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Abstract

Offline reinforcement learning (RL), which seeks
to learn an optimal policy using offline data, has
garnered significant interest due to its potential
in critical applications where online data collec-
tion is infeasible or expensive. This work ex-
plores the benefit of federated learning for offline
RL, aiming at collaboratively leveraging offline
datasets at multiple agents. Focusing on finite-
horizon episodic tabular Markov decision pro-
cesses (MDPs), we design FedLCB-Q, a variant
of the popular model-free Q-learning algorithm
tailored for federated offline RL. FedLCB-Q up-
dates local Q-functions at agents with novel learn-
ing rate schedules and aggregates them at a cen-
tral server using importance averaging and a care-
fully designed pessimistic penalty term. Our sam-
ple complexity analysis reveals that, with appro-
priately chosen parameters and synchronization
schedules, FedLCB-Q achieves linear speedup
in terms of the number of agents without requir-
ing high-quality datasets at individual agents, as
long as the local datasets collectively cover the
state-action space visited by the optimal policy,
highlighting the power of collaboration in the fed-
erated setting. In fact, the sample complexity al-
most matches that of the single-agent counterpart,
as if all the data are stored at a central location, up
to polynomial factors of the horizon length. Fur-
thermore, FedLCB-Q is communication-efficient,
where the number of communication rounds is
only linear with respect to the horizon length up
to logarithmic factors.
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1. Introduction

Offline RL (Levine et al., 2020), also known as batch RL, ad-
dresses the challenge of learning a near-optimal policy using
offline datasets collected a priori, without further interac-
tions with an environment. Fueled by the cost-effectiveness
of utilizing pre-collected datasets compared to real-time
explorations, offline RL has received increasing attention.
However, the performance of offline RL crucially depends
on the quality of offline datasets due to the lack of addi-
tional interactions with the environment, where the quality
is determined by how thoroughly the state-action space is
explored during data collection.

Encouragingly, recent research (Rashidinejad et al., 2021;
Shi et al., 2022; Xie et al., 2021b; Li et al., 2024b) indi-
cates that being more conservative on unseen state-action
pairs, known as the principle of pessimism, enables learning
of a near-optimal policy even with partial coverage of the
state-action space, as long as the distribution of datasets
encompasses the trajectory of the optimal policy. However,
acquiring high-quality datasets that have good coverage
of the optimal policy poses challenges because it requires
the state-action visitation distribution induced by a behav-
ior policy employed for data collection to be very close to
the optimal policy. Alternatively, multiple datasets can be
merged into one dataset to supplement insufficient cover-
age of one other, but this may be impractical when offline
datasets are scattered and cannot be easily shared due to
privacy and communication constraints.

Federated offline RL. Driven by the need to harvest mul-
tiple datasets to address insufficient coverage, there is a
growing interest in implementing offline RL in a federated
manner without the need to share datasets (Zhou et al., 2024,
Woo et al., 2023; Khodadadian et al., 2022). For model-
based RL, a study has proposed a federated variant of pes-
simistic value iteration (Zhou et al., 2024), which requires
sharing of model estimates. On the other hand, for model-
free RL, while Woo et al. (2023) introduced a federated Q-
learning algorithm that achieves linear speedup with collab-
orative coverage of agents, due to the absence of pessimism,
it still carries the risk of overestimation on state-action pairs
that are insufficiently covered by the agents. Indeed, it re-
mains unknown whether the principle of pessimism can be
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number of sample communication
type reference coverage .
agents complexity rounds

VI-LCB (Xie et al., 2021b) 1 single Hsc -

model-based | pey/_Ady (Xie et al., 2021b) 1 single H'sct ;

VI-LCB (Li et al., 2024b) 1 single Hsc ;

LCB-Q (Shi et al., 2022) 1 single Hese -

LCB-Q-Adv (Shi et al., 2022) 1 single H'SC* -

model-free N
FedAsynQ (Woo et al., 2023) M collaborative MC’Z;Q gfv\z
7 *
FedLCB-Q (Theorem 3.1) M collaborative a J\jec;vg H

Table 1: Comparison of sample complexity upper bounds of model-based and model-free algorithms for offline RL to learn
an e-optimal policy in finite-horizon non-stationary MDPs, where logarithmic factors and burn-in costs are hidden. Here, S
is the size of state space, A is the size of action space, H is the horizon length, M is the number of agents, C* and C3,,
denote the single-policy concentrability and the average single-policy concentrability, respectively (cf. (8) and (9)), and
davg 1s the minimum entry of the average stationary state-action occupancy distribution of all agents. We follow standard
conversion to translate the best sample complexity in Woo et al. (2023) to the finite-horizon setting for comparison.

implemented in federated offline RL to eliminate the risk of
overestimation, while fully utilizing the collaborative cov-
erage provided by agents, and without sharing datasets or
model estimates.

Our goal in this paper is to develop a federated variant
of Q-learning (Watkins & Dayan, 1992) for offline RL,
which allows agents to learn a near-optimal Q-function with
improved sample efficiency and relaxed coverage assump-
tion. In the single-agent case, pessimism is implemented
by penalizing the value estimates by subtracting a penalty
term measuring the uncertainty of the estimates (Yan et al.,
2023; Shi et al., 2022). However, federated settings are
communication-constrained, implying that agents only have
a limited chance of synchronization and they perform mul-
tiple local updates without knowing other agents’ training
progress. Allowing multiple local updates leads to higher
uncertainty of local Q-estimates beyond the control of the
pessimism penalty, potentially impacting both sample com-
plexity and communication efficiency. This underscores
the technical challenge of incorporating pessimism while
managing local updates and raises the question:

How to judiciously incorporate the principle of pessimism
in federated RL without hurting its sample and
communication efficiency?

1.1. Our contribution

This work presents a federated Q-learning algorithm with
pessimism for offline RL, which achieves linear speedup
and low communication cost, while requiring only collabo-
rative coverage of the optimal policy. Formally, we consider
episodic finite-horizon tabular Markov decision processes
(MDPs) with S states, A actions, and horizon length H. A
total number of M agents, each with K trajectories (col-
lected using its local behavior policy), collaborate in a fed-
erated setting with the help of a central server to learn the
optimal policy. Our main contributions are summarized as
below; see also Table 1 for a detailed comparison.

* Federated Q-learning for offline RL. We propose a fed-
erated offline Q-learning algorithm named FedLCB-Q,
which involves iterative local updates at agents and global
aggregation at a central server with scheduled synchro-
nizations. We introduce essential components that im-
plement pessimism compensating for the uncertainty in
both local and global Q-function updates. First, to address
the uncertainty arising from independent local updates,
we employ learning rate rescaling at local agents and
importance averaging at server aggregation. The for-
mer restricts the drifts of local Q-estimates by rapidly
decreasing the learning rates during local updates, and the
latter reduces uncertainty of the aggregated Q-estimates
by assigning smaller weights to rarely updated local val-



Federated Offline Reinforcement Learning

ues. Additionally, for every global aggregation, a global
penalty calculated based on aggregated visitation counts is
subtracted from the aggregated global Q-estimate. These
design choices play a crucial role in achieving both sam-
ple and communication efficiency while preventing the
overestimation of the Q-function.

* Linear speedup with collaborative single-policy cover-
age. Our analysis of sample complexity of FedLCB-Q
(see Theorem 3.1) demonstrates that FedLCB-Q finds an
e-optimal policy, as long as the total number of samples
per agent 7' = K H exceeds

~ H7SC"_,*\,g
O =T
Me? ’
where C*

avg denotes the average single-policy concentra-
bility coefficient of all agents (see (10) for the formal
definition). This shows linear speedup in terms of number
agents M, which is achieved with a significantly weaker
data requirement at individual agents than prior art. In
truth, each agent affords to have a non-expert dataset
collected by a sub-optimal behavior policy, as long as
all agents collectively cover the state-action pairs visited
by the optimal policy, even they don’t cover the entire
state-action space as in Woo et al. (2023). The bound
nearly matches the sample complexity obtained for a
single-agent pessimistic Q-learning algorithm (Shi et al.,
2022) with a similar Hoeffding-style penalty, up to a fac-
tor of H, as if all the datasets are processed at a central
location.

* Low communication cost. Under appropriate choices of
synchronization schedules, FedLCB-Q requires approxi-
mately O(H) rounds of synchronizations to achieve the
targeted accuracy (see Corollary 3.2), which is almost
independent with the size of the state-action space and
the number of agents. The analysis suggests that frequent
synchronizations are not necessary, outperforming prior
art (Woo et al., 2023).

1.2. Related work

Offline RL. Offline RL addresses the problem of learning
improved policies from a logged static dataset. The main
challenge of offline RL is how to reliably estimate the val-
ues of unseen or rarely visited state-action pairs. To tackle
this challenge, most offline RL algorithms prevent agents
from taking uncertain actions by regularizing the policy
to be close to the behavior policy (Fujimoto et al., 2019;
Siegel et al., 2020; Fujimoto & Gu, 2021) or penalizing
value estimates on out-of-distribution state-action pairs (Ku-
mar et al., 2020; Liu et al., 2020; Kostrikov et al., 2022; Wu
et al., 2019), which is also known as the principle of pes-
simism. Recently, the pessimistic approach has been devel-
oped and theoretically studied for various RL settings, such

as model-based approaches (Xie et al., 2021b; Rashidine-
jad et al., 2021; Kidambi et al., 2020; Yu et al., 2020; Jin
etal., 2021; Li et al., 2024b; Yin & Wang, 2021; Kim & Oh,
2023; Shi & Chi, 2022), policy-based approaches (Xie et al.,
2021a; Zanette et al., 2021), and model-free approaches (Shi
et al., 2022; Yan et al., 2023; Uehara et al., 2023). Most of
these works have focused on the single-agent case and sug-
gested that the state-action visitation distribution induced
by the behavior policy should cover that of the optimal pol-
icy (Rashidinejad et al., 2021; Shi et al., 2022; Yan et al.,
2023), and the distribution mismatch among the two visi-
tation distributions governs the hardness of offline RL (Li
et al., 2024b). Another interesting work (Shi et al., 2023)
considered offline RL from multiple perturbed data sources,
requiring a centralized setting in which an agent has full
access to all the datasets.

Federated RL. There has been an increasing interest in
federated and distributed RL, driven by the need to address
more realistic constraints, including privacy, communica-
tion efficiency, and data heterogeneity, as well as training
speedup. Recent works have investigated federated RL from
various perspectives, such as robustness to adversarial at-
tacks (Wu et al., 2021; Fan et al., 2021), environment or task
heterogeneity (Yang et al., 2023; Jin et al., 2022; Wang et al.,
2023; Zhou et al., 2024), as well as sample and communica-
tion complexities under asynchronous sampling (Khodada-
dian et al., 2022; Woo et al., 2023) and online sampling
(Zheng et al., 2024; Zhang et al., 2024). In addition, to
address unreliable estimation on unseen state-action pairs in
local batch datasets under the federated setting, Shen et al.
(2023) proposed a federated offline policy gradient algo-
rithm that regularizes the distribution of an estimated policy
to be close to the averaged visitation distributions of agents
with regularization loss, and Zhou et al. (2024) studied a
federated variant of pessimistic value iteration. However,
for model-free RL, although Woo et al. (2023) provided a
federated Q-learning algorithm that achieves linear speedup
in terms of the number of agents with relaxed coverage
assumption for individual agents, it still requires agents to
cover the entire state-action space uniformly due to the lack
of pessimism.

Q-learning. Characterizing the finite-sample complexity
of single-agent Q-learning has been examined extensively
under various data collection and function approximation
schemes, including but not limited the synchronous setting
(Even-Dar & Mansour, 2003; Beck & Srikant, 2012; Li
et al., 2024a; Wainwright, 2019), the asynchronous and
offline setting (Li et al., 2021; 2024a; Qu & Wierman, 2020;
Yan et al., 2023; Shi et al., 2022), the online setting (Jin et al.,
2018; Bai et al., 2019; Wang et al., 2019), under function
approximation (Fan et al., 2020; Chen et al., 2019; Xu &
Gu, 2020), to mention just a few.



Federated Offline Reinforcement Learning

Notation. In this paper, we use A(S) to refer to the prob-
ability simplex over a set S, and [K] = {1,--- , K} for
any positive integer K > 0. In addition, f(-) = O(g(-)) or
f < gesp. f(-) = Qg(-)) or f > g) indicates that f(-) is
order-wise not larger than (resp. not smaller than) g(-) up to
some logarithmic factors. The notation f < ¢ signifies that
both f < g and f 2 g simultaneously hold.

2. Background and problem formulation
2.1. Background

Basics of episodic finite-horizon MDPs. Consider an
episodic finite-horizon MDP represented by

M= (SaAv H, {Ph}hH:h {rh}thl)a

where S is the state space of size S, A is the action space of
size A, H is the horizon length, P, : S X A — A(S) and
rp : 8 x A — [0, 1] denote the probability transition kernel
and the reward function at the h-th time step (1 < h < H),
respectively.

