementing vendor libraries is an
intensive process, they usually only implement commonly
used, standard tensor operators. Further, as these kernels are
optimized in isolation, without any contextual knowledge
about the larger application they are used in, important opti-
mizations such as kernel fusion can no longer be performed.

In order to overcome these limitations of past work, we
propose ACROBAT!, an auto-batching framework for dy-
namic DL computations which relies on novel hybrid
static+dynamic optimizations and end-to-end tensor ker-
nel compilation. Our main insight in designing ACRO-
BAT is that despite the lack of perfect execution knowledge

during compilation for dynamic models, the compiler can

! Automated Compiler and Runtime-optimized Batching

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

Table 1. Comparison between ACROBAT and other solutions for
auto-batching dynamic DL computations. Purely static or dynamic
approaches can be overly conservative, or have high overheads
respectively, unlike ACROBAT’s hybrid analysis.

Framework | PyTorch DyNet Cortex TFFold |ACROBAT
Auto-batch support No
Auto-batch analysis Dyn. only Static only Dyn. only
Vendor library use High High High
Generality Low
User impl. effort High
Performance Low Low Low

often perform static analysis and optimizations to aid the
dynamic analysis. This reduces execution overheads while
effectively exploiting parallelism in the input computation.
ACROBAT relies on traditional compiler techniques such
as context-sensitivity (Aho et al., 2007) and taint analysis
as well as on minimal user annotations to enable such static
analysis. Further, ACROBAT’s end-to-end tensor kernel
generation enables it to automatically generate kernels opti-
mized and specialized to the larger computation again using
static analysis to identify and exploit data reuse opportuni-
ties (as we see in §5). ACROBAT’s generality allows one to
express a wide variety of control flow patterns, ranging from
simple conditional statements to complex recursive compu-
tations using a simple high-level language. Table 1 provides
a qualitative comparison of ACROBAT with related work.

In short, this paper makes the following contributions:

1. We survey and characterize the dynamic control flow
structures found in different DL computations.

2. Employing novel hybrid static+dynamic optimizations
and automated end-to-end kernel code generation, we
design ACROBAT, an auto-batching framework for dy-
namic computations. This design allows us to reduce
execution overheads and to generate efficient tensor ker-
nels that effectively exploit data reuse opportunities. In
developing these optimizations, we heavily rely on tradi-
tional compilation techniques.

3. We prototype ACROBAT, evaluate it against state-of-the-
art deep learning frameworks (Xu et al., 2018; Neubig
et al., 2017a; Paszke et al., 2019) and report significant
performance gains on Nvidia GPUs.

2 BACKGROUND
2.1 Dynamic Control Flow in DL computations

In this section, we take a look at the different kinds of con-
trol flow dynamism present in various DL computations
in the context of the auto-batching problem. This will in-
form how we design a system to exploit parallelism across
tensor operators in the batched execution of dynamic DL
computation.

Note that given a computation involving control flow, there
are often multiple ways to implement it. We consider the

Table 2. Control flow properties found in DL computations. Leg-
end: ITE: iterative control flow, REC: recursive control flow, TDC:
model exhibits tensor-dependent control flow (where control flow
decisions are predicated on values on intermediate tensors), IP:
computation exhibits high instance parallelism, ICF: model infer-
ence exhibits control flow, TCF: model training exhibits control
flow.

Deep Learning Computations |ITE REC TDC IP ICF TCF

v v

RNN (Rumelhart et al., 1986), LSTM (Hochreiter | v~
& Schmidhuber, 1997), GRU (Cho et al., 2014),
GraphRNN (You et al., 2018)

Speculative decoding for transformers (Leviathan | v~ v v Vv
et al., 2023)
DIORA (Drozdov et al., 2019), Chinese Segmenta-| v~
tion (Chen et al., 2015)
DAG-RNN (Shuai et al, 2015), TreeL- v’ v’
STM (Socher et al., 2013a), MV-RNN (Socher
etal., 2012)

StackLSTM (Dyer et al., 2015)

Beam search (Wiseman & Rush, 2016) with LSTM
Mixture-of-experts (Shazeer et al., 2017; Ma et al.,
2018; Fedus et al., 2021)

Early exit models (Kaya & Dumitras, 2018; Teer-
apittayanon et al., 2017; Elbayad et al., 2019)
Tree-to-tree NN (Chen et al., 2018b), Doubly Re- v’
current NN (Alvarez-Melis & Jaakkola, 2017)
R-CNN (Girshick et al., 2013), Fast R-CNN (Gir-| v~
shick, 2015)

<
<
<

<
<

AR

NERYERERNAYAN
ANERNERNERAAN
<

most natural way to implement a given computation. For
example, a top-down tree traversal can be implemented as a
breadth-first traversal (BFS) or a depth-first traversal (DFS).
While a BFS traversal can be more efficient, the DFS-based
traversal is more natural to implement. The discussion
below is also summarized in Table 2.

Control Flow Surrounding Static Sub-Graphs: We ob-
serve that for most DL computations exhibiting control flow
dynamism, the dynamic control flow surrounds tensor com-
putations. Consider the simple sequential RNN model im-
plemented by the @rnn function shown in Listing 1. Here,
we see that the sequential control flow surrounds an RNN
cell on lines 5 and 6, which is a static sub-graph of tensor
computations with no intervening control flow.

Tensor-Dependent Control Flow: Control flow decisions
often depend on the values of intermediate tensors in DL
computations. Examples of such models and computa-
tions include beam search in machine translation, StackL-
STMs (Dyer et al., 2015), Tree-to-Tree neural networks
(T2TNN) (Chen et al., 2018b), models with early ex-
its (Kaya & Dumitras, 2018; Teerapittayanon et al., 2017;
Xin et al., 2020; Elbayad et al., 2019) and Mixture-of-
Experts (Shazeer et al., 2017; Ma et al., 2018; Fedus et al.,
2021). Meanwhile, in models such as TreeLSTM (Socher
et al., 2013a), DAG-RNN, sequential RNNs and their vari-
ants, control flow only depends on the inputs and not on
intermediate tensors.

Repetitive Control Flow: We say that a model exhibits
repetitive control flow if it can be expressed as an iterative or
recursive computation. This includes iterative models such

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

as RNNs and their variants (LSTM and GRU (Cho et al.,
2014) for example) and StackLSTMs, and recursive models
such as TreeLSTM, Tree-to-Tree neural networks and DAG-
RNNs (Shuai et al., 2015). On the other hand, Mixture-
of-Experts and early exit models do not exhibit repetitive
control flow. Such models contain conditional execution in
an otherwise static feed-forward network. Repetitive control
flow can often also be nested. The GraphRNN model, for
example, executes two RNNs, one nested inside the other.
Similarly, the DRNN model, which is used for top-down
recursive tree generation, involves iterative generation of
children for a given tree node.

The presence of recursive, as opposed to iterative control
flow, can often complicate static analysis as parallelism is
more easily exploited with the latter. We see in §4.2 how
exploiting parallelism across recursive calls at runtime, for
example, can require the multiple concurrent execution con-
texts, similar to the fork-join parallelism paradigm (McCool
et al., 2012).

Control-Flow in Training and Inference: We see, in Ta-
ble 2, that the computation for a lot of the models involve
dynamic control flow during both training as well as infer-
ence. This is however, not the case for models with early
exits, where during training, we often wish to train all the
exit branches rather than evaluating one, as is the case dur-
ing inference. Further, search procedures such as beam
search are often used only during inference and hence the
underlying model may not exhibit dynamism during training
(unless the model computation itself involves dynamism, as
in the case of RNN models, for example).

Control Flow Parallelism: Dynamic control flow can lead
to parallelism in a DL computation. Such a computation
may exhibit (1) Batch Parallelism that exists across differ-
ent input instances in the mini-batch, and/or (2) Instance
Parallelism which refers to the parallelism that arises due to
dynamic control flow dependences, such as recursive paral-
lelism. The amount of such parallelism differs widely across
computations. Recursive models, often (though not always)
have significant parallelism across different recursive calls.
Correspondingly, iterative computations may contain loops
that can be executed concurrently. An example is the call
to the @map function call in the RNN implementation in
Listing 1.

2.2 Dynamic Batching

ACROBAT builds upon dynamic batching (Looks et al.,
2017; Neubig et al., 2017b), a prior technique to perform
auto-batching in the presence of dynamic control flow.
Given a mini-batch of input instances, dynamic batching
involves lazily executing the model computation for each
input instance while building dataflow graphs (DFGs) of
tensor operators for each instance in the background. The

© 0NN R W —

[I U
SOVOXAAUNRE LD~

execution of these DFGs is triggered when the value of
a particular tensor is requested (when the model contains
tensor-dependent control flow, for example). During this
execution, the runtime can identify batching opportunities
within the DFGs and launch batched kernels appropriately.

3 ACROBAT: OVERVIEW AND API

Control flow dynamism necessitates reliance on potentially
expensive runtime analysis for auto-batching. In ACROBAT,
we observe that aggressive static analysis often provides suf-
ficient information to reduce the overheads of such analyses.
Such analyses further enable us to generate specialized and
more efficient tensor kernels in an end-to-end manner.

def Crnn(inps, state, bias, i_wt, h_wt) {
match (inps) {
Nil => Nil,
Cons (inp, tail) => {
let inp_linear = bias + nn.dense(inp, i_wt);
let new_state = sigmoid(inp_linear + nn.dense(state, h_w));
Cons (new_state, @rnn(tail, new_state, bias, i_w, h_w))
def @main(rnn_bias: Tensor| (, rnn_i_wt: Tensor|[(256, 256)],

, rnn_init: Tensor|[(1,
: Tensor[(1, 16)],
(

rnn_h_wt: Tensor/ (- 256) 1,
c_wt: Tensor|[(16,
inps: List[Tensor|

R omputat 1

let rnn_res =
@rnn(inps, rnn_init, rnn_bias, rnn_i_wt, rnn_h_wt);
Output sf nge (program phase 2))
N

+ nn.dense (p, c_wt))

(* Output transformati
CEmap (fn (p: Tensor([(1,
nn.relu(cbias
, rnn_res) }

Listing 1. A simple RNN model expressed in a functional language
(here, Relay (Roesch et al., 2019) is used for illustration) as an
input to ACROBAT.

