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Abstract

The Segment Anything Model (SAM), a foun-

dation model pretrained on millions of images

and segmentation masks, has significantly ad-

vanced semantic segmentation, a fundamental

task in computer vision. Despite its strengths,

SAM encounters two major challenges. Firstly,

it struggles with segmenting specific objects au-

tonomously, as it relies on users to manually input

prompts like points or bounding boxes to iden-

tify targeted objects. Secondly, SAM faces chal-

lenges in excelling at specific downstream tasks,

like medical imaging, due to a disparity between

the distribution of its pretraining data, which pre-

dominantly consists of general-domain images,

and the data used in downstream tasks. Current

solutions to these problems, which involve fine-

tuning SAM, often lead to overfitting, a notable

issue in scenarios with very limited data, like in

medical imaging. To overcome these limitations,

we introduce BLO-SAM, which finetunes SAM

based on bi-level optimization (BLO). Our ap-

proach allows for automatic image segmentation

without the need for manual prompts, by opti-

mizing a learnable prompt embedding. Further-

more, it significantly reduces the risk of overfit-

ting by training the model’s weight parameters

and the prompt embedding on two separate sub-

sets of the training dataset, each at a different

level of optimization. We apply BLO-SAM to di-

verse semantic segmentation tasks in general and

medical domains. The results demonstrate BLO-

SAM’s superior performance over various state-

of-the-art image semantic segmentation methods.

The code of BLO-SAM is available at https:
//github.com/importZL/BLO-SAM.

1University of California, San Diego. Correspondence to: Peng-
tao Xie <>.

1. Introduction
Semantic segmentation is a critical task in computer vision,

which aims to assign each pixel with a semantic class (ob-

ject classes such as dog and cat, or scene categories such as

sky and ocean) (Mo et al., 2022). Deep learning has demon-

strated great success in advancing the performance of seman-

tic segmentation (Lateef & Ruichek, 2019). This progress

has been further propelled by the emergence of foundation

models (FMs) (Bommasani et al., 2021), a.k.a. large pre-

trained models, which have demonstrated unprecedented

prevalence across diverse tasks, including vision (Radford

et al., 2021; Moor et al., 2023), language (Brown et al., 2020;

Touvron et al., 2023a;b), and multi-modality (Alayrac et al.,

2022; Wang et al., 2022). Building on a data engine using

11 million image-mask pairs, the Segment Anything Model

(SAM) (Kirillov et al., 2023) emerges as a noteworthy seg-

mentation foundation model, and demonstrates strong ca-

pabilities in segmenting diverse natural images. As a novel

promptable segmentation model, SAM distinguishes itself

by yielding desired segmentation masks when provided with

appropriate points or bounding boxes as prompts (detailed

descriptions about SAM can be found in Appendix B).

Despite its strong performance in producing accurate seg-

mentation masks based on prompts, SAM faces a notable

limitation - it cannot autonomously segment specific ob-

jects, as it requires points or bounding boxes as manual

prompts1. For example, if we would like to segment lungs

from a chest X-ray image, we need to provide at least one

point on the lung region or bounding boxes enclosing the

lungs to indicate that the objects aimed to segment are the

lungs. Another significant challenge of applying SAM for

downstream segmentation tasks arises from the distribution

discrepancy between the pretraining data of SAM and the

data in downstream tasks. On tasks where the data distri-

bution deviates from the pretraining data, SAM struggles

to segment the desired objects accurately even with proper

prompts (Mazurowski et al., 2023; He et al., 2023).

To address the distribution discrepancy issue, Med-SA (Wu

1Although the SAM paper mentions that SAM can accept tex-
tual prompts, only points, bounding boxes, and coarse masks are
supported as prompts in its public codebase.
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BLO-SAM: Bi-level Optimization Based Overfitting-Preventing Finetuning of SAM

Figure 1. (a) BLO-SAM Overview: The majority of original SAM parameters are frozen. LoRA layers enable parameter-efficient

finetuning of the mask decoder’s Transformer layers. Learnable parameters are categorized into two groups: learnable model parameters

in the mask decoder and learnable embeddings as input to the prompt encoder. (b) Two parameter groups are updated through two

interdependent optimization problems.

Figure 2. Dice scores on the train and test sets versus training

epochs, on (a) gastrointestinal disease and (b) human body seg-

mentation tasks. The train and test curves for SAMed exhibit a

large gap between epochs 60 and 100, indicating that severe over-

fitting to the training data occurs. A similar pattern is observed in

the case of Med-SA. Conversely, the train-test gap for BLO-SAM

is much smaller compared to SAMed and Med-SA, underscoring

our method’s effectiveness in mitigating overfitting.

et al., 2023) utilizes Adapter (Houlsby et al., 2019) to fine-

tune SAM’s image encoder and mask decoder in down-

stream tasks, resulting in superior performance over several

SOTA segmentation methods on various medical datasets.

Nevertheless, Med-SA still needs prompts manually pro-

vided by humans or generated from an initial segmentation

mask, during both training and inference phases, making

it less practical in real-world applications. To address both

challenges (i.e., distribution discrepancy and the need for

manual prompts), SAMed (Zhang & Liu, 2023) finetunes

SAM with a default prompt (i.e., a learnable vector) instead

of manual prompts, directly outputting multiple segmenta-

tion masks for all the classes. However, the above methods

still have limitations. They bear a risk of overfitting when

labeled data are very limited in downstream tasks. For exam-

ple, in medical domains, images with labeled segmentation

masks are often scarce, either due to the limited number of

input images (e.g., for privacy concerns) or the difficulty of

obtaining segmentation masks (e.g., requiring domain ex-

perts to annotate, which is time-consuming and expensive).

Finetuning large foundation models like SAM on these label-

scarce settings often leads to overfitting to training data and

poor generalization to test images. As demonstrated in our

experiments (see Fig. 2), SAMed and Med-SA suffer from

severe overfitting and low test performance.

In response to the above challenges, we introduce BLO-

SAM, a finetuning method for SAM that addresses the over-

fitting issue based on bi-level optimization (BLO). BLO-

SAM combats overfitting by updating two separate sets

of learnable parameters on two splits of the training data.

Illustrated in Fig. 1(a), BLO-SAM involves two sets of

parameters: i) segmentation model’s weight parameters,

including LoRA layers (Hu et al., 2021), transposed con-

volutions, and MLP heads, and ii) the prompt embedding.

These parameters undergo optimization through two lev-

els of nested optimization problems, as shown in Fig. 1(b).

In the lower level, we iteratively train segmentation model

weights by minimizing a finetuning loss on a designated

subset of the training dataset while keeping the learnable

prompt embedding fixed. Following this finetuning, we tran-

sition to the upper level to validate the model’s effectiveness

on the remaining subset of the training data. The prompt

embedding is then updated by minimizing the validation

loss. By segregating the learning processes for different

learnable parameters onto distinct data subsets within two

optimization problems, our method effectively mitigates the

risk of overfitting to a single dataset, enhancing the model’s

generalization on test examples.

