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Abstract

This paper studies algorithmic decision-making under human
strategic behavior, where a decision maker uses an algorithm
to make decisions about human agents, and the latter with
information about the algorithm may exert effort strategi-
cally and improve to receive favorable decisions. Unlike prior
works that assume agents benefit from their efforts immedi-
ately, we consider realistic scenarios where the impacts of
these efforts are persistent and agents benefit from efforts by
making improvements gradually. We first develop a dynamic
model to characterize persistent improvements and based on
this construct a Stackelberg game to model the interplay be-
tween agents and the decision-maker. We analytically char-
acterize the equilibrium strategies and identify conditions un-
der which agents have incentives to invest efforts to improve
their qualifications. With the dynamics, we then study how
the decision-maker can design an optimal policy to incen-
tivize the largest improvements inside the agent population.
We also extend the model to settings where 1) agents may be
dishonest and game the algorithm into making favorable but
erroneous decisions; 2) honest efforts are forgettable and not
sufficient to guarantee persistent improvements. With the ex-
tended models, we further examine conditions under which
agents prefer honest efforts over dishonest behavior and the
impacts of forgettable efforts.

1 Introduction
In applications such as lending, college admission, hiring,
recommendation systems, etc., machine learning (ML) algo-
rithms have been increasingly used to evaluate and make de-
cisions about human agents. Given information about an al-
gorithm, agents subject to ML decisions may behave strate-
gically to receive favorable decisions. How to characterize
the strategic interplay between algorithmic decisions and
agents, and analyze the impacts they each have on the other,
are of great importance but challenging

This paper studies algorithmic decision-making un-
der strategic agent behavior. Specifically, we consider a
decision-maker who assesses a group of agents and aims to
accept those that are qualified for certain tasks based on as-
sessment outcomes. With knowledge of the acceptance rule,
agents may behave strategically to increase their chances of
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getting accepted. For example, agents may invest to gen-
uinely improve their qualifications (i.e., honest effort), or
they may manipulate the observable assessment outcomes to
game the algorithm (i.e., dishonest effort). Both types of be-
haviors have been studied. In particular, Hardt et al. (2016a);
Dong et al. (2018); Braverman and Garg (2020); Jagadeesan,
Mendler-Dünner, and Hardt (2021); Sundaram et al. (2021);
Zhang et al. (2022); Eilat et al. (2022) focus on learning
under strategic manipulation, where they proposed various
analytical frameworks (e.g., Stackelberg games) to model
manipulative behavior, and analyzed models or developed
learning algorithms that are robust against manipulation.

Another line of research (Zhang et al. 2020; Harris, Hei-
dari, and Wu 2021; Bechavod et al. 2022; Kleinberg and
Raghavan 2020; Chen, Wang, and Liu 2020; Barsotti, Ko-
cer, and Santos 2022; Jin et al. 2022) considers a differ-
ent setting where agent qualifications (labels) change in ac-
cordance with the improvement actions. The goal of the
decision-maker is to design a mechanism such that agents
are incentivized to behave toward directions that improve the
underlying qualifications. Notably, Kleinberg and Raghavan
(2020) proposed a mechanism to incentivize individuals to
invest in specific improvable features. Their work inherited
the classical settings of the Principal-agent model in eco-
nomics but designed an incentivizing mechanism under a
linear classifier. They modeled manipulation and improve-
ment similarly (linear in efforts) and did not consider the
persistent and delayed effects of improvement. The mix-
ture of both improvement and manipulation behavior is also
studied (Miller, Milli, and Hardt 2020; Chen, Wang, and
Liu 2020; Barsotti, Kocer, and Santos 2022; Horowitz and
Rosenfeld 2023; Jin et al. 2022). However, these works
regarded improvement as a similar action to manipulation
where the only difference is it will incur a label change.
Another related topic is performative prediction (Perdomo
et al. 2020; Izzo, Ying, and Zou 2021; Hardt, Jagadeesan,
and Mendler-Dünner 2022; Jin et al. 2024b), an abstraction
that captures agent actions via model-induced distribution
shifts. Details and more related works are presented in Sec.
2.

This paper primarily focuses on honest agents (i.e., agents
will invest effort to improve their qualifications), while set-
tings with both improvement and manipulation are also stud-
ied. We first propose a novel two-stage Stackelberg game to
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model the interactions between decision-maker and agents,
i.e., the decision-maker commits to its policy, following
which agents best respond. A crucial difference between this
study and the prior works is that the existing models all as-
sume that the results of agents’ improvement actions are im-
mediate, i.e., once agents decide to improve, they experience
sudden changes in qualifications and receive the return at
once. However, we observe that in many real-world applica-
tions, the impacts of improvement action are indeed persis-
tent and delayed. For example, humans improve their abil-
ities by acquiring new knowledge, but they make progress
gradually and benefit from such behavior throughout their
lifetime; loan applicants improve their credit behaviors by
repaying all the debt in time, but there is a time lag between
such behaviors and the increase in their credit scores. There-
fore, it is critical to capture these delayed outcomes in the
Stackelberg game formulation.

To this end, we propose a qualification dynamic model to
characterize how agent qualifications would gradually im-
prove upon exerting honest efforts. Such dynamics further
indicate the time it takes for agents to reach the targeted
qualifications that are just enough for them to be accepted.
The impacts of such time lag on agents are then captured
by a discounted utility model, i.e., reward an agent receives
from the acceptance diminishes as time lag increases. Under
this discounted utility model, agents best respond by deter-
mining how much effort to exert that maximizes their dis-
counted utilities.

This paper aims to analytically and empirically study the
proposed model. With the understanding of the strategic in-
teractions between the decision-maker and agents, we fur-
ther study how the decision-maker can design an optimal
policy to incentivize the largest improvements inside the
agent population, and empirically verify the benefits of the
optimal policy.

Additionally, we extend the model to more complex set-
tings where (i) agents have an additional option of strate-
gic manipulation and can exert dishonest effort to game the
algorithm; (ii) honest efforts exerted by agents are forget-
table and may not be sufficient to guarantee persistent im-
provements, instead the qualifications may deteriorate back
to the initial states. We will propose a model with both ma-
nipulation & improvement and a forgetting mechanism to
study these settings, respectively. We aim to examine how
agents would behave when they have both options of manip-
ulation and improvement, under what conditions they pre-
fer improvement over manipulation, and how the forgetting
mechanism affects an agent’s behavior and long-term quali-
fications.

Our contributions can be summarized as follows:
1. We formulate a new Stackelberg game to model the inter-

actions between decision-maker and strategic agents. To
the best of our knowledge, this is the first work capturing
the delayed and persistent impacts of agents’ improve-
ment behavior (Sec. 3).

2. We study the impacts of acceptance policy and the exter-
nal environment on agents, and identify conditions under
which agents have incentives to exert honest efforts. This
provides guidance on designing incentive mechanisms to

encourage agents to improve (Sec. 4).
3. We characterize the optimal policy for the decision-

maker that incentivizes the agents to improve (Sec. 5).
4. We consider the possibility of dishonest behavior and

propose a model with both improvement and manipula-
tion; we identify conditions when agents prefer one be-
havior over the other (Sec. 6).

5. We propose a forgetting mechanism to examine what
happens when honest efforts are not sufficient to guar-
antee persistent improvement (Sec. 7).

6. We conduct experiments on real-world data to evaluate
the analytical model and results (Sec. 8).

2 Related Work
2.1 Strategic Manipulation
Though our work primarily lies in proposing a new model
for improvement behaviors, the problem settings are also
closely related to strategic classification problems (Hardt
et al. 2016a; Ben-Porat and Tennenholtz 2017; Dong et al.
2018; Braverman and Garg 2020; Sundaram et al. 2021; Ja-
gadeesan, Mendler-Dünner, and Hardt 2021; Ahmadi et al.
2021; Eilat et al. 2022; Horowitz and Rosenfeld 2023;
Miehling et al. 2019). Hardt et al. (2016a) formulated clas-
sification problems with strategic manipulation as a Stack-
elberg game with deterministic cost functions, where the
decision maker optimizes classification accuracy based on
individuals’ best responses. Afterwards, more sophisticated
analytical frameworks were proposed (Dong et al. 2018;
Braverman and Garg 2020; Jagadeesan, Mendler-Dünner,
and Hardt 2021). Dong et al. (2018) proposed an on-
line algorithm for strategic classification. Braverman and
Garg (2020) added randomness to strategic classifiers, while
Shao, Blum, and Montasser (2024); Lechner, Urner, and
Ben-David (2023) provided a complete analysis of the regret
bound for online strategic classification. On the other hand,
Sundaram et al. (2021) analyzes the statistical learnability of
strategic classification with an SVC classifier. Jagadeesan,
Mendler-Dünner, and Hardt (2021) relaxed the standard mi-
crofoundations assumption where individuals are perfectly
rational to alternative microfoundations where a proportion
of individuals may not be strategic, and proposed a noisy re-
sponse model to tackle the new problem. Zhang et al. (2022)
studied the setting where the decision maker and individu-
als only have knowledge of the feature distributions as ran-
dom variables. Thus, the strategic manipulation corresponds
to a distribution shift and its cost is also a random variable.
Eilat et al. (2022) considered the setting where individual re-
sponses are dependent and the classifier is learned through
graph neural networks. Xie and Zhang (2024a) studied the
long-term impacts on welfare and fairness under a sequential
strategic learning setting.

