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ABSTRACT

Dynamic control flow is an important technique often used to design expressive and efficient deep learning compu-

tations for applications such as text parsing, machine translation, exiting early out of deep models and so on. The

control flow divergence resulting from dynamic control flow makes batching, an important optimization enabling

high throughput and hardware utilization, difficult to perform manually. In this paper, we present ACROBAT,

a framework that enables efficient automatic batching for dynamic deep learning computations by performing

hybrid static+dynamic compiler optimizations and end-to-end tensor code generation. ACROBAT performs up to

8.5× better than DyNet, a state-of-the-art framework for automatic batching, on an Nvidia GeForce GPU.

.

1 INTRODUCTION

Deep Learning (DL) has come to play an increasing role

in a wide range of applications in the recent years. As

their applications have become more and more complex, DL

models themselves have increased in size and complexity.

For inference serving as well as for training, these models

place extreme demands on DL systems and hardware today.

An important source of complexity in DL computations

is the use of dynamic control flow as part of execution.

Unlike a static feed-forward model computation, the exe-

cution of a computation with dynamic control flow, or a

dynamic computation can differ across different inputs to

the model. Among other applications, this property has

been used effectively to (1) model structured data such as

parse trees (Socher et al., 2013a; 2012) and images (Shuai

et al., 2015), (2) perform better quality machine translations

and text parsing by employing beam search (Wiseman &

Rush, 2016; Koehn, 2004; Buckman et al., 2016), and (3)

exit early out of convolutional (Kaya & Dumitras, 2018;

Teerapittayanon et al., 2017) and transformer (Xin et al.,

2020; Elbayad et al., 2019) models for reduced inference

latency. The adaptability afforded by dynamic control flow

is thus useful in a variety of situations.

Batching is an important optimization that improves the

throughput and hardware utilization during training and in-
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ference of a DL model. While straightforward for static

DL computations, the presence of control flow divergence

in dynamic computations makes manual batching difficult

and error-prone. Thus, there has been significant past ef-

fort on performing automatic batching, or auto-batching,

for dynamic DL computations. In order to handle the lack

of execution knowledge of a dynamic computation during

compilation, past works usually either (1) heavily rely on

dynamic analyses, enabling them to handle general dynamic

control flow (Neubig et al., 2017b; Looks et al., 2017), or (2)

are specialized for specific control flow patterns or models,

thus relying more on static analyses (Xu et al., 2018; Fegade

et al., 2021). The former frameworks often incur high execu-

tion overheads caused by dynamic analysis, while the latter

ones lack the generality to support the wide range of existing

and future control flow patterns in DL computations.

Further, past work often heavily relies on vendor libraries

such as cuDNN (Chetlur et al., 2014) and oneAPI (Intel,

2022). However, as implementing vendor libraries is an

intensive process, they usually only implement commonly

used, standard tensor operators. Further, as these kernels are

optimized in isolation, without any contextual knowledge

about the larger application they are used in, important opti-

mizations such as kernel fusion can no longer be performed.

In order to overcome these limitations of past work, we

propose ACROBAT
1, an auto-batching framework for dy-

namic DL computations which relies on novel hybrid

static+dynamic optimizations and end-to-end tensor ker-

nel compilation. Our main insight in designing ACRO-

BAT is that despite the lack of perfect execution knowledge

during compilation for dynamic models, the compiler can

1Automated Compiler and Runtime-optimized Batching
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Table 1. Comparison between ACROBAT and other solutions for

auto-batching dynamic DL computations. Purely static or dynamic

approaches can be overly conservative, or have high overheads

respectively, unlike ACROBAT’s hybrid analysis.

Framework PyTorch DyNet Cortex TFFold ACROBAT

Auto-batch support No Yes Yes Yes Yes
Auto-batch analysis - Dyn. only Static only Dyn. only Hybrid
Vendor library use High High None High None

Generality High High Low Mid High
User impl. effort Low Low High Low Low

Performance Low Low High Low High

often perform static analysis and optimizations to aid the

dynamic analysis. This reduces execution overheads while

effectively exploiting parallelism in the input computation.