BLO-SAM’s mechanism of combating overfitting is inspired

by the well-established practice of hyper-parameter tun-

ing (Franceschi et al., 2018). Typically, a model’s weight

parameters (such as weights and biases in a neural network)

are trained on a training dataset, while the hyper-parameters

(like the number of layers in a neural network) are tuned on

a separate validation set, which prevents overfitting the train-

ing data. If hyper-parameters were also tuned on the training

set, it would lead to significant overfitting. Similarly, in the

context of SAM, prompt embeddings can be regarded as a

form of ‘hyper-parameters’. Overfitting arises when these

embeddings, along with the segmentation model weights,

are optimized together by minimizing a loss function on a

single dataset, as SAMed do. Our BLO-SAM follows the

correct way of ‘hyper-parameter tuning’: it optimizes the

‘hyper-parameters’ - the prompt embedding - on a ‘valida-

tion set’ - a subset of the training data, while training the
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segmentation model weights on the other subset.

Our work makes two key contributions:

• We propose BLO-SAM, an overfitting-resilient ap-

proach for finetuning SAM with only a few training

examples. We propose to learn the prompt embedding

and model parameters of SAM on two distinct sub-

datasets in a BLO framework, effectively combating

overfitting in ultra-low data regimes. Furthermore, our

method enables fully automated segmentation with-

out the need for manual prompts during inference and

training. This substantially enhances the practical ap-

plicability of SAM in real-world scenarios.

• Our extensive experiments on six datasets from general

domains and medical domains demonstrate the strong

effectiveness of BLO-SAM with less than 10 train-

ing examples. Our method significantly outperforms

vanilla SAM, SAM-based models, few-shot seman-

tic segmentation methods, and popular segmentation

models, without requiring manual prompts.

2. Related Work
2.1. Semantic Segmentation

In the realm of semantic segmentation, substantial progress

has been made recently, particularly within the context of

deep learning-based methods. Many works focus on the

architectural design of segmentation neural networks, such

as fully convolutional networks (FCNs) (Long et al., 2015),

U-Net (Ronneberger et al., 2015), DeepLab (Chen et al.,

2017a), and SegFormer (Xie et al., 2021). The incorpora-

tion of attention mechanisms, exemplified in Atrous Spatial

Pyramid Pooling (ASPP) (Chen et al., 2017a) and non-local

neural networks (Wang et al., 2018), has further improved

contextual understanding in semantic segmentation. Re-

cently, the Segment Anything Model (SAM) (Kirillov et al.,

2023) emerged as an FM for image segmentation. SAM

uses an MAE-pretrained ViT (He et al., 2022) to encode

the input image, positional embedding to encode prompts,

and a lightweight Transformer (Vaswani et al., 2017) based

mask decoder to produce high-quality segmentation masks.

Please see Appendix B for details.

As discussed in Section 1, multiple works (Mazurowski

et al., 2023; He et al., 2023) have shown SAM demonstrates

reduced effectiveness in downstream tasks when there is a

noticeable difference between the data it was pretrained on

and the task-specific data. For example, He et al. (2023)

studied the performance of SAM on 12 medical segmenta-

tion datasets, showing SAM performs significantly worse

than five SOTA algorithms on some datasets. The findings

underscore the necessity of finetuning SAM when it is ap-

plied to domains other than natural images. To address this,

MedSAM (Ma & Wang, 2023), Med-SA (Wu et al., 2023),

and SAMed (Zhang & Liu, 2023) finetune SAM on medical

images, outperforming several SOTA methods. To enable

prompting SAM using texts, LISA (Lai et al., 2023) inte-

grates a multi-modal large language model, LLaVA (Liu

et al., 2023a), with SAM. In addition, Yang et al. (2023) and

Cheng et al. (2023) further extend SAM to video segmen-

tation and object tracking in videos, demonstrating SAM’s

versatility across a range of visual tasks

2.2. Model Finetuning

Finetuning techniques have demonstrated state-of-the-art

effectiveness in adapting large-scale foundation models for

specialized downstream tasks (Radford et al., 2018; De-

vlin et al., 2018). However, as foundation models grow in

size, finetuning all parameters becomes increasingly expen-

sive (Brown et al., 2020; Touvron et al., 2023a; Kirillov

et al., 2023) in computation. Therefore, various parameter-

efficient finetuning methods have been proposed to alle-

viate this issue. For instance, Adapter (Houlsby et al.,

2019) injects trainable adapter layers into pretrained Trans-

formers (Vaswani et al., 2017). Low-Rank Adaptation

(LoRA) (Hu et al., 2021) adds learnable low-rank matri-

ces to the pretrained weight matrices of foundation models

and only optimizes the low-rank matrices in the finetun-

ing stage with the pretrained parameters frozen. Zhang

et al. (2023a) proposes to adaptively allocate budgets for

updating different LoRA layers based on their importance

scores when adapting to a specific downstream task. Prompt-

tuning (Lester et al., 2021) proposes optimizable ‘soft

prompts’ for a specific downstream task and only optimizes

the trainable prompts during finetuning. P-tuning (Liu et al.,

2023b) finetunes the pretrained foundation model by train-

ing a neural network to generate prompt embeddings while

keeping the pretrained parameters frozen. IA3 (Liu et al.,

2022) proposes to multiply the output of activation layers

in the pretrained foundation models with trainable vectors

and optimize these vectors in the finetuning stage. Contrary

to these methods that emphasize parameter efficiency, our

approach is centered on mitigating overfitting. It is designed

to complement these methods rather than replace them.

2.3. Bi-Level Optimization

Bi-level optimization (BLO) refers to a class of optimiza-

tion problems in which one optimization problem (lower

level) is nested within another optimization problem (upper

level) (Sinha et al., 2017). Various tasks can be formualted

in a BLO framework, including meta-learning (Finn et al.,

2017; Killamsetty et al., 2022; Qin et al., 2023), neural archi-

tecture search (Liu et al., 2018; Hosseini & Xie, 2022), and

data reweighting (Shu et al., 2019; Garg et al., 2022; Hos-

seini et al., 2023). In these tasks, model weights are usually

learnt during lower-level optimization on the training split

of the dataset, while meta-variables like hyper-parameters
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or architectures are learnt in the upper-level optimization on

a separate validation split to alleviate the issue of overfitting.

Numerous gradient-based optimization algorithms and soft-

ware have been developed for solving BLO problems. For

example, Liu et al. (2018) develop a finite difference approx-

imation method to efficiently compute the gradients with

regard to the upper level variables in BLO problems. Finn

et al. (2017) propose to compute the gradient updates of

meta variables directly with iterative differentiation (Grazzi

et al., 2020). Choe et al. (2022) develop a software for users

to easily and efficiently compute gradients within BLO prob-

lems with different approximation methods.