2.2 Improvement
However, there are other literature considering improvement
behavior (Liu et al. 2019; Rosenfeld et al. 2020; Shavit,
Edelman, and Axelrod 2020; Alon et al. 2020; Zhang et al.
2020; Chen, Wang, and Liu 2020; Kleinberg and Raghavan
2020; Bechavod et al. 2021; Ahmadi et al. 2022a,b; Raab



and Liu 2021; Xie et al. 2024; Xie and Zhang 2024b; Zhang,
Khalili, and Liu 2020). Unlike strategic manipulation, im-
provement will incur a label change. Liu et al. (2019) stud-
ied the conditions where fairness interventions can promote
improvement among individuals. Zhang et al. (2020) formu-
lated the label change as a transition matrix where the transi-
tion probabilities are deterministic and difficult to estimate.
Other works consider both behaviors at the same time. Xie
et al. (2024) studied randomness when the agents can both
improve and manipulate, while Xie and Zhang (2024b) re-
laxed the linear assumption on the decision policy and stud-
ied the welfare under strategic learning settings. Kleinberg
and Raghavan (2020) proposed a mechanism to incentivize
individuals to invest in specific features where the individ-
uals have a budget to invest strategically on all features
including undesired ones. Their work inherited the classi-
cal settings of the Principal-agent model in economics but
designed an incentivizing mechanism under a linear ma-
chine learning classifier. They modeled manipulation and
improvement similarly (linear in efforts) and did not con-
sider the persistent and delayed effects of improvement. By
contrast, we first develop a fundamentally different dynamic
model to characterize persistent and delayed improvements.
Based on the new model, we construct a Stackelberg game to
model the interplay between agents and the decision-maker.

Another line of literature focuses on the underlying causal
models of strategic classification. Shavit, Edelman, and Ax-
elrod (2020) and Alon et al. (2020) introduced causal infer-
ence frameworks into strategic behaviors including manip-
ulation and improvement. Chen, Wang, and Liu (2020) di-
vided the features into immutable features, improvable fea-
tures and manipulable features and explored linear classi-
fiers which can prevent manipulation and encourage im-
provement. Jin et al. (2022) also focused on incentivizing
improvement and proposed a subsidy mechanism to induce
improvement actions and improve social well-being metrics.
Barsotti, Kocer, and Santos (2022) conducted several exper-
iments where both improvement and manipulation are pos-
sible and both actions incur linear deterministic costs.

2.3 Other Agent Dynamics
In addition to manipulation and improvement, some studies
consider different individual behaviors and models. For ex-
ample, Zhang et al. (2019); Dean et al. (2024a); Hashimoto
et al. (2018) focused on participation dynamics where agents
at each time decide their participation in decision systems.
Perdomo et al. (2020); Hardt, Jagadeesan, and Mendler-
Dünner (2022); Jin et al. (2024a) studied performative pre-
diction which is an abstract framework for optimization
when the deployed model influences agent population. Yin
et al. (2024) studied the setting where the population distri-
bution has an unknown dynamic and reinforcement learning
is used to improve long-term fairness. We refer interested
readers to survey papers (Zhang and Liu 2021; Dean et al.
2024b) for more examples. Also, our work is related to pref-
erence shifts and opinion dynamics in recommendation sys-
tems, which we refer to Castellano, Fortunato, and Loreto
(2009) as a comprehensive survey. Among the rich set of
works, Dean and Morgenstern (2022); Gaitonde, Kleinberg,

and Tardos (2021) proposed geometric models for opinion
polarization and motivate our work.

3 Problem Formulation
Consider an agent population with m skill sets. Each agent
has a qualification profile at time t, denoted as a unit m-
dimensional vector qt ∈ [0, 1]m with ||qt||2 = 1, A decision-
maker at each time makes decisions Dt ∈ {0, 1} (“0" being
reject and “1" accept) about the agents based on their qual-
ification profiles. Let fixed vector d ∈ [0, 1]m be the ideal
qualification profile that the decision maker desires.

Decision-maker’s policy. For an agent with qualification
profile qt, the decision-maker assesses whether the agent’s
profile lines up with the desired qualifications d, and makes
decision Dt based on their similarity xt := qTt d using a fixed
threshold policy π(xt) = 1(xt ≥ θ), i.e., only agents that
are sufficiently fit can get accepted. How to choose threshold
θ is discussed in Sec. 5. We assume only agents with initial
similarity x0 ≥ 0 are interested in positions and only focus
on these candidates.

Although the decision policy introduced above focuses on
the similarity between qt and d where qualifications qt are
normalized with the same magnitude for all agents, it can
be easily extended to settings where the magnitude/strength
of skills also matters and may differ across agents. For ex-
ample, if the decision-maker prefers students with balanced
math and English skills and there are two "balanced" stu-
dents, the decision-maker is likely to prefer the one with
higher scores. Therefore, we propose a pre-normalization
procedure to take magnitude into account. The idea is to
first add an additional dimension to initial qualification pro-
file q0, which represents the agent’s unobservable “irrelevant
attribute" (all other skills an agent has that are not important
for the decision). Thus, we expand the original q0 to obtain
a m + 1 dimensional complete qualification profile. Mean-
while, we add a dimension to the ideal qualification profile
d with 0 as its value; the new ideal profile becomes [d; 0].
Then we can make the following natural assumption:
Assumption 3.1. After adding the dimension of “irrelevant
attribute”, for all agents, the norms of their complete quali-
fication profiles are the same.

Assumption 3.1 has been supported by literature in ma-
chine learning (Liu, Garg, and Borgs 2022) and social sci-
ence (Holmstrom and Milgrom 1991). The “irrelevant" di-
mension demonstrates all other skills that belong to an agent
but are not important to the decision. Therefore, competency
in relevant/measurable attributes implies weakness in irrele-
vant/immeasurable attributes and the length of the complete
qualification profile stays the same for all agents. With As-
sumption 3.1 and the distribution of q0 as Q, we formalize
the pre-normalization procedure in Algorithm 1.

Agent qualification dynamics. We assume agents have
information about the ideal profile d (e.g., from application
guides, mock interviews). In the beginning, agents with q0
can choose to improve their profiles by investing an effort
k ∈ [0, 1] to acquire the relevant knowledge, but the effort
will have delayed and persistent effects over subsequent time



Algorithm 1: Pre-normalization procedure

Require: Joint distribution Q for q0, n agents with {qi0}i=n
i=1

where qi0 ∈ [0, 1]m, d ∈ [0, 1]m.
Ensure: Normalized {qi0}i=n

i=1 (i.e., qi0 ∈ [0, 1]m and
∥qi0∥ = 1), new d ∈ [0, 1]m+1.

1: d = [d, 0].
2: According to Q, find the largest norm K =

maxq0∼Q∥qi0∥ of original profiles.
3: for i ∈ {1, . . . n} do
4: Calculate norm difference zi =

√
K2 − ∥qi0∥22.

5: qi0 =
[qi0;z

i]T

K ∈ [0, 1]m+1.
6: end for

Figure 1: Dynamics of agent’s qualification qt.

stages. The specific value of k depends on the agent’s util-
ity and will be introduced at the end of this section. Upon
investing k, the agent’s qualifications qt gradually improve
over time based on the following:

q̃t+1 = qt + k · qTt d · d ; qt+1 =
q̃t+1

∥q̃t+1∥2
. (1)

(1) suggests that agents at each time improve toward the
ideal profile d. How much they can improve depend on their
current profile qt and the effort k. The similarity qTt d in the
dynamics captures the reinforcing effects: agents that are
more qualified could have more resources and are more ca-
pable of leveraging the acquired knowledge to improve their
skills. Note that the maximum improvement an agent attains
at each round is bounded, i.e., the normalized vector qt+1

after improvement is always between current qualifications
qt and the ideal profile d. Fig. 1 illustrates the improvement
dynamics of qualification qt in a two-dimensional space.

Dynamics in (1) model the delayed and persistent impacts
of improvement action (i.e., effort k). In many real applica-
tions, humans acquire knowledge and benefit from repeated
practices. They make progress toward the goal gradually,
and it takes time to receive the desired outcome from the
investment. Indeed, (1) is inspired by the dynamics in Dean
and Morgenstern (2022), which was used for modeling pref-
erence shifts (details are in Sec. 2.3), where individuals up-
date their opinions/preferences based on their correlations
with some influencer (e.g., a political figure) and control the
power of the intervention. We believe this is similar to im-
provement especially when agents improve themselves by

imitating some "role models". For example, in a job applica-
tion scenario, the “influencer” is a current worker who holds
information session and introduces her profile d. Then the
agents strive to mimic the profile of d by updating qt. The
imitating nature of improvement is well justified in many
works (e.g., Raab and Liu (2021); Zhang et al. (2022)), mak-
ing agent improvement suitable to be modeled in a similar
fashion to concept drift/preference shift. Thus, we use (1) to
model the evolution of agents’ (pre-normalized) qualifica-
tions. Based on Prop. 1 of Dean and Morgenstern (2022), we
know that qt converges under dynamics, as formally stated
in Lemma 3.2 below.
Lemma 3.2 (Convergence of qualification). Consider an
agent with initial similarity x0 := qT0 d > 0. If he/she makes
an effort k and improves qualification profile qt based on dy-
namics in (1), then qt converges to the desired profile d. The
evolution of the similarity xt := qTt d is given by:

x−2
t − 1 =

(x0)
−2 − 1

(k + 1)2t
(2)

Lemma 3.2 suggests that any agent eventually becomes
an ideal candidate with a perfectly aligned profile (i.e.,
xt = qTt d = 1), as long as he/she is interested in the po-
sition (x0 ≥ 0) and willing to make an effort (k > 0). The
only difference among agents is the speed of convergence: it
takes less time for agents who are more qualified at the be-
ginning (i.e., larger x0) and/or make more effort (i.e., larger
k) to become ideal and get accepted. Note that our work fo-
cuses on agent’s improvement behavior with persistent and
delayed effects. Although the model is presented in a sim-
plified setting where only a one-step effort is made by the
agents at the beginning, it can capture more complicated sce-
narios where agents repeatedly exert efforts multiple times
until they reach the target. Each effort has persistent effects
on improving the qualification. Specifically, suppose each
agent at time t can exert an effort kt and the agent’s quali-
fication improves based on q̃t+1 = qt +

∑t
τ=0 kτ · qTt d · d

with qt+1 = q̃t+1

∥q̃t+1∥2
(i.e., every time the agent improves

from all accumulated efforts
∑t

τ=0 kτ ∈ [0, 1] he/she in-
vested so far). For this new dynamics, the overall impacts of
these efforts {kt}t≥0 on improving agent qualification can
be equivalently characterized by the dynamics (1) with some
one-step effort. That is, there exists an effort k∗ ∈ [0, 1] such
that investing k∗ once at the beginning has the same impact
on limt→∞ qt as investing a sequence of efforts {kt}t≥0

over time. We provide more detailed discussion on this in
App. A. We also discuss a special case where the effect of
k is decreasing over time and provide further convergence
analysis (Thm. A.1) in App. A.