We will now look at ACROBAT’s compilation and execu-
tion workflows (illustrated in Fig. 1) that make use of the
above insights. ACROBAT has been designed to take an
unbatched DL computation expressed in a simple Turing-
complete functional language as an input. This enables
ACROBAT users to easily express models with dynamic
control flow, such as the ones discussed in §2.1. For ex-
ample, Listing 1 illustrates a simple RNN model which
ACROBAT can take as an input.

Given an input computation (1), compilation in ACRO-
BAT begins with batched kernel generation Q). Here, AC-
ROBAT performs novel static analysis (§5.1) to identify data
reuse opportunities and accordingly generates batched ker-
nels @) implementing the tensor operators used in the input
program. Further, gather operator fusion (§5.2) enables us
to generate specialized kernels that minimize data move-
ment. These unoptimized kernels are then optimized by an
auto-scheduler @). Once optimized, target code such
as CUDA C++ can be generated for the batched kernels.
Concurrently, the input program is further optimized and
compiled () in an ahead-of-time (AOT) fashion to generate
C++ code . As part of this compilation, ACROBAT gen-
erates code to (1) enable low overhead scheduling via our

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

def @rnn(
inputs: List[Tensor[256]]
bias: Tensor[256],
match(inputs):
Nil => state,

def @rnn(
inputs: List[Tensor[256]]
bias: Tensor[256],
state: Tensor([256]):
match(inputs):
Nil => state,

Batched kernel
generation (§5.1)
Cons(input, tall) =>

invoke_kernel("add3",

state: Tensor[256]):

Cons(input, tail) => @rnn(tail, bias,
[bias, input, state])):

Compilation
Unbatched program
compilation (§4, §

Tensor-dependent]
ontrol flow (§4.2

—> Pipeline dataflow

---» Code generation

o Compilation/Runtime
compilation stage

@ x| Parameter
@rnn(tail, bias, reuse analyses)
bias+input+state)
Generated Batched
f{;’.’:; },’:'ob;,t:,',‘,ed Unoptimized Kernel:

C++ AOT Compiled Unbatched Program

{77 BS: Batch size

inputs_vec

{3 Batch of DFG nodes

ACRoBat's novel
techniques

rofile-guide
optimization

Auto- Gather op |
scheduling){fusion (§5.2)Ji

Batched

Tensor rnn(List<Tensor> inputs, ieesessmsseeeead ACRoBat Runtime Optimized
Tensor bias, Tensor state, int& depth) { Kernels
if (isNil(inputs)) return state: Schedulin 77 BS Batch size
return ran(inputs.tail, bias, - 9 add3_batched(BS, bias, input_ptr,
acrobat_rt.invoke_kernel("add3", {bias, — Inline Depth — State ptr, 0_ptr):
__,i inputs.head, state}, depth++), depth); } Computation (§4.1) ! b = blockIdx.x 7/ [0,BS]
Vo1 maincvectoreList<Tensor»> inputs_vec, O] b peltET T g 19250
fginiz‘:rr‘pm:s J‘epr&stirv;rgtz { Generated input _ptr[b][i] + state ptr([b][i]
Input Data; int depth - 0: DFG -
ron(inputs, bias, init, depth); }} Ontrol low dedisions depend on Tensor valuss for the case of tensor dependent control flow. Runtime

Figure 1. Overview of ACROBAT’s workflow. Fig. 7 in the appendix shows a corresponding overview of DyNet, a prior fully dynamic
approach. Note how ACROBAT performs significant novel analysis and code generation at compile-time to reduce runtime overheads.

inline depth computation approach, and (2) automatically
enable concurrent execution in the presence of tensor depen-
dent control flow (§4.2).

At runtime, ACROBAT lazily executes the AOT compiled
input program (7) on a mini-batch of inputs (), and con-
structs DFGs ®). The ACROBAT runtime library will then
schedule these DFGs (using inline depth computation as
mentioned above) (9), while looking for batching opportu-
nities. Then, it will invoke the optimized batched kernels
for each identified batch of DFG nodes. If the input
program exhibits tensor dependent control flow, the execu-
tion cycles back to the AOT compiled program which will
execute further and create more DFGs.

We will now take a look at ACROBAT’s hybrid optimiza-
tions in §4 and its tensor kernel generation in §5.

4 HYBRID STATIC+DYNAMIC
OPTIMIZATIONS

Dynamic control flow often precludes static program trans-
formations. Therefore, ACROBAT takes a hybrid approach
whereby it exploits static program knowledge by either (1)
providing hints to the dynamic analysis (§4.1), or (2) gener-
ating code that affords the dynamic analysis greater freedom
in exploiting parallelism (§4.2). Further, static analysis also
enables us to perform optimizations such as kernel fusion,
which is important for high performance (§7.4). Below, we
provide more details regarding our hybrid analysis.

4.1 Inline Depth Computation

As past work (Fegade et al., 2021) has noted, prior fully
dynamic approaches incur significant scheduling overheads.
For instance, as we will show in Table 5, DyNet’s scheduling
overheads dominate the time spent in tensor computations
for the TreeLSTM model. Instead, as described below, AC-
ROBAT devises a scheme to perform scheduling as it con-
structs the DFGs, thereby lowering scheduling overheads

greatly (§7).

Lo N R W N~

1O MO 1O MO 1D — e e
EON —S 0k~

A DFG scheduling algorithm has two goals:
G.1 Correctness: Scheduling tasks such that dependences
between the tasks are respected.

G.2 Performance: Identifying and exploiting parallelism.
Given a DFG(s), we can satisfy both these goals by exe-
cuting DFG nodes (each of which represents one tensor
operator) in the increasing order of their topological depth?,
such that nodes at the same depth are executed concur-
rently (Neubig et al., 2017a; Looks et al., 2017). We make
the following two observations in order to compute these
depths during DFG construction:

0.1 The order in which the unbatched program invokes
the tensor operators, i.e. the order in which nodes are
added to the DFGs, is a valid dependency order.

0.2 Information about instance parallelism (for example,
recursive parallelism in the TreeLSTM model as seen
in Table 2) is often available during compilation.

List<Tensor> rnn(List<Tensor> inps, Tensor state, Tensor bias,
Tensor i_wt, Tensor h_wt, int& depth) {
if (inps == ListNil()) return ListNil();

auto inp_linear = AcrobatRT.InvokeKernel (" as_dense",
), {bias, i_wt, inps.head});
auto new_state = AcrobatRT.InvokeKernel ("sigmoid_add_dense",
depth++ , {inp_linear, h_wt, state});
return ListCons (new_state, rnn(inps.tail, state,
h_wt, depth)); }

bias, i_wt,

vector<Tensor> main(Tensor rnn_bias,
Tensor rnn_h_wt,

Tensor rnn_i_wt,

Tensor rnn_init, Tensor c_wt,

Tensor cbias, vector<List<Tensor>> inps_vec

vector<Tensor> res;
for (auto inps: inps_vec) {

int depth = 0;

/* Recursive tion stage (p. 2) *

auto rnn_res = rnn(inps, rnn 1n1t, rnn, blaS, rnn_i_wt,

rnn_h_wt, depth);
/+ Output transformati stage (p ram phase 2)
depth++

res.push_back (map ([&] (Tensor p) { AcrobatRT.InvokeKernel (
"relu_bias_dense", depth, {cbias, c_wt, p}); }, rnn_res)); }
return res; }

Listing 2. AOT compiled output for the RNN model in Listing 1,
with inline depth computation code highlighted.

Based on these observations, we set the depth of an oper-

*If P(n) denotes all the set of all producers of all the tensors
a node n consumes, then its depth d,, is given by d,, = 1 +
max,cp(n) dp if P(n) # @ and 0 otherwise.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

Inpl Inp2 Inp3 Inp4 Depth

let t1 = if (...) opA(...) @ = n |3 Tensorop.
else t1 =] 1 Ghost op.
let t2 = opB(t1) ‘ n+1 |1 Batch
Tet t1 = if (...) opA(...) A
else ghostOp(); t1 \ " |
let t2 = opB(t1)] [B] n+1 |

Figure 3. Ghost operators can enable better batching.

ator to be equal to its position in the dependency ordering
induced by the execution of the unbatched program, thus
meeting goal G.1. Then, we rely on observation Q.2 above
in order to discover and exploit opportunities for parallelism
by using the following techniques:

Instance Parallelism: We note that
instance parallelism often stems from
recursion or the use of the functional
@map function on a list of indepen-
dent items (observation O.2). We en-
sure that such concurrent operators are
assigned the same depth during the ex-
ecution of the unbatched program. We
rely on simple user annotations to obtain information about
recursive parallelism®. Fig. 2 shows an example where the
two recursive calls to funA are annotated as concurrent.
Note also that past work auto-parallelization (Hogen et al.,
1992; Aleen & Clark, 2009) could potentially be used in
lieu of such annotations. Listing 2 shows the AOT compiled
code generated for the RNN model in Listing 1. We see, on
line 23, how all invocations of the relu_bias_dense ker-
nel inside the @map function are assigned the same depth.

funA() {
concurrent {
funA(); funA();

¥
funC();
3

Figure 2. Concurrent
call annotation.

Combating Eagerness of Depth Scheduling: As noted in
past work (Neubig et al., 2017b), a depth-based scheduling
scheme, like the one ACROBAT uses, can often be too
eager in executing tensor operators, leading to a sub-optimal
amount of exploited parallelism. Past work has relied on
agenda-based scheduling (Neubig et al., 2017b), a more
expensive scheduling scheme, as an alternative to the depth-
based scheme to alleviate this problem. ACROBAT instead
relies on compile-time analysis, as described below.