3. Method
3.1. Overview of BLO-SAM

Our approach, BLO-SAM, finetunes SAM for downstream

semantic segmentation tasks using bi-level optimization

(BLO). In the pretrained SAM model, certain parameters

undergo finetuning, whereas others remain static throughout

the finetuning process, as shown in Fig. 1. Furthermore, to

eliminate the need for manual prompts, we learn a prompt

embedding vector. To combat overfitting, we split the train-

ing set into two halves (denoted by D1 and D2), which

are used for learning SAM’s finetunable parameters and

the prompt embedding, respectively. In the lower-level of

our BLO framework, SAM’s finetunable parameters (de-

noted by W ) are optimized on the sub-dataset D1, with the

prompt embedding (denoted by A) tentatively fixed. The

optimal solution W ∗(A), dependent on A, is then passed to

the upper level. In the upper-level optimization, W ∗(A) is

validated on the sub-dataset D2. The validation loss, which

is a function of the prompt embedding A, indicates the gen-

eralization performance of the finetuned SAM. We optimize

A to minimize this validation loss for reducing the risk of

overfitting and improving generalization. The two levels

of problems share the same form of loss function designed

for semantic segmentation. The two levels are optimized

iteratively until convergence, as shown in Algorithm 1.

Finetuning SAM with LoRA. We employ Low-Rank

Adaptation (LoRA) (Hu et al., 2021) for parameter-efficient

finetuning of SAM. LoRA introduces an additional learn-

able matrix (known as a LoRA layer), which is of lower

rank, as an update to the existing pretrained weight matrix.

During finetuning, the focus is on optimizing this lower-rank

matrix, while keeping the pretrained matrix static. Notably,

the LoRA layer comprises considerably fewer parameters

than the original matrix, enhancing the efficiency of the fine-

tuning process. As shown in Fig. 3, a LoRA layer is added to

each query and value projection layer of all attention blocks

in SAM’s mask decoder, including self-attention, image-to-

token attention, and token-to-image attention. Each LoRA

Figure 3. Finetune SAM with LoRA. We add LoRA layers to query

and value projection layers within the attention block of SAM’s

mask decoder. ‘Q proj.’, ‘K proj.’, ‘V proj.’, and ‘Out proj.’ denote

the projection layers for the query, key, value, and output.

layer consists of two sequential linear layers where the first

one projects the input token to a low-dimensional space and

the second one projects from the low-dimensional space

back to the original feature space so that the output of LoRA

can be added to the output of the frozen Transformer layer

(Fig. 3). For different attention blocks, the input tokens

differ. In the self-attention block, the prompt embedding

serves as all three input tokens. For image-to-token atten-

tion blocks, the prompt embedding is used for both key and

value projections, while the image embedding is used for the

query projection. Conversely, in the token-to-image atten-

tion blocks, the image embedding is employed for key and

value projections, and the prompt embedding is utilized for

the query projection. In the end, the learnable parameters of

SAM encompass those in the LoRA layers, the transposed

convolutions, and the multi-layer perceptron (MLP) head lo-

cated in the mask decoder, with all other model parameters

frozen, as shown in Fig. 1(a).

3.2. Bi-Level Finetuning Framework

Lower-Level Optimization Problem. In the lower level,

we tentatively fix the prompt embedding A and optimize

SAM’s finetunable parameters W on the first sub-dataset

D1 by minimizing the following loss:

L = (1− λ)LCE(W,A;D1) + λLDice(W,A;D1), (1)

where LCE and LDice represent cross-entropy loss and dice

loss, respectively, between predicted masks and ground-

truth masks, and λ is a tradeoff parameter. The (W,A;D1)
arguments indicate the loss depends on the model parame-

ters and prompt embedding while computed on dataset D1.

The lower level aims to solve the following problem:

W ∗(A) = argminW L(W,A;D1). (2)

W ∗(A) implies the optimal solution W ∗ depends on A as

W ∗ depends on the loss function which depends on A.
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Algorithm 1 Optimization Algorithm for BLO-SAM

1: Input: Sub-datasets D1, D2. Learning rates η1, η2.

Parameter initialization W (0), A(0).

2: for t = 1, 2, 3, · · · do
3: Sample a batch from D1. Update W (t) via Eq. (2).

4: Sample a batch from D2. Update A(t) via Eq. (3).

5: end for

Upper-Level Optimization Problem. In the upper level,

we validate the finetuned model W ∗(A) on the second sub-

dataset D2. The learnable prompt embedding is updated by

minimizing the validation loss:

minA L(W ∗(A), A;D2), (3)

which is the same loss function as Eq. (1) but with D1 re-

placed by D2 and W replaced by W ∗(A). The key in Eq. 3

is that the loss depends on W ∗(A) which also depends on

A. Thus, we need to “unroll” W ∗(A) to correctly compute

the gradient w.r.t. A, as detailed in Appendix A.

Bi-Level Optimization Framework. Integrating the

aforementioned two optimization problems, we have a bi-

level optimization framework:

min
A

L(W ∗(A), A;D2)

s.t. W ∗(A) = argminW L(W,A;D1) (4)

In this framework, the two optimization problems are inter-

dependent. The output of the lower level, W ∗(A), serves as

the input for the upper level. The optimization variable A in

the upper level is used in the lower-level loss function.

3.3. Optimization Algorithm

We employ a gradient-based optimization algorithm to solve

the problem in Eq. (4). Drawing inspiration from Liu et al.

(2018), we perform a one-step gradient descent for Eq. (2)

to approximate the optimal solution W ∗(A). Subsequently,

we substitute the approximation of W ∗(A) into the upper-

level optimization problem. A is updated by minimizing the

approximated upper-level loss function via gradient descent.

These steps constitute one global optimization step. We

iteratively perform global steps between the lower level and

upper level until convergence, as shown in Algorithm 1.

Detailed derivations are provided in Appendix A.

4. Experiments
In this section, we evaluate BLO-SAM across a diverse set

of semantic segmentation tasks from both general domains

and medical domains, including human face components

segmentation, car components segmentation, human body

segmentation, teeth segmentation, gastrointestinal disease

segmentation, and lung segmentation. To be compatible

with SAM, each multi-class segmentation task is converted

to multiple binary segmentation tasks, one for each class.

Our experiments focus on ultra-low data regimes, where the

number of training examples is less than ten.

4.1. Datasets

For the human facial components segmentation task, we

employed the CelebAMask-HQ dataset (Lee et al., 2020), a

collection of high-resolution face images accompanied by

segmentation masks of various facial components including

brow, eye, hair, nose, and mouth. For the car segmenta-

tion task, we used the dataset from David (2020), which

contains images of cars and their segmentation masks with

four semantic components: car body, wheel, light, and win-

dows. We only used the car body, wheel, and windows

as the ‘light’ category is missing in many data examples.