Agent’s utility & action. Because it takes time for agents
to receive rewards (i.e., get accepted) for their efforts, they
may not have incentives to invest if there is a long delay. In
practice, people may be more attracted to investments with
immediate rewards than delayed rewards, or they may sim-
ply not have enough time to wait. For example, students
only have limited time to prepare for college applications;
credit card applicants may not have incentives to improve



their credit scores and wait to get approval for a specific
credit card when there are many instant-approval cards on
the market.

To characterize the delayed rewards, we use a discount
model and assume the reward each agent receives from the
effort k decreases over time. Specifically, let H be the mini-
mum time it takes for an agent to get accepted from the effort
k > 0. We define agent’s utility as:

U =
1

(1 + r)H
− k. (3)

That is, the utility is the exponentially discounted reward an
agent receives from the acceptance minus the effort. r > 0
is the discounting factor. Note that the discounted utility
model1 has been widely used in literature such as reinforce-
ment learning (Kaelbling, Littman, and Moore 1996), fi-
nance (Meier and Sprenger 2013), and economics (Krahn
and Gafni 1993; Samuelson 1937).

Since threshold policy π(xt) = 1(xt ≥ θ) is used to make
decisions, an agent gets accepted whenever the qualification
profile is sufficiently aligned with the ideal profile, i.e., xt =
qTt d ≥ θ. Based on (2), we can derive H as a function of
threshold θ, agent’s initial similarity x0, and effort k, i.e.,

H = min
t

{xt ≥ θ} = min
t

{
(x0)

−2 − 1

(k + 1)2t
≤ 1

θ2
− 1

}

=
− ln

(√
(θ)−2−1
(x0)−2−1

)
ln(k + 1)

(4)

Plug in (3), agent’s utility becomes:

U := U(k, θ, r, x0) = (1 + r)

ln

(√
(θ)−2−1

(x0)−2−1

)
ln(k+1) − k. (5)

Therefore, strategic agents will choose to improve their
qualifications only if utility U(k, θ, r, x0) > 0, and they will
choose the investment k that maximizes the utility.

Stackelberg game. We model the strategic interplay be-
tween the decision-maker and agents as a Stackelberg game,
which consists of two stages: (i) the decision-maker first
publishes the optimal acceptance threshold θ (details are in
Sec. 5); (ii) agents after observing the threshold take actions
to maximize their utilities as given in (5).

Manipulation & forgetting. The model formulated above
has two implicit assumptions: (i) agents are honest and they
improve their qualifications by making actual efforts; (ii)
once agents make a one-time effort k to acquire the knowl-
edge, they never forget and can repeatedly leverage this
knowledge to improve their profiles based on (1). However,
these assumptions may not hold. In practice, agents may
fool the decision-maker by directly manipulating xt to get
accepted without improving actual qt, e.g., people cheat on

1Under exponential discounting function, the agent’s reward di-
minishes at a constant rate (Grüne-Yanoff 2015). Our model can
also adopt other discounting functions (e.g., hyperbolic discount-
ing) for settings when the agent’s reward decreases inconsistently.
The qualitative results of this paper still remain the same.

exams or interviews to get accepted. Moreover, the knowl-
edge agents acquired at the beginning may not be sufficient
to ensure repeated improvements. To capture these, we fur-
ther extend the above model to two settings:
1. Manipulation: Besides improving the actual profile qt by

making an effort k, agents may choose to manipulate xt

directly to fool the decision-maker. The detailed model
and analysis are in Sec. 6.

2. Forgetting: One-time investment k may not guarantee the
improvements all the time, i.e., qualifications qt do not al-
ways move toward the direction of ideal profile d, instead
it may devolve and possibly go back to starting state q0.
The detailed model and analysis are in Sec. 7.

Objective. In this paper, we study the above interactions
between decision-maker and agents. We aim to understand
(i) under what conditions agents have incentives to improve
their qualifications; (ii) how to design the optimal policy to
incentivize the largest improvements inside the agent pop-
ulation; (iii) how the agents would behave when they have
both options of manipulation and improvement, and under
what conditions agents prefer improvement over manipula-
tion; (iv) how the forgetting mechanism affects agent’s be-
havior and long-term qualifications.

4 Improvement & Optimal Effort
In this section, we examine the impact of decision thresh-
old θ and the environment (i.e., discounting factor r) on
agent behavior. Specifically, we focus on agents with dis-
counted utility ((5)) and identify conditions under which the
agents have incentives to improve their qualifications. Note
that we do not consider issues of manipulation and forget-
ting in this section. Based on (5), an agent with x0 := qT0 d
chooses to improve only if its utility U(k, θ, r, x0) > 0. To
characterize the impact of an agent’s one-time investment k
on U(k, θ, r, x0), we first define a function C(θ, r, x0) that
summarizes the impacts of all the other factors (i.e., thresh-
old θ, discounting factor r, and initial profile similarity x0)
on agent utility, as defined below.

C(θ, r, x0) = − ln

(√
(θ)−2 − 1

(x0)−2 − 1

)
· ln(1 + r) (6)

Based on C(θ, r, x0), we can derive conditions under which
agents have incentives to improve (Thm. 4.1).
Theorem 4.1 (Improvement & optimal effort). There exists
a threshold m > 0 such that for any θ, r, x0 that satisfies
C(θ, r, x0) < m, the agent has the incentive to improve the
qualifications, i.e., agent utility is positive for some efforts
k > 0. Moreover, there exists a unique optimal effort k∗ ∈
(0, 1) that maximizes the agent utility.

Thm. 4.1 identifies a condition under which agents have
incentives to exert positive effort k > 0. This condition de-
pends on factors θ, r, x0 and can be fully characterized by
the function C := C(θ, r, x0).

Although the analytical solution of the threshold m is dif-
ficult to find, we can numerically solve m ≈ 0.3164 as
shown in App. F.1. In Fig. 2, we illustrate agent utilities U as
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Figure 2: Impact of effort k on agent utility U under different
C := C(θ, r, x0): ∃m > 0 such that agents have incentives
to invest and improve their qualifications if C < m.

functions of effort under different C. The results show that
only when C < m (red curve), an agent can attain positive
utility with effort k > 0; when C ≥ m (green/yellow/blue
curve), agents will not invest because the maximum utility
is attained at k = 0. Moreover, when C < m (red curve),
there is a unique optimal effort k that maximizes the utility.
These results are consistent with Thm. 4.1.

The condition in Thm. 4.1 further indicates the impacts of
policy θ, discounting factor r, and initial state x0 on agent
behavior. Specifically, agents only invest if C(θ, x0, r) < m
holds. By fixing any two of θ, x0, r, we can identify the do-
main of the third factor under which agents invest to im-
prove. These results are summarized in Table 1 and verified
in App. B. It shows that for any threshold θ and discount-
ing factor r, agents only improve if their initial qualification
profile is sufficiently similar to the ideal profile; the domain
of θ also implies the best profile an agent with initial state
x0 can reach after exerting effort: if acceptance threshold θ
is larger than the upper bound of θ given in Table 1, then
agents will not have incentives to improve.

Table 1: Domain of initial similarity x0 (or threshold θ) un-
der which agents invest positive efforts.

Domain of x0 (given θ, r) x0 >
(
1 + (θ−2 − 1) · exp

(
2m

ln(1+r)

))−1/2

Domain of θ (given x0, r) θ ≤
(
1 + (x−2

0 − 1) · exp
(
− 2m

ln(1+r)

))−1/2

The above results further suggest effective strategies that
encourage agents to improve their qualifications, i.e., more
agents are incentivized to improve if (i) the decision-maker’s
acceptance threshold θ is lower; or (ii) the time it takes for
agents to succeed after investments is shorter (smaller dis-
counting factor r). Examples of both strategies in real ap-
plications are discussed in App. B, which further verify the
effectiveness of our proposed model.

5 Decision-maker’s policy to incentivize
improvement

Sec. 4 studied the impact of threshold θ on agent behavior
and provided guidance on incentivizing agents to improve.

In practice, although it is more difficult to adjust the dis-
counting factor r, the decision-maker can adjust the thresh-
old policy θ to incentivize the largest possible amount of
total improvement, thereby improving the social welfare. In
this section, we study the optimal policy when the decision-
maker is aware of the agent’s best response and hopes to
incentivize agents to improve.