ACROBAT relies on traditional compiler techniques such

as context-sensitivity (Aho et al., 2007) and taint analysis

as well as on minimal user annotations to enable such static

analysis. Further, ACROBAT’s end-to-end tensor kernel

generation enables it to automatically generate kernels opti-

mized and specialized to the larger computation again using

static analysis to identify and exploit data reuse opportuni-

ties (as we see in §5). ACROBAT’s generality allows one to

express a wide variety of control flow patterns, ranging from

simple conditional statements to complex recursive compu-

tations using a simple high-level language. Table 1 provides

a qualitative comparison of ACROBAT with related work.

In short, this paper makes the following contributions:

1. We survey and characterize the dynamic control flow

structures found in different DL computations.

2. Employing novel hybrid static+dynamic optimizations

and automated end-to-end kernel code generation, we

design ACROBAT, an auto-batching framework for dy-

namic computations. This design allows us to reduce

execution overheads and to generate efficient tensor ker-

nels that effectively exploit data reuse opportunities. In

developing these optimizations, we heavily rely on tradi-

tional compilation techniques.

3. We prototype ACROBAT, evaluate it against state-of-the-

art deep learning frameworks (Xu et al., 2018; Neubig

et al., 2017a; Paszke et al., 2019) and report significant

performance gains on Nvidia GPUs.

2 BACKGROUND

2.1 Dynamic Control Flow in DL computations

In this section, we take a look at the different kinds of con-

trol flow dynamism present in various DL computations

in the context of the auto-batching problem. This will in-

form how we design a system to exploit parallelism across

tensor operators in the batched execution of dynamic DL

computation.

Note that given a computation involving control flow, there

are often multiple ways to implement it. We consider the

Table 2. Control flow properties found in DL computations. Leg-

end: ITE: iterative control flow, REC: recursive control flow, TDC:

model exhibits tensor-dependent control flow (where control flow

decisions are predicated on values on intermediate tensors), IP:

computation exhibits high instance parallelism, ICF: model infer-

ence exhibits control flow, TCF: model training exhibits control

flow.

Deep Learning Computations ITE REC TDC IP ICF TCF

RNN (Rumelhart et al., 1986), LSTM (Hochreiter

& Schmidhuber, 1997), GRU (Cho et al., 2014),

GraphRNN (You et al., 2018)

Speculative decoding for transformers (Leviathan

et al., 2023)

DIORA (Drozdov et al., 2019), Chinese Segmenta-

tion (Chen et al., 2015)

DAG-RNN (Shuai et al., 2015), TreeL-

STM (Socher et al., 2013a), MV-RNN (Socher

et al., 2012)

StackLSTM (Dyer et al., 2015)

Beam search (Wiseman & Rush, 2016) with LSTM

Mixture-of-experts (Shazeer et al., 2017; Ma et al.,

2018; Fedus et al., 2021)

Early exit models (Kaya & Dumitras, 2018; Teer-

apittayanon et al., 2017; Elbayad et al., 2019)

Tree-to-tree NN (Chen et al., 2018b), Doubly Re-

current NN (Alvarez-Melis & Jaakkola, 2017)

R-CNN (Girshick et al., 2013), Fast R-CNN (Gir-

shick, 2015)

most natural way to implement a given computation. For

example, a top-down tree traversal can be implemented as a

breadth-first traversal (BFS) or a depth-first traversal (DFS).

While a BFS traversal can be more efficient, the DFS-based

traversal is more natural to implement. The discussion

below is also summarized in Table 2.

Control Flow Surrounding Static Sub-Graphs: We ob-

serve that for most DL computations exhibiting control flow

dynamism, the dynamic control flow surrounds tensor com-

putations. Consider the simple sequential RNN model im-

plemented by the @rnn function shown in Listing 1. Here,

we see that the sequential control flow surrounds an RNN

cell on lines 5 and 6, which is a static sub-graph of tensor

computations with no intervening control flow.