For human body segmentation, we used the TikTok dances

dataset (Roman, 2023). For teeth, gastrointestinal disease,

and lung segmentation tasks, we utilized the children’s den-

tal panoramic radiographs dataset (Zhang et al., 2023b),

Kvasir-SEG dataset (Jha et al., 2020), and JSRT dataset (Shi-

raishi et al., 2000), respectively. Every dataset is comprised

of a training set and a test set. By randomly sampling a

small number of examples from the original training set, we

create a new few-shot training set which is then used to train

our model and baselines. More details about the datasets can

be found in Appendix C. We repeated each sampling three

times at random, and the mean performance over the test

set is reported in the main paper, while standard deviations

are detailed in Appendix E. In our method, the sampled new

training set is further randomly split into two subsets D1

and D2 with equal size. Baseline methods utilize the entire

new training set without any subdivision.

4.2. Experimental Settings

Baselines and Metrics. We compared our method with

a variety of baselines, including supervised, few-shot, and

SAM-based approaches. The supervised methods include

DeepLabV3 (Chen et al., 2017b), a widely adopted model in

semantic segmentation, and SwinUnet (Cao et al., 2022), an

UNet-like transformer designed for medical image segmen-

tation. Few-shot learning methods include HSNet (Zhang

et al., 2022) which uses cross-semantic attention to bridge

the gap between low-level and high-level features, and

SSP (Fan et al., 2022) which introduces a self-support match-

ing strategy to capture consistent underlying characteris-

tics of query objects. SAM-based baselines include vanilla

SAM (Kirillov et al., 2023), Med-SA (Wu et al., 2023) and

SAMed (Zhang & Liu, 2023) which use Adapter (Houlsby

et al., 2019) and LoRA (Hu et al., 2021) for SAM finetuning

respectively. Med-SA and SAMed update all learnable pa-

rameters on a single training set. For vanilla SAM, we con-
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Table 1. Average Dice score (%) on the CelebAMask dataset, with different numbers of training examples. Standard deviations are in

Appendix E. The overall performance is calculated by averaging the results for different facial components. The last column indicates

whether manual prompts are needed.

Method
Training with 4 labeled examples Training with 8 labeled examples Manual

PromptsOverall Brow Eye Hair Nose Mouth Overall Brow Eye Hair Nose Mouth

DeepLab 49.5 33.2 55.9 55.2 55.8 47.5 54.9 37.3 59.7 58.0 64.0 55.7 �

SwinUnet 35.2 21.7 21.7 46.7 44.4 41.6 42.4 28.8 33.1 52.7 47.6 49.8 �

HSNet 49.9 30.1 41.9 58.9 59.6 59.0 60.1 43.6 58.1 76.6 58.2 64.2 �

SSP 56.9 40.3 33.6 73.2 71.6 65.6 60.0 45.4 31.2 76.6 74.0 72.7 �

SAM 32.9 20.8 30.6 44.0 44.1 25.2 32.9 20.8 30.6 44.0 44.1 25.2 �

Med-SA 62.9 36.3 63.6 77.6 71.0 66.0 67.7 42.9 65.5 82.4 74.6 73.1 �

SAMed 58.2 28.3 55.9 78.5 65.1 63.0 65.0 39.5 66.0 82.4 70.5 66.4 �

BLO-SAM 65.9 39.4 65.5 82.8 74.3 67.6 69.9 45.8 71.1 83.6 76.1 72.7 �

Table 2. The comparison of BLO-SAM with baselines on the car components and human body datasets evaluated by Dice Score (%) with

different numbers of training examples. Standard deviations are in Appendix E. The overall performance is calculated by averaging the

results for different components.

Method

Car components Human body

Training with 2 labeled examples Training with 4 labeled examples
4 examples 8 examples

Overall Body Wheel Window Overall Body Wheel Window

DeepLab 46.5 58.5 55.0 26.1 59.8 62.9 66.6 49.8 31.8 37.0

SwinUnet 31.4 22.2 33.4 38.7 47.3 49.3 53.7 38.9 30.9 56.8

HSNet 51.0 67.1 32.4 53.4 68.8 70.8 70.3 65.4 50.6 55.8

SSP 64.1 62.8 76.2 53.3 72.2 77.7 78.2 60.6 58.9 76.5

SAM 35.1 40.8 41.7 22.9 35.1 40.8 41.7 22.9 26.0 26.0

Med-SA 67.3 80.8 70.9 50.3 75.9 84.4 78.1 65.3 58.8 80.6

SAMed 60.4 78.8 65.0 37.5 74.0 85.3 72.5 64.2 63.8 81.5

BLO-SAM 71.1 83.2 74.5 55.6 78.3 86.3 79.9 68.6 76.3 85.1

structed three different types of prompts from each ground-

truth mask, including a positive point from the foreground,

a negative point from the background, and bounding boxes

of target objects. For Med-SA, its prompts are extracted

from the ground-truth masks as well. During inference, both

SAM and Med-SA necessitate user-generated prompts, a re-

quirement that is unfeasible when test images are numerous.

Following the evaluation protocols of SAM and Med-SA,

these prompts are derived in advance from the ground-truth

masks. It is important to recognize that such an approach

is impractical, as it needs to access the ground-truth masks

of test images. Nevertheless, they remain the most accessi-

ble baselines we can compare against. All experiments are

conducted on an A100 GPU with 80G memory.

We used the Dice score as the evaluation metric. The Dice

score is defined as
2|A∩B|
|A|+|B| , where A and B represent the

predicted and ground truth mask respectively.

Hyper-parameters. In our method, the trade-off parame-

ter λ in Eq. (1) was set to 0.8 following the setting in Zhang

& Liu (2023). LoRA layers and other non-frozen model

components were optimized in the lower level using the

AdamW optimizer (Loshchilov & Hutter, 2017). We set the

initial learning rate to 5e-3, betas to (0.9, 0.999), and weight

decay to 0.1. The learning rate in the i-th iteration followed

the formula (Zhang & Liu, 2023): lri = lr0(1−i/Itermax)
0.9.

Here, lr0 and Itermax represent the initial learning rate and

maximal training iteration, respectively. For updating the

prompt embedding in the upper level, we used the same set-

tings as in the lower-level optimization. We set the number

of training epochs to 100 and selected the best checkpoint

based on segmentation performance on the D2 sub-dataset.

4.3. Results and Analysis

Human Facial Components Segmentation. In our evalu-

ation of BLO-SAM for human facial components segmenta-

tion on the CelebAMask dataset, we have two settings with

different numbers (4 or 8) of training examples. The results

presented in Table 1 reveal some noteworthy observations.

Firstly, BLO-SAM demonstrates its strong capability to fine-

tune SAM for accurate facial component segmentation even

with a very small number of training examples. For instance,

with just 4 labeled examples (2 for D1 and the other 2 for

6
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Table 3. The comparison of BLO-SAM with baselines on the teeth, gastrointestinal disease and lung datasets evaluated by Dice Score (%)

with different numbers of training examples. Standard deviations are in Appendix E. The last three columns show the total number of

model parameters, the number of trainable parameters (in millions), and the training time (in GPU hours).