Ghost Operations: In the presence of conditional if state-
ments, eager batching leads to sub-optimal batching as il-
lustrated in the upper panes of Fig. 3. We see that eager
batching leads to a sub-optimal batching schedule as the in-
stances of operation B for inputs Inp1 and Inp2 are batched
eagerly and more importantly separately from the instances
of operation B for inputs Inp3 and Inp4. In such situa-
tions, ACROBAT can statically insert ghost operations to
essentially delay the scheduling and execution of certain
operators, as shown in the lower panes of the figure. Note
that ghost operations merely affect ACROBAT’s scheduling
behavior and the are ignored during tensor kernel execution.

3Users can mark a set of function calls as concurrent in the
input code. Of the seven models we evaluate in §7, four required
one such annotation each, while the rest did not require any.

Program Phases: On the other hand, when repetitive (recur-
sive or iterative) control flow is present, we rely on program
phases (Sherwood et al., 2003) to combat the aforemen-
tioned sub-optimality of the scheduling. Given knowledge
of such program phases, ACROBAT waits to schedule and
execute operators in a phase until operators in all previous
phases have been scheduled and executed. We find that
considering individual semantic stages of the input DL com-
putation as individual phases is a good heuristic for dividing
the computation into phases. ACROBAT also provides a
way for users to override this heuristic by manually annotate
program phases, though in our evaluation, we did not need
such annotations. We provide more details and explanations
about program phases and ghost operations in §A.3 of the
appendix.

Further, ACROBAT is also able to statically hoist operators,
which we describe in more detail in §A.1 of the appendix.
As an example, in Listing 2, the invocation of the kernel
bias_dense on line 5 is assigned a statically computed
depth of 0, which during runtime, effectively hoists the
kernel invocation out of the recursion.

4.2 Tensor Dependent Control Flow

ACROBAT executes the unbatched program lazily to create
DFGs for each input instance in the batch. In the absence of
tensor dependent control flow, we can first execute the un-
batched program for each instance sequentially and trigger
the batching and execution of all the DFGs at once. In the
presence of tensor dependent control flow, however, such
sequential execution would not allow us to exploit any batch
parallelism as we would be required to trigger the execu-
tion at control flow decisions that depend on the value of
intermediate tensors. While prior work places the burden of
restructuring input computations to alleviate this issue on the
user, ACROBAT automatically generates code to execute the
unbatched program for each input instance concurrently by
using fibers*. This way, the unbatched programs can be exe-
cuted for each instance to a point where none can progress
without triggering the evaluation of the DFG. At this point,
the evaluation can be performed, and the concurrent execu-
tions resumed after as illustrated in Fig. 4. Correspondingly,
in order to exploit instance parallelism in the presence of ten-
sor dependent control flow, ACROBAT launches concurrent
fibers, similar to the fork-join model of parallelism (McCool
et al., 2012). ACROBAT thus combines the static knowl-
edge of parallelism with dynamic concurrent execution as
part of its hybrid analysis to effectively exploit parallelism
in the presence of tensor dependent control flow.

“Fibers (Boost, 2022) allow multiple execution stacks to be
cooperatively scheduled on a single process.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

i i// Concurrent execution
model_fn(...)

t2 = acrobat_rt.invoke_kernel("k1" t1):
fiber_rt.yield():

if (t2[0] >= 0)

t3 = acrobat_rt.invoke_kernel("k2", t1):
else

t4 - acrobat_rt.invoke_kernel("k3", t1) :

77 Sequental "executon
model_fn(...) {

> Taeré . W
acrobat rt. trigger execution()]

T 9T 5= ©

t3 = acrobat_rt.invoke_kernel("k2", t1)

e
t4 = acrobat_rt.invoke_kernel("k3", t1)

void main() {

}
for (input : void main() {
}

for (input : input

inputs_vec) model_fn(.. U s veo)
fiber_rt.new([] () {model _fn(...):}):

= Triggered executi

while() {
fiber_rt.wait_for_fibers_to_yield():

r rt.tr :
fiber_rt.resume_all fibers();
i

Inp1i[k1]
Inp2

Time

Sedliential exe. “Eond

Figure 4. Concurrent execution of the unbatched program in the
presence of tensor-dependent control flow.

5 END-TO-END TENSOR KERNEL
GENERATION

As we alluded to above, ACROBAT enables end-to-end,
uniform and automatic tensor kernel code generation by
avoiding the use of vendor libraries. This allows ACRO-
BAT to support a larger set of operators without additional
compiler development effort. More details about ACRO-
BAT’s tensor kernel generation are provided below.

5.1 Exploiting Parameter Reuse

Given the input unbatched computation, ACROBAT needs
to generate batched kernels implementing the tensor opera-
tors used in the computation. Generating these kernels is not
straightforward because some input tensors (often model
parameters) might be shared across calls to the operator.
For example, across multiple calls to the element-wise ad-
dition operator add3 used in the input computation @ in
Fig. 1, the bias argument will be shared (as it is a model
parameter) and hence should be reused across all values of
the arguments input and state. This can be seen in the
corresponding batched kernel (@) and @) in Fig. 1.

A completely dynamic approach to auto-batching, such as
the one used in DyNet, is unable to accurately identify such
parameter reuse, and instead relies on heuristics, which can
be brittle, leading to sub-optimal performance (§7.3). On the
other hand, ACROBAT uses a 1-context sensitive> taint anal-
ysis to identify such shared arguments to tensor operators.
The use of static analysis here allows ACROBAT to obtain
accurate knowledge about the parameter reuse patterns.

Beyond the analysis described above, ACROBAT further
explores opportunities for data reuse by employing code
duplication and horizontal fusion as described in §B.1.

SContext sensitivity is a static analysis technique that allows
the compiler to reason about a function in the different contexts it
may be called under leading to increased analysis precision. For
the DL computations we worked with, we found that a 1-context
sensitive analysis was sufficient. Deeper contexts might be useful,
however, for more complex computations.

Table 3. Models and datasets used in the evaluation.
Model Description

Dataset

Stanford sentiment

Treel.STM TreeLSTM treebank (Socher et al., 2013b)

MV-RNN MV-RNN Stanford sentiment treebank

BiRNN Bidirectional RNNs XNLI (Conneau et al., 2018)
o GRU/RNN loops iterate for a

NestedRNN ﬁ)g RNN loop nested inside a GRU random number of iterations

P in [20, 40].
DRNN Doubly recurrent neur_al networks for Randomly generated tensors.
top-down tree generation
. Early exit for BERT inference (Xin 3
Berxit etal., 2021). All layers share weights. Sequence length 128.
StackRNN StackLSTM parser with LSTM cells XNLI

replaced by RNN cells.

5.2 Fusing Memory Gather Operations

As ACROBAT identifies batching opportunities across the
DFGs dynamically, the input tensors to all DFG nodes in a
batch may not be laid out contiguously in the accelerator’s
memory. In this scenario, prior work performs a memory
gather before operating on the tensors (by invoking vendor
library kernels), leading to significant data movement (§7.4).
Instead, ACROBAT generates specialized batched kernels
to directly operate on tensors scattered in memory, in ef-
fect fusing the expensive gather operation with the batched
kernel. The generated batched kernel in Fig. 1 illus-
trates this. This fusion can lead to a significant performance
improvement as seen in §7.

6 IMPLEMENTATION DETAILS

Our prototype of ACROBAT is built upon TVM (Chen et al.,
2018a) v0.9.dev0, a DL framework and a tensor compiler. It
thus accepts as input computations expressed in Relay. Our
prototype, ACROBAT also performs the grain size coarsen-
ing optimization (Zha et al., 2019; Xu et al., 2018; Fegade
et al., 2021; Gao et al., 2018; Silfa et al., 2020), which is
discussed more in §A.2 of the appendix.

As demonstrated in §7.2, we find that using an interpreted
virtual machine (VM) for executing the unbatched programs
can incur significant VM overheads in the presence of con-
trol flow dynamism. Therefore, ACROBAT compiles the
input computation to C++ in an AOT fashion (as discussed
in the appendix in §C). Further, as TVM does not support
training, we evaluate ACROBAT for (batched) inference of
DL computations. Other implementation details, including
those on ACROBAT’s use of TVM'’s auto-scheduler, can be
found in the appendix in §C.

7 EVALUATION

We now evaluate ACROBAT against Cortex and DyNet on
an Nvidia GPU. Cortex and DyNet are both state-of-the-art
auto-batching frameworks for DL computations exhibiting
recursive and general unrestricted control flow respectively.
They have been shown to be faster than generic frameworks

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

Table 4. Relay VM vs. ACROBAT’s AOT compilation: Inference
latencies in ms.

Hidden Batch TreeLSTM MV-RNN BiRNN
Size Size. UM AOT VM AOT VM AOT
small 8 3068 266 40 055 2988 2.23
small 64 2894 947 391 163 2888 547
large 8 3164 385 434 106 3204 482
large 64 2949 159 436 46 3043 1372

like PyTorch and TensorFlow (Neubig et al., 2017a;b; Fe-
gade et al., 2021). We also compare ACROBAT’s perfor-
mance with that of PyTorch (§??).

7.1 Experimental Setup

Models: We use the models listed in Table 3 for the evalua-
tion. For each model, we look at two model sizes—small
and large. For the MV-RNN model, we use hidden sizes
64 and 128 for the small and large model sizes, while for
the Berxit model, the small model uses the same hyper-
parameters as the BERTgasg model (Devlin et al., 2018),
while the large model uses the same hyper-parameters as
the BERT argg model (Devlin et al., 2018), except that we
use 18 layers instead of 24 in this case. For the remaining
models, the small and the large model sizes use hidden sizes
of 256 and 512 respectively.

Experimental Environment: We run our experiments on
a Linux workstation with an AMD Ryzen Threadripper
3970X CPU (64 logical cores with 2-way hyperthreading)
and an Nvidia RTX 3070 GPU. The machine runs Ubuntu
20.04, CUDA 11.1 and cuDNN 8.0.5. We compare against
DyNet’s commit 3e1b48c7 (March 2022) which uses the
Eigen library (v3.3.90).