Suppose the decision-maker has full information about
agents and can anticipate their behaviors, i.e., for any de-
cision threshold θ, it knows that agents whose initial simi-

larity x0 > x∗(θ) :=
(
1 + (θ−2 − 1) · exp

(
2m

ln(1+r)

))− 1
2

will invest and improve their profiles (by Table 1). Also, we
define x∗(0) = 0 to let x∗(θ) be continuous in [0, 1] and de-
note f as the probability density function of the agent sim-
ilarity x0 which is also continuous in [0, 1]. Then, we can
define Ud(θ) as the utility of the decision-maker under the
threshold as the total amount of agents’ improvements:

Ud(θ) =

∫ θ

x∗(θ)

(θ − x0) · f(x0)dx0 (7)

Eq. (7) above demonstrates that the decision-maker aims
to maximize the total improvement among the agent popu-
lation, and its utility is a function of θ. Since f(x), x∗(θ) are
both continuous in [0, 1], utility Ud(θ) is also continuous.
The following Thm. 5.1 further shows the existence of the
optimal thresholds θ∗ ∈ (0, 1).

Theorem 5.1 (Existence of optimal threshold). For any
decision-maker with utility function Ud, there exists at least
one θ∗ ∈ (0, 1) that is optimal under which Ud(θ) > 0.
Moreover, θ∗ is the unique optimal point of Ud if ∂Ud

∂θ has
one root within (0, 1).

To verify Thm. 5.1, we demonstrate the values of Ud un-
der situations where the agent population has different den-
sity functions f and different discounting factors r. Specif-
ically, we consider the uniform distribution and Beta distri-
butions with different parameters. Fig. 3 shows Ud(θ) un-
der different density functions f and discounting factors r.
The results illustrate that under these settings, Ud is single-
peaked and there is a unique θ∗ ∈ (0, 1) that is optimal and
results in positive utility, which is consistent with Thm. 5.1.
The figure also indicates the impact of r on the optimal
threshold: as r increases, θ∗ increases and the correspond-
ing maximum utility decreases. As formally stated below in
Corollary 5.2. We prove Thm. 5.1 and Corollary 5.2 in App.
F.2.

Corollary 5.2. For Ud(θ) that has a unique maximizer θ∗,
optimal θ∗ decreases as r increases.

Importantly, the results of Thm. 5.1 show that the
decision-maker can always find an optimal decision thresh-
old θ∗ (either numerically or using gradient methods de-
pending on the density function f ) to incentivize the largest
improvement and promote social welfare in practice. While
the above results all assume the decision-maker knows r
when determining θ, we can relax this and provide a pro-
cedure to estimate r; this is included in App. E.
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Figure 3: Optimal thresholds θ∗ under different density
functions f and discounting factors r.

6 Impact of Manipulative Behavior
Our analysis and results so far rely on an implicit assump-
tion that agents are honest and they improve qualifications qt
by making actual efforts. However, as mentioned in Sec. 3,
agents in practice may fool the decision-maker by strategi-
cally manipulating xt = qTt d to get accepted without im-
proving qt. Next, we extend our model in Sec. 3 by consid-
ering the possibility of such manipulative behavior.

Model with both manipulation & improvement. We ex-
tend the model in Sec. 3 where agents after observing θ have
an additional option to manipulate x0 directly. If they choose
to improve, they make a one-time effort k ∈ [0, 1] to acquire
relevant knowledge and gradually improve their qualifica-
tions qt over time based on (1). If they choose to manipulate,
they only increase xt at every round to fool the decision-
maker without changing the actual profile qt. Similar to the
literature on strategic classification (Hardt et al. 2016a), the
manipulation comes at the cost and the risk of being caught.

Specifically, let c(x′, x) ≥ 0 be the manipulation cost it
takes for an agent to increase its similarity from x to x′,
and P ∈ [0, 1] be the detection probability of manipulation
during an agent’s entire application process. Agents, once
getting caught manipulating xt, will never be accepted.

Degree of manipulation. If agents choose to manipulate,
they will increase xt at every round to fool the decision-
maker, and they manipulate in a way that minimizes the
manipulation cost and the risk of being detected. We make
the following natural assumptions on c and P :

1. Let xt be the best outcome agents can attain from xt−1

at round t by improvement behavior (with largest effort
k = 1). If xt > xt for some t, then P = 1 because
the decision-maker can be certain that xt is the result of
manipulation; otherwise, P ∈ [0, 1) if xt ≤ xt.

2. The total manipulation cost it takes for an agent with
initial similarity x0 to be accepted is c(θ, x0).

Note that xt above indicates the maximum degree of
manipulation of agents: to avoid being detected, an agent
should not manipulate xt more than xt. We can compute
xt directly from Lemma 3.2 (by setting k = 1), i.e.,

xt =

(
x−2
t−1−1

4 + 1

)− 1
2

. For agents who manipulate, if the

total manipulation cost needed to get accepted is c(θ, x0)
and detection probability P = 1 whenever xt > xt, then
agents will always manipulate toward xt to maximize its
utility. As a result, agents who manipulate can be regarded as

they mimic the improvement behavior with the largest effort
k = 1.

Let Ũ be agent’s utility under manipulation, which is
the benefit an agent obtains from acceptance (when not be-
ing detected) minus the manipulation cost, i.e.,

Ũ = (1− P ) · (1 + r)

− ln

(√
(θ)−2−1

(x0)−2−1

)
ln 2 − c(θ, x0), (8)

where the benefit is derived based on (5) (with k = 1).

Agent’s best response. Suppose agents have full informa-
tion about detection probability P and discounting factor r,
after observing the acceptance threshold θ, they best respond
by choosing the action (i.e., improvement/manipulation/do
nothing) that maximizes their utilities, i.e., if Ũ > maxk U ,
they choose to manipulate; otherwise, they improve by ex-
erting optimal effort k∗ = argmaxk U .

Next, we examine under what conditions agents prefer
improvement over manipulation.
Theorem 6.1. Suppose manipulation cost c(x′, x) = (x′ −
x)+ and threshold θ ≥ θ̄ for some θ̄ ∈ (0, 1). For any dis-
counting factor r, there exists P̂ ∈ (0, 1) such that the fol-
lowings hold:

1. If P = 0, then ∃x̂ ∈ (0, 1) such that agents manipulate
only when initial similarity x0 ∈ (x̂, θ).

2. If P ∈ (0, P̂ ], then ∃x̂1, x̂2 such that agents manipulate
only when initial x0 ∈ (x̂1, x̂2).

3. If P > P̂ , then agents never choose to manipulate.
Thm. 6.1 considers scenarios when the threshold is suffi-

ciently high, and identifies conditions under which manipu-
lation is preferred by agents in these settings. It shows agent
behavior highly depends on the risk of manipulation (i.e.,
detection probability P ). The specific values of P̂ , x̂, x̂1,
x̂2 in Thm. 6.1 depend on θ, r. In particular, P̂ increases
as r increases. Indeed, we can empirically find P̂ , x̂, x̂1, x̂2

and verify the theorem. These are illustrated in App. C and
Sec. 8.

7 Forgetting Mechanism
The analysis in previous sections relies on the assumption
that once agents make a one-time effort k to acquire the
knowledge, they never forget and can repeatedly leverage
this knowledge to improve their profiles based on (1). This
may not hold in practice when the knowledge agents ac-
quired at the beginning are not sufficient to guarantee re-
peated improvements. In this section, we extend the qualifi-
cation dynamics ((1)) by incorporating the forgetting mech-
anism, i.e., qualification profile qt does not always move to-
ward the direction of ideal profile d, instead, it may devolve
and possibly go back to the initial q0. Note that we only con-
sider honest agents who do not manipulate. By modifying
(1), we define the new qualification dynamics with forget-
ting as follows.

q̃t+1 = qt + (k · d+ (1− k) · q0) · qTt d (9)

qt+1 =
q̃t+1

∥q̃t+1∥2
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Let d̃ := k ·d+(1−k) ·q0, then new dynamics in (9) implies
that at each round, qualification profile qt is pushed toward
the direction of d̃, i.e., a convex combination of ideal profile
d and initial qualifications q0. Whether qt improves towards
d or deteriorates back to q0 depends on the investment k:
with more effort k, the degree of forgetting is less; there is
no forgetting if all the knowledge is acquired (k = 1). Un-
der the new dynamics, we can derive the convergence of the
qualification profile as follows.

Theorem 7.1 (Convergence of qualification under forget-
ting). Consider an agent with initial similarity x0 = qT0 d >
0 whose qualifications qt follow dynamics in (9). Suppose
the agent makes investment k > 0, then qt converges to pro-
file d∗ and the similarity xt = qTt d satisfies:

(x∗
t )

−2 − 1 <
(x∗

0)
−2 − 1

(ku + 1)2t
(10)

where d∗ = d̃

∥d̃∥
, x∗

t = qTt d
∗, and ku = ∥d̃∥ · x0.

Thm. 7.1 implies that convergence still holds when qual-
ifications evolve with forgetting. Unlike the scenarios with-
out forgetting where qt eventually converges to the ideal pro-
file d regardless of k (Lemma 3.2), qt now converges to d∗,
i.e., a profile between initial qualifications q0 and ideal pro-
file d, which is closer to q0 with smaller investment k. It
shows that if agents do not exert enough effort and the ac-
quired knowledge is not sufficient, then they will not make
satisfactory improvements.

Agent’s utility and improvement action. Denote agent
utility under the forgetting mechanism as Û(k, θ, r, x0). Un-
like settings without forgetting where we can derive the ex-
act time H it takes for agents to be accepted and find utility
U ((5)), the analytical form of Û(k, θ, r, x0) is not easy to
derive. Nonetheless, we can still show that there exist sce-
narios under which agents have incentives to improve, even
though the best attainable profile is a profile d∗ between ini-
tial q0 and the ideal d.