A policy is denoted by ™ = {ﬂ'h}f:l, where m, : S —
A(A) specifies the probability distribution over the action
space at time step h in state s. With slight abuse of notation,
we use 7p,(s) to denote the selected action when the policy
mp, is deterministic. For h = 1,..., H, the value function
V™ (s) of policy = is defined as the expected cumulative
rewards starting from state s at step h by following 7, i.e.,

H

Vi(s)=E lz ri(st, ar)

t=h

Sh = S] ; ey

where the expectation is taken over the randomness of the
trajectory {s;, as,r;}L, induced by the policy 7 as well
as the MDP transitions according to a; ~ m(-|s;) and
St41 ~ Pi(-| 8¢, ar). Similarly, the Q-function Q7 (s, a) of
a policy 7 at step h in state-action pair (s, a) is defined as

Q5 (s,a) =rp(s,a) + E

H
Z ri(se, at) ’ Sh = 8,0h = a]
t=h+1

)

where the expectation is again over the randomness induced
by 7 and the MDP transitions.

It is well-known (Puterman, 2014) that one can always find
a deterministic optimal policy 7* = {m}:}}_,, which maxi-
mizes the value function (resp. the Q-function) simultane-
ously over all states (resp. state-action pairs) among all poli-
cies. The resulting optimal value function V* = {V*}/__|
and optimal Q-functions Q* = {Qj }/._, are denoted re-
spectively by

Vi (s) = Vi (s) = max Vi (s),

Qi(5.0) = QF (5,0) = max Qf(s,a)

for any (s,a,h) € S x A x [H]. Given an initial state
distribution p € A(S), the expected value of a given policy
m and that of the optimal policy 7* at the initial step are
defined respectively by
Vi"(p) = Es np [Vlﬂ(sl)]v Vi*(p) = Es np [Vl*(sl)]
3)

Bellman equations. Of crucial importance are the Bellman
equations that connect the value functions across different
time steps (Bertsekas, 2017). For any policy 7, it follows
that

QZ (8’ a) = ’I“h(S, a) + ES'NPh,s,u [Vhﬂ—&-l (S/)] 4)

for all (s,a,h) € S x A x [H], where Vj_(s) = 0 for
any s € §. Moreover, Bellman’s optimality equation says
that

Q;L($7 CL) = Th(sa (1) + ES'NP;L,S,G [‘/};—i-l(slﬂ Q)

for all (s,a,h) € S x A x [H], and the optimal policy
satisfies 77 (s) = arg max,c 4 @ (s, a).

2.2. Problem formulation: federated offline RL

In offline RL, one has access to a offline dataset containing
episodes collected by following some behavior policy. Here,
we formulate a federated version of the offline RL problem
with M agents, where each agent has access to a local offline
dataset. For 1 < m < M, the offline dataset D™ at agent m
is composed of K episodes,' each generated independently
according to a behavior policy ™ = {u"}L_ | resulting
in

K
mo.__ m m m m m m
D™= {(Sk,la Q15 Tk1s + - Sk, HyY Qe H rk,H)}kila
where the initial state s}'; ~ p is drawn from some initial
3 3 3 m m m
state distribution p € A(S), s3, aj’y,, riY, are the state,
action and reward at step h in the k-th episode, a}';, ~
m m m.o m m
pi (- Sk,h) and Tkoh = Th(skz,h ak,h)'

Goal. The goal of federated offline RL is to learn an e-
optimal policy 7 = {7, }#_, satisfying

Vi(p) = Vi(p) <e

using the history dataset D = {Dm}l <m<y Without shar-
ing the local offline datasets, with the help of a parameter

server. Furthermore, it is greatly desirable to achieve as high

"For simplicity, we assume all the agents have the same number
of episodes. It is straightforward to generalize to the scenario when
the local offline datasets have different sizes.
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accuracy as possible, in a memory- and communication-
efficient manner.

Metric. Obviously, the success of offline RL highly relies
on the quality of the history dataset. In order to define the
metric, let us first introduce the occupancy distributions
d} (s) and d} (s, a) induced by policy 7 at step h, given by

dr(s) =P(sp = 5|81 ~ p,m), (6)
d7(s,a) =P(sp = s|s1 ~ p,m)mn(als). )

Recent works (Rashidinejad et al., 2021; Xie et al., 2021b;
Shi et al., 2022) have advocated the notion of single-policy
concentrability, which measures the mismatch between the
occupancy distributions induced by the optimal policy 7*
and the behavior policy p, with the benefit that this assumes
away the need for the offline dataset to cover the entire state-
action space, which is often impractical. Li et al. (2024b)
offered a more refined notion called single-policy clipped
concentrability, defined as follows.

Definition 2.1 (single-policy clipped concentrability). The
single-policy clipped concentrability coefficient C* &
[1/5, 00) of a behavior policy p is defined to be the smallest
quantity that satisfies

. 1
x min{d] u(s ,a), 1/5} <,
(h,s,a)E[H] xS x A dj, (s, a)

®)

where we adopt the convention 0/0 = 0.

The single-policy clipped concentrability coefficient C* <
oo is finite whenever the behavior policy covers the state-
action pairs visited by the optimal policy, rather than having
to cover the entire state-action space. Recall that since 7*
is deterministic, df (s,a) = df (s)I(a = 77(s)), that is,
d7" (s, a) is non-zero only for the optimal action a = 77 (s).
Compared with the unclipped counterpart introduced in
Rashidinejad et al. (2021), the clipping of the occupancy
distribution df " (s,a) by the threshold 1/S ensures that
C* will not be excessively large when dff (s) is highly
concentrated in a small number of states in state space.

In the federated setting, we further introduce a tailored
notion that highlights the potential benefit of collaborative
learning in the presence of multiple agents. For ease of
notation, denote

di'(s) = dj." (s) and d}'(s.a) = d}," (s,a)
as the occupancy distributions induced by the behavior pol-
icy u at agent m. Based on these, we define the average

occupancy distributions as
1 < 1 &
m avg —_ m
]szld n(s), d; (s,a)—]wmzddh (s,a).
©)

B (s) =

ke T(K) K
Episodes
ok | L k
D Local updates I Aggregatlon
@ @ @ ..= Central server @
Agent 1 L
\
(—\J
Agent M QY Q¥ Qr

- -~ - Behavior policy ——— Solution policy

Figure 1: FedLCB-Q with M agents and a central server.
Each agent m performs local updates on its local Q-table
Q7 for each episode k in a local dataset D™. When syn-
chronization is scheduled, k € T (K), the agents send their
local Q-tables to the server and the server aggregates the Q-

tables into a global Q-table and synchronizes local Q-tables.

Definition 2.2 (average single-policy clipped concentrabil-
ity). The average single-policy concentrability coefficient
C’;‘Vg [1/S, 00) of multiple behavior policies {1 },,ear]

is defined to be the smallest quantity that satisfies

min{d} (s,a),1/S} N
<
T <O

max
(h,s,a)E[H]xSx.A

(10)

where we adopt the convention 0/0 = 0.

An important implication of the above definition is that,
as long as the agents collaboratively cover the state-action
pairs visited by the optimal policy, the average single-policy
concentrability coefficient Cj,, < oo is finite. Therefore,
this is much weaker than the coverage requirement in the

single-agent case.

3. Algorithm and theoretical guarantees

In this section, we first introduce the proposed model-free
federated offline RL algorithm called FedLCB-Q, followed
by its theoretical performance guarantees.

3.1. Algorithm description

We introduce a federated variant of Q-learning algorithm
for offline RL, called FedLCB-Q, that learns a near-optimal
Q-function without overestimation on unseen components
of the state-action space. The complete description of
FedLCB-Q is provided in Appendix A. On a high level,
FedLCB-Q performs local Q-function updates at all the
agents using its own local offline dataset, and occasion-
ally, globally aggregates the local estimates in a pessimistic
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fashion at a central server. To facilitate flexible communica-
tion patterns, we follow a synchronization schedule 7 (K),
which contains the indices of episodes where communica-
tion occurs between the agents and the server.

To begin, FedLCB-Q initializes the local estimate (QF,
and V{", ) at each agent m € [M] and the global estimates
(Qo,n and Vg p,) for all (s,a,h) € S x A x [H + 1] at the
server as follows:

Qg,lh(sv a) =0,
QO,h(Sa CL) = 07

Then, FedLCB-Q proceeds the following steps for each
episode k € [K].

Volh(s,a) =0,
Vo.n(s,a) = 0.

(11a)
(11b)

1. Local updates: Each agent m samples the kth trajectory
{(si, ai, i) 32y from its local offline datasets
D™. For each step h € [H], agent m updates its lo-
cal Q-estimate @}, for (s,a) = (s7%,, aj';,) as follows:

szh (87 a)
= (1= ngi(s,0) @51 (s, )
+ (s, a) (i + Vil 1 (88 hg1));s

where 1}, (s, a) is the learning rate, whose schedule will
be specified later, and V™, ; (s) is set as

Vil in(8) = Vi) n(8) = Vi) n(s),

where ¢ (k) denotes the most recent episode where aggre-
gation occurs before the kth episode, i.e.,

u(k) = n}gx{l <K <k:KeT(K)}.

(12)

2. Pessimistic aggregation: If synchronization is sched-
uled at episode k, i.e., k € T(K), each agent sends its
local Q-estimate to a central server for aggregation after
finishing the local update for the kth episode. Then, the
server updates the global Q-estimate (), ;, by averaging
the local Q-estimates and subtracting a penalty for all
(s,a) € S x A as follows:

Qr.n(s,a) (Z akh 5,a)Qy" (s, a)) — By n(s,a),

13)

where o, = [a},(5,0)](sa)esxa € [0,1]54 is an
entry-wise weight matrix assigned to agent m for each
h € [H], and By, (s, a) is a penalty term (to be specified
later below) that introduces the pessimism preventing the
overestimation of unseen state-action pairs. Accordingly,
for all (s,a) € S x A, the global value estimate is
updated as

Vi,n(s) = max {VL(k),n(S)» max Qr,n(s, a)} , (14)

where the outer maximum ensures a monotonic up-
date, as we explain later in the analysis. It
Vien(s) = maxge 4 Qk.n (s, a), the global policy is up-
dated as 7y, 5, (s) = argmax,c 4 Qr,n(s,a), otherwise
Tkn(8) = Tk),n(s). After aggregation, the server
sends the global Q-function and value estimates to ev-
ery agent, where Q’,gfh = Qkh, Vk% = Vj,p for all
(k,m) € T(K) x [M].

At the end of K episodes, FedLCB-Q outputs a global Q-
estimate Qp (s, a) = Qg n(s,a)forall (s,a,h) € S x Ax
[H] and a solution policy 7, (s) = mx n(s) forall (s, h) €
S x [H]. For simplicity, we assume that the aggregation step
always occurs after the last episode K, i.e., K € T(K).

3.2. Choices of key parameters

The success of FedLCB-Q relies on careful and judicious
selections of key algorithmic parameters, in a data-driven
manner, which we detail below. To begin, let us introduce
the following useful notation, which pertains to the counters
for visits of agents on each state-action pair (s,a) € S x A.
For any (m, k, h) € [M] x [K] x [H],

* ny',(s,a): the number of episodes in the interval
(¢(k), k] during which agent m visits (s, a) at step h, i.e.,

nmh(sﬂa) = {u(k) <i<k:(s]] Sih @ in) = (s, a)}!.

* Nj,(s,a): the number of episodes in the interval
[1, k] during which agent m visits (s, a) at step h, i.e.,
Nty (s,0) = {1 < i <k (sf, ) = (s,0) .

* nin(s,a): the cumulative count of local episodes

across all agents within the interval (:(k), k], wherein
each agent visits (s,a) at step h, i.e., ngn(s,a) =

M M .
2om=1"n(8:0) = o, k) < i <k
( z,h’ z,h) (8 a’)}|

* Nin(s,a): the cumulative count of local episodes
across all agents within the interval [1, k|, wherein

each agent visits (s,a) at step h, ie., Ngp(s,a) =

(z%)_}1|N,?7h<s,a>=z L <i <k (s, aly) =

Pessimism in the federated RL. In offline RL, pessimism
is key to preventing the overestimation of Q-function on
unseen state-action space. For a single-agent case, the pes-
simism is implemented by subtracting a penalty term com-
puted based on the visiting counter of an agent for each
state-action pair, which makes the estimation highly depen-
dent on the quality of agents’ datasets (Rashidinejad et al.,
2021). For example, when an agent has non-expert data
collected using a highly sub-optimal behavior policy, it is
inevitable to subtract a large penalty for optimal actions that
cannot be reached with the agent’s behavior policy, and this
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leads to slow convergence or convergence to a sub-optimal
policy close to the behavior policy. In the federated set-
ting, from the perspective of a server, as the aggregated
information from multiple agents increases confidence, it
is natural to be less pessimistic compared to an individual
agent. Based on this intuition, given some prescribed prob-
ability § € (0, 1), we suggest a global penalty computed
with the aggregated counters of agents at k € T (K):

(H + 1)ngn(s,a)

_ cp(iH*
Nin(s,a) + Hngp(s,a) \| Ngn(s,a)’

Bk7h(s, a) =
(15)

where By p(s,a) = 0 if Nyp(s,a) = 0, and ;¢ =

2 . ..
SAJM#) and cp 1S some positive constant. Here,

log (
the penalty for each state-action pair decreases as long as
the agents collectively explore the state-action pair enough.
This relaxes the dependency on an individual agent and pre-
vents the estimated policy from being restricted to a local

behavior policy.