7.2 Benefits of AOT Compilation

We first look at the benefits of AOT compilation (§6). The
performance of the TreeLSTM, MV-RNN and BiRNN mod-
els® when executed using the Relay VM and ACROBAT’s
AOT compiler (with the grain size coarsening, gather op-
erator fusion and program phase optimizations turned on)
is shown in Table 4. We see that overheads significantly
slow down the execution (by up to 13.45x) as compared
to the AOT compiled native code for these models. There-
fore, for the rest of this section, we evaluate ACROBAT’s
performance with AOT compilation turned on.

7.3 Overall Performance

In this section, we compare ACROBAT’s performance with
that of PyTorch, DyNet and Cortex.

8 ACROBAT’s prototype implementation does not currently
support the execution of the remaining models in Table 3 using the
Relay VM.

Small Model Size Large Model Size

o 30 ()

Q

3

§ 75 — BRW ./ 7

(%50 —— MV-RNN ./ 20 e

2 —— TreeLSTM ~ Le—2 LT e

IJOJ 25 /o§°/./. 10 3/ ./'

= =1 /./ - 1V

O S e—o—* o—p—"

< 0 T T T T T T T T T T T T T T T T
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

Batch size Batch size

Figure 5. Speedups obtained over PyTorch for the TreeLSTM, M V-
RNN and BiRNN models.

Performance Comparison with PyTorch

Fig. 5 compares ACROBAT’s performance with that of
PyTorch (v1.9.0a0+gitf096245) for the TreeLSTM, M V-
RNN and BiRNN models’. PyTorch does not perform auto-
batching and is therefore unable to exploit any available
instance or batch parallelism in the evaluated computations.
Further, ACROBAT’s kernel fusion and other static opti-
mizations also increase its performance relative to PyTorch.
The speedups are higher for the small model size as com-
pared to the larger model sizes because the relative impor-
tance of exploiting instance and batch parallelism is lower
for the large model size due to the increased parallelism in
individual tensor operators. ACROBAT’s relatively worse
performance on the BIRNN model as compared to the other
two can be attributed to the absence of instance parallelism
in BiRNN leading to a lower amount of parallelism that AC-
ROBAT can exploit. Similarly, due to TreeLSTM exhibiting
a higher amount of static and tensor parallelism as compared
to MV-RNN, the relative importance of exploiting instance
and batch parallelism is lower, leading to performance lower
than that of MV-RNN.

Performance Comparison with DyNet

We now compare ACROBAT’s performance with that of
DyNet. As mentioned in §6, TVM does not support the
training of DL models. Therefore, due to lack of access to
trained model parameters, we use pseudo-randomness to
emulate tensor dependent control flow in the NestedRNN,
DRNN, Berxit and StackRNN models as part of our eval-
uation. We ensure that the pseudo-randomness is uniform
across the ACROBAT and DyNet implementations by using
pre-determined random seeds for a fair comparison. An ex-
ception is the DRNN model when inline depth computation
is performed. In this case, ACROBAT exploits DRNN’s
recursive instance parallelism using fibers (§4.2) leading to
a change in the random control flow decisions taken. We ac-
count for this by presenting the mean execution time across
50 different random seeds.

The execution latencies for DyNet and ACROBAT are

"We use TorchScript only for the BIRNN model as it does
not currently support recursive data types (PyTorch Community,
2020), such as the parse trees the TreeLSTM and MV-RNN models
operate on.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

Table 5. DyNet vs. ACROBAT: Inference latencies (DyNet/ACROBAT) in ms and speedups. The DyNet implementation of the Berxit

model was killed due to out-of-memory errors for a batch size of 64.

Hidden Batch TreeLSTM MV-RNN BiRNN NestedRNN DRNN Berxit StackRNN
Siz Siz
e e Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup
small 8 4.31/1.48 2.93 2.11/0.54 3.96 3.13/2.16 1.45 29.38/31.01 0.95 6.7/1.74 3.87 63.54/38.49 1.66 47.78/22.69 2.11
small 64 26.18/5.81 4.51 12.45/1.48 847 12.04/4.86 2.49 84.55/65.73 1.29 25.3/5.24 4.84 -/204.54 213.98/39.06 5.48
large 8 4.58/2.4 1.92 2.27/1.04 2.19 3.95/4.43 0.9 46.03/35.61 1.3 8.44/2.45 3.45 113.18/64.49 1.76 64.67/43.75 1.48
large 64 26.53/11.44 233 13.89/4.46 3.13 12.11/13.11 0.93 94.97/100.17 0.95 26.5/9.99 2.66 -/335.3 230.74/86.82 2.66

Table 6. Time spent (ms) in various activities' for DyNet and
ACROBAT for batch size 64.

.. TreeLSTM, small BiRNN, large
Activity
DyNet ACROBAT DyNet ACROBAT
DFG construction 8.8 1.5 4.5 1.0
Scheduling 9.7 0.4 33 0.4
Memory copy time 3.1 0.1 2.3 0.2
GPU kernel time” 6.1 4.0 6.6 11.2
#Kernel calls 1653 183 580 380
CUDA API time* 16.5 3.9 12.0 11.1

! The timings reported correspond to multiple runs, and were obtained using man-
ual instrumentation and profiling using Nvidia Nsight Systems. Due to profiling
overheads, the execution times may not match the ones in Table 5.

2 Includes memory copy kernels.

3 Includes calls cudaMemcpy, cudaMemcpyAsync and all kernels.

shown in Table 5. ACROBAT performs better than DyNet
in most cases due to a number of reasons. Table 6 lists the
time spent by the frameworks for different runtime activities
for the TreeLSTM model. We see that ACROBAT’s opti-
mizations such as static kernel fusion and grain size coars-
ening reduce the number of tensor kernels invoked, thereby
significantly reducing DFG construction and scheduling
overheads. Further, inline depth computation allows ACRO-
BAT to exploit available parallelism with lower overheads.
Optimizations such as static kernel fusion and gather opera-
tor fusion enable ACROBAT to launch fewer GPU kernels,
further reducing the time spent in the CUDA API. We look
at the benefits of each of ACROBAT’s optimizations in more
detail in §7.4.

While, overall, ACROBAT performs 2.3 x better than DyNet
across all model configurations, DyNet performs slightly
better than ACROBAT for some configurations of the
BiRNN and NestedRNN models. For the former, Table 6
shows that while ACROBAT incurs lower runtime over-
heads for DFG construction, scheduling and memory trans-
fer, it spends a higher amount of time in kernel execution
compared to DyNet. We believe that better tensor kernel
optimizations can help reduce this performance gap.

Beyond the above reasons, ACROBAT performs better on
specific benchmarks for the reasons discussed next.

Accurate parameter reuse inference and automated
batched kernel generation: As mentioned in §5.1, AC-
ROBAT’s use of static analysis for inferring parameter reuse
allows it to have accurate knowledge to statically gener-
ate the appropriate batched kernels. On the other hand,
DyNet’s heuristic-based approach is unable to batch in-

8We consider the best of the two scheduling schemes DyNet
implements (Neubig et al., 2017b) for each model configuration.

Table 7. Model execution times in ms after the improvements de-
scribed in §7.3 were made for the TreeLSTM, MV-RNN and
DRNN models. DN, DN++ and AB stand for DyNet, DyNet
with improvements and ACROBAT respectively.

Model Batch TreeLSTM MV-RNN
Size Size

DRNN

DN DN++ AB DN DN++ AB DN DN++ AB

small 8 4.31 3.8 148 211 105 054 67 329 174
small 64 26.18 22.69 581 1245 3.15 148 253 1851 524
large 8 458 414 24 227 183 104 844 382 245
large 64 2653 24.09 1144 1389 1047 446 265 18.86 9.99

stances of certain operators, forcing sequential unbatched
execution which leads to low performance. For instance,
DyNet heuristically batches multiple instances of the matrix
multiplication operator only when the first argument of all
the instances is the same tensor. This usually works as the
first argument is often a model parameter, usually as part
of a linear transformation. Our DyNet implementation of
the MV-RNN model, however, multiplies two intermediate
tensor activations together, as a result of which DyNet is
unable to batch instances of this operator, forcing sequential
unbatched execution. When we modify DyNet’s heuristic
for matrix multiplication, its performance improves signifi-
cantly as shown in Table 7.

Further, as described in §5, ACROBAT’s end-to-end kernel
generation leads to a broader coverage over tensor operators
for which batching is supported as compared to approaches
such as DyNet which rely on vendor libraries. As a re-
sult, DyNet does not support batching for certain operators,
again leading to sequential execution and low performance.
Specifically, DyNet does not support batched execution for
the argmax operator, which the StackRNN model uses in
order to determine the next parser action in every iteration
based on the result of the embedded RNN cell. Similarly,
the element-wise multiplication operator, used in the DRNN
model, is executed in an unbatched manner when broad-
casting needs to be performed. On the other hand, ACRO-
BAT automatically generates optimized batched implemen-
tations of these tensor operators. We also find that DyNet is
unable to batch calls to the operator that constructs constant
tensors. We use this operator to initialize the hidden states
of tree leaves in the TreeLSTM model. ACROBAT, on the
other hand, statically recognizes that a constant tensor can
be reused and thereby only creates the tensor once. The
performance of the TreeLSTM model improves when we
exploit this reuse manually in DyNet, as Table 7 shows.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

Table 8. Cortex vs. ACROBAT: Inference latencies in ms. Note
that unlike ACROBAT, Cortex is limited to recursive computations,
and does not support the other models in Table 3. Further, Cortex
places a high development burden on its users by relying on manual
kernel optimization.

Hidden Batch TreeLSTM MV-RNN BiRNN
Size Size - ex ACROBAT Cortex ACROBAT Cortex ACROBAT
small 8 079 1.48 1.14 0.54 1.28 2.16
small 64 3.62 5.81 6.92 148 3.48 4.86
large 8 1.84 2.4 53 1.04 2.47 4.43
large 64 1023 1144 4115 446 1074 1311

Automated code generation for handling tensor depen-
dent control flow: The DRNN model constructs a tree
from an input vector representation in a top-down recursive
manner. It exhibits both tensor-dependent control flow as
well as instance parallelism (multiple subtrees can be gener-
ated concurrently). We saw how ACROBAT can automati-
cally exploit instance parallelism in the presence of tensor-
dependent control flow with the use of fibers in §4.2. On
the other hand, DyNet is unable to exploit this parallelism
and therefore ACROBAT’s performance on this model is
significantly better than that of DyNet. Table 7 also shows
the performance improvement obtained in DyNet for the
DRNN model when the instance parallelism exhibited by
the model computation is manually exploited as detailed
above.