Theorem 7.2. For any threshold θ (resp. discounting factor
r), there exists a discounting factor r (resp. threshold θ) such
that agent’s utility Û(k̄, θ, r, x0) > 0 for some k̄ ∈ (0, k̂),
i.e., agents have the incentive to make a positive effort. The

upper bound of the optimal effort is k̂ given by

k̂ = min

(
x̂2
0

2x̂2
0 + 2x̂3

0

,
x0 · (x2

0 + x0 −
√
x4
0 − x2

0 + 1)

2x2
0 + 2x3

0 − 1

)
(11)

where x̂0 is the root of 2x2
0 + 2x3

0 − 1 = 0 within (0, 1).
Thm. 7.2 implies that there exists (θ, r) such that agents

best respond by improving their qualifications, and the op-
timal effort is upper bounded by k̂. Indeed, we can numer-
ically find the upper bound k̂ as a function x0 (shown in
Fig. 4). Because k̂ < 0.35 for all x0, the actual effort in-
vested by any agent is less than 0.35, and the qualifica-
tions qt converge to a profile d∗ that is between q0 and
0.35 · d + 0.65 · q0. This means the improvement an agent
can make under the forgetting mechanism may be limited,
suggesting that the agents may not improve to be qualified
when the tasks are challenging.

8 Experiments
We validate theoretical results by conducting experiments
on Exam score (Kimmons 2012) and FICO score (Reserve
2007) dataset2. For both datasets, scores serve as the agent’s
initial similarity x0, and we assume agents interact with a
decision maker based on the Stackelberg game in Sec. 3.
We first fit these scores with beta distributions, i.e., x0 ∼
Beta(v, w), and then use them to derive the followings:
1. The optimal decision threshold θ∗ for the decision-maker

to incentivize the largest amount of improvement and
promote social welfare, and the total improvement in-
duced by θ∗.

2. The percentage of agents who choose to manipulate un-
der the decision-maker’s optimal policy.

Exam Score Data. It is a synthetic dataset contain-
ing 1000 students’ exam scores on 3 subjects including
math, reading, and writing (Kimmons 2012). We first av-
erage over 3 subjects and normalize the averaged score
to [0, 1]. Then, we fit two beta distributions to the nor-
malized scores of males and females and obtain x0 ∼
Beta(4.86, 2.37),Beta(4.15, 1.79) (see Fig. 10 in App. D).

With these distributions, we can compute the optimal de-
cision thresholds and the corresponding total improvement
under different discounting factors r. As shown in Fig. 5, for
both males and females, the experimental results are similar.
When r increases, θ∗ always decreases and the total amount
of improvement becomes lower. This illustrates how larger
discounting factors harm agents’ improvement. Addition-
ally, we consider settings with both manipulation and im-
provement. Fig. 5 also shows the percentages of agents who
prefer to manipulate under θ∗. It shows that agents are less
likely to manipulate as detection probability P increases.

FICO Score Data. We adopt the data pre-processed by
Hardt et al. (2016b), which contains CDF of credit scores
of four racial groups (Caucasian, African American, His-
panic, Asian). For each group, we fit a Beta distribution and

2https://github.com/osu-srml/Alg-Persistent-Improvement
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Figure 5: From the left to the right are: optimal thresholds to incentivize improvement for males/females; manipulation proba-
bility under the thresholds for males/females for Exam data.
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Figure 6: From the left to the right are: optimal thresholds to incentivize improvement for Caucasians and African Americans;
manipulation probability under the thresholds for Caucasians and African Americans for FICO data.
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Figure 7: Optimal thresholds to incentivize improvement (left two plots) and manipulation probability under the thresholds
(right two plots) for Asians and Hispanic of the FICO data.

obtain four distributions: Beta(1.11, 0.97) for Caucasian,
Beta(0.91, 3.84) for African American, Beta(0.99, 1.58) for
Hispanic, Beta(1.35, 1.13) for Asian (see Fig. 11 in App.
D). The results for Caucasians and African Americans are
shown on the first column in Fig. 7, while the results for
Asian and Hispanic are shown the second column.

For each group, we compute the optimal decision thresh-
old and corresponding total improvement under different r.
As shown in Fig. 7 (left two plots), for both groups, their
corresponding optimal threshold θ∗ and the total amount of
improvement always decrease as r increases. For settings
with both manipulation and improvement (right two plots in
Fig. 7), agents are more likely to manipulate under smaller
detection probability. When detection probability P is suffi-
ciently large, agents do not have incentives to manipulate.

9 Conclusions & Limitations
This paper studies the strategic interactions between agents
and a decision-maker when agent action has delayed and

persistent effects. By utilizing a qualification dynamics
model and the discounting utility function, we analyze the
conditions where agents tend to improve and investigate
how the decision-maker can incentivize agents to make the
largest improvement. Moreover, we consider the situation
where agents can improve or manipulate, and characterize
how agents would make improvement or manipulation de-
cisions when their efforts take time to pay back. Finally,
we discuss the situation where the tasks are challenging and
a forgetting mechanism takes place, thereby expanding the
scope of our model.

However, our theoretical results depend on the assump-
tion that both agents and the decision-maker have perfect
information about each other so that they always best re-
spond. Extension to cases when each party only has partial
or imperfect information is important. Moreover, these the-
orems are based on the qualification dynamics (1). Although
a scenario when it does not hold is studied in Sec. 7, future
works should also consider other variants tailored to spe-



cific applications to prevent negative outcomes. For exam-
ple, they may consider the more complex situation where
the decision-maker has a time-varying ideal profile dt.

Ethical Consideration Statement
We believe our work fills the gap in which agent strategic be-
haviors are benign and agents’ efforts can have long-lasting
but diminishing effects. This can be the case under many
real-world situations including exam preparation and job ap-
plication. Thus, our model can improve trustworthy machine
learning and decision-making in reality. However, as men-
tioned in Sec. 9, our work relies on certain assumptions and
needs to be used cautiously. Moreover, though we provide
a procedure to estimate the discounting factor, performing
controlled experiments is not always accessible. Meanwhile,
manipulation cost and detection probability are unknown
and hard to estimate. Collecting real data and estimating
these parameters remain promising research directions in the
future.

Acknowledgement
This material is based upon work supported by the U.S.
National Science Foundation under award IIS-2202699, by
grants from the Ohio State University’s Translational Data
Analytics Institute and College of Engineering Strategic Re-
search Initiative.

References
Ahmadi, S.; Beyhaghi, H.; Blum, A.; and Naggita, K. 2021.
The strategic perceptron. In Proceedings of the 22nd ACM
Conference on Economics and Computation, 6–25.
Ahmadi, S.; Beyhaghi, H.; Blum, A.; and Naggita, K. 2022a.
On classification of strategic agents who can both game and
improve. arXiv preprint arXiv:2203.00124.
Ahmadi, S.; Beyhaghi, H.; Blum, A.; and Naggita, K. 2022b.
Setting Fair Incentives to Maximize Improvement. arXiv
preprint arXiv:2203.00134.
Alon, T.; Dobson, M.; Procaccia, A.; Talgam-Cohen, I.; and
Tucker-Foltz, J. 2020. Multiagent Evaluation Mechanisms.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 34: 1774–1781.
Barsotti, F.; Kocer, R. G.; and Santos, F. P. 2022. Trans-
parency, Detection and Imitation in Strategic Classification.
In Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, IJCAI-22, 67–73.
Bechavod, Y.; Ligett, K.; Wu, S.; and Ziani, J. 2021. Gaming
helps! learning from strategic interactions in natural dynam-
ics. In International Conference on Artificial Intelligence
and Statistics, 1234–1242.
Bechavod, Y.; Podimata, C.; Wu, S.; and Ziani, J. 2022. In-
formation discrepancy in strategic learning. In International
Conference on Machine Learning, 1691–1715.
Ben-Porat, O.; and Tennenholtz, M. 2017. Best Response
Regression. In Advances in Neural Information Processing
Systems.

Braverman, M.; and Garg, S. 2020. The Role of Ran-
domness and Noise in Strategic Classification. CoRR,
abs/2005.08377.
Castellano, C.; Fortunato, S.; and Loreto, V. 2009. Statisti-
cal physics of social dynamics. Reviews of modern physics,
81(2): 591.
Chen, Y.; Wang, J.; and Liu, Y. 2020. Strategic Recourse in
Linear Classification. CoRR, abs/2011.00355.
Dean, S.; Curmei, M.; Ratliff, L.; Morgenstern, J.; and Fazel,
M. 2024a. Emergent specialization from participation dy-
namics and multi-learner retraining. In International Con-
ference on Artificial Intelligence and Statistics, 343–351.
PMLR.
Dean, S.; Dong, E.; Jagadeesan, M.; and Leqi, L. 2024b. Ac-
counting for AI and Users Shaping One Another: The Role
of Mathematical Models. arXiv preprint arXiv:2404.12366.
Dean, S.; and Morgenstern, J. 2022. Preference Dynamics
Under Personalized Recommendations. In Proceedings of
the 23rd ACM Conference on Economics and Computation,
795–816.
Dong, J.; Roth, A.; Schutzman, Z.; Waggoner, B.; and Wu,
Z. S. 2018. Strategic Classification from Revealed Prefer-
ences. In Proceedings of the 2018 ACM Conference on Eco-
nomics and Computation, 55–70.
Eilat, I.; Finkelshtein, B.; Baskin, C.; and Rosenfeld, N.
2022. Strategic Classification with Graph Neural Networks.
Gaitonde, J.; Kleinberg, J.; and Tardos, É. 2021. Polarization
in geometric opinion dynamics. In Proceedings of the 22nd
ACM Conference on Economics and Computation, 499–519.
Grüne-Yanoff, T. 2015. Models of temporal discounting
1937–2000: An interdisciplinary exchange between eco-
nomics and psychology. Science in context, 28(4): 675–713.
Hardt, M.; Jagadeesan, M.; and Mendler-Dünner, C. 2022.
Performative Power. In Advances in Neural Information
Processing Systems.
Hardt, M.; Megiddo, N.; Papadimitriou, C.; and Wootters,
M. 2016a. Strategic Classification. In Proceedings of the
2016 ACM Conference on Innovations in Theoretical Com-
puter Science, 111–122.
Hardt, M.; Price, E.; Price, E.; and Srebro, N. 2016b. Equal-
ity of Opportunity in Supervised Learning. In Advances in
Neural Information Processing Systems.
Harris, K.; Heidari, H.; and Wu, S. Z. 2021. Stateful strate-
gic regression. Advances in Neural Information Processing
Systems, 28728–28741.
Hashimoto, T.; Srivastava, M.; Namkoong, H.; and Liang, P.
2018. Fairness without demographics in repeated loss min-
imization. In International Conference on Machine Learn-
ing, 1929–1938. PMLR.
Holmstrom, B.; and Milgrom, P. 1991. Multitask principal–
agent analyses: Incentive contracts, asset ownership, and job
design. The Journal of Law, Economics, and Organization,
24–52.
Horowitz, G.; and Rosenfeld, N. 2023. Causal Strategic
Classification: A Tale of Two Shifts. arXiv:2302.06280.



