
Proceedings of Machine Learning Research vol 211:1–16, 2023 5th Annual Conference on Learning for Dynamics and Control

Automatic Integration for Fast and Interpretable
Neural Point Processes

Zihao Zhou ZIZ244@UCSD.EDU

University of California, San Diego

Rose Yu ROSEYU@UCSD.EDU

University of California, San Diego

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract
The fundamental bottleneck of learning continuous-time point processes is integration. Due to

the intrinsic mathematical difficulty of symbolic integration, neural point process (NPP) models

either constrain the intensity function to a simple integrable kernel function or apply numerical

integration. However, the former has limited expressive power. The latter suffers additional

numerical errors and high computational costs. In this paper, we introduce Automatic Integration
for Neural Point Process models (Auto-NPP), a new paradigm for exact, efficient, non-parametric

inference of point process. We validate our method on simulated events governed by temporal

point processes and real-world events. We demonstrate that our method has clear advantages in

recovering complex intensity functions from irregular time series. On real-world datasets with noise

and unknown intensity functions, our method is also much faster than state-of-the-art NPP models

with comparable prediction accuracy. Our code and data can be found at https://github.
com/Rose-STL-Lab/AutoNPP.

Keywords: temporal dynamics, neural point processes, integration method

1. Introduction

Neural point process (NPP) is a family of deep generative models that integrate deep neural networks

(DNN) with point processes for modeling irregularly sampled event data with continuous-time

dynamics. NPPs allow hidden states to vary between events and are particularly well-suited for

learning the dynamics behind discrete events such as social media posts, disease transmission, and

earthquakes. The surging interests in NPP have led to the development of many state-of-the-art time

series models such as Neural Hawkes process (Mei and Eisner, 2016), Neural ODE (Chen et al.,

2018), as outlined in a recent survey on NPP (Shchur et al., 2021).

A central concept in point processes is the intensity function, which captures the expected rates

of events occurrence. Specifically, given an event sequence over timeHt = {t1, t2, ..., tn}|tn<t, the

joint log-likelihood of the observed events can be defined as follows:

log p(Ht) =
n∑

i=1

log λ∗(ti)−
∫ t

0
λ∗(τ)dτ (1)

where λ� refers to the optimal intensity function that best models the sequence.

A major difficulty of maximum likelihood estimation for point processes lies in the integral term

of Equation 1. Obtaining an analytical solution to the likelihood is especially difficult for NPPs

© 2023 Z. Zhou & R. Yu.



AUTO-NPP

with hidden states represented by neural networks. For example, the Neural Hawkes process (Mei

and Eisner, 2016) does not have a closed-form solution for the likelihood and must rely on Monte

Carlo sampling. Furthermore, existing NPPs often evaluate the test log-likelihood only without

verifying the learned intensity function. However, as we will demonstrate later, a relatively high test

log-likelihood can provide little information about the temporal patterns of influence. Models with

flat or complex intensity functions can have very similar test likelihood, rendering it an inadequate

evaluation metric.

On the other hand, NPPs with analytical integral rely on strong assumptions about the intensity

and are less expressive. Existing works assume that the current influence follows an exponential

decay of the intensity (Du et al., 2016), or of the latent representation (Mozer et al., 2017), or a linear

interpolation (Zuo et al., 2020). However, these assumptions may be challenging to meet in the real

world. For example, in social media posts, a “delayed jump” in influence can occur where a viral

post’s impact will not skyrocket until it is forwarded by an opinion leader. This type of event can

produce a jump in intensity that violates the smoothness assumption. Additionally, events can exhibit

“cyclic influence”, such as tweets being more influential in the evening than in the afternoon.

To reduce computational cost and improve the expressivity of NPPs, we ask a natural question:

Can we directly use a deep neural network to approximate the influence function?

Figure 1: Illustration of automatic integra-

tion for NPP. W denotes the linear

layer’s weight. σ is the nonlinear

activation function. The intensity

(λ) network is on the left and the

integral (
∫
λ) network is on the

right. The two networks share the

same parameters.