Performance Comparison with Cortex

Table 8 compares the performance of ACROBAT with that
of Cortex for the TreeLSTM, MV-RNN and the BiRNN
models. Note that this is not an apples-to-apples comparison
because, Cortex, being specialized for recursive computa-
tions, does not support general control flow (as is present in
the other models in Table 3) unlike ACROBAT as mentioned
in Table 1. Further, Cortex places a high development bur-
den on users who are required to manually optimize and tune
their models for specific hardware, unlike ACROBAT’s au-
tomatic kernel generation®. Similarly, while ACROBAT can
automatically hoist the input linear transformations out of
the recursive computation in the TreeLSTM and BiRNN
models (as described in §A.1), they need to be manually
hoisted and offloaded to cuBLAS in the case of Cortex.

Being highly specialized for recursive computations, Cortex
is able to exploit aggressive kernel fusion, model persistence
and incur low kernel call overheads, thus performing up to
1.87x better than ACROBAT for the TreeLSTM and BiRNN
models. However, note that Cortex performs much worse
than ACROBAT on the MV-RNN model. This is because
Cortex’s restrictive API necessitates additional copies of the
embedding vectors for the leaves of the input parse trees,
which ACROBAT can avoid due to its more flexible inter-

For example, implementing the MV-RNN model in Cortex
requires 325 LoC in Python, as compared to the 79 LoC of Relay
and 108 LoC of Python in ACROBAT.

face. Overall, ACROBAT delivers performance comparable
to that of Cortex, while supporting a much wider range of
DL computations with much lesser developer effort.

7.4 Benefits of Optimizations

We now evaluate the relative benefits of the different opti-
mizations ACROBAT performs. Fig. 6 shows the execution
times for the models in Table 3 (at a batch size of 64) as
we progressively perform optimizations. Standard kernel
fusion (i.e. kernel fusion not including gather operator fu-
sion as discussed in §5.2) provides significant benefits for
all models'?. Grain size coarsening and inline depth com-
putation, both of which reduce scheduling overheads, are
most beneficial for models with a relatively high amount of
control flow such as TreeLSTM and MV-RNN. Further, in
the case of the DRNN model, inline depth computation also
enables ACROBAT to exploit the instance parallelism in-
herent in the computation (§4.2) leading to lower execution
time. The BiRNN model involves per-token output linear
operators as in token classification. Here, program phases
allow ACROBAT to batch all these operators together as
described in §4.1. The StackRNN model executes differ-
ent tensor operators depending on the current parser action,
which involves a conditional statement. Ghost operators
therefore enable more optimal exploitation of parallelism
leading to better performance.

Gather operator fusion is advantageous for some bench-
marks and but not others. Such fusion leads to indirect
memory accesses which can cause a slowdown in the ker-
nel execution. While ACROBAT does hoist such loads out
of loops when appropriate, this is not always possible de-
pending on the schedule generated by the auto-scheduler.
Further, gather operator fusion leads to a slowdown mostly
in models with iterative execution and little instance paral-
lelism. As in DyNet, when gather operator fusion is turned
off, ACROBAT perform the explicit memory gather only
when the input tensors are not already contiguous in mem-
ory. This is more likely to the case in such iterative models,
thus blunting the advantages of gather operator fusion. Also,
in models such as Berxit, the relatively high tensor compu-
tation cost of a coarsened static block further reduces any
benefits gather operator fusion might provide.

Overall, models with a relatively lower amount of control
flow or a higher amount of tensor computations such as
Berxit or NestedRNN or models with the large size benefit
less from optimizations that reduce scheduling overheads.

!0The kernels used in the implementations with and without
standard kernel fusion were auto-scheduled for the same number
of auto-scheduler iterations.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

= No kernel fusion B +Std. kernel fusion B +Grain size coarsening M +Inline depth computation = +Program phases/Ghost ops

+Gather op fusion

R TreeLSTM MV-RNN BiRNN NestedRNN DRNN Berxit StackRNN
(2]
Q 20 20 100
SE » 5 100
ey 200
o C
€2
) 0 0 0 0 0 0
small large small large small large small large small large small large small large
Model Size

Figure 6. Benefits of different optimizations. The unfused executions of Berxit were killed due to out-of-memory errors.

8 RELATED WORK

Auto-Batching for Dynamic Control Flow: There has
been significant work on auto-batching techniques for dy-
namic computations. Beyond dynamic batching (which is
used in various forms in DyNet, TensorFlow Fold, Cavs,
Cortex and in ByteTransformer (Zhai et al., 2023) specif-
ically for transformer models), static program transforma-
tions (Bradbury & Fu, 2018; Agarwal, 2019; Agarwal &
Ganichev, 2019; Frostig et al., 2018; Radul et al., 2020)
have also been explored for auto-batching. Such techniques
are often unable to fully exploit all the available parallelism
in the program as noted in (Radul et al., 2020). ACRoO-
BAT builds on these past techniques and effectively uses
both static as well as dynamic analysis thus achieving lower
runtime overheads while exploiting all the available paral-
lelism. Online batching approaches for low latency RNN
inference such as BatchMaker (Gao et al., 2018) and E-
BATCH (Silfa et al., 2020) are complementary to ACRO-
BAT. (Qiao & Taura, 2019) proposes improvements to the
dynamic batching technique for back propagation, while ED-
Batch (Chen et al., 2023) proposes efficient approaches to
scheduling and memory planning for the dynamic batching.
These can be further improved with ACROBAT’s hybrid
optimizations. Further, while grain size coarsening has been
explored in past work, we use it statically in the context of
general purpose auto-batching framework.

Optimizing Dynamic DL. Computations: Beyond auto-
batching, there is a large body of work on optimizing the
execution of dynamic DL computations. Past work (Jeong
et al., 2019; Kim et al., 2021; Suhan et al., 2021) has ex-
plored the lazy creation of DFGs that can be optimized to
accelerate dynamic models. There has also been work (Dur-
vasula et al., 2024; Zheng et al., 2023) at better scheduling
and low-overhead execution tensor kernels to optimize for
the dynamic execution patterns of dynamic DL computa-
tions. Further SoD? (Niu et al., 2024) develops techniques
for optimizing dynamic computations including those with
dynamic shapes. These techniques, which do not perform
batching, are complementary to ACROBAT’s techniques.
While ACROBAT builds upon TVM, our techniques can
be implemented in other commonly used compiler frame-
works with expressive representations (PyTorch, 2020; Lat-
tner et al., 2020) in a straightforward manner.

The gather operator fusion optimization is similar to the

gather and scatter fusion (CUTLASS, 2022) performed for
sparse GEMM in the CUTLASS library though we perform
this optimization automatically as part of compilation. As
mentioned in §C.1, ACROBAT borrows some techniques
from DietCode for efficient code generation. DietCode’s
techniques are complementary to ours and it can be fully
integrated into ACROBAT for better kernel performance.

Traditional Compiler Techniques: ACROBAT uses com-
pilation techniques for programs written in general-purpose
languages. These include context-sensitivity (Aho et al.,
2007), taint analysis which is extensively used for security
purposes (Tripp et al., 2009; Huang et al., 2015), profile-
guided optimization (Chen et al., 2006; Gupta et al., 2002)
(as discussed in §C.1 of the appendix) and program phases,
which have been used to adaptively optimize systems for
different parts of a program for optimal performance (Huang
et al., 2001; Barnes et al., 2002). ACROBAT’s inline depth
computation and DFG scheduling more generally are simi-
lar to work on static and dynamic instruction scheduling for
pipelined and superscalar processors (Smith, 1989; Pono-
marev et al., 2001; Fisher, 1981; Gibbons & Muchnick,
1986). However, ACROBAT applies these techniques in the
context of a DL framework.

9 CONCLUSION

This paper presents ACROBAT, a compiler and runtime
framework that performs auto-batching of dynamic DL com-
putations. ACROBAT employs hybrid static+dynamic anal-
ysis to enable effective batching with low runtime overheads,
and end-to-end code generation to generate highly optimized
tensor kernels for efficient execution. While we evaluated
these techniques only for the case of batched inference, we
believe that they also apply to DL training. In the context of
the rising importance of dynamism in DL computations, we
believe that ACROBAT is an important step towards more
collaborative relationships between various components of
a DL framework such as the tensor compiler, the high-level
language compiler and the runtime.

ACKNOWLEDGMENTS

This work was supported in part by grants from the Na-
tional Science Foundation (award CNS-2211882), Oracle,
IBM, Qualcomm, DARPA (Real Time Machine Learning,

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

or RTML project) and by the Parallel Data Lab (PDL) Con-
sortium (Amazon, Facebook, Google, Hewlett-Packard En-
terprise, Hitachi, IBM, Intel, Microsoft, NetApp, Oracle,
Pure Storage, Salesforce, Samsung, Seagate, TwoSigma and
Western Digital). We would like to thank Saman Amaras-
inghe, Dominic Chen, Siyuan Chen, Stephen Chou, Chris
Fallin, Graham Neubig, Olatunji Ruwase and the Catalyst
Research Group at Carnegie Mellon University for their
valuable suggestions and feedback on our work.

REFERENCES

Agarwal, A. Static automatic batching in TensorFlow.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 92-101. PMLR, 09-15 Jun
2019. URL https://proceedings.mlr.press/
v97/agarwall9a.html.

Agarwal, A. and Ganichev, I. Auto-vectorizing tensorflow
graphs: Jacobians, auto-batching and beyond. CoRR,
abs/1903.04243, 2019. URL http://arxiv.org/
abs/1903.04243.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. Compil-
ers: principles, techniques, & tools. Pearson Education
India, 2007.