Izzo, Z.; Ying, L.; and Zou, J. 2021. How to Learn when
Data Reacts to Your Model: Performative Gradient Descent.
In Proceedings of the 38th International Conference on Ma-
chine Learning, 4641–4650.
Jagadeesan, M.; Mendler-Dünner, C.; and Hardt, M. 2021.
Alternative Microfoundations for Strategic Classification. In
Proceedings of the 38th International Conference on Ma-
chine Learning, 4687–4697.
Jin, K.; Xie, T.; Liu, Y.; and Zhang, X. 2024a. Address-
ing Polarization and Unfairness in Performative Prediction.
arXiv preprint arXiv:2406.16756.
Jin, K.; Yin, T.; Chen, Z.; Sun, Z.; Zhang, X.; Liu, Y.; and
Liu, M. 2024b. Performative federated learning: A solution
to model-dependent and heterogeneous distribution shifts.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, 12938–12946.
Jin, K.; Zhang, X.; Khalili, M. M.; Naghizadeh, P.; and Liu,
M. 2022. Incentive Mechanisms for Strategic Classification
and Regression Problems. In Proceedings of the 23rd ACM
Conference on Economics and Computation, 760–790.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of artificial in-
telligence research, 4: 237–285.
Kimmons, R. 2012. Synthetic Exam Scores in a Public
School. Technical report, Brigham Young University.
Kleinberg, J.; and Raghavan, M. 2020. How Do Classifiers
Induce Agents to Invest Effort Strategically? 1–23.
Krahn, M.; and Gafni, A. 1993. Discounting in the economic
evaluation of health care interventions. Medical care, 403–
418.
Lechner, T.; Urner, R.; and Ben-David, S. 2023. Strategic
classification with unknown user manipulations. In Inter-
national Conference on Machine Learning, 18714–18732.
PMLR.
Liu, L. T.; Dean, S.; Rolf, E.; Simchowitz, M.; and Hardt,
M. 2019. Delayed Impact of Fair Machine Learning. In
Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI-19, 6196–6200.
Liu, L. T.; Garg, N.; and Borgs, C. 2022. Strategic rank-
ing. In Proceedings of The 25th International Conference
on Artificial Intelligence and Statistics, 2489–2518.
Meier, S.; and Sprenger, C. D. 2013. Discounting financial
literacy: Time preferences and participation in financial ed-
ucation programs. Journal of Economic Behavior & Orga-
nization, 95: 159–174.
Miehling, E.; Dong, R.; Langbort, C.; and Başar, T. 2019.
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A Discussion and Generalization of (1)
More details on the dynamics in (1). In the main paper, we assume the influence of the initial effort k is persistent and will
enable qt changes gradually during each round. This is well-supported by the following examples:
1. Creditworthiness: To improve creditworthiness, an individual may learn that an ideal profile would be a person with a

constant high income and long-lasting good credit history. Therefore, she may exert a significant effort to find a job with a
high salary. However, the effort will take several months or even one year for her to finally build up the ideal profile because
she needs to work for a while to receive money and build a competitive credit history.

2. Job application: An individual who wants to apply for a technology company may learn about the skill set of an ideal
candidate from several resources (e.g., the job description, alumni who work at the company, info session) and then exert a
significant effort to study the required knowledge. However, it still takes time for her to do exercises and master the skills,
resulting in a delay of finally being qualified.

Model generalization when agents can invest efforts at different time steps. We discuss how the model in the main paper
can capture more complicated scenarios where agents repeatedly exert efforts multiple times until they reach the target. Each
effort has persistent effects on improving the qualification as shown in Eqn. (12).

q̃t+1 = qt +
t∑

τ=0

kτ · qTt d · d (12)

qt+1 =
q̃t+1

∥q̃t+1∥2

where
∑t

τ=0 kτ ∈ [0, 1]. This means the agents are able to invest more effort at arbitrary time steps (e.g., studying more skills
in the middle of the preparing process), but the cumulative effort should not exceed 1 (they cannot master 110% of knowledge).

We first prove that there exists an effort k∗ ∈ [0, 1] such that investing k∗ once at the beginning has the same impact on
limt→∞ qt as investing a sequence of efforts {kt}t≥0 over time: define qmin

t , qmax
t as the "what-if" qualifications if the agents

invest k = 0 or k = 1 at the initial round. Since
∑t

τ=0 kτ ∈ [0, 1], we know the qt must be between qtmin, q
t
max. Then because

qt is continuous with respect to k, so we know k∗ must exist. Therefore, our model in the main paper can indeed assimilate the
more complex setting.

Model generalization when k diminishes with t. In the main paper, kt is always equal to k, demonstrating the effort has a
consistent and persistent effect on the improvement of an individual. According to Lemma 3.2, the similarity xt approaches 1
at an exponential rate. Thus, the case of kt > k is not interesting since the convergence is faster and it may not make sense in
practice that the effort can be increasingly effective as time goes on. However, in reality, it may be possible that kt is decreasing.
This is a “middle-point" case between the regular improvement in (1) and the forgetting mechanism (9), which may illustrate
the “tiredness" when agents stick to improve. However, we can prove that when kt decreases linearly (i.e., kt = Θ(kt )), the
similarity xt can only converge to 1 at a speed Θ(tk).

Theorem A.1. When kt decreases linearly (i.e., kt = Θ( k
t+1 )), xt converges to 1 at a rate Θ(tk)

We prove Thm. A.1 in App. F.6. Basically, this result illustrates that the agents will still improve to be qualified if kt decreases
at a linear rate. Specifically, we can rewrite the (2) as:

x−2
t − 1 =

(x0)
−2 − 1

(t+ 1)2k
(13)

From (13), we can derive similar results of the agents’ best responses and work out the thresholds for them to improve.

B Illustration of Table 1
Table 1 illustrate the minimum requirement of x0 for an individual to improve under different (θ, r), and the best attainable
profile for individuals with initial similarity x0. We illustrate them in Fig. 8.

Discussions of intervention strategies in real applications. Table 1 further suggest effective strategies that encourage indi-
viduals to improve their qualifications, i.e., more individuals are incentivized to improve if (i) the decision-maker’s acceptance
threshold θ is lower; or (ii) the time it takes for individuals to succeed after investments is shorter. Examples of both strategies
in real applications are as follows.
1. Lower acceptance threshold θ in hiring: Instead of directly recruiting the qualified candidates, companies first lower the

standard by offering internship opportunities to encourage applicants to improve, and then offer full-time positions. This
two-stage hiring process widens the candidate pool and incentivizes more people to improve.



0.0 0.2 0.4 0.6 0.8 1.0
θ

0.0
0.2
0.4
0.6
0.8
1.0

m
in
im

um
x 0

to
im

pr
ov

e r = 0.00
r = 0.05
r = 0.10
r = 0.15
r = 0.20
r = 0.25
r = 0.30

(a) x0 to improve under (θ, r)

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.0
0.2
0.4
0.6
0.8
1.0

be
st

θ r = 0.00
r = 0.05
r = 0.10
r = 0.15
r = 0.20
r = 0.25
r = 0.30

(b) Best profile to reach for x0

Figure 8: Illustration of Table 1

2. Lower discounting factor r in college admission: Instead of directly rejecting the unqualified high school graduates, uni-
versities incentivize them by issuing conditional transfer offers. Once these students meet certain requirements, they get
admitted. The conditional acceptances encourage more students to improve by lowering the time it takes for them to receive
reward.
Meanwhile, Table 1 also reveals that setting short-term goals will be effective to incentivize individuals to improve. For

instance, teachers may set up several quizzes to break down the grade and make students more motivated to improve.

C Illustration of Thm. 6.1
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Figure 9: Illustration of Thm. 6.1: the left figure shows Ũ − U as functions of x0 under different P when θ = 0.995, r = 0.05;
the right plot shows threshold P̂ under different pairs of (θ, r).