If successful, the resulting NPP could signifi-

cantly relax the assumptions imposed by existing

NPPs and open up new venues for modeling com-

plex real-world event dynamics, including those with

“delayed jump” or “cyclic influence”. However, this

would require integrating a complicated neural func-

tion over a significant time period, where numerical

integration is both inefficient and erroneous.

We propose to leverage automatic integration

(Lindell et al., 2021; Li et al., 2019), or AutoInt, for

NPPs. We recognize that taking the partial derivative

of a DNN results in a new computational graph that

shares the same parameters, as illustrated in Figure 1.

We first construct a monotonically increasing integral

network whose partial derivative is the intensity func-

tion. Then, we train the integral network to maximize

the data likelihood. Finally, we reassemble the param-

eters of the integral network to obtain the intensity

function. With AutoInt, we can fit the exact intensity

function and its antiderivative without imposing any

constraints on their functional forms.

Our approach can efficiently compute the exact

likelihood of any intensity function. We validate our

approach using synthetic temporal point processes

with multimodal and discontinuous intensity functions and two real-world datasets. Notably, an earlier

work by (Omi et al., 2019) proposes an RNN-based model for the temporal point process, calculating

the integral of the intensity function using a similar method. However, our proposed method models

2



AUTO-NPP

the intensity function without recurrent representations, leading to better interpretability and improved

ability in recovering complex intensity functions.

To summarize, our contributions are the following:

• We propose an efficient and interpretable framework for neural point processes based on

automatic integration. Specifically, we directly approximate the influence function with a

neural network and enforce the positivity of the intensity via a monotone integral network.

• We show with synthetic data that our automatic integration framework can faithfully recover

complex intensity functions with higher efficiency and accuracy than existing NPP approaches

and traditional numerical integration methods.

• On real-world discrete event data, including earthquake Japan, our framework enjoys better

interpretability and results in performance comparable or superior to state-of-the-art methods.

2. Related Work

Parametrizing Point Process. Fitting traditional TPP models such as Hawkes process to data

points may have lousy performance if the model is misspecified. To address this issue, statisticians

have extensively studied non-parametric inference for TPP. Early works usually rely on Bayesian

methods (Møller et al., 1998; Kottas and Sansó, 2007; Cunningham et al., 2008). Rathbun and

Cressie (1994) modeled the intensity function as a piecewise-constant log Gaussian. Adams et al.

(2009) proposed a Markov Chain Monte Carlo (MCMC) inference scheme for the Poisson process

with Gaussian priors. These Bayesian models are scalable but assume a continuous intensity change.

They can hardly handle the event sequences where the underlying dynamics rapidly change upon

event arrivals, such as social media posts.

Recently, NPPs that combine TPP with neural networks has received considerable attention (Yan

et al., 2018; Upadhyay et al., 2018; Huang et al., 2019; Shang and Sun, 2019; Zhang et al., 2020).

Such models leverage the flexibility of neural networks to estimate the intensity after each event and

improve the overall model performance. In these models, the focus is on approximating a discrete

set of intensities before and after each event, which are combined to interpolate the continuous

intensities. For example, Du et al. (2016) uses an RNN to generate intensities after each event. Mei

and Eisner (2016) proposes a novel RNN architecture that generates intensities at both ends of each

inter-event interval. Furthermore, some studies have explored alternative training schema: Xiao et al.

(2017) used Wasserstein distance as a training loss, Guo et al. (2018) introduced noise-contrastive

estimation technique, and Li et al. (2018) leveraged reinforcement learning.

While these NPP models are more expressive than traditional ones, they still assume simple

inter-event intensity changes that are continuous and monotonic. The work of Omi et al. (2019)

proposes to relax this assumption by parameterizing the integral of an intensity function with a DNN

and incorporating an RNN as well. However, their model can only inherit previous events’ influence

through an arbitrary RNN, and the learned intensity change cannot directly summate over time.

Integration Methods. Integration methods play a crucial role in a model’s ability to capture the

complex dynamics of a system but have largely been limited to simple techniques in NPP literature.