Local update uncertainty. To guarantee that the pessimism
introduced by the global penalty is enough to prevent over-
estimation on rarely seen state-action pairs, the penalty
should dominate the uncertainty of the Q-estimates. How-
ever, when agents independently update their own local
Q-estimates without frequent communication, the global
penalty, which is subtracted only at the aggregation step,
may fail to cover the increasing uncertainty of the local Q-
estimates during local updates. To handle this, we propose
a choice of key parameters (learning rates 7., and averag-
ing weights o, ) that effectively controls the uncertainty
arising from the local updates as follows.

» Importance averaging. In the federated setting, agents
have offline datasets with heterogeneous distributions in-
duced by different behavior policies, leading to imbal-
anced uncertainty of local Q-estimates.To minimize the
uncertainty of the averaged estimate, we propose the fol-
lowing entrywise weighting scheme for averaging:

Ny iy,n(8,a) + (H + 1)Mn}§fh(s, a)
M(Nk’h(& (l) + an’h(s, a))

azl,h(& a) =
(16)

where a3, (s,a) = 2 if ngp(s,a) = 0. By assign-
ing smaller weights to less frequently updated local Q-
estimates with smaller nj; (s, a), which has high uncer-
tainty, the averaged Q-estimate can always maintain an un-
certainty level low enough to be dominated by the global
penalty, regardless of the heterogeneity in local data dis-
tributions. The idea aligns with the notion of importance
averaging introduced by Woo et al. (2023), which favors
frequently updated local Q-values. Nevertheless, our ap-
proach differs in that, unlike Woo et al. (2023), where

the assigned weights are determined solely based on local
counters ", in a myopic manner, our weights, factoring
in the global counter N, (), », limit bias towards specific
agents as the training of local Q-estimates stabilizes. The
weighting scheme, mindful of the entire training progress,
prevents some local values that have undergone intense
updates recently from dominating the global learning of
the Q-function, preserving the information accumulated
through old updates.

» Learning rates rescaling. Local updates without syn-
chronization increase the deviation of local Q-estimates,
and this increases the variance of the global Q-estimate at
aggregation. However, requiring agents to communicate
frequently may be too stringent for many applications in
the federated setting. To address this issue, we propose
a novel choice of learning rate that exhibits slower decay
based on a global counter N, 4, ., and faster decay during
local updates according to the local counter n;”),:

m (o a) M(H +1)
Mk, n {8, @) = N.kyn(s,a) + M(H + 1)nj, (s,a)
(17)

The rescaling of the learning rate is crucial to obtain linear
speedup without frequent synchronizations. The grad-
ual decay with a global counter allows more aggressive
updates of the Q-estimates once collective information
from all agents is aggregated, which enables convergence
speedup. On the other hand, the fast decrease in learning
rates during local updates ensures that agents adaptively
slow down their drifts and maintain low variance of their
local Q-estimates, without overly restricting the length of
local updates. We will further discuss how this effectively
reduces the variance of local estimates in Appendix B.1.

The computation of the global penalty (15) and importance
averaging (16) at a server requires local counters nﬂh(& a)
from every agent, and determining the learning rates (17)
at each agent requires access to recently aggregated global
counters N, ) (8, a). Therefore, for FedLCB-Q with the
specified parameters choices, agents and a server addition-
ally exchange the updated local and global counters at every
aggregation step.

3.3. Theoretical guarantees

Given the parameters described above, we now give sample
complexity guarantees on the performance of the proposed

FedLCB-Q algorithm.

Theorem 3.1. Consider § € (0,1) and let T be the solution

policy of FedLCB-Q. If a synchronization schedule T (K)

is independent of trajectories in datasets D and satisfies
H2S5C),, K

2
< avg d Tu+1 <14 =
7 < i an o + I

(18)
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for any u > 1, where T, is the number of episodes between
the (u — 1)-th and the u-th aggregations. Denoting the
total number of samples per agent T' = K H, the following
holds:

H7SC3,.C? . HSC?, ¢,

* (o) — V() < avg avg
Vii(p) = Vi (p) < c MT MT
(19)
at least with probability 1 — §, where (; = log (%)

and ¢ > 0 is some universal constant.

Theorem 3.1 implies that as long as the initial synchroniza-
tion occurs early and the synchronization intervals do not
increase too rapidly (cf. (18)), FedLCB-Q is guaranteed to
find an e-optimal policy, i.e., V;*(p) — Vi (p) < &, for any
target accuracy € € (0, H|, if the total number of samples
per agent 1" exceeds

5 (H'SCa
Me2 '

A few implications are in order.

Linear speedup without expert datasets. The value func-
tion gap shows linear speedup with respect to the number of
agents M, highlighting the benefit of collaboration. Notably,
the guarantee holds even when every agent has low-quality
datasets collected by some sub-optimal behavior policy, as
long as agents’ local data distributions collectively cover
the distribution of the optimal policy, where the average
single-policy concentrability C7, (cf. (10)) is finite. On
the other end, when performing offline RL using a single
agent, it requires that the behavior policy of the single agent
individually cover the optimal policy, i.e., C* < oo (cf.
(8)), which is much more stringent. Therefore, federated
offline RL enables policy learning that otherwise will not be
possible in the single-agent setting. Specializing to the case
M = 1, our bound nearly matches the sample complexity

-~ 6 *
bound O & ESQC

Q-learning algorithm with a similar Hoeffding-style penalty
(Shi et al., 2022), up to a factor of H.

) obtained for a single-agent pessimistic

Comparison with offline RL using shared datasets. To
benchmark the tightness of our bound, let us consider the
minimax lower bound of the sample complexity for single-
agent offline RL (Li et al., 2024b), as if we collect all the
agents’ datasets at a central location. Note that the effective
single-policy concentrability coefficient (cf. (8)) for the

combined datasets D) = U%ZID’” becomes

min{d}" (s,a), 1/S}
Y dp (5..0)

max
(h,s,a)e[H]xSx.A

Periodic sync. (T)

T T T

| K

Exponential sync. (y)

H A +p)H (1 +y)*H
J_‘ A A

-

] Local updates I Aggregation

Figure 2: Illustration of the periodic synchronization with
constant period 7 and the exponential synchronization with
arate .

min{d} (s,a), 1/S} Ol
Md3"%(s, a) M

= max
(h,s,a)E[H]xSx.A

leading to the minimax lower bound (Li et al., 2024b)

~ (H*SC,
Q T .

Comparing with the sample complexity bound of FedLCB-
~ 7 *

Q, obtained as O (%) , this suggests that the perfor-

mance of FedLCB-Q is near-optimal up to polynomial

factors of H3 even when compared with the single-agent

counterpart assuming shared access to all agents’ datasets.

Communication efficiency. Theorem 3.1 suggests initiat-
ing the first synchronization early and avoiding rapid in-
creases in synchronization intervals (cf. (18)) to ensure fast
convergence. This is attributed to large deviations among
agents in the early stages, arising due to coarse Q-estimates
and large learning rates, which diminish as training proceeds.
For communication efficiency, it is essential to design a syn-
chronization schedule that meets the constraints with the
least number of synchronizations. We investigate the follow-
ing two specific synchronization schedules for FedLCB-Q:

(a) Periodic synchronization: For a fixed period 7 > 1,
communication between agents and a server occurs
after every 7 episodes, i.e., 7; = 7 forall ¢ > 1, and we
denote the synchronization schedule as Tperiod (K,T).

(b) Exponential synchronization: For a fixed ratio
v > 0, initializing 1 = H, set 7, = |(1 4+ v)7—-1]
for each ¢ > 2. Under this scheduling, agents com-
municate frequently at initial iterations, but the period
between aggregation steps increases exponentially with
the rate of (1 4 +y) and synchronization occurs rarely
as training proceeds enough. We denote the synchro-
nization schedule as Texp (K, 7).
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We now analyze the number of communication rounds re-
quired to achieve a target accuracy for the above schedules.

Corollary 3.2. For any given ¢ € (0, 1) and target error
3 *
e € (0,min{H, il if"’“g |, suppose the total number of

samples per agent T' = K H satisfies

H'SC

avg

Me2

~

and FedLCB-Q performs under the periodic synchroniza-
tion scheduling, i.e., T(K) = Tperiod(K,T), with T =<

[HSCE, T . o .
172, or the exponential synchronization scheduling,
i.e., T(K) = Texp(K,7), withy = %. Then, each schedule
requires the number of synchronizations at most

| MK
(Periodic)  [Tperiod (K, T)| S | 55 a > (20a)
H2SCy,,

(Exponential)  |Texp(K,7)| S H, (20b)

respectively, and the solution policy 7@ of FedLCB-Q is an
e-optimal policy at least with probability 1 — §.

Corollary 3.2 implies that FedL.CB-Q requires only O(H )
aggregations to achieve the target accuracy under appro-
priate synchronization schedules, such as the exponential
synchronization schedule. Notably, the number of commu-
nication rounds is nearly independent of the size of the state-
action space, the total number of episodes, or the number
of agents, and this outperforms prior art (Woo et al., 2023).
Furthermore, analysis suggests that exponential synchro-
nization with a modest rate ¥ = 2/ H is a key to achieving
such communication efficiency. With our strategic choices
of learning rates, local Q-estimates stabilize as training pro-
ceeds, and thus agents can perform more local updates than
previous rounds without increasing uncertainty beyond the
control of the global pessimism penalty. Exponential syn-
chronization reduces the number of synchronizations by
capturing the additional room for local updates arising from
the stabilization of Q-estimates. On the other hand, periodic
synchronization does not exploit this benefit, even if we set
the period 7 maximally under (18) due to which it necessi-
tates more communication rounds, which increase with K
and M.

4. Discussions

We investigated federated offline RL, which enables multi-
ple agents with history datasets to collaboratively learn an
optimal policy, without sharing datasets. We proposed a
federated offline Q-learning algorithm called FedLCB-Q,
which iteratively performs local updates with rescaled learn-
ing rates at agents, and global aggregation with weighted
averaging and global penalty at a server, which effectively

controls the uncertainty in both local and global Q-estimates.
Our sample complexity analysis demonstrates that FedLCB-
Q achieves linear speedup in terms of the number of agents
requiring only collective coverage of agents’ datasets over
the distribution of the optimal policy, not restricted to the
quality of individual datasets. Furthermore, we showed
that FedLCB-Q is communication-efficient, requiring only
O(H) synchronizations under the exponential synchroniza-
tion scheduling. For future exploration, this work paves
the way for many interesting directions, some of which are
outlined below.

* Tightening H dependency. Although our sample complex-
ity bound is nearly optimal with respect to most salient
problem parameters, such as state space size and single-
policy concentrability coefficient, it falls short of optimal-
ity in terms of horizon length compared to the minimax
sample complexity lower bound in the single-agent set-
ting (Xie et al., 2021b). Closing this gap and improving
sample complexity with variance reduction techniques,
as proposed by Shi et al. (2022), will be an interesting
avenue for future exploration.

* Beyond episodic tabular MDPs. Extending episodic tabu-
lar MDPs, it would be interesting to broaden our analysis
framework to encompass other RL settings, including, the
infinite-horizon setting (Woo et al., 2023; Yan et al., 2023),
infinite state-action space setting (Bose et al., 2024), and
the integration of function approximation.

» Improving robustness. Our work focuses on a scenario
in which agents collect datasets from a common MDP
without any disturbances. Yet, in real-world scenarios,
some agents may possess datasets collected from per-
turbed MDPs. This introduces the need for additional
considerations regarding robustness, as discussed in Shi
et al. (2023). Therefore, enhancing our work to effectively
handle the variability or noisiness of MDPs would be a
compelling avenue for improvement.

* Multi-task RL. In many applications where various clients
pursue different objectives, multi-task reinforcement
learning holds a significant interest. It will be of great
interest to extend our work to the multi-task RL setting
(Yang et al., 2023; Jin et al., 2022; Zhou et al., 2024),
which enables agents to learn their own optimal policies
for their personalized goals while benefiting from collab-
oration by sharing common features of tasks.
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A. Complete description of FedLCB-Q

We provide the complete description of FedLCB-Q in Algorithm 1, with its agent-end and server-end subroutines described
in Algorithm 2 and Algorithm 3 respectively.

Algorithm 1 Federated pessimistic Q-learning (FedLCB-Q)
1: Parameters: horizon length H, number of agents M, total number of episodes per agent K, synchronization schedule
T(K), target error § € (0,1), (1 = log (%), cp > 0.

: Initialization: set Qg", (s, a) = 0, V% (s) = 0, Ng,(s,a) = 0, ngY,(s,a) = 0, No,n(s,a) = 0, no,n(s,a) = 0 for all
(m,s,a,h) € [M] xS x Ax[H+1].