Tensor-Dependent Control Flow: Control flow decisions

often depend on the values of intermediate tensors in DL

computations. Examples of such models and computa-

tions include beam search in machine translation, StackL-

STMs (Dyer et al., 2015), Tree-to-Tree neural networks

(T2TNN) (Chen et al., 2018b), models with early ex-

its (Kaya & Dumitras, 2018; Teerapittayanon et al., 2017;

Xin et al., 2020; Elbayad et al., 2019) and Mixture-of-

Experts (Shazeer et al., 2017; Ma et al., 2018; Fedus et al.,

2021). Meanwhile, in models such as TreeLSTM (Socher

et al., 2013a), DAG-RNN, sequential RNNs and their vari-

ants, control flow only depends on the inputs and not on

intermediate tensors.

Repetitive Control Flow: We say that a model exhibits

repetitive control flow if it can be expressed as an iterative or

recursive computation. This includes iterative models such
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as RNNs and their variants (LSTM and GRU (Cho et al.,

2014) for example) and StackLSTMs, and recursive models

such as TreeLSTM, Tree-to-Tree neural networks and DAG-

RNNs (Shuai et al., 2015). On the other hand, Mixture-

of-Experts and early exit models do not exhibit repetitive

control flow. Such models contain conditional execution in

an otherwise static feed-forward network. Repetitive control

flow can often also be nested. The GraphRNN model, for

example, executes two RNNs, one nested inside the other.

Similarly, the DRNN model, which is used for top-down

recursive tree generation, involves iterative generation of

children for a given tree node.

The presence of recursive, as opposed to iterative control

flow, can often complicate static analysis as parallelism is

more easily exploited with the latter. We see in §4.2 how

exploiting parallelism across recursive calls at runtime, for

example, can require the multiple concurrent execution con-

texts, similar to the fork-join parallelism paradigm (McCool

et al., 2012).

Control-Flow in Training and Inference: We see, in Ta-

ble 2, that the computation for a lot of the models involve

dynamic control flow during both training as well as infer-

ence. This is however, not the case for models with early

exits, where during training, we often wish to train all the

exit branches rather than evaluating one, as is the case dur-

ing inference. Further, search procedures such as beam

search are often used only during inference and hence the

underlying model may not exhibit dynamism during training

(unless the model computation itself involves dynamism, as

in the case of RNN models, for example).

Control Flow Parallelism: Dynamic control flow can lead

to parallelism in a DL computation. Such a computation

may exhibit (1) Batch Parallelism that exists across differ-

ent input instances in the mini-batch, and/or (2) Instance

Parallelism which refers to the parallelism that arises due to

dynamic control flow dependences, such as recursive paral-

lelism. The amount of such parallelism differs widely across

computations. Recursive models, often (though not always)

have significant parallelism across different recursive calls.

Correspondingly, iterative computations may contain loops

that can be executed concurrently. An example is the call

to the @map function call in the RNN implementation in

Listing 1.

2.2 Dynamic Batching

ACROBAT builds upon dynamic batching (Looks et al.,

2017; Neubig et al., 2017b), a prior technique to perform

auto-batching in the presence of dynamic control flow.

Given a mini-batch of input instances, dynamic batching

involves lazily executing the model computation for each

input instance while building dataflow graphs (DFGs) of

tensor operators for each instance in the background. The

execution of these DFGs is triggered when the value of

a particular tensor is requested (when the model contains

tensor-dependent control flow, for example). During this

execution, the runtime can identify batching opportunities

within the DFGs and launch batched kernels appropriately.

3 ACROBAT: OVERVIEW AND API

Control flow dynamism necessitates reliance on potentially

expensive runtime analysis for auto-batching. In ACROBAT,

we observe that aggressive static analysis often provides suf-

ficient information to reduce the overheads of such analyses.

Such analyses further enable us to generate specialized and

more efficient tensor kernels in an end-to-end manner.