Existing works have either used an intensity function with an elementary integral (Du et al., 2016) or

relied on Monte Carlo integration (Mei and Eisner, 2016). However, we will see from our experiments

that the choice of integration method has a non-trivial effect on the model performance.

3



AUTO-NPP

Integration is generally more complicated than differentiation, as most integration rules, such

as integration by parts and change of variables, transform an antiderivative to another that is not

necessarily easier. While elementary antiderivatives exist for a small set of functions, they are

not available for many simple composite functions like exp(x2) (Dunham, 2018). To overcome

this, the Risch algorithm was developed to determine such elementary antiderivatives (Risch, 1969,

1970). However, this algorithm has never been fully implemented due to its complexity. As a

result, numerical integration methods are commonly used, such as Newton-Cotes Methods, Romberg

Integration, Quadrature, and Monte Carlo integration (Davis and Rabinowitz, 2007).

Multiple recent works introduced variants of a new integration approach, Automatic Integra-

tion (AutoInt). Liu (2020) proposes integrating the Taylor polynomial using the derivatives from

Automatic Differentiation (AutoDiff). It requires partitioning the integral limits and choosing the

order of Taylor approximation. Though it uses the efficient AutoDiff, the integration procedure

involves a trade-off between runtime and accuracy and is numerical in nature. Li et al. (2019) and

Lindell et al. (2021) proposed a dual network approach which we will discuss in detail in Section

3. The method guarantees a closed-form integral and is efficient. We adapted this dual network

approach to the point process settings.

3. Methodology

In this section, we first review the background of Neural Point Processes (NPP) and their limitations.

Then we introduce a new NPP model, which is more interpretable and flexible. We explain how to

use automatic integration with such an NPP for fast training and inference.

3.1. Point Processes and Limitations of NPPs.

Temporal Point Process. A temporal point process (TPP) is a counting process N(t), representing

the number of events that occurs before time t. It is characterized by a scalar non-negative intensity
function λ∗(t). Given the history events before time t denoted byHt := {t1, ..., tn}tn≤t, the intensity

function quantifies the event arrival rate at time t, and is formally defined as

λ∗(t) := lim
Δt→0

E[N(t, t+Δt)|Ht]

Δt
.

The notation ∗ is from Daley and Vere-Jones (2007) to indicate the intensity is conditional on the

past but not including the present. Hawkes process (Hawkes, 1971) is an example of TPP, defined as:

λ∗(t) = μ+ α
∑
ti<t

exp(−β(t− ti)), (2)

When a new event occurs, it produces an increment in the intensity, and this influence decays

exponentially. μ is the base intensity representing the rate of an event happening on its own. α and β
are scalars.

Neural Point Processes. Neural Point Process (NPP) models combine DNNs with point processes

to increase their capacity. State-of-the-art NPPs first encode the events into hidden states. For

temporal NPP, if the inter-event function is as simple as a scalar kernel function (Du et al., 2016),

the integral is easy, but the model’s expressiveness is limited. In contrast, if the inter-event function

is high dimensional (Mei and Eisner, 2016; Zuo et al., 2020), the model gains stronger expressive

4



AUTO-NPP

power but requires numerical integration. For spatiotemporal NPP (Chen et al., 2020; Zhou et al.,

2022), a non-negative activation function maps the hidden states to a scalar, representing the temporal

intensity immediately after an event, and a conditional spatial distribution. The change of intensity

between events is represented using a decay function or a Neural-ODE. The conditional spatial

distribution is represented by a kernel mixture or a normalizing flow. Nevertheless, all models assume

a continuous transformation of the intensity function, limiting their expressivity.

Figure 2: Failure to recover the

true intensity despite the

fact that estimated likeli-

hood matches the truth

(the areas under the

curves are the same).

Limitations of Existing NPPs. NPPs combine DNNs with

point processes to enhance their expressivity. However, they

are limited when learning sophisticated intensities.