NS

3. fork=1,---,Kdo
4: [/ Update the local Q-estimate and visitation counts at each agent
5 (QF,ny%) =Local-Q-learning ();
6: if k € T(K) then
7: /I Agent-to-server communication
8: Agents communicate Qth and n}zh to the server;
9: /I Global pessimistic averaging in a server
10: (Qk,hs Vi, Th,pn) = Global-pessimistic-averaging () ;
11: /] Server-to-agent communication
12: Server communication Qy, p, Vi » and Ny 5, to agents;
13: /I Synchronize local Q-estimates
14: for (m,s,a,h) € [M] xS x Ax [H| do
15: QKh(‘Sva) = Qr,n(s, a), VkTh(S) = Vin(s)
16: end for
17:  endif
18: end for

~

return: Q = {Qx,n}hem and 7 = {7k 1}t he(m)-

Algorithm 2 L.ocal-Q-learning (agents)

1: form=1,--- M do

2. Sample the k-th trajectory {(s}",, ai,, 73 SZ?thl)}thl from D™

3 forh=1,--- ,Hdo

4 for (s,a) € S x Ado

5 Qin(s,a) = QLy 4 (s,0), Vil (s) = Vily 1, (s)
6: end for
7.
8
9

/I Update the local counters and learning rates
m m m J— m m m
ny (Sins agy) = ngty p(sitp, agy,) +1

m m mo\ __ M(H+1)
nk,h(sk,mak,h) T NG pag ) A MEAD R, (57 a )
10: /I Update local Q-estimates
11 an,h(sgfhv ath) = (1 - nlrcrfh(szh7a2?h))Qzll,h(5?,h’ ath) + nz’fh(s, a)(ﬁ??h + anil,h+1(sgfh+1))
12:  end for
13: end for

13
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Algorithm 3 Global-pessimistic—averaging (server)

1: for (s,a,h) € S x Ax [H] do

2./l Update the average counter
ng.n(s,a) = Zf\le anh(s, a), Nin(s,a) = Nyyn(s,a) +np,n(s, a)
/I Compute global penalty and averaging weights

H+1 , 2H4 . .
Brn(s,a) = Nk,i(aa)):;fz(lj:()s,a) mlf Ni.n(s,a) > 0, otherwise, By 1,(s,a) =0
for = L s MO ()
_ 1 (k),h(S,aQ ny p(8,a) . . 1
am’L(S7 a) - M N;C‘h(s,a)Jank’h(s]ja’) lf n;ﬁ’?h(s7a) > 0’ OtherWISe’ a}z’fh(87 a’) - M
end for

/I Update global Q-estimates

10 Qunls,0) = Yy o (5, @) QY (5,) — Bra(s, a)

11: Vin(s) = max {V,(x)n(s), maxeea Qr,n(s, a)}

12 7 p(s) = argmax, e 4 Qr,n(s,a) if Vi n(s) = maxaea Q,n(s, a), otherwise, mx 1 (5) = 7,3, (5)
13: end for

e RN AW

B. Analysis

In this section, we will outline useful properties of FedLCB-Q and the key steps of the proof of Theorem 3.1, deferring the
details, such as proofs of supporting lemmas, to Appendix C and D.

Throughout the paper, we adopt the following shorthand notation
Phs.a = Pi(-]s,a) € [0,1]"7, 21)

which represents the transition probability vector given the current state-action pair (s, a) at step h. In addition, define
pmoe o0, 1}1%9 as the empirical transition vector at step / of the k-th episode at agent 1, namely

By (s) =1(s = sy’ 41), forallseS. (22)

These are the notations pertaining to the counters for visits of agents on each state-action pair (s,a) € S x A. For any
(m, k, h) € [M] x [K] x [H],

* I (s,a): a set of episodes in the interval (¢(k), k] during which agent m visits (s, a) at step h, i.e., [, (s,a) =
{tk)<i<k: (S%,a%) = (s,a)}.

* L}, (s,a): aset of episodes in the interval [1, k] during which agent m visits (s, a) at step h, i.e. i, (s,a) = {1 <
1 <k: (szlh,a;'fh) = (s,a)}.

We also introduce the following notation related to the synchronization schedule 7 (k). For any positive integer k and u,

* t,: the index of episodes, after which the uth synchronization occurs.
* 7,: the number of local updates (episodes) taken between the (v — 1)th and the uth synchronizations.
* 1(k): the most recent episode where the aggregation occurs before the kth episode.

* ¢(k): the minimum index of aggregation occurring after k-th episode.

B.1. Basic facts

Error recursion of Q-estimates. We begin with the following key error decomposition of the Q-estimate at each
synchronization, whose proof is provided in Appendix D.1.
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Lemma B.1 (Q-estimation error decomposition). Consider a Q-function Q™ = {Q7, (s, a) }H)xsx.4 and value function
VT = {Vi7(s) }m)xs induced by a policy m. Then, for any [H] x S x Aand k € T (K), the error between Q}, and Qy, 1, is
decomposed as follows:

QZ(‘& a) - Qk,h(87 CL) = wO,k,h(s7 a’)(QZ(87 a) - QO,h(S7 a/))

=:D7 (s,a,k,h): initialization error

M
+ Z Z wzlk,h(sv a)(Phs,a — Pz?,rib)vin—ll,h-&-l

m=14ieL}, (s,a)

=:D5(s,a,k,h): transition variance

#(k) #(k)
+ ZBtu,h(S’a) H )‘u’,h(sva)
u=1 u' =u+1

=:D3(s,a,k,h): global penalty

M
+3 Y wha(5.0) Prsa(Vil — Vi i) (23)

m=1¢e Ly, (s,a)

=:DJ (s,a,k,h): recursion

where L, (s,a) == {1 <i < k: (sy,a{},) = (s,a)} and I}, (s, a) = {u(k) <i < k: (s],a]y,) = (s,a)}. And, for
simplicity, we use the shortened notations defined as

1 ika’h(s,a):O
Av,h(sa Cl) = { N, (ky,n(s,a) h . , U= ¢(k)7 (24a)
N, n(s,a)+Hny ,(s,a) otherwise
1 lf Ny h(sv CL) =0
wh n(8,a) = ’ , 24b
O’k’h( ) {0 otherwise (24b)
(k)—1
H+1 Nt“h(87a) .
m ,a) = = , e L (s,a). 24
e ) = 5 Gyt At \ AL Moo+ H i | TS He 040

Equally favoring episodes within the same local update round. According to the decomposition (23) in Lemma B.1, for
any (s,a,h) € § x A x [H], the Q-estimation error at episode & significantly depends on the weighted sum of transition
difference for each episode where the local update occurs, namely Dy (s, a, k, h). Intuitively, the weight Wik h (s,a) assigned
to each episode ¢ balances the accumulation of information from old and new updates. Our choice of learning rates, which
decreases fast during local updates, as illustrated in Figure 3a, ensures that the weight w;"} 1 (s, a) within the same local
update round is always equal for all episodes and agents, as shown in (24c) and Figure 3b. The uniform weights allow
the transition information of each episode to be accumulated evenly, regardless of other transitions that occur in future
episodes or other agents’ episodes. This is essential to keep variance arising from local updates low, especially when a
synchronization period is long. Assigning equal weight to every episode allows to fully utilize transitions observed during
local updates without forgetting old information, regardless of the length of the synchronization period.

Bounded visitation counters. We introduce the following lemma regarding the visitation counters, whose proof is provided
in Appendix D.2.

Lemma B.2 (Concentration bound on the visitation counters). Consider any 6 € (0,1) and some universal constant ¢; > 0,

and let
2|S||A|KH 4¢o
=1 _ d K h) = ——F7—. 25
CO 0og < 5 an O(Sa a, ) ClMdz;ng<s7a) (25)
Then, for all (s,a,h) € S x A x [H], the following holds
1
when k > Ko(s,a,h) : §kMdeVg(s, a) < Ngn(s,a) < 2kMd; % (s, a), (26a)
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1.0 == 0.10

° T]R,l(s,a) (d}(s,a) = 0.7) d W?,ﬁ( (8:0) (d}(s,a) = 0.7)
—
—~ sl nin(s,a) (d(s,a) =0.3) = 00s 4 wigon(s,a) (dh(s,a) =0.3)
S 3
= =
= 06 - 3 0.06
% ©
£ £
= a0
oo 041 | T 0.044
&

E poes i © 0000:0000:0: wexe
5 [ e
S
<) 7]
3 024 / 0
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o 20818X © B 680 ©
0.0 +— : - : - - - 0.00 12080 e8e. - - : - :
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Episode (i) Episode (i)
(a) Rescaled learning rates (b) Episode weights

Figure 3: Illustration of the rescaled learning rates ()], (s, a)) and the episode weights (w1, (s, a)) induced by the
learning rates of two agents m = 0,1 for episodes 1 < i < 60, where H = 5, the occupaﬁcy distribution of each
agenton (s,a,h) € S x A x [5]is d})(s,a) = 0.7 and d}, (s, a) = 0.3, respectively, and the synchronization schedule is
T(60) = {10, 30,60}.

when k < Ko(s,a,h) : Nin(s,a) < 8o/c1 (26b)
with probability at least 1 — 0.

We denote the event that (26) holds as &.

Monotonic and pessimistic global value updates. Note that the global value estimate is always monotonically non-
decreasing, i.e., for k', k € T(K) it holds

VseS: Vin(s) > Vi n(s) when k' <k, 27)

which follows directly from the update rule (14). Moreover, we have the following important lemma regarding the pessimistic
property of the value estimate, whose proof is provided in Appendix D.3.

Lemma B.3 (Pessimistic global value). Recall Qy n, Vi n, and ., in Algorithm 1. Let m = {7y p}he[n). Given any
0 € (0,1), for all (k,h) € T(K) x [H], it holds with probability at least 1 — 0 that

. 4CBC12H4

V(s,a) €S xA:  Dals,a k)| < Da(s,a,k h) < \/ Ty s (284)

V(s,a) e S x A: Qrn(s,a) <QpF(s,a) < Qj(s,a), (28b)
VseS: Vie,n(s) < ViR (s) < V(). (28¢)

In words, Lemma B.3 makes concrete the role of the penalty term in dominating the variability of the value estimates due to
stochastic transitions, and ensures that the estimated value is a pessimistic estimate of the true optimal value function.

B.2. Proof of Theorem 3.1
Now we are ready to provide the proof of Theorem 3.1, which is divided into several key steps as follows.

Step 1: decomposition of the performance gap. The performance gap between the solution policy 7 of Algorithm 1 after
K episodes and the optimal policy 7* can be bounded as follows:

Vi'(p) = Vi (p) = Esymp VI (51)] = Esyop V™ (51)]
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(i)
< ESINP [Vl*(sl)] - ESlNP [VK,l(Sl)]
d(K)

(11) 1 TU(E51~P [Vl*(sl)] _ESINP [V;:U’l(sl)])

*K

v=1
LYy
== > > di (s) (Vi'(s) = Vi, 1(9))
K v=1 SES:G
1 P(K) X
<= LS (s) (v Vi 29
_K}{Iel[ag]vlegsh(s)(h() 1,1 (5)) 5 (29)

where (i) follows from Lemma B.3, and (ii) follows from the monotonicity property in (27) and Zf( 1) 7, = K.

Since 7* = {7}; } nea) is deterministic, for any k& € T (K) and h € [H], it follows that

> dp( — Vien(8) =D _dfi (s,m4(5)) (Vir () = Vin(s))
seS seS
<> dR (s, 7)) (@1 (5, 7 () — Qun(s, Th(5))), (30)
seS

where the inequality holds because Q1 (s, 77 (s)) < maxqe 4 Qr,n(s,a) < Vi n(s) due to (14).
To continue, applying Lemma B.1 by setting m = 7*, the Q-estimate error after k episodes is decomposed as follows:
Q;L(S’ a) - Qk,h(su a’) = DT* (S, a, k? h) + D2(87 a, k> h) + DS(Sv a, ku h) + Dzlr* (S, a, ku h)
< DY (s,a,k,h) + DY (s,a,k,h) +2Ds(s,a, k, h), 31)

where the second line follows from Lemma B.3. Finally, inserting the decomposition (31) and (30) back into (29), we
control the performance gap with the following terms:

Vi (p) — Vi (p)

d(K)
< ? m X Z Tvzdh [ 1 (s T;(L(S%tmh)JFDZLT*(SvW}*L(S)atmh)+2D3(5a7r;;(5)7tmh)}
E
v=1 sES
1
= — D D D 32
K}]an?X]( 1.h+Dan+Dsp), (32)

for which we shall aim to bound each term individually, adopting the following short-hand notation:

B(K)
D = Z Tyz:dTr DI (s,77(8), tw, h) fori € {1,4},
v=1 seS
B(K)
Ds p = Z Tvzdh )Ds(s, 75, (8), to, h). (33)
v=1 seS

Step 2: Bounding the decomposed terms. Here, we derive the bound of the decomposed terms separately as follows under
the event &y, which holds with probability at least 1 — 6.