Method
Teeth Kvasir Lung Total

Param(M)

Trainable

Param(M)

Train Cost

(GPU hours)4 examples 8 examples 4 examples 8 examples 2 examples 4 examples

DeepLab 56.8 63.9 31.9 37.8 61.1 76.4 41.9 41.9 0.27

SwinUnet 28.6 50.6 37.8 39.0 62.1 76.4 27.2 27.2 0.29

HSNet 70.2 72.2 30.0 35.1 83.1 84.5 28.1 2.6 0.16

SSP 33.7 51.7 27.4 27.7 83.2 90.1 8.7 8.3 0.22

SAM 21.2 21.2 14.7 14.7 31.4 31.4 91.0 0 0

Med-SA 69.8 75.1 33.5 59.3 82.9 91.7 104.4 10.7 0.62

SAMed 69.9 76.4 42.7 57.1 84.4 91.8 91.0 1.1 0.46

BLO-SAM 73.2 77.3 59.7 61.6 87.1 93.7 91.0 1.1 0.57

D2), BLO-SAM achieves an overall Dice score of 65.9%,

and the score improves to 69.9% when the training dataset

size is increased to 8. The effectiveness of BLO-SAM ex-

tends to individual facial components, exemplified by the

82.8% Dice score for hair segmentation with only 4 training

examples, achieved without any manual input prompts.

Secondly, our BLO-SAM method demonstrates a signif-

icant improvement over the standard SAM. For instance,

when finetuned with just 4 labeled examples, BLO-SAM

dramatically improves the Dice score of SAM from 32.9%
to 65.9%. These results clearly indicate the superiority of

our method as an effective finetuning approach for SAM. It

adeptly adapts the pretrained SAM to the specific data dis-

tributions of downstream tasks, using just a few examples.

Thirdly, BLO-SAM surpasses other SAM-based methods,

including Med-SA and SAMed, which also finetune the

pretrained SAM for specific semantic segmentation tasks.

Unlike Med-SA or SAMed, which update all learnable pa-

rameters on a single training set, BLO-SAM employs bi-

level optimization to update segmentation model weights

and prompt embedding on disjoint subsets of the training

data, effectively mitigating the risk of overfitting. While

Med-SA’s performance is close to that of our method, it

requires manual prompts from users during testing. This

requirement substantially restricts its practicality in real-

world applications. In contrast, our method operates entirely

autonomously, eliminating the need for manual prompting.

Finally, compared to general supervised methods such as

DeepLab and SwinUnet, BLO-SAM shows a substantial ad-

vantage when trained with very few examples. For instance,

with 4 labeled examples, DeepLab achieves an overall Dice

score of 49.5%, whereas BLO-SAM attains a substantially

higher Dice score of 65.9%. BLO-SAM also outperforms

few-shot learning methods including HSNet and SSP, except

for brow segmentation with 4 examples. This superiority is

attributed to its ability to transfer the capacity of SAM to

Figure 4. Qualitative results on some randomly sampled test im-

ages from the CelebAMask dataset. ‘GT’ denotes ground-truth

segmentation masks.

downstream tasks via finetuning.

Fig. 4 shows some qualitative comparisons. We can see that

BLO-SAM generates more accurate segmentation masks

compared to the baselines.

Car Segmentation and Human Body Segmentation. We

further assess BLO-SAM’s performance in segmenting car

components. Table 2 demonstrates that BLO-SAM sur-

passes all baseline methods in terms of the overall Dice

score. For individual components, BLO-SAM excels over

the baselines in most categories, with only an exception in

‘wheel’. In the task of human body segmentation, BLO-

SAM similarly outperforms the baseline models, as evi-

denced in Table 2. Again, the superiority of our method lies

in its strong ability to adapt SAM to the data distributions

of downstream tasks with just a few data examples, while

combating overfitting using the BLO framework and elimi-

nating the need for manual prompts. We further increased

the number of training examples in the body segmentation

task. The results are deferred to Appendix G.

Medical Image Semantic Segmentation. To further eval-

uate our method, we perform experiments on several med-

ical image segmentation tasks, where there may be a sig-

nificant distribution shift from the pretraining data of SAM

to the medical datasets. This distribution shift can signifi-

cantly impair SAM’s capability in the medical domain. We

perform experiments on teeth, gastrointestinal disease, and
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Figure 5. Ablation study of different trainable components. “All”

represents finetuning all three components of SAM.

lung segmentation tasks and report the results in Table 3.

For all medical segmentation tasks, BLO-SAM attains the

best performance compared with baselines. The advantage

of BLO-SAM over the baselines is more evident in the

4-example case than in the 8-example case, which under-

scores BLO-SAM’s strong ability to combat overfitting and

improve generalization in few-shot settings. BLO-SAM’s

superiority can also be demonstrated by comparing the pre-

dicted segmentation masks, as shown in Appendix H.

Computational Costs and Parameter Counts. We mea-

sured the training cost for all methods on an A100 GPU.

We can see that BLO-SAM has comparable training time

(Table 3) and inference time (Appendix D) to other SAM-

based methods. More detailed analysis can be found in

Appendix D. Furthermore, as shown in Table 3, BLO-SAM

has minimal trainable parameters among all trainable meth-

ods, underscoring its parameter efficiency.

4.4. Ablation Studies

Ablation of Trainable Components of SAM. SAM com-

prises three primary components: image encoder, prompt

encoder, and mask decoder. We have 4 ablation settings,

including 1) finetuning the mask decoder (same as BLO-

SAM), 2) the image encoder (via LoRA layers that are

integrated into the inner Transformer blocks), 3) the prompt

encoder (by updating the convolution layers), and 4) finetun-

ing all the above components. This ablation experiment was

conducted on body and teeth segmentation datasets, each

with 4 labeled examples during finetuning. The results are

shown in Fig. 5, where we have several key observations.

Firstly, the mask decoder stands out as the most pivotal

component for finetuning when adapting SAM to specific

semantic segmentation tasks. Secondly, finetuning all three

components of SAM yields improved performance, albeit at

the expense of increased trainable parameters and training

cost. For this reason, we only finetune the mask decoder in

our BLO-SAM approach.

Ablation on Methods for Optimizing Prompt Embed-
ding. In this study, we investigate the effectiveness of

Figure 6. Ablation study on approaches for optimizing the prompt

embedding.

three approaches for optimizing prompt embedding. The

experiments are performed on the body and teeth segmen-

tation tasks with 4 labeled examples. The first approach

optimizes both the prompt embedding A and model param-

eters W on the combination of D1 and D2. The second and

third approaches optimize the prompt embedding on D2 as

in BLO-SAM but use first-order and second-order approxi-

mation, respectively, to compute the gradients in the BLO

problem (see Appendix A for details). In the previously

mentioned experiments, we use first-order approximation,

which is computationally more efficient than the second-

order approximation, to reduce computational cost.