For example, RMTPP (Du et al., 2016) encodes the i-th
event history as a hidden vector h(t+i ). The influence of an

event over time is given by the interpolation function f , such

that the intensity is

λ∗(t)|ti≤t≤ti+1 = μ+ g+(wTh(t+i ) + f(t− ti)).

where μ is the base intensity, w ∈ R
1×k is a linear layer and

g+ is a positive activation function.

Neural Hawkes process (Mei and Eisner, 2016) adds a

prediction of the influence right before the i+ 1-th event as the

hidden state h(t−i+1), so that the intensity is

λ∗(t)|ti≤t≤ti+1 = g+(wT f(h(t+i ),h(t
−
i+1))).

The model assumes a scalar kernel function f to linear interpolate the two hidden state vectors.

These NPPs define a separate intensity function for each interval [t+i , t
−
i+1]. Compared to Hawkes

process in Equation 2, the use of hidden states makes it difficult to interpret the influence of each

historical event. Additionally, their use of simple interpolated change of intensity in each interval

cannot handle the “cyclic influence” in Figure 2. The models may yield the correct likelihood, but

fail to recover the true intensity. Moreover, these models are not compatible with AutoInt. Although

AutoInt can approximate any function f and its antiderivative in closed forms, finding a closed-form

antiderivative for the function composition g+ ◦ f is still intractable.

3.2. Influence-Driven Point Process

We propose a new NPP model that directly generalizes the Hawkes process in Equation 2. The model,

driven by a complex influence function, has the following conditional intensity:

λ∗(t) = μ+
∑
ti<t

f+
θ (t− ti,H(ti)) := μ+

∑
i

f+
θ (t− ti), fθ : R

1 → R
1, (3)

where μ is the scalar base intensity and f+
θ is a positive scalar function that takes time and event

history representationsH(ti) as inputs.

The model has two advantages. Firstly, each f+
θ is approximated by a DNN, which allows for

the model to capture complex inter-event intensity changes, including the “cyclic influence” scenario.

Secondly, our model is more interpretable. The additive form of our model allows for interpreting

different past events’ influence on the current event by decomposing the intensity function.

5



AUTO-NPP

In simplified cases, we can directly use the difference in event times, t− ti as input to f+
θ . We

consider some alternative methods for representing the event history H(ti) to compare with this

formulation. One option is to use RNNs or Transformers to encode the accumulative influence

of events as hidden vectors {hi}Ni=0. The hidden vectors could be then used to scale each event’s

influence, resulting in a conditional intensity function formulated as

λ∗(t) = μ+
∑
i

gφ(hi)f
+
θ (t− ti), fθ : R

1 → R
1, gφ : R1 → R

1. (4)

Here gφ is a separate neural network. Alternatively, time t and hi can be concatenated and fed to the

neural network, such that the conditional intensity becomes

λ∗(t) = μ+
∑
i

f+
θ (t− ti ⊕ hi), fθ : R

k+1 → R
1 (5)

However, we show in the experiments later that the introduction of recurrent vector like Omi et al.

(2019) in Equations 4 and 5 is not beneficial; it increases the degree of freedom so much that it can

easily overfit on real-world datasets. The use of hidden states also makes the model less interpretable.

3.3. Automatic Integration (AutoInt)

Figure 3: Comparing MLP

forward time using

our Integrant Net

and naive PyTorch

The NPPs proposed in Equation 3, 4 and 5 has a major advantage:

the ability to use automatic integration (AutoInt) and calculate the

integral
∫ b
t=a fθ(t,h) := Fθ(b,h) − Fθ(a,h) along time axis. Au-

toInt first constructs the integral network Fθ, and then reorganizes

the computational graph of Fθ to form the integrant fθ. The two

networks thus share the same set of parameters θ.

Specifically, let x := t⊕ h, we approximate the integral of the

intensity function as a DNN of the form:

Fθ(x) = Wn...(W3σ(W2σ(W1x))),

where Wk : RMk �→ R
Nk denotes the weight of the k-th linear

layer, σ the elementwise nonlinearity, Mk and Nk the input and

output dimensions of the k-th layer, and θ = {Wk ∈ R
Mk×Nk , ∀k}

the set of parameters.