* Bounding D; ;. Using the fact that 0 < Q3 (s, 77 (s)) — Qo.n(s, 75 (s)) < H, which follows from Lemma B.3, it
follows

Dip = Z 7o Y dp (5,75(8)wo,e,.n (877, () (QF (5,7 () — Qoo (s, w5 ()

= seS

17
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Mx

Z di (5,77, (8))wo,e, (s, T () H
€s

v=1

#(K)
=HY dy (s,75(5)) Y wI{Ne, n(s,m(s)) = 0} (34)
SES v=1
where the last line follows from (24b). To continue, note that
P(K)
Z ToI{ Ny, .1 (s, 77 (s)) = 0}
v=1
= > Tol{ N, ,n (s, m4(s)) = 0} + > I{N, n(s, 7 (s)) = 0}
veE[p(K)]ity, <Ko(s,m (s),h) vE[P(K)]ity>Ko (s, (s),h)

< KO(SJTZ(S)’ h’)7

where the last line follows since under the event &, N, 5 (s, 7 (s)) > 0 when ¢, > Ky(s, 7} (s), h). Plugging the

v

above inequality and the definition of K¢(s, 7} (s), h) back to (34) leads to

Dy < HZdz*(s,w,j(s))Ko(s,WZ(s),h)
seS

—HY min{dj" (s, 7}(s)),1/S} (12@) dp” (s, 74 (s))

(s, mi(s) M) min{dy (s, (5)). 1/5}
HCa*VgS
35
S—p (35)
where the last line follows from the definition of C7,, and the fact that
di” (s, m} (s))
5 < 1+d} 1+d} ( =25.
;S min{d}" (s, 75 (s)),1/S} ~ Z( +di (s, mi(s ) ;S( + )

* Bounding Ds . The range of Ds(s, a, k, h) is bounded as shown in the following Lemma, whose proof is provided
in Appendix D.5.

Lemma B4. For any (s,a,h) € S x Ax [H] and k € T(K), if Nyn(s,a) = 0, Ds(s,a,k,h) = 0, and if,
Ni.n(s,a) > 0, the following holds:

cp(iH* [ depGH?
Ds(s,a,k,h) € [¢Nk7h(s,a)’\/Nk,h(s,a) . (36)

With the above lemma in hand, recalling (33) gives

#(K)
D3 = Z Ty Zd” 8,71 (8))(2D3(s, 77 (8), ty, h))
v=1 seS
#(K)
4CBC12H4
< dﬂ' S 7T' (37)
R

According to Lemma B.2, Ny, 5(s,a) > $t,Md; ®(s,a) holds if t, > K (s, a, h) under the event &. Therefore,

B(K)

R e e D VIR LD VI e
maX{Ntv,h(sva)»l} ~ ! Y maX{Ntvyh(S,a),l}

vit, <Ko(s,a,h) vit, >Ko(s,a,h)

18
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H4
SH2K0(87a7h)+ Z Ty
vit, >Ko(s,a,h) maX{Nt”’h(S7 CL), 1}
2 b(K) P
SH K0(87a7h)+ Z Tv Wg(sa). (38)
o1 vty )

Plugging the above inequality and the definitions of Ky (s, 7} (s), h) and CZ,, to (37), we obtain

avg

(K)
s Th(5))
DghNMz:davg *s)+zzdh 5 mh(s Mtdavgswh

sES v=1 seS

HQC’* dy’ (s, 7% HACy ;T ()))?
avg h an U Th
Z mln{d (s, 75 (s 1/S} Z \ Z \/mm{d7T 7 (s)),1/S}
i / ~ ¢ ¢(K)
(<) H an H4OanS \/7

) HCLgS | H4SKC*

avg

S —7 T (39)

where (i) holds due to Cauchy-Schwarz inequality and the fact that

2 min{;,;z:(g:g(g)),1/3} = Z (14 s mie)s) = 3 (1+ 47 (9)5) = 2.

seS

seS

and the last line (ii) follows from the Cauchy-Schwarz inequality and the fact that Zf(zlf) T, = K and Zf If) ~ <
1+ log K, with the latter following from Lemma C.2.

* Bounding D, j. In the following lemma, whose proof is provided in Section D.6, we extract the recursive formulation
of Dy, as follows:

Lemma B.5. Consider any § € (0,1). For any h € [H], the following holds with probability at least 1 — §:

H(K) M
Z . Z a7 (s,q) Z Z Wity w(8,0) Prs.a(Virer — Vig),het)
v=1 (s,a)ESxA m=1lieLy | (s,a)
H(K)
S Caux T (1 + Z Tu Zthrl Vh+1( ) ‘/tu717h+1(8)) (40)
u=1 seS
where
H2KSC%,  H?SCh,
Oaux —

7 i (41)

Step 3: Recursion. Combining the bounds of the decomposed errors ((35), (39), and (40)), for any h € [H], we obtain the
following recursive relation:

#(K)
Doy di (s ~ Ve, n(5))
v=1 SES

<Ok + ( 1+ quzd” ) (Vita(s) = Veu_inia(5))

= seS
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@) 1 $(K)—1
S (O + Hr) + (14 5) > Turn > d7(8) (Vitpa(s) = Ve, naa(s))
u=1 SES
(”) H(K)—1
< (O + Hm) + Z Tu Y d7 (s) (Vi (s) = Vi g (s)) (42)

sES

where (i) holds because V", | (s) — V4, n+1(s) < H and (ii) holds due to the condition % <1+ % forall 1 <u < ¢(K)
and the fact that V}* , (s) > V4, n+1(s) shown in Lemma B.3, and we denote

QKZ

HCa*VgS H2C;‘\,g H4SC ang HQKS Cig HZSC;‘\,g
i + U (43)

Then, by invoking the recursion (H — h + 1) times, it follows that

ZTUZCH = Vi, n(9))

v=1 seES
) 2 ¢(K> 2
SOk +Hm)+ 1+ 5)2(9%00,1 + Hr) + (1 t7 Zl Ty ;dl (Viria(s) = Vi naa(s))
U S
2 2 _
S O+ Hr) + (14 )2 Orgey + H) o+ (U )20 O + HT)
< HOx + H?*my (44)

where the second line follows from the fact that Vi, (s) — Vi H+1( ) = 0 for any k € [K], and the last line holds because
O < O forany k < K and (1 + £)2H-r+0) < (14 2)2H < et

Finally, by plugging the above bound into (29), we obtain the bound of the performance gap as follows:

?(K)
VE(p) = Vi(p) < = max S 7 ST (5) (Vi () = Veon(s))

~ K [H] v=1 sES

1
< E(HGK + H?m)
Hdsca*vg N HSSC3,, N H2r

S TR MK K
T=HK H7SC3, H*SC,

avg avg

~ MT MT

(45)

where the last line holds if m; < % and this completes the proof.

C. Technical lemmas

Freedman’s inequality. We provide a user-friendly version of Freedman’s inequality (Freedman, 1975). See Li et al.
(20244a, Theorem 6) for more details.

Theorem C.1 (Li et al. (2024a, Theorem 6)). Consider a filtration Foy C F1 C Fa C ---, and let Ey stand for the
expectation conditioned on Fy. Suppose that Y, = 22:1 Xy € R, where { X} } is a real-valued scalar sequence obeying

|Xg| <R and  Ej1[X;] =0 forallk > 1

for some quantity R < oc. We also define

n
W, = ZEk_l [X7].
k=1
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In addition, suppose that W,, < o holds deterministically for some given quantity o < oo. Then for any positive integer
m > 1, with probability at least 1 — § one has

P
|Yn|§\/8max{Wn,2 }lo Tm+ ZRlog Tm (46)

We next present a basic analytical result that is useful in the proof.

Lemma C.2. Consider any sequence {x.}.—1 ... z where z, > 1 forall z and let X, = >_-,_, x.. Then, for any Z > 1,
it follows that

Proof. For Z =1, X(1) = % = 1. For Z > 1, suppose the claim holds for Z — 1. Then, it holds for Z as follows:

Xz 1
Xz

X(Z):X(Z—1)+;;—ZZ§1+logXZ_1+1—

X
<l+4+logXz 1 —log(

=1+logX 47
XZ) + log X 7, ()

where the first inequality follows from the induction hypothesis and zz; = Xz — Xz _1, the second inequality follows from
logy <y — 1 for any y > 0. By induction, this completes the proof. O

Last but not least, we have the following useful properties regarding the parameters introduced in (24c).

Lemma C.3. Forany (s,a,h) € S x A x [H], k' <k € T(K), where we denote u = ¢(k), and i € L7’} (s, a). Then, it
follows that:

2H

w o (s,a) < , 48a
ien(s:0) < Nin(s,a) + Hng p(s, a) (482)
M
YooY Whalsae) <1, (48b)
mzljeLz”;h(s,a)
M
m (H + )nk/
Y Y Whkalso) < gt (48¢)
m=1jely; ' (s,a) Nk’h T an’h
2H
Z Y Wha(sa)’ < : (48d)
mzleLZ‘)h(s,a) Nk7h(s,a) +an7h(s,a)
0o M 1
Zntv,h(s,a) Z | Z Wiy, n(s,a) <ngp(s,a) <1 + H) . (48e)
v>u m=1ieli, (s,a)
Proof. For notation simplicity, we will omit (s, a) for the following proofs. Moreover, u = ¢(k) and ¢t,, = k.
Proof of (48a). Recalling the definition of Wil in (24c) and using the fact that H > 1,
$(k)—1
wm H+1 Ntw,h 2H
Wikh = N L 7 H < . (49)
Nin+ Hngp, omld) Ne,w+Hng, p Niw + Hngp
Proof of (48b). By rearranging the terms,
#(k) M b(k)
H+1 Nio_1oh
m x—1,
SOY ey > voam o\ I 57—
m=1jeLy, (s,a) v=1lm=1jeli” , Ne,n + Hrg, rz=v+1 Nigh + Hne,
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k k
SELESI ﬁm
—) N + Hntmh ol thmh —+ Hntwh
k k
3 )< ) o Mewn
o Ntv,h + Hny, p Mt Ne,ow +Hng, g
k k k
_¢() b(k) Nio o _aﬁl(_[) Nio o
v=1 \z=v+1 t”h + Hntfvh r= Ntm,h +Hntm,h

o(k)
= el o (50)
1;[ Ny, h+Hnt h

Proof of (48c). Let v = ¢(k'), i.e., k' = t,.. Similarly to the proof of (48b), by arranging some terms, we obtain the upper
bound as follows:

M #(k)
H+1 Ntm,l,h
(JJ S, a — B ve——
D> Wkl Z ) 11
m=Ljer (s =t ety () Neyw+Hrgyn \ 25 Negon + Hng
k
H+ Do [ T4 Neon

=Nt i \ L N

o(k)—1

_ (HADng, H Ni b

Nip + Hngp, Ny, n+ Hng, p,

(H + 1)n;€/7h (51)
= Nigp+ Hngp,

Proof of (48d). Using the bound in (48a) and (48b),

2H
_ ma: m ’fﬂ ma w™ S 52
Z 2 (k) <me[M],féL;? jkh) 2 2 P S ey, S Newt Hugn®

m=1jeL}, m=1jeL",

Proof of (48¢). Recall that k£ = ¢,,. Then, reusing the intermediate result derived in (51),

> M > v—1
m (H + 1)nt N Nt h
Zntmh(s,a) Z Z wi'y, n(s,a) = Zntv,h H @
vZu m=14ely | (s,a) e Niyw+Hrgyn | 2220 Neyon + Hng,
=Bx,n
n v—1
(H+1)n to,h :
mh; % Hion Il;[uﬁ,h
S 1 v—1
=(H+1)ng,n Z E(l — Bon) (H 6137}7,)
v>u T=U
1
<npa(l+ E) (53)
O
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D. Proofs for main results
D.1. Proof of Lemma B.1

For any (h,s,a) € [H] x § x Aand k € T (K), according to the pessimistic aggregation update rule in (13), the estimate
error of Q function at the k-th iteration can be written as follows:

Qn(s,a) — Qrn(s,a) = Qf (s, a) (Z agn(s,a)Qi (s, a)) + Bi,n(s,a)

m=1
M
= > apu(s,a) (Qk(s,a) — Qi (s,a)) + Be(s, a), (54)
m=1
where the last equality holds by the fact 2 _, afy(s,a) = 1.

Then, invoking the local update rule in (12), for any i such that (s7"},, a{"},) = (s, a), the local Q-estimate error at each agent
m can be written as follows:

Qp(s,a) — Q] (s,a)
= (L=nh(s,0))(Qh(s,a) — Q%4 1 (s,a)) + 04 (s, a)(QR (s, a) — ri(s,a) — PRV jyq)
= (1 =nih(s,a))(Q5(s,a) = Q%4 1 (s,0)) + 0 (s, a)(ra(s,a) + PhsaVilys — rals,a) = PR VIT i)
=1 =niu(s,a )(QZ(S:Q) it1,n(s,a))
+ 0 n(8,a) Prs.a(Viy — VT h+1) +0in(s,a)(Prsa — P )ViZ) pits (55)

where the second line follows from the Bellman’s equation. Then, by invoking the relation recursively, the local Q-estimate
error at each agent m obeys the following relation:

QZ(Sv a) - Qﬁh(sva) = H (1 - Ufh(sﬂ)) (QZ(S’ a) - QL(k),h(s7a))

iEl;c'fh(s,a)

+ Z nﬁh(s, a) H (1- U;?l,h(sa a))Prs,a(Viga — Vir:bl,h+1)
i€l (s,a) {i>i:5€li), (s,a)}

+ Z Nip (s, a) H (1 = 0% (s,0))(Pr,s,a — PRV hgrs (56)
i€l (s,a) {7>i:5€l), (s,a)}

where [}, (s, a) denotes a set of episodes where agent m has visited (s, a) at step i within (¢(k), k].