Analysis of the results presented in Fig. 6 reveals that opti-

mizing parameters A on sub-dataset D2, while concurrently

optimizing parameters W on sub-dataset D1, yields superior

performance compared to the simultaneous optimization of

both parameter sets A and W on the combination of D1

and D2. This observation underscores the advantage of

separately optimizing distinct parameter sets on disjoint

sub-datasets, which is demonstrated to be more effective in

mitigating the risk of overfitting compared to the approach

of optimizing all parameters on a single dataset. Moreover,

the results show that second-order optimization holds the

potential to further improve the final performance of the

model, compared with the first-order method. However, it is

crucial to acknowledge that these benefits come with compu-

tational challenges and necessitate increased computational

resources.

Appendix F presents three additional ablation studies.

5. Conclusion
In this paper, we propose BLO-SAM, a new approach for

finetuning the Segment Anything Model (SAM) to perform

downstream semantic segmentation tasks without requiring

manual prompting. Leveraging a bi-level optimization strat-

egy, we optimize the segmentation model parameters and

prompt embedding on two different sub-datasets, mitigating

the risk of overfitting and enhancing generalization. Experi-

ments across diverse tasks with limited labeled training data

strongly demonstrate the effectiveness of BLO-SAM.

8



BLO-SAM: Bi-level Optimization Based Overfitting-Preventing Finetuning of SAM

6. Impact Statements
The paper that focuses on finetuning the Segment Anything

Model (SAM) represents a significant stride in advancing se-

mantic segmentation in few-shot settings, particularly in the

context of both general and medical domains. Ethically, this

endeavor raises questions about the responsible use of pow-

erful AI technologies in healthcare, potentially improving

diagnostic processes but also necessitating careful consider-

ation of patient privacy and data security. The societal impli-

cations are broad, as the improved segmentation capabilities

can benefit diverse industries, from autonomous vehicles

to medical imaging. However, the responsible deployment

of such advancements is crucial to avoid unintended conse-

quences and biases. Striking a balance between innovation

and ethical considerations will be pivotal in harnessing the

full potential of the research for the betterment of society.
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A. Detailed Optimization Algorithm
In this section, we offer a detailed description of the optimization algorithm of BLO-SAM. We employ a gradient-based

optimization algorithm to tackle the problem outlined in Eq. 4. Drawing inspiration from Liu et al. (2018), we approximately

update W ∗(A) via one-step gradient descent in the lower level optimization. Then we plug the approximate W ∗(A) into the

learning process of prompt embedding in the upper level and update A via one-step gradient descent. By using the one-step

gradient descent updates for the bi-level optimization framework, we reduce the computational complexity. The detailed

derivation of the update is as follows.

Lower-level. For the lower level, we perform a one-step gradient descent for Eq. (2) to approximate the optimal solution

W ∗(A) on D1. Specifically, at step t with an initial W (t) and a learning rate η1, the updated W (t+1) is computed via

gradient descent as follows:

W (t+1) = W (t) − η1
dL(W (t), A(t);D1)

dW (t)
(5)

Upper-level. Subsequently, we substitute W (t+1) as an approximation W ∗(A) into the upper-level optimization problem.

Employing a similar one-step gradient descent, we approximate the optimal solution for A by minimizing the loss on D2.

At step t with an initial A(t) and a learning rate η2, the updated A(t+1) is calculated as follows:

A(t+1) = A(t) − η2
dL(W ∗(A), A(t);D2)

dA(t)
(6)

Inspired by Liu et al. (2018), we apply the unrolled model for the parameters of prompt embedding, A. In such a setting, the

gradient w.r.t. A is:

∇ALD2
(W ∗(A), A) ≈ ∇ALD2

(W − ξ∇WLD1
(W,A), A) (7)

where ξ is the learning rate of the lower-level optimization problem. Applying the chain rule to the approximate gradient

yields:

∇ALD2
(W − ξ∇WLD1

(W,A), A)

=∇ALD2(W
∗, A)− ξ∇2

A,WLD1
(W,A) · ∇W∗LD2

(W ∗, A) (8)

for the second part of Eq. (8), we can apply the infinite difference approximation to simplify it to be:

∇ALD2
(W ∗, A)− ξ∇2

A,WLD1
(W,A) · ∇W∗LD2

(W ∗, A)

≈∇ALD1(W
+, A)−∇ALD1(W

−, A)
2ε

(9)

where, W± = W ± ε∇W∗LD2
(W ∗, A), and ε = 0.01/‖∇W∗LD2

(W ∗, A)‖2. If we set the ξ in Eq. (8) to be 0, we can

get the first-order optimization for prompt embedding, otherwise we get the second-order optimization for the prompt

embedding. For our main method, we utilize the first-order optimization method for its low computational cost. In the

ablation studies in the main paper, we analyze the effect of using the second-order optimization method.

B. Preliminaries of Segment Anything Model (SAM)
The Segment Anything Model (SAM) (Kirillov et al., 2023) follows a comprehensive workflow, as shown in Fig. 7,

beginning with the encoding of an input image and a prompt that indicates the object to segment. SAM comprises three key

components: an image encoder that processes the input image and generates an image embedding, which captures the visual

features of the input image; a prompt encoder that encodes the provided prompts, which captures the semantics of the object

or region to segment; and a lightweight mask decoder that takes both image and prompt features as input and generates a

segmentation mask for the object or region described in the prompt. The image encoder is a ViT (Dosovitskiy et al., 2020),

which outputs a sequence of image tokens (vectors). For the prompts, SAM accommodates various types of prompts, such as

points, bounding boxes, and coarse masks. Point or bounding box prompts are represented by positional encodings (Tancik

et al., 2020). Mask prompts are encoded using a convolutional neural network. If no prompts are manually provided to SAM,
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Figure 7. SAM overview. The image encoder takes an image as input to get the corresponding image embedding. The prompt encoder

takes the input prompts, indicated as green point, red point and the rectangle shown in the image, to generate the prompt embedding. The

mask decoder takes the image and prompts embedding as input to output the final masks.

Table 4. Number of test examples in different tasks.

Dataset CelebAMask Car Body Teeth Kvasir Lung

Test size 2000 100 2000 70 500 147

it dynamically uses a default embedding as the input prompt. The mask decoder, which is a modification of a Transformer

decoder block (Vaswani et al., 2017), efficiently maps the image embedding, prompt embeddings, and an output token to a

mask. In conclusion, SAM is a powerful and versatile tool for promptable segmentation, capable of handling a wide range

of segmentation tasks efficiently and effectively. There are three model versions of the SAM with three different types of

image encoders, scaling from ViT-B, ViT-L and ViT-H. ViT-B represents the encoder with the smallest model size. And, in

our experiments, we use the ViT-B for computational efficiency by default.

C. Datasets
We evaluate our method on six tasks, including three tasks in the general domain, and three tasks in the medical domain.

Correspondingly, we used a total of six datasets in our experiments, each of which was publicly available. The statistics of

the test sets are listed in Table 4.

For the facial components segmentation task, we use the CelebAMask-HQ dataset 2, which is a large-scale face image

dataset that has 30,000 high-resolution face images selected from the CelebA dataset by following CelebA-HQ. Each image

has its segmentation mask of facial attributes corresponding to CelebA. We use the last 2,000 examples as the test set.