1 def @rnn(inps, state, bias, i_wt, h_wt) {

2 match(inps) {

3 Nil => Nil,

4 Cons(inp, tail) => {

5 let inp_linear = bias + nn.dense(inp, i_wt);

6 let new_state = sigmoid(inp_linear + nn.dense(state, h_w));

7 Cons(new_state, @rnn(tail, new_state, bias, i_w, h_w))

8 }}}

9

10 def @main(rnn_bias: Tensor[(1, 256)], rnn_i_wt: Tensor[(256, 256)],

11 rnn_h_wt: Tensor[(256, 256)], rnn_init: Tensor[(1, 256)],

12 c_wt: Tensor[(16, 512)], cbias: Tensor[(1, 16)],

13 inps: List[Tensor[(1, 256)]]) {

14 (* Recursive computation stage (program phase 1) *)

15 let rnn_res =

16 @rnn(inps, rnn_init, rnn_bias, rnn_i_wt, rnn_h_wt);

17 (* Output transformations stage (program phase 2) *)

18 @map(fn(p: Tensor[(1, 256)]) {

19 nn.relu(cbias + nn.dense(p, c_wt))

20 }, rnn_res) }

Listing 1. A simple RNN model expressed in a functional language

(here, Relay (Roesch et al., 2019) is used for illustration) as an

input to ACROBAT.

We will now look at ACROBAT’s compilation and execu-

tion workflows (illustrated in Fig. 1) that make use of the

above insights. ACROBAT has been designed to take an

unbatched DL computation expressed in a simple Turing-

complete functional language as an input. This enables

ACROBAT users to easily express models with dynamic

control flow, such as the ones discussed in §2.1. For ex-

ample, Listing 1 illustrates a simple RNN model which

ACROBAT can take as an input.

Given an input computation 1 , compilation in ACRO-

BAT begins with batched kernel generation 2 . Here, AC-

ROBAT performs novel static analysis (§5.1) to identify data

reuse opportunities and accordingly generates batched ker-

nels 3 implementing the tensor operators used in the input

program. Further, gather operator fusion (§5.2) enables us

to generate specialized kernels that minimize data move-

ment. These unoptimized kernels are then optimized by an

auto-scheduler 4 . Once optimized, target code 10 such

as CUDA C++ can be generated for the batched kernels.

Concurrently, the input program is further optimized and

compiled 5 in an ahead-of-time (AOT) fashion to generate

C++ code 7 . As part of this compilation, ACROBAT gen-

erates code to (1) enable low overhead scheduling via our
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Table 5. DyNet vs. ACROBAT: Inference latencies (DyNet/ACROBAT) in ms and speedups. The DyNet implementation of the Berxit

model was killed due to out-of-memory errors for a batch size of 64.

Hidden

Size

Batch

Size

TreeLSTM MV-RNN BiRNN NestedRNN DRNN Berxit StackRNN

Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup

small 8 4.31/1.48 2.93 2.11/0.54 3.96 3.13/2.16 1.45 29.38/31.01 0.95 6.7/1.74 3.87 63.54/38.49 1.66 47.78/22.69 2.11

small 64 26.18/5.81 4.51 12.45/1.48 8.47 12.04/4.86 2.49 84.55/65.73 1.29 25.3/5.24 4.84 -/204.54 - 213.98/39.06 5.48

large 8 4.58/2.4 1.92 2.27/1.04 2.19 3.95/4.43 0.9 46.03/35.61 1.3 8.44/2.45 3.45 113.18/64.49 1.76 64.67/43.75 1.48

large 64 26.53/11.44 2.33 13.89/4.46 3.13 12.11/13.11 0.93 94.97/100.17 0.95 26.5/9.99 2.66 -/335.3 - 230.74/86.82 2.66

Table 6. Time spent (ms) in various activities1 for DyNet and

ACROBAT for batch size 64.