By inserting (56) to (54) and letting v = ¢(k), we obtain the following recursive relation for u-th local updates:

QZ(Sv a’) - Qk,h(sa a)

M
Z a;crfh(&a) H (1 —77%(87@)) (QZ(S,CL) _QL(k),h(sva)) +Bk,h(s7a)
m=1 i (

€l (s,a)

=My, n(s,a)

M
+ Z Z o (s, a)nih (s, a) ]___[ (L =njn(s,0)) | Prs,a(Visr — V%4 pit)

n=lielj’, (s,a) {7>ijely, (s,a)}
M
+> ag'n (s, a)ni (s, a) 11 (L =nih(s,a)) | (Phs,a = PR)Vi" g
m=1ielj’, (s,a) {7>i:5€ll), (s,a)}
= Ap.n(s,a) (QZ(S a) — Quk), (s a)) + Bi.in(s,a)
+ (H 11 Z Z Prsa(Vier = V21 hg)

Ni, n(s, a)+Hnt n(s,a)

m=1lieli*, (s,a)
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(H+1)
§ > (Pasa — PV s 57
+ Ny, n(s,a) + Hng, p(s,a) hs, l’h) i=Lh+1 57

v m= 1z€l’" (s,a)

Here, the last line holds by invoking the definitions in (16) and (17) and observing with abuse of notation (omit (s, ) when
it is clear)

(s, a0y (s, a) 11 (1 =njn(s,a))
{j>1: JE n(s,a)}

m m
Me,n =T

_ 1 Ny + M(H + gy M(H +1) H . (NL(M + M(H +1)(n], +j — 1))
M Nip + Hngp, Nb(i),h+M(H+l)nZlh NL(i)7h+M(H+1)(nZlh+j)

j=1
_ 1 Ny + MH + )niy, M(H +1) Noyn + M(H + D)n,
M Nk,h—i_an,h NL(z)h+M(H+1) NL()h"’_M(H"‘l)nkh

B (H+1) B (H+1)
Ngn+Hngpn o Ny +Hng,p

where the last line holds since ¢(i) = ¢(k) fori € [}"),(s,a) and k € T(K) leads to k = ty(x) = t,.

(58)

Then, by invoking the above recursive relation for each aggregation, the Q-estimate error after k£ episodes is decomposed as
follows:

Qr(s,a) = Qr,n(s,a)

#(k) o (k) o (k)
= H )\u,h(S,CL)(Q?;(S,(L) QOh S, Cl + ZBt“’h S, Cl H )\mh S CL)
u=1 r=u+1
=wo,k,n(s,a)
#(k) M a1 #(k)
+ Z Z Z m H Am,h(& CL) (Ph,s,a _ m )le Bt
u=1m= 1l€l ( U r=u+1
=w; k,n(s,a)
¢(k) M 41 #(k)
PP NP PN Loy il Sl B

= wo,k,h(8,a)(Qf(s,a) — Qon(s, a))
M
+ Z Z wZLk-,h(Sv a)(Ph,s,a — Pz'%)virfl,h+1

m=14eLy®, (s,a)

(k) (k)
+ Z By, 1(s,a) H Au,n(s,a)
u=1 r=u+1
+> 0 w80 Phsa(Vily = Vit ) (59)

m=1 iGLth(s,a)

Here, A\, 1(s,a), wo k,n(8,a), and w; (s, a) can be simply written as described in (24a), (24b), and (24c), respectively,
which will be proved momentarily. For notational simplicity, we omit (s, a) in the derivations.

Proof of (24a). Consider k = t,,. First, consider a case that N,(3) 5, = 0. If ng p, = 0, Ay p = 271\7/1[:1 ay', = 1. Otherwise,
if ng p, > 0, where there exists at least one agent m € [M] that visits the state-action at least once until k-th episode, it
follows that

% 1 HJFlM”khﬁ MH+1)(G-1)
M (H + Dnpn M(H + 1)
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nm

M m M ",k .
n ny H+1 -1
_ k,h + 2 : k,h I l ( + )(j . ) =0. (60)
2 N, h Nk (H+1)j
me[M]: n;"hzﬂv me[M]mmpr, >0 7 j=1
=0

On the other hand, when N,y , > 0,

1 Nygyn + M(H + 1)nj, ﬁ (NL(k),thM(HJrl)(j 1)>

)\v = :
"7 A M N+ (H + Dng Nogyn + M(H+1)j
_ i 7N( ),h + M(H+ l)n;:?h Nb(kr),h _ NL(}C),]’L (61)
m—1 M N (k),h T (H + )nk,h NL(k),h + M(H + 1)712”;1 Nk,h + an,h.

Proof of (24b). According to (24a), if Ny 5 (s,a) = 0, then A, 5 (s,a) = 1 forall 1 < u < ¢(k). Thus, wo g n(s,a) = 1.
Otherwise, let the epsiode when (s, a) is visited at step h by any of the agents for the first time be j. Then, Ay(;),, = 0

because N,(j) 1 (s,a) = 0. Thus, if Ny 4(s,a) > 0, it always holds that wo &1 (s,a) = Hifl) Aun(s,a) = 0.

Proof of (24c). For i such that ¢(i) = u, by rearranging terms and applying (24a),

k
o (H+D) qﬁ’ Nip_o
ik,h Ntu,h —+ Hntu,h Cutl Ntw,h + Hntmh
B(k)—1

H+1 Ntm,h

= ek 62
Nin + Hnygp, wl;Iu Ne,w +Hne, p 62)

D.2. Proof of Lemma B.2

Consider any given ¢ € (0,1) and (k,s,a,h) € [K] x § x A x [H]. Note that N;", (s,a) ~ Binomial(k, d} (s, a)) for all
m € [M]. Then recall the definition of Ny, 5, (s, a) in Section 3.2, we can view Ny, 5, (s,a) = Zf\le N{ (s, a) as a sum of

kM independent Bernoulli variables with expectation v := E[Ny, 5 (s, a)] = kMd;"®(s, a). Therefore, applying Chernoff
bound (see Mitzenmacher & Upfal (2005, Theorem 4.4)) yields:

vt e [0,1] : P(IND(s,a) —v| > vt) < exp (—cwt?), (63a)
Vi>1 P(Nkﬁ(s, a) —v > tv) <exp(—cvt), (63b)
for some universal constant ¢; > 0.

Armed with above facts and notations, now we are ready to prove (26). First, applying (63a) with ¢ = %, we arrive at:
P(INE(s,0) = v] = & <exp(- ) <6, (64)

where the last line follows from the condition that v = kMd;"®(s,a) > % log (5)-

To continue, when v = kMd;"®(s,a) < é log (1/6), applying (63b) with ¢ = 22°2(1/9) > 1 gives;

> 41og (1/4)
C1

BN, (s,a) - ) < exp(—4log (1/8)) < 4. (65)

Summing up (64) and (65) and taking the union bound over (k, s, a, h) € [K] x S x A x [H] complete the proof by showing
that:

Alog(BIAKHT) - parge 3v
h > : h = < N[ < = < 2kMJE
when k VPG 5 =5 < W (s,a) < 5 < EMdy (66)
4loo(ISIAIKH 8 SIAIKH
when k < 08( ] ) N (s,a) < — log(%) (67)

c1 Md?LVg : & T )
holds with probability at least 1 — 26.
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D.3. Proof of Lemma B.3
D.3.1. PROOF OF (28a).

Noticing that the (28a) involves two terms of interest, we start from the first one Dy(s, a,k, h). For any (s,a,h) €
S x A x [H]and any k € T (K), we can rewrite Da(s, a, k, h) as

Dy(s,a, k, h) ZZXZMM (68)
i=1 m=1
where X7} ,.(s,a) = Wy ,(8,0)(Phsa — POV (8T, ah) = (s,0)) To further control

Zle Z?{le X" n(s,a), we first introduce the following Lemma D.1, whose proof is provided in Appendix D.4, with
Nk,h(s, CL) = N.

Lemma D.1. Forany (k,s,a,h) € S x Ax [H]and N € [1, M K], let

X en(s8,a5N) =&y (5,05 N)(Pros,a — PR)ViZy ppa {870, aih) = (s,a)}, (69)
where
H+1 vt
N + Hny p(s,a)

Ny, n(s,a)
Ni, n(s,a) + Hny, p(s,a) | "

,kh(saN) m(s,a;N), (70)

z=¢(i)

and 17}, (s,a; N) = ]I{Zm, 1Nlmlh(s a)+ >, H{(s%,a:”};) = (s,a)} < N}. Then, for any 6 € (0,1), the
following holds:

i=1 m=1

E M
S1H4(?
> zkhsaN>| < (1)
2
at least with probability 1 — 8, where we denote (1 = log (W)

Armed with above lemma, for any (s, a,k,h) € S x A x [K] x [H] where k € T (K), the following holds:

kM
ZZ kn(8:@; Ny n (s, a))

with probability at least 1 — 0. As it is obvious that Dy(s,a,k,h) = 0 when Ny ,(s,a) = 0 from the definition of
Dy(s,a,k,h), we arrive at

BLHA(?

< PR
- Nkﬁ(s,a)

when Ny p(s,a) >0:  |Da(s,a,k,h)| < (72)

8LHA(?

< —_—
Ni,n(s,a)

k M
<D0 Xu(s,a: New(s,a))| <

i=1 m=1

| Do (s, a,k,h)| (73)

Finally, combining the results for D(s, a, k, h) (cf. (73)) and D3 (s, a, k, h) (cf. (36) in Lemma B.4), we conclude that for
any (s,a,k,h) € S x A x [K] x [H] with k € T(K), it holds with probability at least 1 — § that

S81HA(? cp(?HA
D k. R)| < L — L
‘ 2(8,(1, ’ )| = \/Nk,h(37a) \/
D.3.2. PROOF OF (28b) AND (28¢).

Forall (h,s,a,k) € [H] xS x Ax T(K),itis clear that Q;" (s, a) < Q7 (s,a) and V;"*(s) < V;*(s) due to the definition.
So it suffices to show that

< Ds(s,a,k,h). 74
Nen(s.0) = 3( ) (74)

Qk,h(saa) < sz (s,a) and th(s) < V}ka (s)

forall (h,s,a,k) € [H] x S x A x T(K), which we will prove by an induction argument as below.
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* Base case. When h = H + 1, forall (s,a,k) € S x A x T(K), the relation always holds since Qj r+1(s,a) =0 <
Q’;}“H(s, a)and Vi, gy1(s) =0 < Vgil(s) according to the definition of Q) 11 and Vi g1, respectively.

* Induction. When % € [H], suppose the relation holds for i + 1, i.e., Qp n+1(s,a) < Q3% ((s,a) and Vi, py1(s) <
Vit (s) for all (s,a,k) € S x A x T(K). First, we will verify Q-estimates at step h are pessimistic. For any
(s,a,k) € S x Ax T(K), applying Lemma B.1,

h(8,0) = Qrn(s,a) = worn(s,a)(Qp*(s,a) — Qon(s; a))

DT*(s,a,k,h)

M
+ Z Z Wik (8:0)(Prsa — PVl

m=1 iELg?h,(S,a)

D5 (s,a,k,h)
o (k) o (k)
+ Z By, n(s,a) H Au,h (8, @)
u=1 w=utl
D3(s,a,k,h)
M
+ Z Z Wik 1 (8, @) Prsa(Vity = Vig)he1) - (75)

m=1 iELTk'fh(s,a)

Dy¥ (s,a,k,h)

Then we control the above four terms one at a time. Here, DT* (s, a, k, h) > 0 since Q" (s,a) > Qo n(s,a) = 0. In
addition, according to the fact (28a) in Lemma B.3, | Da(s, a, k, h)| < D3(s,a,k, h). And it is clear that Dy > 0 due
to

Vitkr 2 Ve = Vi) hets (76)

where the first inequality holds by the induction assumption, and the last inequality arises from the monotonicity
guarantee of the global update in (14). Therefore, it is clear that for any (s,a,k) € S x A x T(K), Q-estimates at
step h are pessimistic, i.e.,

n(s,a) = Qp.n(s,a) > 0. (77)
Next, to show that value estimates at step h are pessimistic, recalling the global update in (14),

Viik(s) — Vien(s) = QrF (s, min(s)) — max{m(?x Qr,n(s,a), Viy,n(s)}

= Q3" (5, mk,n(5)) — max Qpy (s, a)

= Q3" (8, Tk 1 (8)) = Qo n (8 Tho 1 (8)) > 0, (78)
where ko denotes the most recent episode satisfying Vi »(s) = maxg Qk,.1(s,a) and k > ko € T(K), and the
last inequality holds because 7y, 1, (s) = g, ,n(s) and Q3% (s,a) — Qry,n(s,a) > 0 can be similarly verified using

(75) and (76) for ko. Now, we verify that Q7" (s,a) > Qg n(s,a) and V7 (s) > Vi n(s) holds at step h for any
(s,a,k) € S x A x T(K), and this directly completes the induction argument.