The influence network fθ is the partial derivative of the integral

network Fθ. As long as the activation function is differentiable

everywhere, the intensity can be computed recursively:

fθ(x) :=
∂Fθ

∂t
(x) = Wkσ

′(Wk−1σ(Wk−2 . . . (W1x))) · · · ◦W2σ
′(W1x) ◦W11

where ◦ indicates the Hadamard product, and W11 is the first column of W1, i.e.,

W1 := [W11 W12 . . . W1,M1 ]

Computing fθ(x) involves many repeated operations. For example, W1x is used for computing

both σ(W1x) and σ′(W1x), see Figure 1. We implemented a program that leverages dynamic

programming to create a derivative model efficiently using automatic differentiation, see Algorithm

in A.3. We compared our implementation with PyTorch’s default AutoInt and confirmed a 50%

speedup on average for calculating a first derivative. With 3-layer Multi-Layer Perceptron (MLP),

the advantage is up to 80%, see Figure 3.

6



AUTO-NPP

3.4. Imposing the Non-negativity Constraint

To ensure the model in Equation 3 yields a valid intensity, we need to ensure that the function fθ is

always non-negative. Constraining all linear weights to be non-negative as in Sill (1998) is too strict

since we only want the network to be monotonic for the time input and not others.

Figure 4: Monotonically increasing integral network. t
is the time of the event and h is the encoded

hidden vector. “W+” indicates the neural

network layer has non-negative weights.

We design an AutoInt scheme tailored

for NPP as shown in Figure 4: we first pass

the hidden vector h and the time t through

two linear layers with non-negative weights

W+ separately. Then, we concatenate the

outputs to another non-negative weighted

network. The resulting integral monoton-

ically increases with respect to time, as

the time input t does not pass through any

layer with negative weights. The two un-

constrained layers with weights W ensure

that the expressivity of other input dimen-

sions is not affected.

Through experimentation, we found that projected gradient descent (Chorowski and Zurada,

2014) (i.e., clamping the weights after each optimizer step) converges better to the ground truth

than the exponential transformation method. To ensure monotonicity, we use a monotonic activation

function. Previous AutoInt (Lindell et al., 2021) works used the sine activation, which is non-

monotonic. We found that both tanh and sine activation yield similar performance, as also indicated

by Parascandolo et al. (2016)

3.5. Model Training

Given the monotonic integral network Fθ(t,h) and the integrant network fθ =
∂Fθ
∂t approximating

the influence function, the log-likelihood of an event sequenceHn = {t1, ..., tn} observed in time

interval [0, T ] with respect to the model is

L(Hn) =

n∑
i=1

log

⎛
⎝ i−1∑

j=1

fθ(ti − tj ,hi)

⎞
⎠−

n∑
i=1

(
Fθ(T − ti,hn)− Fθ(0,hi)

)
.

where {hi} are the hidden states generated by a deep sequence model, but can be omitted with

Equation 3. This is an application of the Fundamental Theorem of Calculus (Sobczyk and Sánchez,

2011). To learn the parameters θ in both networks, we maximize the log-likelihood function. We

name our method Automatic Integration Neural Point Processes (Auto-NPP).

4. Experiments

We compare different NPPs using both synthetic and real-world data. Our goal for synthetic data is

to validate the ability of Auto-NPP to accurately recover complex intensity functions. We report

the predictive performance and computational cost to showcase the advantages of AutoInt.

7



AUTO-NPP

4.1. Experimental Setup

Synthetic Datasets. We simulated three challenging synthetic point process datasets using Ogata’s

thinning algorithm (Chen, 2016). Each dataset contains 8192 sequences over a time range of [0, 50),
with a train-val-test split of 2 : 1 : 1.

• Shaky Hawkes process: This dataset multiplies the influence function of the Hawkes process

(see Equation 2) by a cyclic function, resulting in a multimodal intensity for long inter-event

intervals. The conditional intensity function was defined as: λ∗(t) = μ+ α
∑N

i=1 cos((t− ti) +
1) exp(−β(t− ti)). The values used for our experiments were α = β = μ = 0.2.