Activity
TreeLSTM, small BiRNN, large

DyNet ACROBAT DyNet ACROBAT

DFG construction 8.8 1.5 4.5 1.0
Scheduling 9.7 0.4 3.3 0.4

Memory copy time 3.1 0.1 2.3 0.2

GPU kernel time2 6.1 4.0 6.6 11.2
#Kernel calls 1653 183 580 380

CUDA API time3 16.5 3.9 12.0 11.1

1 The timings reported correspond to multiple runs, and were obtained using man-

ual instrumentation and profiling using Nvidia Nsight Systems. Due to profiling

overheads, the execution times may not match the ones in Table 5.
2 Includes memory copy kernels.
3 Includes calls cudaMemcpy, cudaMemcpyAsync and all kernels.

shown in Table 58. ACROBAT performs better than DyNet

in most cases due to a number of reasons. Table 6 lists the

time spent by the frameworks for different runtime activities

for the TreeLSTM model. We see that ACROBAT’s opti-

mizations such as static kernel fusion and grain size coars-

ening reduce the number of tensor kernels invoked, thereby

significantly reducing DFG construction and scheduling

overheads. Further, inline depth computation allows ACRO-

BAT to exploit available parallelism with lower overheads.

Optimizations such as static kernel fusion and gather opera-

tor fusion enable ACROBAT to launch fewer GPU kernels,

further reducing the time spent in the CUDA API. We look

at the benefits of each of ACROBAT’s optimizations in more

detail in §7.4.

While, overall, ACROBAT performs 2.3× better than DyNet

across all model configurations, DyNet performs slightly

better than ACROBAT for some configurations of the

BiRNN and NestedRNN models. For the former, Table 6

shows that while ACROBAT incurs lower runtime over-

heads for DFG construction, scheduling and memory trans-

fer, it spends a higher amount of time in kernel execution

compared to DyNet. We believe that better tensor kernel

optimizations can help reduce this performance gap.

Beyond the above reasons, ACROBAT performs better on

specific benchmarks for the reasons discussed next.

Accurate parameter reuse inference and automated

batched kernel generation: As mentioned in §5.1, AC-

ROBAT’s use of static analysis for inferring parameter reuse

allows it to have accurate knowledge to statically gener-

ate the appropriate batched kernels. On the other hand,

DyNet’s heuristic-based approach is unable to batch in-

8We consider the best of the two scheduling schemes DyNet
implements (Neubig et al., 2017b) for each model configuration.

Table 7. Model execution times in ms after the improvements de-

scribed in §7.3 were made for the TreeLSTM, MV-RNN and

DRNN models. DN, DN++ and AB stand for DyNet, DyNet

with improvements and ACROBAT respectively.

Model

Size

Batch

Size

TreeLSTM MV-RNN DRNN

DN DN++ AB DN DN++ AB DN DN++ AB

small 8 4.31 3.8 1.48 2.11 1.05 0.54 6.7 3.29 1.74

small 64 26.18 22.69 5.81 12.45 3.15 1.48 25.3 18.51 5.24

large 8 4.58 4.14 2.4 2.27 1.83 1.04 8.44 3.82 2.45

large 64 26.53 24.09 11.44 13.89 10.47 4.46 26.5 18.86 9.99

stances of certain operators, forcing sequential unbatched

execution which leads to low performance. For instance,

DyNet heuristically batches multiple instances of the matrix

multiplication operator only when the first argument of all

the instances is the same tensor. This usually works as the

first argument is often a model parameter, usually as part

of a linear transformation. Our DyNet implementation of

the MV-RNN model, however, multiplies two intermediate

tensor activations together, as a result of which DyNet is

unable to batch instances of this operator, forcing sequential

unbatched execution. When we modify DyNet’s heuristic

for matrix multiplication, its performance improves signifi-

cantly as shown in Table 7.

Further, as described in §5, ACROBAT’s end-to-end kernel

generation leads to a broader coverage over tensor operators

for which batching is supported as compared to approaches

such as DyNet which rely on vendor libraries. As a re-

sult, DyNet does not support batching for certain operators,

again leading to sequential execution and low performance.