D.4. Proof of Lemma D.1

To begin with, for any time step h € [H], we denote the expectation conditioned on the trajectories j < ¢ of all agent as

V(z,m) € [k} X [M] : E(z,m)H = E[ | {Sfl;va;{l};7 jr,rfll—O—l }j<i,m’e[M]’ {ST;;,GT}:}m,Sm]. (79)

Armed with this notation, fixing N, it is easily verified that E; ,,,)[X (s, a3 N )] = 0 since then V", , | | can be regarded
as fixed and (P, s,o — P/7,) is independent from &[", (s, a; N).
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Consequently, we can apply Freedman’s inequality (see the user-friendly version of Freedman’s inequality provided in
Theorem C.1) and control the term of interest for any (s, a, k,h) € S x A x [K] x [H] and N € [1, M K] as below:

k M

- <> (ii) 32H4 3H? 81H4
> > XIha(sa;N) < /8BiGy + Bzcl_\/ S Cl <4/ S (80)
=1

=1 m=1

at least with probability 1 — 4. Here, (i) and (ii) arises from the following definition and facts about By and Bs:

4
By :Z ZE(zm) [( ik,n (8, ; N))Q] < %7 (81)

i=1 m=1
- 2>
By = ‘Xm ,;N‘<— 82
2 i [ (s )| < ®2

where the proofs of (82) and (81) are provided as below, respectively.

Proof of (81). In view of that the events happen at any time step h is independent from the transitions in later time steps
including P}, we have @]}, ; (s, a; N) is independent from (P s o — P/, )V;™ ;. 1, which yields

k
Z Z E(t m) z k h S, a; N Z Z ]E(z m) Wi, k h(s a; N))z}varph,.s,a(‘/izzl,h-&-l)
i=1 m=1 i=1 m=1
kM
S H2 Z Z E(i,m) [(E‘jzlk,h(sv a; N))2]
i=1 m=1
2H
< H?*N
()
4H*
=—. 83
N (83)
where the penultimate inequality holds by the fact that [&]"}, ;, (s, a; N)| < 2h
Proof of (82). For any (i, m, h) € [k] x [M] x [H] and fixed N € [1, M K], it is observed that
ch,h(sv a; N)‘ = |‘:}?,1k,h(s’a; N)(Pr,s,a — Pi%)ViTl,h+1H{(3?7ha a?fh) = (s, a)}]
2H?
< |wzkh(87a;N)H|Ph75,U«_P < T (84)
where the last inequality follows from the facts |[V;™, ;41 [lcc < =Pl < 1,and @], 5 (s,a; N)| < Hil <
2H
W-
D.5. Proof of Lemma B.4

With slightly abuse of notation, we will omit (s, a) from some notations when it is clear for simplicity throughout this section.
Recall the definition of Ds(s,a, k, h) in (23) and the global penalty defined in (15). When Ny (s, a) = 0, the global
penalties are all 0, which yields D3 (s, a, k, h) = 0. Therefore, now it suffices to focus on the cases when Ny, 1 (s,a) > 0
and show that for cg = 81, ¢, =4 and ¢; = 1,

o(k) é(k) 2774 2 74
ClCB<1H CuchlH

3(s,a,k, h) EBu s, a) || A n(s,a) € , . (85)
busht wmutl 7}( ) |‘\/Nk7h(8,a) \/Nk_,h(s,a)

Towards this, for any (s,a) € S x A, we consider a more general term as below: for any integer z > 1,

z z

H + 1 Tlt h CBC%H4
B >\u’ A )
Z tush u/l;[ﬂ h = Z Nin + Hnt A\ Neon u,gﬂ b
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= \esGRHY Y L=Xan) TT Awn
u=1

w' =u+1

— \JenGHIY (2) (86)

where the penultimate equality follows from % = (1 — Ayn(s,a)) forall (s,a) € S x A, and the last

equality arises by defining

= Ntlh(lqu,h) [T Ao (87)
u=1 w

uw'=u+1

As aresult, to show (85), it suffices to verify that

(&} Cy
. 88
© [\/Ntz,h(sva)’\/Ntz,h(87a)] R

Proof of (88) by induction. We will verify (88) by a induction argument. To begin with, for the basic case z = 1, it is easily
verified that

L ifny, >0
Y(1)={ VN ol (89)
0 if ny, 5 =0,

since when n, 5, > 0 we have \; h(s a) = 0, and otherwise A1 (s, a) = 1. Then suppose (88) holds for z — 1, namely,

Y(z-1) 90
|:\/Ntz 1,h \/Ntz 1,h:| ( )

we hope to show (88) holds for z. Towards this, we first show the upper bound in (88) holds for z as follows:

Y)=Y(E-1An+

(I—=Xzn)

Ni_n
(i) Cu Nt
<

z—1,h + 1 (H + 1)ntz,h
N, o0 Nip+Hngp, Ny, n Nen +Hng
< [ Cu Ni. i n L (H+Dne,
TV Neew \| Neow+ Hng_p Ni.,h Neow + Hng,
z—1, - 1)ntz,h
Ni.n Ny n+Hng, p cu Ny n+Hny
N, 1 N, N, )
— c tz—lyh + . 1 _ tz—lvh 1+ ty— 1’
N, n Ne,w+Hnep o Ve Ny, on+Hnyg, Ni,w+Hny g,
Cul
</ 7 oD
Ni.n

where (i) follows from the induction assumption and %% = (1 - X, n(s,a)) forall (s,a) € S x A, the

Ne, 1.n Ni,,h—Ne,_i,n+Hne (H+1)n . . .
tz—1> _— z z—1" Z _ tz,h
penultimate equality holds by 1 N il No ot Hm = N, ot Hne and the last inequality arises

from\F(l—i-\/Nt hi}}nht )Slaslongascuzll.

Analogous to (91), the lower bound of Y'(z) is derived as below:

1
Y()=Y(z—1)A+ (1—X.n)
\/ Ni.n
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cl Ne. i n n 1 (H+Dnep
N, o New+Hng Ny n Nip+Hng,
> C| Ntzfl,h + 1 (H+ )ntza
T\ Ne,n Ne,p + Hng, N, n Ne,on + Hng,

C
b
Ni.on

92)

where the first inequality follows from the induction assumption and % =(1—-X.n(s,a)) forall (s,a) €

S x A, and the last equality holds when 1 > ¢;. Finally, by induction arguments, (88) holds for any z € ¢(K), and this
completes the proof.

D.6. Proof of Lemma B.5

Recall the definition of Dy 5, (see (33) and (23)), D4 5, can be rewritten as follows:

#(K) M
Dy, Z To Z dy, (s,a) Z Z wi't, 1w (8,0) Prsa(Viiyr = Vi), nt1)
v=1 (s,a)eSx.A m=14ieLy , (s,a)
) (K) v M
S>> 4 (50 ) Pusa(Vi — Vo) D | D witalsa)
v=1  (s,a)eSxA u=1 m=1 \i€el}" , (s,a)
=0, (5,a)
»(K) v
- Z Ty Z dﬂ (57 CL) Z Ph,s,a(v}:_t,_l - ‘/tu_l,h—&-l)'ll)u,v,h(sy CL)
v=1 (s,a)ESxA u=1
1 M ¢(K) v
=27 2 2D Y (@)Y Pusa(Vin — Vi w)¥uwn(s,0) (93)
(s,a)ESXAmM'=1 v=1 t, 1<j<t, u=1

where (i) holds by rewriting the sum as ), ;. (s.a) = Yol Yierm . (,a) and the last equality holds by the definition of
ty, ’ ty, ’
Ty.

To further control (93), we introduce the following lemma that bound the expectation form (93) by an empirical version; the
proof is postponed to Appendix D.7.

Lemma D.2. Consider any § € (0,1). For any h € [H], the following holds:

M #(K) v
S D (5@ Y Pusa(Vi — Vi nin)uwn(s,a)
(5,0)ESXAm/'=1 v=1 t,_1<j<t, u=1
(K) ,,r v
/S Z Z davg ik a ntv,h(& a) Z Ph,,s,a(viz(_t,q - ‘/tufl,h—&-l)q//u,v,h(& a) + Mo'aux,l 4
(s,a)ESx A v=1 u=1
at least with probability 1 — 0§, where
H2KSCY, H2SC
Oaux,1 S_, M e M 2 (95)

Then, applying concentration bounds, D, is bounded as follows:

@ 1 dr (s,a)
s M( )XG;SX.A 1;221 uzzl dg’g s, a nt”’h(s’a)P’“Sva(Vh*Jrl = Vi1 ht1)Vu,0,0(8, @) + Tauxt
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(K)
1 (s,a) N
i Z d::lvg Ph,S,a(Vh+1 = Viu_1h+1) Z 1,1 (8, @)Yu0,n (8, @) + Oaux
(s,a)ESX A u=1 50a v=u
(@) 1 dr’ (s, a) 1
< Vi ; da}ilg sa Ph s,a(Vig1 = Vi h1)n, 0 (s, 0) (1 + E) + Caux,1

(s,a)€S X
where (i) follows from Lemma D.2, and (ii) holds because
) M N 1
gntmh(& a) mZ:1 ielz%:(sya) wit, w(8,a) < ng,n(s,a)(1+ E)

according (48e) in Lemma C.3.

(96)

C0)

To continue, we introduce the following lemma that transfer the distribution at time step h to the distribution of h + 1; the

proof is provided in Appendix D.8.
Lemma D.3. Consider any § € (0,1). For any h € [H], the following holds:

W nn(5,0) oo .

Z Z e (5:0)Phsa(Viy = Vi ne1)
Md;" (s, a)

u=1 (s,a)eSxA

?(K)

Z Tu Z dh+1 Vh+1( 8) = Veu_1,h+1(8)) + Oaux2

u=1 seS

at least with probability 1 — §, where

H2KSCh, HSCY,

avg avg

M M

Oaux,2 =

Armed with above lemma, rearranging the terms in (96) and applying Lemma D.3,

#(K)

n s,a

Z Z %dw (5 a)Ph s a(Vh+1 Vtuq,h—&-l) + Oaux,1
Md;®(s, a)

u=1 (s,a)eSxA v

#(K)

1

(1 + Z Tu Z dh+1 Vh-l-l( ) Vtu717h+1(5)) + Caux,1 + Taux,2;

—_———
u=1 SES

=:0aux

and this completes the proof.

(98)

99)

(100)

(101)

D.7. Proof of Lemma D.2
Consider any given (s,a) € S x Aand v € [1, ¢(K)]. Before proceeding, we introduce some notations and auxiliary terms.
Let
Gv h Z Ph s,a Vh+1 Vvtu_l,thl)wu,v,h(sv (1).
u=1

Then, for any ¢,_; < j < t,,, we introduce the following auxiliary variables:

m av m m dr (s,a
Vi X (0 - H(s0) = (i) G Guns.a
(s,a)eSx.A h ’
vmo._ dm —I m o m d;zr* (S7a> é—jﬂn
o= X (s @) ~H(s,0) = (5T af)}) e, Gl (5,0)
h 9

(s,a)eSx.A
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where we define

é;;{m(s,a) = ;z;’,zl(sv*a)Ph,s,a(v}:Jrl —Veuint1) + (1= ;z;’,?(sva))Gv—l,ll(sa a) %f v>1 (104)
’ Prs,a(Vicyr — Vont1) ifo=1
and
o) G0 40000) < T((50) = (o))
vl ty_1,h(8,@) + (H + 1) (e, n(s,a) — ]I{(&a) = (s7,,a7%)})
(H 4 D gyl x (tom s b\ [Gym)y H(5:0) = (Swlh’a%m (105)

Ntv Lh(s a) + (H + 1)(Z(m’J’)e[A{]><(tU Lto\{(G,m)} I{(s,a) = (s} /h7 ;n/h)}).

We replaced G, 1, (s, a) with an approximate G;]h’m(s, a), where the visits of agent m on (s, a) at the j-th episode are
masked regardless of the actual visits of agent m on (s, a). The approximate is carefully designed to remove the dependency
on the event I{(s, a) = (s, a],)} from G, 5 (s, a) while maintaining close distance to the original value G, (s, a).

Before continuing, we introduce some useful properties of above defined auxiliary terms whose proofs are provided in
Section D.7.1:for any v € [¢p(K)],

G, h<5 CL) _ {% v h( )Ph s a(V};H - ‘/tu—l,h-i-l) + (1 - wv,v,h(sa a))Gv—l,h(saa) lf”l) >1 (106a)
Phs,a(Viigr — Vonat) ifo=1
0<G,3"(s,a), Gun(s,a) < H, (106b)
Gt 01 = Gl < min {11, 2 (106¢)

U ’ Ny, n(s,a)

Now, we are ready to prove (94). Towards this, we first observe that putting the first term in the right hand side of (94) to the
left hand side yields

) [ M . dr’ (s, a)
S 1D Y (s, — W”tv,h 5, a) thsa (Ve = Ve ht 1) Wu,on (s, )
h 9

(5,a)€ESXA v=1 \m=1t,_1<j<t, u=1

B(K)

@) &l M d”*(s a)
= > > > > dzvg<s7a>—§;1nz’;h<s,a> e g Con(s:)

(s,a)ESxA v=1 \m=1t,_1<j<t,

K .
i v ' (s,
@ Z Z Zd ¢ 2_: SThy i)} dé}lg((i’z))Gv,h(S7 a)

(9 a)ESX.Am 1 =

avg m m d;{ (S7a) Sl
= Z Z Z (dh (870’) - H{(S7a) = (Sj,h’aj,h)}) davg( ) v h S, CL Z Z Y’ (107)

s,a
j=1m=1 (s,a)eSx.A

j=1m=1
where (i) holds by plugging in (101), (ii) follows from E¢(K) Ztu <<ty 1 = K and Z¢_1 nt h(s a) =
ijl I{(s,a) = (7%, a7y )}, and the last equality arise from the definition of Y} in (D.7).