Aleen, F. and Clark, N. Commutativity analysis for soft-
ware parallelization: Letting program transformations
see the big picture. SIGARCH Comput. Archit. News,
37(1):241-252, mar 2009. ISSN 0163-5964. doi:
10.1145/2528521.1508273. URL https://doi.org/
10.1145/2528521.1508273.

Alvarez-Melis, D. and Jaakkola, T. Tree-structured decoding
with doubly-recurrent neural networks. In /CLR, 2017.

Barnes, R., Nystrom, E., Merten, M., and Hwu, W. Vacuum
packing: extracting hardware-detected program phases
for post-link optimization. In 35th Annual IEEE/ACM
International Symposium on Microarchitecture, 2002.
(MICRO-35). Proceedings., pp. 233-244, 2002. doi:
10.1109/MICRO.2002.1176253.

Boost. Boost.Fiber, 2022. URL https:
//www.boost.org/doc/1libs/1.79.0/1ibs/
fiber/doc/html/index.html. Last accessed July
1,2022.

Bradbury, J. and Fu, C. Automatic batching as a compiler
pass in pytorch. In Workshop on Systems for ML, 2018.

Buckman, J., Ballesteros, M., and Dyer, C. Transition-
based dependency parsing with heuristic backtracking. In

Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2313-2318,
Austin, Texas, November 2016. Association for Com-
putational Linguistics. URL https://aclweb.org/
anthology/D16-1254.

Chen, S., Fegade, P., Chen, T., Gibbons, P. B., and Mowry,
T. C. ED-batch: efficient automatic batching of dynamic
neural networks via learned finite state machines. In
Proceedings of the 40th International Conference on Ma-
chine Learning, ICML’23. JMLR.org, 2023.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E.,
Shen, H., Cowan, M., Wang, L., Hu, Y., Ceze, L.,
Guestrin, C., and Krishnamurthy, A. TVM: An automated
end-to-end optimizing compiler for deep learning. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pp. 578-594, Carlsbad,
CA, October 2018a. USENIX Association. ISBN 978-
1-939133-08-3. URL https://www.usenix.org/
conference/osdil8/presentation/chen.

Chen, W.-k., Bhansali, S., Chilimbi, T., Gao, X., and
Chuang, W. Profile-guided proactive garbage col-
lection for locality optimization. SIGPLAN Not.,
41(6):332-340, jun 2006. ISSN 0362-1340. doi:
10.1145/1133255.1134021. URL https://doi.org/
10.1145/1133255.1134021.

Chen, X., Qiu, X., Zhu, C., and Huang, X. Gated re-
cursive neural network for Chinese word segmentation.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 1744-1753,
Beijing, China, July 2015. Association for Computa-
tional Linguistics. doi: 10.3115/v1/P15-1168. URL
https://aclanthology.org/P15-1168.

Chen, X., Liu, C., and Song, D. Tree-to-tree neural networks
for program translation. CoRR, abs/1802.03691, 2018b.
URL http://arxiv.org/abs/1802.03691.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran,
J., Catanzaro, B., and Shelhamer, E. cuDNN: Efficient
primitives for deep learning. CoRR, abs/1410.0759, 2014.
URL http://arxiv.org/abs/1410.0759.

Cho, K., van Merrienboer, B., Giil¢cehre, C., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL
http://arxiv.org/abs/1406.1078.

Conneau, A., Rinott, R., Lample, G., Williams, A., Bowman,
S. R., Schwenk, H., and Stoyanov, V. XNLI: Evaluating
cross-lingual sentence representations. In Proceedings

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational
Linguistics, 2018.

CUTLASS. Gather and Scatter Fusion, 2022.
URL https://github.com/NVIDIA/
cutlass/tree/master/examples/

36_gather_scatter_fusion. Last accessed
July 25, 2022.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Drozdov, A., Verga, P., Yadav, M., Iyyer, M., and McCal-
lum, A. Unsupervised latent tree induction with deep
inside-outside recursive autoencoders. In North Ameri-
can Association for Computational Linguistics, 2019.

Durvasula, S., Zhao, A., Kiguru, R., Guan, Y., Chen, Z.,
and Vijaykumar, N. Acs: Concurrent kernel execution on
irregular, input-dependent computational graphs, 2024.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A.,
and Smith, N. A. Transition-based dependency pars-
ing with stack long short-term memory. CoRR,
abs/1505.08075, 2015. URL http://arxiv.org/
abs/1505.08075.

Elbayad, M., Gu, J., Grave, E., and Auli, M. Depth-adaptive
transformer. CoRR, abs/1910.10073, 2019. URL http:
//arxiv.org/abs/1910.10073.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity. CoRR, abs/2101.03961, 2021. URL
https://arxiv.org/abs/2101.03961.

Fegade, P., Chen, T., Gibbons, P., and Mowry, T.
Cortex: A compiler for recursive deep learning
models. In Smola, A., Dimakis, A., and Stoica, I.
(eds.), Proceedings of Machine Learning and Sys-
tems, volume 3, pp. 38-54, 2021. URL https://
proceedings.mlsys.org/paper/2021/file/
182belc5cdcd5072bbl864cdeedd3dbe—
Paper.pdf.

Fisher. Trace scheduling: A technique for global microcode
compaction. IEEFE Transactions on Computers, C-30(7):
478-490, 1981. doi: 10.1109/TC.1981.1675827.

Frostig, R., Johnson, M., and Leary, C. Compiling ma-
chine learning programs via high-level tracing. 2018.
URL https://mlsys.org/Conferences/doc/
2018/146.pdf.

Gao, P, Yu, L., Wu, Y., and Li, J. Low latency
rnn inference with cellular batching. In Proceed-
ings of the Thirteenth EuroSys Conference, EuroSys
’18, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450355841. doi:
10.1145/3190508.3190541. URL https://doi.org/
10.1145/3190508.3190541.

Gibbons, P. B. and Muchnick, S. S. Efficient instruction
scheduling for a pipelined architecture. In Proceedings of
the 1986 SIGPLAN symposium on Compiler construction,
pp. 11-16, 1986.

Girshick, R. B. Fast R-CNN. CoRR, abs/1504.08083, 2015.
URL http://arxiv.org/abs/1504.08083.

Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. Rich
feature hierarchies for accurate object detection and se-
mantic segmentation. CoRR, abs/1311.2524,2013. URL
http://arxiv.org/abs/1311.2524.

Gupta, R., Mehofer, E., and Zhang, Y. Profile guided com-
piler optimizations, 2002.

Hochreiter, S. and Schmidhuber, J. Long short-term
memory. Neural Comput., 9(8):1735-1780, Novem-
ber 1997. ISSN 0899-7667. doi: 10.1162/
neco.1997.9.8.1735. URL http://dx.doi.org/
10.1162/neco0.1997.9.8.1735.

Hogen, G., Kindler, A., and Loogen, R. Automatic par-
allelization of lazy functional programs. In Symposium
Proceedings on 4th European Symposium on Program-
ming, ESOP’92, pp. 254-268, Berlin, Heidelberg, 1992.
Springer-Verlag. ISBN 0387552537.

Huang, M., Renau, J., and Torrellas, J. Profile-based energy
reduction in high-performance processors. In 4th Work-
shop on Feedback-Directed and Dynamic Optimization
(FDDO-4), 2001.

Huang, W., Dong, Y., Milanova, A., and Dolby, J. Scalable
and precise taint analysis for Android. In Proceedings of
the 2015 International Symposium on Software Testing
and Analysis, pp. 106-117, 2015.

Intel. Intel oneAPI Deep Neural Network Library,
2022. URL https://www.intel.com/content/
www/us/en/developer/tools/oneapi/
onednn.html#gs.4je6v8. Last accessed July 1,
2022.

Jeong, E., Cho, S., Yu, G.-I., Jeong, J. S., Shin, D.-J., and
Chun, B.-G. JANUS: Fast and flexible deep learning via
symbolic graph execution of imperative programs. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pp. 453—468, Boston,

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

MA, February 2019. USENIX Association. ISBN 978-
1-931971-49-2. URL https://www.usenix.org/
conference/nsdil9/presentation/ jeong.

Kaya, Y. and Dumitras, T. How to stop off-the-shelf
deep neural networks from overthinking. CoRR,
abs/1810.07052, 2018. URL http://arxiv.org/
abs/1810.07052.

Kim, T., Jeong, E., Kim, G.-W., Koo, Y., Kim, S., Yu,
G., and Chun, B.-G. Terra: Imperative-symbolic
co-execution of imperative deep learning programs.
In Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P, and Vaughan, J. W. (eds.), Advances in
Neural Information Processing Systems, volume 34,

pp. 1468-1480. Curran Associates, Inc., 2021.
URL https://proceedings.neurips.cc/
paper/2021/file/

0b32fla%efeb5edf3dd2£38b0c0052bfe-
Paper.pdf.

Koehn, P. Pharaoh: a beam search decoder for phrase-based
statistical machine translation models. In Conference of
the Association for Machine Translation in the Americas,
pp- 115-124. Springer, 2004.

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis,
A., Pienaar, J., Riddle, R., Shpeisman, T., Vasilache,
N., and Zinenko, O. MLIR: A compiler infrastruc-
ture for the end of Moore’s law, 2020. URL https:
//arxiv.org/abs/2002.11054.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding, 2023.

Looks, M., Herreshoff, M., Hutchins, D., and Norvig, P.
Deep learning with dynamic computation graphs. CoRR,
abs/1702.02181, 2017. URL http://arxiv.org/
abs/1702.02181.

Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., and Chi, E. H.
Modeling task relationships in multi-task learning with
multi-gate mixture-of-experts. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1930-1939, 2018.

McCool, M., Robison, A. D., and Reinders, J. Chapter

8 - fork—join. In McCool, M., Robison, A. D., and
Reinders, J. (eds.), Structured Parallel Program-
ming, pp. 209-251. Morgan Kaufmann, Boston,

2012. ISBN 978-0-12-415993-8. doi: https:
//doi.org/10.1016/B978-0-12-415993-8.00008-6. URL
https://www.sciencedirect.com/science/
article/pii/B9780124159938000086.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Am-
mar, W., Anastasopoulos, A., Ballesteros, M., Chiang,

D., Clothiaux, D., Cohn, T., Duh, K., Faruqui, M., Gan,
C., Garrette, D., Ji, Y., Kong, L., Kuncoro, A., Kumar,
G., Malaviya, C., Michel, P., Oda, Y., Richardson, M.,
Saphra, N., Swayamdipta, S., and Yin, P. Dynet: The
dynamic neural network toolkit, 2017a.