For the car components segmentation task, we use the Car segmentation dataset 3, which contains 211 images of cars and

their segmentation masks. The images exhibit a diverse range of car models and environmental contexts, ensuring that our

segmentation method is tested across various visual scenarios. We split the last 100 examples as the test set. For the human

body segmentation task, we use the Human Segmentation Dataset - TikTok Dances 4, which includes 2615 images of a

segmented dancing people that are extracted from the videos from TikTok. We split the last 2000 examples as the test set,

ensuring a robust evaluation of our method across a spectrum of dance scenarios.

For the teeth segmentation task, we use the Children’s Dental Panoramic Radiographs Dataset 5, which is the world’s first

dataset of children’s dental panoramic radiographs for caries segmentation and dental disease detection by segmenting and

detecting annotations is published in this dataset. This dataset has already split its original examples into train and test

sets, thus we just follow the original setting. For the gastrointestinal disease segmentation task, we use the Kvasir dataset 6,

which contains 1000 polyp images and their corresponding ground truth. The diverse set of polyp images captures various

2https://drive.google.com/open?id=1badu11NqxGf6qM3PTTooQDJvQbejgbTv
3https://www.kaggle.com/datasets/intelecai/car-segmentation
4https://www.kaggle.com/datasets/tapakah68/segmentation-full-body-tiktok-dancing-dataset
5https://www.kaggle.com/datasets/truthisneverlinear/childrens-dental-panoramic-radiographs-dataset/data
6https://www.kaggle.com/datasets/abdallahwagih/kvasir-dataset-for-classification-and-segmentation
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shapes, sizes, and locations within the gastrointestinal tract, contributing to the robustness of our segmentation algorithm.

We split the last 500 examples as the test set. For lung segmentation, we utilize the JSRT (Japanese Society of Radiological

Technology) database 7, containing 247 chest radiographs annotated with precise lung masks. This valuable dataset enhances

the robustness of our segmentation method, capturing diverse clinical scenarios. The last 147 examples serve as our test set,

ensuring a comprehensive evaluation of our algorithm’s performance.

D. Training and Inference Cost
In Table 5, we show the training and inference cost comparison for all methods on the teeth segmentation task that are

trained with 4 labeled examples. All the experiments are conducted on an A100 GPU with 80G memories. We use the GPU

hours/seconds to measure the time cost for training and inference, respectively. From the results, we can see that BLO-SAM

can achieve comparable performance in the training time, and BLO-SAM is among the smallest inference cost groups

upon the inference time. Specifically, from the comparison of SAMed and BLO-SAM, We can see that the application

of the bi-level optimization strategy will increase the training time slightly, but it will not influence the inference time at

all. And, compared with other SAM-based methods (e.g. vanilla SAM and Med-SA), BLO-SAM also shows a superior

inference time, because it doesn’t need to input the prompts manually. Finally, compared with other baselines, including the

supervised and few-shot methods, BLO-SAM shows slightly inferior performance in both training and inference costs, but

BLO-SAM also shows a much better semantic segmentation performance.

Table 5. The training and inference time cost comparisons for the teeth segmentation task with 4 examples.

Method DeepLab SwinUnet HSNet SSP SAM Med-SA SAMed BLO-SAM

Training (GPU hours) 0.27 0.29 0.16 0.22 0 0.62 0.46 0.57

Inference (GPU seconds) 9.5 9.6 14.7 37.9 11.2 32.9 10.4 10.4

E. Detailed Results
We present a comprehensive analysis of all results, including mean and standard values, in Table 6, Table 7, and Table 8. A

notable trend emerges as we observe the standard values: consistently, BLO-SAM outperforms the baselines by exhibiting

smaller standard deviations across the majority of experiments. This trend indicates that BLO-SAM demonstrates enhanced

stability compared to the baselines. The smaller standard deviations underscore the method’s robustness and reliability,

showcasing its ability to consistently yield precise results across diverse segmentation tasks.

F. Other Ablations
In this section, we show some results for other ablation studies, without other declarations, all the ablation studies are

conducted on the body and teeth segmentation tasks with 4 labeled examples in default.

Sensitivity Analysis of the Trade-off Parameter λ. In this experiment, we investigate how different settings of the

trade-off parameter (λ) in Eq. 1 affect the model’s final performance. Analyzing the results presented in Fig. 8, it is

evident that setting λ to a value in the middle ground yields the optimal performance for both tasks. It is important to

balance the two losses as the cross-entropy loss primarily concentrates on the classification for each pixel independently,

making it susceptible to overfitting in the presence of class imbalance, where images may consist of a substantial number

of background pixels. In contrast, the Dice loss mitigates this issue by prioritizing spatial overlap. These results show the

importance of striking a balance between pixel-level classification accuracy and spatial overlap. The default value of 0.8

suggested by (Zhang & Liu, 2023) is a good choice.

Ablation of the Setting the Rank of the LoRA Layers. Analyzing the results in Fig. 9, it becomes apparent that, for

body and teeth segmentation tasks, setting the number of ranks to 4 yields the best generalization on test examples. The

choice of the number of ranks is primarily determined by the complexity of specific tasks; increasing the rank excessively

can lead to a more complex model that overfits a small training set and fails to generalize to unseen test examples.

7http://db.jsrt.or.jp/eng.php
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Table 6. The comparison of BLO-SAM with baselines on the CelebAMask dataset evaluated by Dice Score (%), with different numbers of

training examples. The overall performance is calculated by averaging the results for different facial components.

Method
Training with 4 labeled examples

Overall Brow Eye Hair Nose Mouth

DeepLab 49.5±3.5 33.2±0.7 55.9±2.9 55.2±5.7 55.8±3.1 47.5±5.3

SwinUnet 35.2±1.8 21.7±1.8 21.7±2.5 46.7±1.6 44.4±2.0 41.6±0.9

HSNet 49.9±1.9 30.1±2.9 41.9±1.5 58.9±2.2 59.6±1.6 59.0±1.1

SSP 56.9±0.6 40.3±0.6 33.6±1.0 73.2±0.3 71.6±0.5 65.6±0.8

SAM 32.9±2.3 20.8±2.4 30.6±1.9 44.0±1.7 44.1±1.0 25.2±4.7

Med-SA 62.9±0.9 36.3±1.2 63.6±0.6 77.6±0.9 71.0±0.9 66.0±1.1

SAMed 58.2±1.5 28.3±1.4 55.9±2.7 78.5±1.3 65.1±1.8 63.0±0.5

BLO-SAM 65.9±0.6 39.4±0.9 65.5±0.4 82.8±0.8 74.3±0.8 67.6±0.1

Method
Training with 8 labeled examples

Overall Brow Eye Hair Nose Mouth

DeepLab 54.9±1.4 37.3±0.7 59.7±1.9 58.0±2.3 64.0±1.1 55.7±0.8

SwinUnet 42.4±1.4 28.8±1.5 33.1±1.7 52.7±1.6 47.6±0.9 49.8±1.3

HSNet 60.1±1.9 43.6±2.3 58.1±0.7 76.6±2.9 58.2±2.9 64.2±0.8

SSP 60.0±0.9 45.4±0.7 31.2±0.2 76.6±1.4 74.0±1.2 72.7±0.9

SAM 32.9±2.1 20.8±2.4 30.6±0.9 44.0±1.7 44.1±1.0 25.2±4.7

Med-SA 67.7±0.9 42.9±0.7 65.5±1.5 82.4±0.6 74.6±0.8 73.1±0.7

SAMed 65.0±1.0 39.5±1.4 66.0±0.6 82.4±0.6 70.5±1.2 66.4±1.2

BLO-SAM 69.9±0.7 45.8±0.6 71.1±1.2 83.6±0.5 76.1±1.3 72.7±0.1

Comparison with Full Finetuning. In this experiment, we compare our method with full finetuning, denoting as FT-SAM,