Therefore, the above fact shows that to prove (94), it is suffices to show:

K M K M K M _
SV < [ T | X (k- k)| S Mo (108)
j=1m=1 j=1m=1 j=1m=1

We will control the two essential terms separately as below:

« Controlling ‘Z i1 Zm Y] h’ To begin with, we observe that the approximate G 7™ (s, a) (defined in (104)) is
independent of agent m’s visits on (s, a) at j-th episode since Vi, | py1, Go—1,1(S, a) are independent of the j-th
episode and z/zv wh "' (s, a) is independent from agent m’s visits on (s, a) at the j-th episode (see (105)).
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E;_ 1[% 7] = 0, where we denote
Bya[) = E [ | {7, al), Vi bicgmeeqan] -
Thus, applying the Freedman’s inequality for each h € [H|, we can show that the following holds:
K M
Z Z <\ /8W log 2, Bl
j=1m=
H2MKSC},, + HSCY,, (109)

at least with probability 1 — J, where B and W is obtained as follows:

‘ ‘<2Cavg L+ df (s, 7%(5))S) max G0 (.77 () < ASChH =B (110)

SES avg
K M K M d5’ (s mh ) 2
ZZE |:<Y7,n) :| ZZE(s]h al, )~dp (da"g(Jaj)G¢(7J))h( ;n}” jh)>
Jj=1m=1 j=1m=1 h>*j4.h
K M * 2
djy (s,7%(5)) =-j,
<32 St ) (GG e o)
j=1m=1seS L
<10, S S e () BT 4 g (g e )s)
>~ avg . — h ’ d;vg(877r*(s)) h 5
j_l seSm=1
< HQC’anZZMdh 5,7 () (14 df (s,7%(s))S)
j=1s€S
<2H?SCH MK =W (111)
using the fact that |é;(];;nh(5;?1h,a;7’h)| < H shown in (106b) and — {ﬁ* ((s,w:((s))))l/s} 1+d5" (s, 7*(s))S.
s ’ ’ min{dy (s,7* (s

* Bound on the approximation gap of }Z”}L The approximation gap of }7;’;‘1 is bounded as follows:
K M
S (V- v

(@(5. ) — T{(5,0) = (7. a7)}) j%r'vg((j‘j})@;%m(s, @) — Gon(s,a))

|
(7]
M
i

=1t,_1<j<t, (5,a)ESX.A

M ™ (s,a) |~
DY N T Mo = i} (o) g | 5.0) ~ Guntona

*

M T (s,a 2
< Z Z I{(s,a) = (thaa%)}%mm{m’H}

. ) 0 s 2177
S Co 2, D (oo™ () e ) sy { N (7))’ H}

d(K) *(g
< 2H26'avgz (1+dy (s, 7*(s)S) > Inin{%,ntmh(&w*(s))}

sES v=1

<
Il
o
3
Il
~
~~
g
L
A
.
IN
N
/cf
&
m
%)
X
b

c* H?S (112)

avg
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where (i) holds because wv o (s,a) = 4, f}r;f( a) if (sy,,a7y,) # (s,a) and G’U;Lm(s a) = Gy (s, a) according
to (106a) (ii) follows from (106¢), (iii) naturally holds according to the definition of C;Vg, (iv) holds because
df_ (7" (5)) < 1+4df (s,7*(s))S, and (v) holds because for any z € [¢(K)],

min{d}" (s,7*(s)),1/S} —

Z Rayn(s, 7 >)>) <1+ log (N (s, 7 (), a13

Ne, n(s, (s
according to Lemma C.2.

Now, combining the bounds obtained above ((109) and (112)) into (108), we conclude that

KU AP " s H2KSC},, H?SCj,
z::mz::)f S\ H2MKSCY,, + H*SC},. = M ot —; (114)

which completes the proof.

D.7.1. PROOF OF (106)

Proof of (106a). We will proof (106a) by considering different cases separately. When v = 1, we have

Gmh(s,a) = Ph,S,a(V}:-o-l - ‘/;«v—lah“!‘l)/l/}l,l,h(’s?a)
M
= Proa(Vis = Vons) Y S wla(sa) | = Prsa(Vi — Vo) (115)

m=1 el n(s,a)

where the second equality follows from the definition of 1, ,, 5 (s, @) in (93), and the last equality holds since

i Z wit, n(s,a) = (H+Dne,n_ (H A+ Dnag, =1
i,t1,h\ Ntl,h + Hntl,h (H + )ntl,h .

m=1 iEl:’lLJL(s,a)

When v > 1, invoking the definition of w;"; , in (24c) yields that for any u < v,

1puvh S, (L Z Z w:,rliu,h(s7a)

m= 1z€l";’h(sa)
v—1
_ _HADne I et
Ni,w+Hng, p \ 20 Nigw + Hng,

. (H+1)ng, n H Neon Ni, 1 .n
Ny, n+ Hny o Neow + Hngn ) Niyw + Hng,on

ty—1, v— 1;
= wuﬂ)—Lh(Saa)(l _wv,v,h(saa))~ (116)
where the second equality holds by ¢(i) = u for all i € I}* , (s, a) and the fact Z%ﬂ et (s,a) L = T, ,h» and the last
Uy - tu,
. H+Dngyn Ney_ynt(HADne, n—(H+1)ne, 5 NU
equality holds by 1 — ¢, 4, (s,a) =1 — ]\](tq,,h+)gzzjt;j,h, = tovh th,,h+}lr;,,h toh N }:H;T:tv -

Consequently, inserting above fact back into (101) complete the proof by showing that

th ZPhsa Vh+1 ‘/;u 1,h+1)¢uvh(3 a)
u=1
v—1
= Ph@,a(V}:;l V;tv 1,h+1)7~/]1}v h\S, a thsa Vh+1 V;fu 1, h+1)wuvh(s (1)
u=1
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v—1

= Ph,s,a(Vh*_t,-1 - ‘/tq,,l,h—i-l)wv,v,h(sa a) + (1 - ?abv,v,h(sa CL)) Z Ph,s,a(V}L-l - ‘/tu,l,h+1)wu,'u—1,h(87 CL)
u=1

= Ph,s,a(vh*.y-l - ‘/Ytq,,l,h—i-l)wv,v,h(sa CL) + (1 - wv,v,h(sa a))Gv—l,h(S; a)- (1 17)

Proof of (106b). First, applying (28¢c) in Lemma B.3 gives G, 1 (s,a) > 0. Then we focus on deriving the upper bound
Gy 1 (s, a). Towards this, we observe that

Gv,h(sa a) = Z Ph,s,a(‘/};r] - V;fu,l,thl)’(/Ju,v,h(S; a)

u=1

< Ph,s,a(vh*-q—l - VO,h-H) Z wu,v,h(sa a)

u=1
v
< H Z d)u,v,h(sa a)
u=1

v M

:HZZ Z wiy on(sa) | < H, (118)

u=1m=1 iel:z n(s,a)

where the first and second inequalities hold by the fact Py, s o (Vi 1 — Vi, nt1) < Phs,a(Viy — Vons1) < H for any
r € [¢p(K)] (see the monotonicity of the value estimates in (14) and the basic bound ||V}7, ;[|oc < H), the last equality
arises from the definition of 1, ,, » (S, @) in (93), and the last inequality follows from (48b) in Lemma C.3.

Similarly, the same facts holds for é’;%m(s, a), which can be derived in the same manner. We omit it for conciseness.

Proof of (106¢). Consider v = ¢(j). If v = 1, combing (106a) and (104) directly gives é;i’m(s, a) = Gy p(8,a). Then
we turn to the case when v > 1 and bound the term of interest in two different cases, respectively.

* When (57, a}%,) # (s, a). In this case, invoking the definition in (105) gives

~_. H+ Dng, p(s,a) _
I, a) = ( vt = " (s, a), (119)
v (500 = e )+ (H + D () oo ()

which indicates (see the definition in (104))
é;{;m(s, a) = Gy (s, a) (120)
* When (s}, a}%,) = (s, a). In view of (106a) and (104), it holds that:

G, 3" (s,a) = Gon(s,a)l

»
S

(1/1;%’,7;7(5, a) - ¢v,v,h(57 a))Ph,S,a(Vh?;l - ‘/tu—hh-i-l) + (wv,v,h(sa a) - &;ﬂf}?(sa a))GU—Lh(Sv a)

= )(wv,v,h(sa a) - NU_’Z;ZL(& a))(GU—l,h(sa CL) - Ph,s,a(V}Z(+1 - Vvt,u,l,h-&-l)’

<

Yu,o,n(s,a) — ~;i7;(3a a)‘ max {Gu_1,1(5,a), | Prsallt [|[Vieer = Veu_vns]| o}

(i)
<H

bon(s,0) = 0,15 (5,a)]

(i1) 2H?
< mins H, —— 7, (121)
{ Ntv,h(sva)}

where (i) holds by (106b), || Py s,all1 = 1, and ||V}, — Vi, _, ns1|| < H. Here, (ii) can be verified by

(i) ~_
0 < Q/Jv,v,h(saa)_ ;317]?(8’0’)
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B (H + 1)ng, n(s,a) _ (H +1)(ne, n(s,a) —K{(s,a) = (s}, a7)})
_un(ssa) + (H +1)ng, n(s,a)  Ne,_yn(ssa) + (H + 1) (g, n(s,a) — I{(s,a) = (s7,a7%)})
_ (H + 1)ne, n(s,a) (H +1)(n,,n(s,a) — 1)
Ni, n(s,@) + (H+ Dng, n(s,0) — Npy_yn(s,a) + (H + 1)(n, w(s,a) — 1)
(H+1)
T Ne_in(s,a) + (H + 1)ng, (s, a)
2H
<min«q1 122
) (122
where (iii) holds by the fact that +z is monotone increasing with x when a, x > 0.
D.8. Proof of Lemma D.3
For each j € [K], let
m m m m dz* (57 a’) *
Z5, = Z (I{(s,a) = (s}, a}y,)} — di'(s,a)) mP}L,s,a(le ~Vigy—1.ht1)- (123)
h )

(s,a)eSxA

Then, to prove Lemma D.3, it suffices to show Z;il ZTA,/{ZI Z;—"h‘ S Caux,2-

Since V; o0y —1,ht1 is fully determined by the events before j-th episode, E;_; [Z]mh] = 0, where we denote

E H [H( Sihs @ zh) ‘/viy,y}i+1}i<j,m’e[M]]-

Thus, we can apply the Freedman’s inequality as follows:

K M H2KSO;V HSO;V
8W lo g7+ Blo — g & (124)

Jj= 1

using the following properties:

S

205 H . AHSC?,
Z7 ] < —F (Z(l +df; (8,77*(8))5)> <— =B (125)

seS

K M K M dw*( mh mh) 2
Z Z E;_1[(Z]3)%] < Z Z E(sm, am,)~d (Clavg{%)Ph,s,a(Vhll - ‘/t¢(j)1,h+1)>

Sj,h @,k

K M X
* dp, 877(-* S

2

C:vg o~ (d7 (5,7 (5)) - S
seS j=1 m:l
H2C, Ko .
TS S A (s, () (1 df (5,7 (5))S)
seS j=1
_ 2H2KSC';Vg W 196
=— =W (126)
which follows from that fact 0 < ||V}, — Vi, ., nt1llec < H and min{jf ((:7’:*(( ))))1/5} < 14df (s,7*(s))S.
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D.9. Proof of Corollary 3.2

7 *
Note that if T' =< A}%;“g it always holds that

HSC3,,T
MT > H%SC},y and H < e (127)

H3SC?
aslongase < Hande < —r%. Now, we obtain the number of communication rounds of the specified schedules,

periodic and exponential synchronization.

oo o . [HSCE, T
Periodic synchronization. Consider 7 =< # . Then, since MT 2 HSC?,

avg’

_ HASCy, H?SC;v o® [HSC:, H7SCy,
Vi'lo) =Vi'(0) S —377 £ 4/ E 4 \/ s’ < T E. (128)

In this case, the number of synchronizations ¢(K) = |Tperiod (K, 7)| is

the value gap is bounded as

MK MT H?
QS(K)‘[?W H2SCx. —\| H3SC*,, — &

avg avg

* 3 *
Exponential synchronization. Using the fact that MT 2, HSC},, and 71 = H < 4/ % when £ < Sc“g , the
value gap is bounded as

X o HISCh H7SC;V H3 HSCx, H7SC3,

To continue, note that if v = % and m, = H, for any u > 1, 7, is bounded as

1. 2
—u <7, < el
(1 )" H << (L+ )" H

since 1 5 9 9
1< = Vel < O\

H) ,(1+H) i—1<7ip L(l"‘H)TZJ 7(1+H)TZ

given the fact that 7, > H for any ¢ > 1. Then, computing the minimum number of synchronizations ¢(K) = |Texp(K,7)|

satisfying

(1+

B(K)

1
> = H? ZN\(K) 1) >
Zn HZH HA(1+ )% —1) > K,
we obtain
H(K) = log (775 +1) <1+(1+Hlb (£+1><H (130)
log(1+ %) | = s\ a2 ~

because —75 < log(1 + =) forany z > —1.
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