• Delayed Peak process: This dataset features a unimodal but non-smooth influence function. Starting

from 0, each event’s influence initially increases and then decreases, following a bell-shaped curve.

The conditional intensity function was defined as: λ∗(t) = μ + α
∑N

i=1 ReLU(−(β(t − ti) −
1)2 + 1). The values used for our experiments were α = 0.2, β = 0.5, μ = 0.3.

• Shift Hawkes process: This dataset describes the scenario in which a post becomes viral several

hours after it is first visible, resulting in a jump in the intensity between events. The conditional

intensity was characterized as: λ∗(t) = μ + α
∑N

i=1 1(t − ti > γ) exp(−β(t − ti − γ)). The

values used for our experiments were α = β = μ = 0.2, and the threshold γ = 2.0.

Figure 5: Training speed comparison for differ-

ent NPPs and numerical integration

methods in seconds. The proposed

Auto-NPP is fast. RMTPP is the

fastest but suffers from poor prediction

performance.

Real-world Datasets. We use two real-world

benchmark datasets, Earthquake Japan and

COVID-19 NJ from Chen et al. (2020). Earth-
quake Japan includes the times and locations

of all earthquakes in Japan from 1990 to 2020

with magnitudes of at least 2.5. The dataset

contains 1500 sequences over a time range of

[0, 30). The train-validation-test data split is

4 : 1 : 1. COVID-19 NJ is published by

The New York Times to describe the times and

county locations of COVID cases in New Jersey

state. The dataset contains 1650 sequences over

a time range of [0, 7). The train-validation-test

data split is 4 : 1 : 1. To normalize them, we

scale the Earthquake dataset’s times by 2 and

the COVID dataset’s times by 20.

Evaluation Metrics. As shown in Figure 2,

an NPP model may yield a likelihood similar to

the ground truth but still fail to learn the correct

intensity. Therefore, in addition to test log-likelihood (LL), we also report the Mean Absolute

Percentage Error (MAPE) of the estimated conditional intensity.

Baselines. We use two groups of baselines:

• Numerical Integration methods: learning the NPP model in equation 3 but with different integration

techniques: Taylor integration (Liu (2020), see Appendix), the Clenshaw–Curtis quadrature, the

Monte Carlo integration, and AutoInt.

8



AUTO-NPP

(a) (b)

(c) (d)

(e) (f )

Figure 6: Visualizations of the true conditional intensity λ∗(t) and the learned conditional intensity on the

Shift Hawkes (a, b), Delayed Peak (c, d), Shaky Hawkes (e, f) datasets. (a, c, e): comparison of

intensities learned with different models. (b, d, f): comparison of intensities learned with different

integration methods.

• Neural Point Processes: state-of-the-art NPP models (first section), including RMTPP (Du et al.,

2016), Neural-Hawkes (Mei and Eisner, 2016) and Transformer Hawkes (Zuo et al., 2020).

Additionally, Mozer et al. (2017) proposed a continuous-time GRU that interpolates hidden states

between events. It has a similar idea to Neural-Hawkes’s continuous-time LSTM. We include a

CT-GRU variant of Neural-Hawkes to increase the diversity of our baselines.

4.2. Experimental Results

Table 1 compares the prediction Mean Absolute Percentage Error (MAPE) and test log-likelihood

(LL) between Auto-NPP and the baseline models on the synthetic datasets. Auto-NPP has a

significant advantage on the synthetic dataset with complex intensity. Figure 6 further compares

the ground truth intensity and the learned intensities. While using numerical integration like Monte

Carlo may occasionally yield a higher likelihood estimate, AutoInt most effectively recovers the

ground truth intensity as shown by the MAPE. Moreover, we can see that our method is the only

one that can capture the multimodal intensity function, as shown in Figure 6(e, f). The bias makes

numerical methods more likely to learn flatter intensity.