Specifically, DyNet does not support batched execution for

the argmax operator, which the StackRNN model uses in

order to determine the next parser action in every iteration

based on the result of the embedded RNN cell. Similarly,

the element-wise multiplication operator, used in the DRNN

model, is executed in an unbatched manner when broad-

casting needs to be performed. On the other hand, ACRO-

BAT automatically generates optimized batched implemen-

tations of these tensor operators. We also find that DyNet is

unable to batch calls to the operator that constructs constant

tensors. We use this operator to initialize the hidden states

of tree leaves in the TreeLSTM model. ACROBAT, on the

other hand, statically recognizes that a constant tensor can

be reused and thereby only creates the tensor once. The

performance of the TreeLSTM model improves when we

exploit this reuse manually in DyNet, as Table 7 shows.
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Table 8. Cortex vs. ACROBAT: Inference latencies in ms. Note

that unlike ACROBAT, Cortex is limited to recursive computations,

and does not support the other models in Table 3. Further, Cortex

places a high development burden on its users by relying on manual

kernel optimization.

Hidden

Size

Batch

Size

TreeLSTM MV-RNN BiRNN

Cortex ACROBAT Cortex ACROBAT Cortex ACROBAT

small 8 0.79 1.48 1.14 0.54 1.28 2.16

small 64 3.62 5.81 6.92 1.48 3.48 4.86

large 8 1.84 2.4 5.3 1.04 2.47 4.43

large 64 10.23 11.44 41.15 4.46 10.74 13.11

Automated code generation for handling tensor depen-

dent control flow: The DRNN model constructs a tree

from an input vector representation in a top-down recursive

manner. It exhibits both tensor-dependent control flow as

well as instance parallelism (multiple subtrees can be gener-

ated concurrently). We saw how ACROBAT can automati-

cally exploit instance parallelism in the presence of tensor-

dependent control flow with the use of fibers in §4.2. On

the other hand, DyNet is unable to exploit this parallelism

and therefore ACROBAT’s performance on this model is

significantly better than that of DyNet. Table 7 also shows

the performance improvement obtained in DyNet for the

DRNN model when the instance parallelism exhibited by

the model computation is manually exploited as detailed

above.

Performance Comparison with Cortex

Table 8 compares the performance of ACROBAT with that

of Cortex for the TreeLSTM, MV-RNN and the BiRNN

models. Note that this is not an apples-to-apples comparison

because, Cortex, being specialized for recursive computa-

tions, does not support general control flow (as is present in

the other models in Table 3) unlike ACROBAT as mentioned

in Table 1. Further, Cortex places a high development bur-

den on users who are required to manually optimize and tune

their models for specific hardware, unlike ACROBAT’s au-

tomatic kernel generation9. Similarly, while ACROBAT can

automatically hoist the input linear transformations out of

the recursive computation in the TreeLSTM and BiRNN

models (as described in §A.1), they need to be manually

hoisted and offloaded to cuBLAS in the case of Cortex.

Being highly specialized for recursive computations, Cortex

is able to exploit aggressive kernel fusion, model persistence

and incur low kernel call overheads, thus performing up to

1.87× better than ACROBAT for the TreeLSTM and BiRNN

models. However, note that Cortex performs much worse

than ACROBAT on the MV-RNN model. This is because

Cortex’s restrictive API necessitates additional copies of the

embedding vectors for the leaves of the input parse trees,

which ACROBAT can avoid due to its more flexible inter-

9For example, implementing the MV-RNN model in Cortex
requires 325 LoC in Python, as compared to the 79 LoC of Relay
and 108 LoC of Python in ACROBAT.

face. Overall, ACROBAT delivers performance comparable

to that of Cortex, while supporting a much wider range of

DL computations with much lesser developer effort.

7.4 Benefits of Optimizations

We now evaluate the relative benefits of the different opti-

mizations ACROBAT performs. Fig. 6 shows the execution

times for the models in Table 3 (at a batch size of 64) as

we progressively perform optimizations. Standard kernel

fusion (i.e. kernel fusion not including gather operator fu-

sion as discussed in §5.2) provides significant benefits for

all models10. Grain size coarsening and inline depth com-

putation, both of which reduce scheduling overheads, are

most beneficial for models with a relatively high amount of

control flow such as TreeLSTM and MV-RNN. Further, in

the case of the DRNN model, inline depth computation also

enables ACROBAT to exploit the instance parallelism in-

herent in the computation (§4.2) leading to lower execution

time. The BiRNN model involves per-token output linear

operators as in token classification. Here, program phases

allow ACROBAT to batch all these operators together as

described in §4.1. The StackRNN model executes differ-

ent tensor operators depending on the current parser action,

which involves a conditional statement. Ghost operators

therefore enable more optimal exploitation of parallelism

leading to better performance.