Neubig, G., Goldberg, Y., and Dyer, C. On-the-fly operation
batching in dynamic computation graphs, 2017b.

Niu, W., Agrawal, G., and Ren, B. Sod2: Statically op-
timizing dynamic deep neural network. arXiv preprint
arXiv:2403.00176, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning
library. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F.,, Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32,
pp- 8024-8035. Curran Associates, Inc., 2019. URL
http://papers.neurips.cc/paper/9015-
pytorch—-an-imperative-style-high-
performance—-deep-learning-library.pdf.

Ponomarev, D., Kucuk, G., and Ghose, K. Reducing
power requirements of instruction scheduling through
dynamic allocation of multiple datapath resources. In
Proceedings. 34th ACM/IEEE International Symposium
on Microarchitecture. MICRO-34, pp. 90-101, 2001. doi:
10.1109/MICRO.2001.991108.

PyTorch. TorchScript, 2020. URL https://
pytorch.org/docs/stable/jit.html. Last ac-
cessed Sept 09, 2021.

PyTorch Community. Github issue number 42487:
Support recursive data type in TorchScript, 2020. URL
https://github.com/pytorch/pytorch/
issues/42487. Last accessed July 25, 2022.

Qiao, Y. and Taura, K. An automatic operation batching
strategy for the backward propagation of neural networks
having dynamic computation graphs, 2019. URL https:
//openreview.net/forum?id=SkxXwoOgqYm.

Radul, A., Patton, B., Maclaurin, D., Hoffman, M.,
and A. Saurous, R. Automatically batching control-
intensive programs for modern accelerators. In
Dhillon, I., Papailiopoulos, D., and Sze, V. (eds.),
Proceedings of Machine Learning and Systems,
volume 2, pp. 390-399. 2020. URL https://
proceedings.mlsys.org/paper/2020/file/
140£6969d5213fd0ece03148e62e46le—
Paper.pdf.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

Roesch, J., Lyubomirsky, S., Kirisame, M., Weber, L.,
Pollock, J., Vega, L., Jiang, Z., Chen, T., Moreau, T.,
and Tatlock, Z. Relay: A high-level compiler for deep
learning, 2019. URL https://arxiv.org/abs/
1904.08368.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533-536, 1986.

Schuster, M. and Paliwal, K. K. Bidirectional recurrent

neural networks. IEEFE transactions on Signal Processing,
45(11):2673-2681, 1997.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously large
neural networks: The sparsely-gated mixture-of-experts
layer. CoRR, abs/1701.06538, 2017. URL http://
arxiv.org/abs/1701.06538.

Sherwood, T., Sair, S., and Calder, B. Phase tracking and
prediction. ACM SIGARCH Computer Architecture News,
31(2):336-349, 2003.

Shuai, B., Zuo, Z., Wang, G., and Wang, B. Dag-
recurrent neural networks for scene labeling. CoRR,
abs/1509.00552, 2015. URL http://arxiv.org/
abs/1509.00552.

Silfa, F., Arnau, J., and Gonzélez, A. E-BATCH: energy-
efficient and high-throughput RNN batching. CoRR,
abs/2009.10656, 2020. URL https://arxiv.org/
abs/2009.10656.

Smith, J. Dynamic instruction scheduling and the as-
tronautics zs-1. Computer, 22(7):21-35, 1989. doi:
10.1109/2.30730.

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. Seman-
tic Compositionality Through Recursive Matrix-Vector
Spaces. In Proceedings of the 2012 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP),
2012.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D, Ng, A., and Potts, C. Recursive deep models
for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 1631—
1642, Seattle, Washington, USA, October 2013a. As-
sociation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/D13-1170.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C.D.,Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631-1642, 2013b.

Suhan, A., Libenzi, D., Zhang, A., Schuh, P., Saeta, B.,
Sohn, J. Y., and Shabalin, D. Lazytensor: combining
eager execution with domain-specific compilers. CoRR,
abs/2102.13267, 2021. URL https://arxiv.org/
abs/2102.13267.

Teerapittayanon, S., McDanel, B., and Kung, H. T.
Branchynet: Fast inference via early exiting from deep
neural networks. CoRR, abs/1709.01686, 2017. URL
http://arxiv.org/abs/1709.01686.

Tripp, O., Pistoia, M., Fink, S. J., Sridharan, M., and Weis-
man, O. Taj: Effective taint analysis of web applica-
tions. SIGPLAN Not., 44(6):87-97, jun 2009. ISSN 0362-
1340. doi: 10.1145/1543135.1542486. URL https:
//doi.org/10.1145/1543135.154248¢6.

Wiseman, S. and Rush, A. M. Sequence-to-
sequence learning as beam-search optimiza-
tion. CoRR, abs/1606.02960, 2016. URL

http://arxiv.org/abs/1606.02960.

Xin, J., Tang, R., Lee, J.,, Yu, Y, and Lin, J. Dee-
bert: Dynamic early exiting for accelerating BERT in-
ference. CoRR, abs/2004.12993, 2020. URL https:
//arxiv.org/abs/2004.12993.

Xin, J., Tang, R., Yu, Y., and Lin, J. Berxit: Early exiting for
bert with better fine-tuning and extension to regression.
In Proceedings of the 16th conference of the European
chapter of the association for computational linguistics:
Main Volume, pp. 91-104, 2021.

Xu, S., Zhang, H., Neubig, G., Dai, W., Kim, J. K,
Deng, Z., Ho, Q., Yang, G., and Xing, E. P. Cavs:
An efficient runtime system for dynamic neural net-
works. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 937-950, Boston, MA, July
2018. USENIX Association. ISBN 978-1-939133-01-4.
URL https://www.usenix.org/conference/
atcl8/presentation/xu-shizen.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. Graphrnn: A deep generative model for graphs. CoRR,
abs/1802.08773, 2018. URL http://arxiv.org/
abs/1802.08773.

Zha, S., Jiang, Z., Lin, H., and Zhang, Z. Just-in-time
dynamic-batching. CoRR, abs/1904.07421, 2019. URL
http://arxiv.org/abs/1904.07421.

Zhai, Y., Jiang, C., Wang, L., Jia, X., Zhang, S., Chen,
Z., Liu, X., and Zhu, Y. Bytetransformer: A high-
performance transformer boosted for variable-length in-
puts, 2023.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

Zheng, B., Jiang, Z., Yu, C. H., Shen, H., Fromm, J.,
Liu, Y., Wang, Y., Ceze, L., Chen, T., and Pekhimenko,
G. Dietcode: Automatic optimization for dynamic
tensor programs. In Marculescu, D., Chi, Y., and
Wu, C. (eds.), Proceedings of Machine Learning and
Systems, volume 4, pp. 848-863, 2022. URL https://
proceedings.mlsys.org/paper/2022/file/
fa7cdfadlabaaf8370ebedad7alfflc3-
Paper.pdf.

Zheng, B., Yu, C. H., Wang, J., Ding, Y., Liu, Y., Wang,
Y., and Pekhimenko, G. Grape: Practical and efficient
graphed execution for dynamic deep neural networks on
gpus. In Proceedings of the 56th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 23,
pp- 1364-1380, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400703294. doi:
10.1145/3613424.3614248. URL https://doi.org/
10.1145/3613424.3614248.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-
Ali, A., Wang, Y., Yang, J., Zhuo, D., Sen, K., Gon-
zalez, J. E., and Stoica, I. Ansor: Generating high-
performance tensor programs for deep learning. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pp. 863-879.
USENIX Association, November 2020. ISBN 978-
1-939133-19-9. URL https://www.usenix.org/
conference/o0sdi20/presentation/zheng.

A MORE DETAILS ON HYBRID
STATIC+DYNAMIC OPTIMIZATIONS

A.1 Operator Hoisting

Given a recursive computation, such as the @rnn function
in Listing 1, often certain tensor operators are not part of
the sequential dependency induced by the recursion. For
example, the linear transformation of the input on line 5
in Listing 1 can be hoisted out of the recursion. Instead of
relying on a runtime scheduling algoritm to identify this as
is done in past work, ACROBAT statically discovers such
operators that can be hoisted. We achieve this by relying
on a 1-context sensitive taint analysis to statically compute
depths of such operators. We see, in Listing 2, how the
invocation of the kernel bias_dense on line 5 is assigned
a statically computed depth of 0. During runtime, such op-
erators are thus effectively hoisted out of the recursion. For
the RNN example, this allows us to batch the linear transfor-
mations for all input word embeddings together rather than
execute them one at a time.

A.2 Grain Size Coarsening

Generally, scheduling is performed at the granularity of
individual tensor operators i.e. each node in the DFG cor-
responds to one tensor kernel call. We saw in §2.1, how
DL computations frequently contain larger static sub-graphs
embedded in the dynamic control flow. Therefore, AC-
ROBAT performs scheduling at the coarser granularity of
static sub-graphs, thus reducing scheduling overheads. As
these blocks do not contain any control flow, coarsening
the granularity this way does not lead to a loss of exploited
parallelism. This optimization has also been explored in
past work (Zha et al., 2019; Xu et al., 2018; Fegade et al.,
2021; Gao et al., 2018; Silfa et al., 2020) and is illustrated
in Fig. 8.

A.3 Combating Eagerness of Depth Scheduling

We saw in §4.1 how ACROBAT relies on ghost opera-
tions and program phases to combating eagerness of depth
scheduling. Below, we provide more detailed explanation
of the same.