9



AUTO-NPP

Model shakyHawkes shiftHawkes decayPeak

MAPE LL MAPE LL MAPE LL

CT-GRU (Mozer et al., 2017) 0.2243 -35.6063 0.1262 -39.7173 0.1103 -42.1959

Neural Hawkes (Mei and Eisner, 2016) 0.2168 -35.4043 0.1473 -40.0411 0.1468 -42.5548

RMTPP (Du et al., 2016) 0.2562 -35.6549 0.2630 -39.7893 0.2183 -42.7965

Transformer Hawkes (Zuo et al., 2020) 0.2812 -36.1831 0.2316 -40.6717 0.2342 -43.3308

Fully Hawkes (Omi et al., 2019) 0.6435 -64.7072 0.4522 -58.4046 0.4100 -65.0632

Clenshaw-Curtis 0.2197 -35.5183 0.0541 -39.4831 0.0312 -41.9839

Monte Carlo 0.1935 -35.6090 0.0462 -39.3527 0.0378 -41.9868

Taylor Expansion (Liu, 2020) 0.2004 -35.3771 0.0999 -39.7062 0.0224 -41.9691

Auto-NPP 0.1843 -35.3762 0.0356 -39.3599 0.0226 -41.9678
Auto-NPP (w/ RNN) 0.3353 -37.9182 0.4675 -44.0076 0.1107 -42.3124

Table 1: Comparison between our proposed model Auto-NPP (with or without RNN), the state-of-

the-art NPP models (upper section), and the same model using different integration methods

(lower section) on three synthetic datasets. Performance w.r.t. Mean Absolute Percentange

Error (MAPE) of the estimated intensity λ∗(t) and Test log likelihood (LL).

Table 2 compares the test log-likelihood (LL) on the real-world datasets. Our method outperforms

most other state-of-the-art methods for forecasting COVID events and earthquakes. These results

demonstrate the model’s capability to learn complex real-world dynamics. Conversely, the poor

performance of the RNN variant of Auto-NPP and Fully RNN reveal that combining an RNN with

an unconstrained influence function can overfit.

Finally, Figure 5 compares the training time of different methods. Auto-NPP is faster than most

state-of-the-art NPP models, and AutoInt is not only more accurate but also faster than all other

integration methods.

5. Conclusion
Model earthquakesJP covidNJ

LL LL

CT-GRU -37.7458 -24.6818

Neural Hawkes -36.3709 -25.4887

RMTPP -39.0440 -22.6118

Transformer Hawkes -41.3816 -23.2670

Fully Hawkes -55.2647 -65.0208

Clenshaw-Curtis -38.7512 -21.9713

Monte Carlo -38.7560 -22.0792

Taylor Expansion -38.5432 -22.0331

Auto-NPP -38.4888 -21.8996
Auto-NPP (w/ RNN) -39.1172 -23.8340

Table 2: Comparison between the models and the

integration methods on two real world

datasets, earthquakesJP and covidNJ.

Performance w.r.t. only LL since there is

no ground truth intensity.

We propose Automatic Integration for Neural

point process models (Auto-NPP) using a dual

network approach. Auto-NPP can efficiently

compute the exact likelihood of any sophisti-

cated intensity. We validate our approach using

both synthetic point processes with complex in-

tensity functions and real-world datasets. Ex-

periment results demonstrate that Auto-NPP
can accurately recover the underlying intensity

function while being efficient.

Our work presents a new paradigm for learn-

ing discrete event data with continuous-time dy-

namics. Presently, our neural process model

solely takes the form of Hawkes processes that

exhibit self-exciting behavior. However, it can-

not handle self-correcting processes owing to

the complexity of integration. In future work,

we aim to relax the form of the intensity network leveraging advanced integration techniques.

10



AUTO-NPP

Acknowledgments

This work was supported in part by U.S. Department Of Energy, Office of Science, Facebook Data

Science Research Awards, U. S. Army Research Office under Grant W911NF-20-1-0334, and NSF

Grants #2134274 and #2146343.