Thm. 6.1 identifies conditions under which manipulation (or improvement) is preferred by individuals over the other. As men-
tioned in Section 6, the specific values of P̂ , x̂, x̂1, x̂2 in Thm. 6.1 depend on θ, r, and we can empirically find P̂ , x̂, x̂1, x̂2

and verify the theorem, as illustrated in Figure 9 and Table 2. Specifically, the left plot in Figure 9 shows Ũ −U as functions of
initial similarity x0 under different detection probability P . Because individuals only prefer to manipulate if Ũ − U > 0, the
plot shows the values of P̂ , x̂, x̂1, x̂2 in Thm. 6.1. The right plot shows threshold P̂ under different pairs of (θ, r), and it shows
that P̂ increases as r increases. Table 2 shows ranges (x̂1, x̂2) of initial similarity x0 under different detection probability P ,
acceptance threshold θ, and discounting factor r.



Table 2: Ranges (x̂1, x̂2) of initial similarity x0 under which individuals prefer to manipulate.

θ r
Detection probability P

0 0.1 0.2 0.3 0.4 0.5

0.995 0.1 (0.364, 0.995) (0.435, 0.994) (0.513, 0.993) (0.596, 0.991) (0.686, 0.984) (0.796, 0.966)
0.976 0.05 (0.499, 0.976) (0.613, 0.973) (0.740, 0.958) ∅ ∅ ∅
0.953 0.01 (0.773, 0.953) ∅ ∅ ∅ ∅ ∅
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Figure 10: Exam Score: Beta distributions

D Additional Experiments
Exam Score Data Just as Sec. 8 mentions, we acquire the exam score data (Kimmons 2012), preprocess the data and fit beta
distributions for both males and females. The fitted distribution and real distribution are shown in Fig. 10.

FICO Score Data Just as Sec. 8 mentions, we fit beta distributions for FICO Score (Hardt et al. 2016b), and obtain four
distributions for different racial groups as shown in Fig. 11.

E Estimating the discounting factor r in Sec.5
We can estimate the discounting factor r if given an experimental population. The decision-maker can publish an arbitrary
threshold θ and observe the lowest score among all individuals who change their scores, which is x∗(θ). Then the decision-
maker can use any expression in Table 1 to estimate r. Multiple experiments can make the estimation more robust.
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Figure 11: FICO Score: Caucasian (Beta(1.11, 0.97)), African American (Beta(0.91, 3.84)), Hispanic (Beta(0.99, 1.58)), Asian
(Beta(1.35, 1.13))



F Proofs
F.1 Proof Details of Thm. 4.1
To derive k∗, we first take the derivative of (5) with respect to k. For simplicity, let K = k + 1 and the derivative will not

change. Also, let R = r + 1 and G = − ln
(√

(θ)−2−1
(x0)−2−1

)
. Then show the results as follows:

∂U

∂K
= lnR ·R

−G
lnK · G

K · ln2 K
− 1 (14)

∂2U

∂K2
=

−G · lnR ·R −G
lnK (ln2 K + 2 lnK −G · lnR)

K2 · ln4 K
(15)

The denominator of ∂2U
∂K2 is always positive, and the first term −G · lnR ·R −G

lnK of numerator is always negative.
Also, because K ∈ [1, 2], ln2 K + 2 lnK ∈ (0, ln2 2 + 2 ln 2). Thus, we have following situations:
1) If G · lnR > ln2 2 + 2 ln 2, ∂2U

∂K2 is always positive when K ∈ [1, 2]. This means ∂U
∂K is increasing.

Then, noticing that limK→ 1+
∂U
∂K = −1, we know ∂U

∂K is always negative when K ∈ [1, 2]. This means U is monotonically
decreasing. Also, when k = 0, U = 0. This ensures U is always non-positive and individuals will never choose to invest any
effort.

2) If G · lnR ≤ ln2 2 + 2 ln 2, ∂2U
∂K2 is first positive, then negative when K ∈ [1, 2]. Also, if plugging K = 2 into (14),

we know limK→ 2
∂U
∂K < 0. These facts reveal that ∂U

∂K is firstly increasing from a negative number and then decreasing to a
negative number. And there must exist a unique maximum point when K = K

′
, K

′
should satisfy:

ln2 K
′
+ 2 lnK

′
−G · lnR = 0 (16)

Plug (16) into (14). Denote lnK
′

as t ∈ [0, ln 2], and denote ∂U
∂K at K

′
as L:

L =
t+ 2

t · e2t+2
− 1 (17)

Then take the derivative of L:

∂L

∂t
=

−2(t+ 1)2 · e2t+2

t2 · e4t+4
< 0 (18)

(18) shows L is decreasing. Also, noticing that limt→ 0+ L(t) = +∞ and limt→ ln 2 L(t) < 3
2e2 − 1 < 0, we know there

must exist a t
′ ∈ (0, ln 2) as the root of M . We can explicitly solve t

′
= 0.1997.

Thus, we now know that when t ∈ [0, t
′
], L ≥ 0. With the plausible domain of t and (16), we would know: When G lnR ∈

[0, t
′2 + 2t

′
], L ≥ 0 and thereby U has an extreme large point with value U∗. At this maximum point, (14) equals 0, and (15)

is smaller than 0.
Finally, we derive the condition for U∗ > 0: Denote G lnR as C and lnK as z, U can be simplified to:

U = e
−C
z − ez + 1 (19)

Because z ∈ [0, ln 2], for any t fixed, limC→ 0 U = 2 − ez ≥ 0 and limC→ 0 U = 1 − ez ≤ 0. With the fact that ∂U
∂C < 0,

we know U is monotonically decreasing with C, so is U∗. Thus, there must exist a threshold m, when C < m, U∗ > 0. And if
U∗ > 0, individuals will decide to improve. Then Thm. 4.1 is proved and we can numerically solve the threshold m = 0.316.

Although we believe exponential discounting is general and fits our setting well, we also note that we can still use derivative
analysis when the discounting changes (e.g., hyperbolic discounting). Specifically, if denoting the discounted reward as d(r, t),
we would have U = d(r,H)− k. Then if taking the derivative we will get ∂U

∂k = ∂d
∂H · ∂H

∂k − 1. Noticing that H is known, then
discussing the properties of d with different choices of discounting is enough to derive the nature of U .

F.2 Proof Details of Thm. 5.1 and Corollary 5.2
Proof of Thm. 5.1 First prove Ud(θ) has a maximize θ∗ ∈ (0, 1):

With the definition of Ud(θ) in (7), we already know Ud is continuous. We can first observe that Ud(0) = 0, Ud(1) = 1.
These hold simply because x∗(0) = 0andx∗(1) = 1. Next noticing that for any θ ∈ (0, 1), Ud(θ) > 0 holds. This suggests that
θ will reach its maximum point according to the Weierstrass extreme value theorem.

Next, noticing that Ud(θ) > 0 ∈ (0, 1) we can derive that ∂Ud

∂θ (0) > 0 and ∂Ud

∂θ (0) < 0. Then if it only has one root in (0, 1),
we would know Ud must first increase and then decrease because there is at most one inflection point. Thus, a unique maximum
exists.



Proofs of why Uniform distribution has a unique maximized θ∗ If ∂Ud

∂θ only has one root. We know it is first larger than 0,
then becomes smaller than 0. Next, according to the Leibniz integral rule, we can get:

∂Ud

∂θ
=

∫ θ

x∗(θ)

P (x)dx− (θ − x∗(θ)) · P (x∗(θ)) · ∂x
∗(θ)

∂θ

Use Lagrange’s Mean Value Theorem, we can write the above equation as:

(θ − x∗(θ)) · [P (θ
′
)− P (x∗(θ)) · ∂x

∗(θ)

∂θ
]

where θ
′

is between x∗(θ), θ. Thus, the second term P (θ
′
)− P (x∗(θ)) · ∂x∗(θ)

∂θ must also be first larger than 0 then smaller
than 0. Next, noticing that P (θ

′
) = P (x∗(θ)) in uniform distribution and ∂x∗(θ)

∂θ is increasing, the equation will be smaller than
0 when ∂x∗(θ)

∂θ < 1 and vice versa. Thus, we prove the result for the uniform distribution.

Proof of Corollary 5.2 We now know ∂Ud

∂θ = (θ − x∗(θ)) · [P (θ
′
) − P (x∗(θ))] · ∂x∗(θ)

∂θ ]. Then according to the expression
of x∗(θ), it is true that both x∗(θ) and ∂x∗(θ)

∂θ increase with r. Thus, when the probability distribution remains unchanged, the
root of ∂Ud

∂θ when r increases becomes smaller.

F.3 Proof Details of Thm. 6.1
Denote ln

(√
θ−2−1
x−2
0 −1

)
as G(x0). G(x0) is always negative and monotonically increasing with x0 ∈ (0, θ).

1. Situation when P = 0: According to Sec. 4 and (8), we can write the maximum improvement utility U∗ as (1+r)
G(x0)

ln(k∗+1) −
k∗, and write manipulation utility Ũ as (1 + r)

G(x0)
ln2 − (θ − x0).

Then take the derivative of both:
∂U∗

∂x0
≥ ∂G

∂x0
· ln(1 + r)

ln(k∗ + 1)
· (1 + r)

G(x0)

ln(k∗+1) (20)

∂Ũ

∂x0
=

∂G

∂x0
· ln(1 + r)

ln2
· (1 + r)

G(x0)
ln2 + 1 (21)

The “≥" in (20) occurs because k∗ is actually a function of x0, but if we regard k∗ at x0 as a constant, the derivative here
serves as a lower bound of ∂U∗

∂x0
.