Gather operator fusion is advantageous for some bench-

marks and but not others. Such fusion leads to indirect

memory accesses which can cause a slowdown in the ker-

nel execution. While ACROBAT does hoist such loads out

of loops when appropriate, this is not always possible de-

pending on the schedule generated by the auto-scheduler.

Further, gather operator fusion leads to a slowdown mostly

in models with iterative execution and little instance paral-

lelism. As in DyNet, when gather operator fusion is turned

off, ACROBAT perform the explicit memory gather only

when the input tensors are not already contiguous in mem-

ory. This is more likely to the case in such iterative models,

thus blunting the advantages of gather operator fusion. Also,

in models such as Berxit, the relatively high tensor compu-

tation cost of a coarsened static block further reduces any

benefits gather operator fusion might provide.

Overall, models with a relatively lower amount of control

flow or a higher amount of tensor computations such as

Berxit or NestedRNN or models with the large size benefit

less from optimizations that reduce scheduling overheads.

10The kernels used in the implementations with and without
standard kernel fusion were auto-scheduled for the same number
of auto-scheduler iterations.
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A MORE DETAILS ON HYBRID

STATIC+DYNAMIC OPTIMIZATIONS

A.1 Operator Hoisting

Given a recursive computation, such as the @rnn function

in Listing 1, often certain tensor operators are not part of

the sequential dependency induced by the recursion. For

example, the linear transformation of the input on line 5

in Listing 1 can be hoisted out of the recursion. Instead of

relying on a runtime scheduling algoritm to identify this as

is done in past work, ACROBAT statically discovers such

operators that can be hoisted. We achieve this by relying

on a 1-context sensitive taint analysis to statically compute

depths of such operators. We see, in Listing 2, how the

invocation of the kernel bias dense on line 5 is assigned

a statically computed depth of 0. During runtime, such op-

erators are thus effectively hoisted out of the recursion. For

the RNN example, this allows us to batch the linear transfor-

mations for all input word embeddings together rather than

execute them one at a time.

A.2 Grain Size Coarsening

Generally, scheduling is performed at the granularity of

individual tensor operators i.e. each node in the DFG cor-

responds to one tensor kernel call. We saw in §2.1, how

DL computations frequently contain larger static sub-graphs

embedded in the dynamic control flow. Therefore, AC-

ROBAT performs scheduling at the coarser granularity of

static sub-graphs, thus reducing scheduling overheads. As

these blocks do not contain any control flow, coarsening

the granularity this way does not lead to a loss of exploited

parallelism. This optimization has also been explored in

past work (Zha et al., 2019; Xu et al., 2018; Fegade et al.,

2021; Gao et al., 2018; Silfa et al., 2020) and is illustrated

in Fig. 8.

A.3 Combating Eagerness of Depth Scheduling

We saw in §4.1 how ACROBAT relies on ghost opera-

tions and program phases to combating eagerness of depth

scheduling. Below, we provide more detailed explanation

of the same.

Ghost Operators: In upper panes of Fig. 3, we see that

eager batching leads to a sub-optimal batching schedule

in the presence of a conditional statement. Specifically,

the instances of operator B for inputs Inp1 and Inp2 are

batched eagerly and, more importantly, separately from the

instances of operator B for inputs Inp3 and Inp4. In the

lower panes, we insert a call to a ghost operator leading to

an optimal schedule. ACROBAT statically identifies such

cases and insert ghost operators as needed. Note that ghost

operators merely affect scheduling and are ignored during

kernel execution.
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C MORE IMPLEMENTATION DETAILS

C.1 Tensor Kernel Optimization

Below, we discuss how ACROBAT relies on TVM’s auto-

scheduler (Zheng et al., 2020) to automatically generate

optimized implementations of batched versions of (poten-

tially fused) tensor operators used in the input program.