References

Ryan Prescott Adams, Iain Murray, and David JC MacKay. Tractable nonparametric bayesian

inference in poisson processes with gaussian process intensities. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 9–16, 2009.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differ-

ential equations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pages 6572–6583, 2018.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.

arXiv preprint arXiv:2011.04583, 2020.

Yuanda Chen. Thinning algorithms for simulating point processes. Florida State University,
Tallahassee, FL, 2016.

Jan Chorowski and Jacek M Zurada. Learning understandable neural networks with nonnegative

weight constraints. IEEE transactions on neural networks and learning systems, 26(1):62–69,

2014.

John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast gaussian process methods for

point process intensity estimation. In Proceedings of the 25th international conference on Machine
learning, pages 192–199, 2008.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier Corporation, 2007.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.

Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages

1555–1564, 2016.

William Dunham. The calculus gallery. Princeton University Press, 2018.

Ruocheng Guo, Jundong Li, and Huan Liu. Initiator: Noise-contrastive estimation for marked

temporal point process. In IJCAI, pages 2191–2197, 2018.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,

58(1):83–90, 1971.

Hengguan Huang, Hao Wang, and Brian Mak. Recurrent poisson process unit for speech recognition.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6538–6545,

2019.

11



AUTO-NPP

Athanasios Kottas and Bruno Sansó. Bayesian mixture modeling for spatial poisson process intensi-

ties, with applications to extreme value analysis. Journal of Statistical Planning and Inference,

137(10):3151–3163, 2007.

Haibin Li, Yangtian Li, and Shangjie Li. Dual neural network method for solving multiple definite

integrals. Neural computation, 31(1):208–232, 2019.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point

processes via reinforcement learning. arXiv preprint arXiv:1811.05016, 2018.

David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic integration for fast

neural volume rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14556–14565, 2021.

Keqin Liu. Automatic integration. arXiv e-prints, pages arXiv–2006, 2020.

Hongyuan Mei and Jason Eisner. The neural hawkes process: A neurally self-modulating multivariate

point process. arXiv preprint arXiv:1612.09328, 2016.

Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log gaussian cox

processes. Scandinavian journal of statistics, 25(3):451–482, 1998.

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. Discrete event, continuous time rnns.

arXiv preprint arXiv:1710.04110, 2017.

Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network based model for general

temporal point processes. arXiv preprint arXiv:1905.09690, 2019.

Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Taming the waves: sine as

activation function in deep neural networks. 2016.

Stephen L Rathbun and Noel Cressie. Asymptotic properties of estimators for the parameters of

spatial inhomogeneous poisson point processes. Advances in Applied Probability, 26(1):122–154,

1994.

Robert H Risch. The problem of integration in finite terms. Transactions of the American Mathemat-
ical Society, 139:167–189, 1969.

Robert H Risch. The solution of the problem of integration in finite terms. Bulletin of the American
Mathematical Society, 76(3):605–608, 1970.

Jin Shang and Mingxuan Sun. Geometric hawkes processes with graph convolutional recurrent

neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

pages 4878–4885, 2019.

Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural

temporal point processes: A review. arXiv preprint arXiv:2104.03528, 2021.

Joseph Sill. Monotonic networks. 1998.

12



AUTO-NPP

Garret Sobczyk and Omar León Sánchez. Fundamental theorem of calculus. Advances in Applied
Clifford Algebras, 21:221–231, 2011.

Utkarsh Upadhyay, Abir De, and Manuel Gomez-Rodriguez. Deep reinforcement learning of marked

temporal point processes. arXiv preprint arXiv:1805.09360, 2018.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein

learning of deep generative point process models. arXiv preprint arXiv:1705.08051, 2017.

Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. Improving maximum

likelihood estimation of temporal point process via discriminative and adversarial learning. In

IJCAI, pages 2948–2954, 2018.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In

International Conference on Machine Learning, pages 11183–11193. PMLR, 2020.

Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural point process for

learning spatiotemporal event dynamics. In Learning for Dynamics and Control Conference, pages

777–789. PMLR, 2022.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes

process. In International Conference on Machine Learning, pages 11692–11702. PMLR, 2020.

13