Firstly, we prove when x0 → θ, U∗ < Ũ : when x0 → θ, we know k∗ → 0 since individuals invest an arbitrarily small
effort to immediately qualified. However, according to Sec. F.1, k∗ should let ∂2U

∂k2 < 0. This inequality will give us the
bound of k∗: ln(k∗ + 1) > −G(x0)·ln(1+r)

3 . With this bound, we can plug k∗ into (20), and know ln(1+r)
ln(k∗+1) → +∞, and

(1 + r)
G(x0)

ln(k∗+1) is larger than a constant because of the bound. Therefore, ∂U∗

∂x0
≥ ∂G

∂x0
· +∞. Then according to (21), when

x0 → θ, ∂Ũ
∂x0

< ∂G
∂x0

· ln(1+r)
ln2 + 1. Since ∂G

∂x0
is always positive, when x0 → θ, we prove that ∂U∗

∂x0
> ∂Ũ

∂x0
. Meanwhile, when

x0 = θ, U∗ = Ũ = 1. This means when x0 → θ, U∗ < Ũ .
Secondly, when x0 = 0: Ũ = −θ and U∗ = 0. So Ũ < U∗ when x0 = 0.
Thus. there must be an intersection between Ũ and U∗. Then noticing that if we increase θ, Ũ is always decreasing to

converge to function y = x− 1, while U∗ ≥ 0 always holds. This suggests when θ is sufficiently close to 1, i.e., there exists a θ̄
and when θ > θ̄, we can guarantee the first intersection of U∗ and Ũ occurs arbitrarily close to 1, meaning this first intersection
is the only intersection.

Let the only intersection be x̂, we prove situation 1. The shapes of Ũ and U∗ are illustrated in Fig. 12.

2. Situation when P > 0: From (8): when x0 → θ, Ũ → 1− P . However, at this time U∗ → 1 > 1− P . This demonstrates
x̂2 must exist.

When P → 0, according to situation 1 and the continuity of Ũ with respect to P , x̂1 must exist. However, when P → 1, Ũ
is always negative, making x̂1 does not exist.

Thus, there must exist a threshold P̂ , when P ≤ P̂ , x̂1, x̂2 exist. Otherwise, U∗ > Ũ is always true.

F.4 Proof Details of Thm. 7.1
Thm. 7.1 can be proved by the inequality ∥d̃∥qTt d > ∥d̃∥qT0 d > ∥d̃∥qT0 dqTt d∗. This means we can just let ku = ∥d̃∥qT0 d =

∥d̃∥x0 and directly apply Lemma 3.2.
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F.5 Proof Details of Thm. 7.2
First let us prove following two lemmas:

Lemma F.1. For any initial qualification score x0, There exists a k̂ ∈ (0, 1), when k ∈ [0, k̂), ku > k. Let x̂0 be the only root
of 2x2

0 + 2x3
0 − 1 = 0 within (0, 1), then k̂ is given by:

k̂ = min(
x̂0

2

2x̂0
2 + 2x̂0

3 ,
x0 · (x2

0 + x0 −
√

x4
0 − x2

0 + 1)

2x2
0 + 2x3

0 − 1
) (22)

Proof. According to Thm. 7.1, k2u = ∥d̃∥2 · x2
0 and ∥d̃∥2 = k2 + (1− k)2 − 2k(1− k)x0. We can get following expression:

k2u − k2 = (2x2
0 + 2x3

0 − 1)k2 − (2x2
0 + 2x3

0)k + x2
0 (23)

Firstly, when 2x2
0 + 2x3

0 − 1 = 0, x̂0 = 0.565. Thus, when k < x̂0
2

2x̂0
2+2x̂0

3 = 0.319, k2u > k2.
Except the above situation, We can regard (23) as a quadratic function of k and solve the two roots:

x0 · (x2
0 + x0 ±

√
x4
0 − x2

0 + 1)

2x2
0 + 2x3

0 − 1
(24)

We then prove a claim that when x0 ∈ (0, 1), x0·(x2
0+x0+

√
x4
0−x2

0+1)

2x2
0+2x3

0−1
is either larger than 1 or smaller than 0:

1) When 2x2
0 + 2x3

0 − 1 < 0, the denominator of (24) is negative, while the numerator is always positive. Thus, (24) is
negative.

2) When 2x2
0 + 2x3

0 − 1 > 0:

x0 · (x2
0 + x0 +

√
x4
0 − x2

0 + 1)

2x2
0 + 2x3

0 − 1
>

x0 · (x2
0 + x0 + x2

0)

2x3
0 + x2

0

= 1 (25)

(25) means (24) is larger than 1. Thus, the claim is proved.
Thus, k2u − k2 only has one root within (0, 1). Also from (23) we know when k = 0, ku > k and when k = 1, ku ≤ k. With

these facts we immediately know: When k ≤ x0·(x2
0+x0−

√
x4
0−x2

0+1)

2x2
0+2x3

0−1
, k2u − k2 ≥ 0. Otherwise, k2u − k2 < 0. In fact, besides



the exception 2x2
0 + 2x3

0 − 1 = 0, there are only two possibilities of the shape of k2u − k2 as shown in Fig. 13. Because k and
ku are both non-negative, the relationship of the square must be the same for their values.

Then if we define k̂ as:

k̂ = min(
x̂0

2

2x̂0
2
+ 2x̂0

3 ,
x0 · (x2

0 + x0 −
√

x4
0 − x2

0 + 1)

2x2
0 + 2x3

0 − 1
) (26)

Then ku > k when k ∈ [0, k̂). Proved.
Lemma F.2. For any individual with initial qualification score x0 and the admission threshold θ, there must exist a r to let
there exists a k̄ ∈ [0, k̂), U(k̄, θ, r, x0) > 0

Proof. If we let z = ln(k + 1) be z and recall that C(θ, x0, r) = − ln
(√

(θ)−2−1
(x0)−2−1

)
· ln(1 + r), we would have U =

e
−C
z − ez + 1.
For any z there exists Cz , when C < Cz , U > 0.
So we can just let k be an arbitrary point ∈ [0, k̂) and we can get the corresponding Cz , then we can only let r satisfy:

ln(1 + r) <
Cz

− ln
(√

(θ)−2−1
(x0)−2−1

) (27)

Then we find the plausible r. Proved.

Proof of Thm. 7.2. According to Lemma F.1, when k̄ ∈ [0, k̂), ku > k, so the convergence speed of the individual to d∗

under forgetting mechanism will be faster than the convergence speed of the individual to d without forgetting mechanism, so
that the reward under forgetting mechanism is discounting less. Meanwhile, according to Lemma F.2, there exists a r where
U(k̄, θ, r, x0) > 0. Combine them together, Û(k̄, θ, r, x0) > U(k̄, θ, r, x0) > 0 and Thm. 7.2 is proved.

F.6 Proof of Thm. A.1
Assume kt = k

t+1 when t ≥ 0. From (1) and similar to (Dean and Morgenstern 2022), we know (qTt+1 ·d)−2−1 =
(qTt ·d)−2−1

kt+1

2

.
This will lead to (qTt · d)−2 − 1 =

∏t−1
i=0(

k
i+1 + 1)−2((qT0 · d)−2 − 1).

Then consider
∏t−1

i=0(
k

i+1 + 1)−1 =
∏t−1

i=0(
i+1

k+i+1 ) = 1
k+1 · 2

k+2 .... When k = 1, The expression is 1
2 · 2

3 · 3
4 ...

t−1
t = 1

t ,
demonstrating the convergence rate is linear. Note that this expression is decreasing as k decreases, so the convergence rate in
our model is always slower than linear. Next, consider the general expression

∏t−1
i=0(

i+1
k+i+1 ) = 1

k+1 · 2
k+2 ... and k < 1. Let

a = 1
k which is larger than 1, and j = i + 1 which is larger than 0. We slightly abuse the definition of a to let it be an integer.

Then the expression becomes
∏t−1

i=0(
ja

1+ja ) =
a

a+1 · 2a
2a+1 ...

ta
ta+1 .

Then for any a we can bound this expression. Basically, we already know 1
2 · 2

3 · 3
4 ...

t−1
t = 1

t . Noticing that when a > 1, it
is just equal to erase some terms of this expression. We can utilize this fact to get the lower bound and upper bound:

1. Lower bound: consider the following a−1 sets of expressions and each set consists of t terms: { 1
2 ·

a+1
a+2 ·

2a+1
2a+2 ... ·

(t−1)a+1
(t−1)a+2},

{ 2
3 · a+2

a+3 · 2a+2
2a+3 ... ·

(t−1)a+2
(t−1)a+3}..., {a−1

a · 2a−1
2a · 3a−1

3a ... · ta−1
ta }. Then each of the a − 1 expressions are smaller than∏t

j=1(
ja

1+ja ) = a
a+1 · 2a

2a+1 ...
ta

ta+1 . Denote
∏t

j=1(
ja

1+ja ) = a
a+1 · 2a

2a+1 ...
ta

ta+1 as I , we will have Ia ≥ 1
ta+1 , so the

convergence rate is smaller than a
√
ta = Θ(tk)

2. Upper bound: consider the following a − 1 sets of expressions and each set consists of t terms: {a+1
a+2 · 2a+1

2a+2 ... ·
ta+1
ta+2},

{a+2
a+3 · 2a+2

2a+3 ... ·
ta+2
ta+3}..., { 2a−1

2a · 3a−1
3a ... · (t+1)a−1

(t+1)a }. Then each of the a − 1 expressions are larger than
∏t

j=1(
ja

1+ja ) =
a

a+1 · 2a
2a+1 ...

ta
ta+1 . Denote

∏t
j=1(

ja
1+ja ) = a

a+1 · 2a
2a+1 ...

ta
ta+1 as I , we will have Ia ≤ 1

(t+1) , so the convergence rate is

larger than a
√
ta = Θ(tk)

Thus, take the limit and apply the Sandwich Theorem, the convergence rate is Θ(tk).