Ghost Operators: In upper panes of Fig. 3, we see that
eager batching leads to a sub-optimal batching schedule
in the presence of a conditional statement. Specifically,
the instances of operator B for inputs Inpl and Inp2 are
batched eagerly and, more importantly, separately from the
instances of operator B for inputs Inp3 and Inp4. In the
lower panes, we insert a call to a ghost operator leading to
an optimal schedule. ACROBAT statically identifies such
cases and insert ghost operators as needed. Note that ghost
operators merely affect scheduling and are ignored during
kernel execution.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

‘Q Runtime stage Batch of DFG nodes

inputs_vec Input Unbatched Program

Tensor rnn(List<Tensor> inputs,

iExplicit memory gather operatorsi

Tensor bias, Tensor state) {
if (isNil(inputs)) return state;

Vendor Library Kernels

return rnn(inputs.tail, bias, // BS: Batch size
bias + inputs.head + state); } E _,| Agenda-/Depth- | add3_batched(BS, bias, input ptr,
. . .)) based Scheduling state ptr, 0_ptr):
void main(vector<List<Tensor>> inputs_vec, —_— = blockIdx.x // [0,BS]
Tensor bias, Tensor init) { i = threadIdx.x // [0,256]
for (inputs: inputs_vec) { Generated O _ptr[b, i] = bias[i] +
ron(inputs, bias, init); } DFG SCthgle input ptr[b, i] + state ptr[b, i]
Input Data ComputationGraph.TriggerExecution(): = -
Control flow decisions depend on tensor values for the case of tensor dependent control flow. | Ru nt| me

Figure 7. Overview of DyNet’s runtime pipeline. Note the lack of any static, or compile-time analyses as well as how DyNet relies on
explicit memory gather oprerations, leading to high data movement costs as we show in §7.

def @rnn(inputs,
match(inputs) {
Nil => Nil,
Cons(input, tail) => {
let input_transformed = b * nn.dense(input, iw)
let new_state = sigmoid(input_transformed + nn.dense(state, hweight))
Cons(new_state, @rnn(tail, new_state, iweight, hweight, bias)) }}}

state, iweight, hweight, bias) {

without gra ——— Batch of
D == nodes
pennanns Unit of
pannaes * scheduling

== Tensor kernel

Figure 8. Grain size coarsening for the @ rnn function in Listing 1.

Program Phases: For our RNN example in Listing 1, in
order to exploit the most parallelism for the output operator
on line 19, one should wait until all the operators invoked
in the @rnn functionhave been executed for all the input in-
stances. This way, all output operators corresponding to all
words in all input instances can be executed as one batched
kernel invocation. This would require that all these output
operators be assigned the same depth. However, this may
not be the case as the length of each input sentence may vary.
Semantically, we can divide the RNN computation into two
semantic stages—the initial recursive computations, and
the following output transformations. Given such program
phases, ACROBAT schedules and executes operators in one
phase before moving on to the next. This way, ACRoO-
BAT ensures that all the RNN functions are executed for all
input instances before moving on to the output operators.

B MORE DETAILS ON ACROBAT’S
TENSOR KERNEL GENERATION

B.1 Exploiting Data Reuse

Code Duplication for Better Data Reuse: Code reuse in
the input program can often prohibit the parameter reuse
mentioned above. Consider the following code listing,
where, similar to the RNN model implemented in Listing 1,
we implement a bidirectional RNN (BiRNN) (Schuster &
Paliwal, 1997) computation. Here, we invoke the same
@rnn function with different model parameters to imple-
ment the forward and backward RNNs. In this case, the
tensor operators invoked by the @rnn function will not be
statically determined to have any arguments constant across

[SII-I N NV R NI R

// Unbatched kernel
bias_add(input, bias, 0):
for i in 0:256:

// Statically batched kernel
bias_add(input, biasl, bias2, 01, 02):
for bs in 0:2

0[i1] = input[i] + bias[il] for i in 0:256:
(bg == 0 ? 01[i] : 02[i]) = input[i] +
// Relay Program (by == © ? biasl[i] : bias2[i])
let outl = invoke_kernel(
"bias_add", [input, biasl]) // Relay Program
let out2 = invoke_kernel(let outl, out2 = invoke_kernel(
"bias_add", [input, bias2]);i "bias_add", [input, biasl, bias2]):

Figure 9. Horizontal fusion promotes parameter reuse.

multiple calls, thereby precluding data reuse for the model
parameters. In order to remedy this, before generating the
batched kernels, ACROBAT recognizes such cases of data
reuse (again using a context-sensitive taint analysis) and
transitively duplicates the necessary functions to enable data
reuse later when generating the batched kernels!'. In the
case of the BiRNN example, for instance, ACROBAT will
transitively duplicate the @ rnn function (including the ten-
sor operators it invokes) and use a different copy of the
@rnn function for each of the two forward and backward
calls in the listing below.

city. x)

(* ota listing
def @main (f_r
b_rnn_bias,
inps_list) {

ed in the S or simp
_wt, f_rnn_h_wt, f_rnn_init,
b_rnn_i_wt, b_rnn_h_wt, b_rnn_init,

let rinps_list = @reverse_list (inps_list);
let forward_res = Crnn(inps_list, f_rnn_init,

f_rnn_bias, f_rnn_i_wt, f_rnn_h_wt);
let backward_res = Crnn(rinps_list, b_rnn_init,

b_rnn_bias, b_rnn_i_wt, b_rnn_h_wt);

Reuse Within Static Blocks: Given a tensor operator, the
analysis discussed above takes into account parameters
shared across calls made by different input instances in
the mini-batch. This usually applies to model parameters as
they are shared across multiple input instances. It is often
the case, however, that multiple calls to the same tensor
operator within the same static block share a parameter. For
example, this is the case in the commonly used LSTM cell,
where the computation of the four gates all involve concur-
rent linear transformations of the same input vector. In such
cases, ACROBAT horizontally fuses such calls in order to
exploit the parameter data reuse. This is illustrated in Fig. 9.

" Simply inlining the @ rnn function will not work here as it is
a recursive function.

ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time

C MORE IMPLEMENTATION DETAILS
C.1 Tensor Kernel Optimization

Below, we discuss how ACROBAT relies on TVM’s auto-
scheduler (Zheng et al., 2020) to automatically generate
optimized implementations of batched versions of (poten-
tially fused) tensor operators used in the input program.

Auto-scheduler Operator Priorities: Given a DL com-
putation consisting of a number of tensor operators, the
auto-scheduler prioritizes the optimization of tensor opera-
tors based on their relative estimated execution cost. Among
other factors, this estimated cost is proportional to the num-
ber of times the operator is invoked during the execution of
the input program. In order to accurately estimate this execu-
tion frequency for a given operator in the presence of control
flow (such as repetitive or conditional control flow), AC-
ROBAT relies on profile-guided optimization (PGO). When
PGO is not possible, ACROBAT also provides a simple
static analysis to heuristically perform this estimation based
on how deeply nested an operator call is in the recursion.

Handling Variable Loop Extents: Due to the dynamic
nature of ACROBAT’s scheduling, the loop correspond-
ing to the batch dimension in the generated unoptimized
batched kernels has a variable extent (kernel Q) in Fig. 1,
for example). In order to optimize these kernels, ACRO-
BAT auto-schedules a corresponding kernel with a static
loop extent for the batch dimension and automatically ap-
plies the generated schedule to the original kernel with the
variable extent. Further, when generating code for loops
with variable extents, we often have to insert conditional
checks in order to avoid out of bounds accesses. We rely
on the local padding and local partitioning techniques pro-
posed in DietCode (Zheng et al., 2022) to eliminate these
conditional checks when appropriate as they can be severely
detrimental to performance

C.2 Ahead-of-time Compilation

We saw in §6 that ACROBAT compiles the input Relay com-
putation to C++ in an ahead-of-time fashion. As part of this
compilation, ACROBAT lowers all dynamic control flow as
well as irregular data structures to native C++ control flow
and classes. Relay handles scalars by modeling them as
zero dimensional tensors. ACROBAT’s AOT compiler low-
ers such zero-dimensional tensors and common arithmetic
operators on them to native C++ scalars as well. We see,
in §7.2, that this AOT compilation significantly reduces the
execution overheads of dynamic control flow.

C.3 Other Details

As discussed in §6 of the main text, we prototype AC-
ROBAT by extending TVM. We find that TVM’s operator

Table 9. NestedRNN (small, batch size 8) execution times (with-
out/with PGO), illustrating the benefits of using PGO invocation
frequencies during auto-scheduling.
Auto-scheduler iters. ‘ 100 250 500 750 1000
Execution times (ms) | 41.08/42.49 34.58/30.88 31.61/24.4 27.33/23.72 25.63/24.34

fusion pass is limited and is often unable to fuse memory
copy operators such as tensor reshape, concatenation and
transpositions. Therefore, in our implementations of the
DL computations, we manually provide fusion hints to the
compiler to force the fusion of such operators with their
consumers. Further, our current prototype only supports the
functional subset of Relay. Specifically, side-effects via mu-
table references are currently not supported. ACROBAT’s
runtime system has been heavily optimized to reduce run-
time overheads. We use arena allocation (both on the CPU
as well as on the GPU) and asynchronous execution on the
GPU. We also batch memory transfer operations between
the CPU and GPU when possible to reduce the CUDA API
overheads.

D SUPPLEMENTARY EVALUATION AND
ADDITIONAL DETAILS

D.1 Benefit of PGO in Tensor Kernel
Auto-Scheduling

‘We mentioned in §C.1 that ACROBAT uses invocation fre-
quencies (obtained via PGO) to prioritize tensor operator
optimization during auto-scheduling. In order to evaluate
the benefit of this optimization, we look at the performance
of NestedRNN with and without the optimization. This
benchmark computation executes 30 iterations of the inner
RNN loop per iteration of the outer GRU loop on an av-
erage. Therefore, the operators invoked in the RNN loop
affect the performance of the benchmark much more than
those invoked in the GRU loop. Table 9 shows the execution
times of the benchmark with and without PGO for different
iterations of the auto-scheduler'? which shows how AC-
ROBAT can better prioritize auto-scheduling for the RNN
operators with PGO turned on.

2Due to the inherent randomness in the auto-scheduling process,
the given execution times are averaged over 10 runs of the auto-
scheduler each.