in which we set all the parameters of vanilla SAM to be trainable and tuned them without any modification. As shown in

Table 10, FT-SAM suffers severe overfitting on the body segmentation task, in which FT-SAM only achieves the dice score

of 47.5%, while BLO-SAM achieves the dice score of 75.5%. This is mainly because, with very limited training examples,

full finetuning is easy to overfit to the training examples, causing a very poor generalization on the test examples. And, for

the teeth segmentation task, BLO-SAM can also achieve comparable performance with the FT-SAM on the test set.

G. Train with More Examples
We conduct experiments to explore what would occur when increasing the number of training examples on the body

segmentation task. We increased the number of training sets to 128 and 512, and conducted experiments for Med-SA,

SAMed, and BLO-SAM. As shown in Table 11, After increasing the number of training examples, the performance of

BLO-SAM can be further improved, as it achieves the highest dice score of 92.8% among all experiments when training

with 512 labeled examples. What’s more, when faced with very limited training examples, BLO-SAM also shows a strong

capability to overcome the risk of overfitting, which can be demonstrated by the biggest performance gap with Med-SA and

SAMed when training with only 4 labeled examples.

H. Qualitative Results
In Figures 12, 13, 14, 15, and 16, we present the segmentation masks generated by different methods. A noteworthy

observation is that, across various tasks, the segmentation masks predicted by BLO-SAM consistently exhibit a superior

level of detail, demonstrating finer prediction of target components with minimal interference from the background. This is

particularly evident when compared to the segmentation masks produced by alternative baselines. The qualitative results

underscore the efficacy of BLO-SAM in capturing intricate features while maintaining a cleaner distinction between the

foreground and background, emphasizing its robust performance across diverse segmentation tasks.
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Table 7. The comparison of BLO-SAM with baselines on the car components (left of the vertical bar) and human body (right of the

vertical bar) datasets evaluated by Dice Score (%) with different numbers of training examples. The overall performance is calculated by

averaging the results for different components.

Method

Car components Human body

Training with 2 labeled examples Training with 4 labeled examples
4 examples 8 examples

Overall Body Wheel Window Overall Body Wheel Window

DeepLab 46.5±4.6 58.5±5.6 55.0±3.2 26.1±5.0 59.8±1.5 62.9±1.4 66.6±0.8 49.8±2.2 31.8±2.3 37.0±0.8

SwinUnet 31.4±6.8 22.2±6.5 33.4±5.2 38.7±8.7 47.3±3.1 49.3±5.6 53.7±1.7 38.9±2.0 30.9±3.6 56.8±0.5

HSNet 51.0±1.5 67.1±2.2 32.4±1.0 53.4±1.2 68.8±0.9 70.8±0.8 70.3±0.8 65.4±1.0 50.6±3.1 55.8±2.4

SSP 64.1±1.0 62.8±1.1 76.2±1.1 53.3±0.9 72.2±0.9 77.7±0.3 78.2±0.5 60.6±1.8 58.9±0.1 76.5±0.1

SAM 35.1±1.6 40.8±2.5 41.7±1.1 22.9±1.2 35.1±1.6 40.8±2.5 41.7±1.1 22.9±1.2 26.0±1.3 26.0±1.3

Med-SA 67.3±2.1 80.8±1.5 70.9±0.5 50.3±4.2 75.9±1.3 84.4±1.0 78.1±0.3 65.3±2.5 58.8±0.7 80.6±0.4

SAMed 60.4±1.5 78.8±1.4 65.0±1.6 37.5±1.6 74.0±1.4 85.3±0.6 72.5±0.6 64.2±3.0 63.8±1.3 81.5±1.2

BLO-SAM 71.1±0.7 83.2±0.6 74.5±0.5 55.6±1.0 78.3±0.5 86.3±0.1 79.9±0.9 68.6±0.4 76.3±0.8 85.1±0.5

Table 8. The comparison of BLO-SAM with baselines on the teeth, gastrointestinal disease and lung datasets evaluated by Dice Score (%)

with different numbers of training examples.

Method
Teeth Kvasir Lung

4 examples 8 examples 4 examples 8 examples 2 examples 4 examples

DeepLab 56.8±0.3 63.9±1.0 31.9±0.7 37.8±0.3 61.1±0.3 76.4±0.5

SwinUnet 28.6±1.6 50.6±1.1 37.8±0.3 39.0±0.8 62.1±0.1 76.4±0.3

HSNet 70.2±1.3 72.2±0.4 30.0±0.7 35.1±0.8 83.1±0.5 84.5±0.4

SSP 33.7±0.5 51.7±1.2 27.4±0.3 27.7±0.4 83.2±0.3 90.1±0.6

SAM 21.2±1.6 21.2±1.6 14.7±3.8 14.7±3.8 31.4±0.1 31.4±0.1

Med-SA 69.7±0.3 76.2±0.4 33.5±3.5 59.3±0.4 82.9±0.5 91.7±0.4

SAMed 69.8±0.5 75.1±2.2 42.7±0.5 57.1±0.7 84.4±0.5 91.8±0.4

BLO-SAM 73.2±0.7 77.3±0.2 59.7±0.2 61.6±0.3 87.1±0.3 93.7±0.1
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Figure 8. Ablation study of optimization methods for prompt

embedding.

Figure 9. Ablation study of the setting of the number of ranks

for added LoRA layers.

Figure 10. Ablation study of comparing with the full fine-

tuning. ”FT-SAM” denotes the full finetuning of SAM.

Figure 11. Ablation study of training with different number of

examples on body segmentation task.

Figure 12. Qualitative results on some randomly sampled test examples from the car dataset.

Figure 13. Qualitative results on some randomly sampled test examples from the body dataset.
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Figure 14. Qualitative results on some randomly sampled test examples from the teeth dataset.

Figure 15. Qualitative results on some randomly sampled test examples from the gastrointestinal disease dataset.

Figure 16. Qualitative results on some randomly sampled test examples from the lung dataset.
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