Auto-scheduler Operator Priorities: Given a DL com-

putation consisting of a number of tensor operators, the

auto-scheduler prioritizes the optimization of tensor opera-

tors based on their relative estimated execution cost. Among

other factors, this estimated cost is proportional to the num-

ber of times the operator is invoked during the execution of

the input program. In order to accurately estimate this execu-

tion frequency for a given operator in the presence of control

flow (such as repetitive or conditional control flow), AC-

ROBAT relies on profile-guided optimization (PGO). When

PGO is not possible, ACROBAT also provides a simple

static analysis to heuristically perform this estimation based

on how deeply nested an operator call is in the recursion.

Handling Variable Loop Extents: Due to the dynamic

nature of ACROBAT’s scheduling, the loop correspond-

ing to the batch dimension in the generated unoptimized

batched kernels has a variable extent (kernel 3 in Fig. 1,

for example). In order to optimize these kernels, ACRO-

BAT auto-schedules a corresponding kernel with a static

loop extent for the batch dimension and automatically ap-

plies the generated schedule to the original kernel with the

variable extent. Further, when generating code for loops

with variable extents, we often have to insert conditional

checks in order to avoid out of bounds accesses. We rely

on the local padding and local partitioning techniques pro-

posed in DietCode (Zheng et al., 2022) to eliminate these

conditional checks when appropriate as they can be severely

detrimental to performance

C.2 Ahead-of-time Compilation

We saw in §6 that ACROBAT compiles the input Relay com-

putation to C++ in an ahead-of-time fashion. As part of this

compilation, ACROBAT lowers all dynamic control flow as

well as irregular data structures to native C++ control flow

and classes. Relay handles scalars by modeling them as

zero dimensional tensors. ACROBAT’s AOT compiler low-

ers such zero-dimensional tensors and common arithmetic

operators on them to native C++ scalars as well. We see,

in §7.2, that this AOT compilation significantly reduces the

execution overheads of dynamic control flow.

C.3 Other Details

As discussed in §6 of the main text, we prototype AC-

ROBAT by extending TVM. We find that TVM’s operator

Table 9. NestedRNN (small, batch size 8) execution times (with-

out/with PGO), illustrating the benefits of using PGO invocation

frequencies during auto-scheduling.

Auto-scheduler iters. 100 250 500 750 1000

Execution times (ms) 41.08/42.49 34.58/30.88 31.61/24.4 27.33/23.72 25.63/24.34

fusion pass is limited and is often unable to fuse memory

copy operators such as tensor reshape, concatenation and

transpositions. Therefore, in our implementations of the

DL computations, we manually provide fusion hints to the

compiler to force the fusion of such operators with their

consumers. Further, our current prototype only supports the

functional subset of Relay. Specifically, side-effects via mu-

table references are currently not supported. ACROBAT’s

runtime system has been heavily optimized to reduce run-

time overheads. We use arena allocation (both on the CPU

as well as on the GPU) and asynchronous execution on the

GPU. We also batch memory transfer operations between

the CPU and GPU when possible to reduce the CUDA API

overheads.

D SUPPLEMENTARY EVALUATION AND

ADDITIONAL DETAILS

D.1 Benefit of PGO in Tensor Kernel

Auto-Scheduling

We mentioned in §C.1 that ACROBAT uses invocation fre-

quencies (obtained via PGO) to prioritize tensor operator

optimization during auto-scheduling. In order to evaluate

the benefit of this optimization, we look at the performance

of NestedRNN with and without the optimization. This

benchmark computation executes 30 iterations of the inner

RNN loop per iteration of the outer GRU loop on an av-

erage. Therefore, the operators invoked in the RNN loop

affect the performance of the benchmark much more than

those invoked in the GRU loop. Table 9 shows the execution

times of the benchmark with and without PGO for different

iterations of the auto-scheduler12 which shows how AC-

ROBAT can better prioritize auto-scheduling for the RNN

operators with PGO turned on.

12Due to the inherent randomness in the auto-scheduling process,
the given execution times are averaged over 10 runs of the auto-
scheduler each.


