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Abstract. This work investigates how tutoring discourse interacts with
students’ proximal knowledge to explain and predict students’ learning
outcomes. Our work is conducted in the context of high-dosage human
tutoring where 9th-grade students (N = 1080) attended small group tu-
torials and individually practiced problems on an Intelligent Tutoring
System (ITS). We analyzed whether tutors’ talk moves and students’
performance on the ITS predicted scores on math learning assessments.
We trained Random Forest Classifiers (RFCs) to distinguish high and
low assessment scores based on tutor talk moves, student’s ITS perfor-
mance metrics, and their combination. A decision tree was extracted
from each RFC to yield an interpretable model. We found AUCs of 0.63
for talk moves, 0.66 for ITS, and 0.77 for their combination, suggesting
interactivity among the two feature sources. Specifically, the best deci-
sion tree emerged from combining the tutor talk moves that encouraged
rigorous thinking and students’ ITS mastery. In essence, tutor talk that
encouraged mathematical reasoning predicted achievement for students
who demonstrated high mastery on the ITS, whereas tutors’ revoicing of
students’ mathematical ideas and contributions was predictive for stu-
dents with low ITS mastery. Implications for practice are discussed.

Keywords: Tutoring Discourse · Talk Moves · Math Tutoring · Decision
Trees · Intelligent Tutoring Systems

1 Introduction

While “silence is one great art of conversation” is a popular quote in philosophy,
a greater art in education is having productive conversations, as we learn to
speak so we can speak to learn. Decades of research on classroom discourse have
supported similar findings across a range of domains, including math, science,
and English language arts [21, 22, 25]. Indeed, rich classroom talk has been high-
lighted as a key component in national educational standards in math [23, 24].
Numerous theories purport that students benefit from collaborative interactions
and dialogue, particularly in instructional settings [2, 7, 31]. There is emerging
empirical evidence to back up these theories, suggesting that students learn more
from discussion-based instruction compared to direct instruction [10, 27, 32].

However, as not every type of talk sustains learning, discourse frameworks
such as transactive [19], exploratory [21], and accountable [22, 29] talk have
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emerged to identify and define what type of talk is most consequential. Impor-
tantly, these frameworks enable the development of computational approaches
to filtering and labeling relevant utterances.

In the context of human tutoring, which is our present focus, high-quality
discourse has been shown to support students’ engagement, critical thinking,
and conceptual understanding [18, 21]. However, many tutors lack training and
experience in facilitating tutorials that incorporate rich discourse [30]. This work
focuses on talk moves [16, 26], which are a key component of accountable talk.
While some studies on talk moves have demonstrated their association with im-
proved discourse and student learning [10, 27, 32], prior work has yet to directly
connect, at scale, instructional discourse models with learning outcomes, which
is one goal of the present work.

To mitigate the high costs of human tutoring, researchers and practitioners
are blending human tutoring with e-learning environments, specifically Intelli-
gent Tutoring Systems (ITSs). There is a rich history of inferring learning out-
comes based on students’ behaviors in these environments, including time on task
and accuracy in applying problem-specific principles [8, 12] and the use of hints
and problem-solving strategies [1, 5, 6, 12]. Indeed, substantial work has leveraged
artificial intelligence and machine learning tools to use students’ logs in predict-
ing performance in e-learning environments [5, 14] and external assessments [8,
12, 17]. Despite the considerable success of these tools, prior research has yet
to investigate how individual-based ITS performance interacts with group-based
tutoring discourse in explaining and predicting students’ learning outcomes.

In this work, we conduct a large-scale evaluation of whether the interaction of
tutoring discourse (human tutor’s talk moves) and students’ content knowledge
(performance on a math ITS) predicts students’ math assessment scores. Our
investigation is in the context of high-dosage, small group tutoring sessions with
a human tutor, which have emerged as a key tool to address pandemic-related
learning loss and help close achievement gaps [13]. Using data from 1080 9th-
grade students from a large urban Midwestern district, we investigate whether
an interpretable model can predict students’ math achievement based on com-
binations of talk moves and ITS performance metrics. Our approach involves
extracting a decision tree from a random forest classifier to get the benefits of
high interpretability from the former and high accuracy from the latter.

1.1 Instructional Discourse

Productive discussions between teachers and students have long been a cen-
ter of intensive study in educational research. For example, Webb et al. [32]
showed that students’ participation in classroom math conversations predicted
their achievement. In particular, they found that teachers’ encouragement of
and follow-up on students’ productive talk (i.e., talk moves) increased students’
engagement, which cascaded to improve their learning outcomes.

Three popular perspectives to model meaningful teacher-student dialogues
are transactive [19], exploratory [21], and accountable [22, 29] talk. Transactive
talk involves students transforming arguments they hear by building on each
other’s reasoning. This process involves refuting arguments till a final, winning
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argument is reached based on the group discussion. Exploratory talk involves
dialogue in which students offer the relevant information they have such that
everyone engages critically and constructively with others’ ideas, all members
try to periodically reach an agreement about major ideas, and all ideas are
treated as worthy of attention and consideration.

Accountable talk theory identifies and defines an explicit set of discursive
techniques that can promote rich, knowledge-building discussions in classrooms
[22, 29]. At the heart of accountable talk is the notion that teachers should or-
ganize discussions that promote students’ equitable participation in a rigorous
learning environment where their thinking is made explicit and publicly available
to everyone in the classroom. Accountable talk outlines three general require-
ments of classroom discussions: accountability to the learning community, to
content knowledge, and to rigorous thinking [26, 29]. In this work, we focus on
talk moves, which are linguistic acts that are intended to facilitate dialogue.

Prior studies have articulated that talk moves show potential in improving
discourse and students’ learning outcomes [10, 27, 32]. Chen et al. [10] developed
a visualization tool to support teachers’ reflections on classroom discourse, par-
ticularly the use of talk moves. They found that the tool significantly increased
the teachers’ use of productive talk moves compared to teachers who never used
the tool. Additionally, students of the former set of teachers had significantly
higher math achievement scores than their peers. O’Connor et al. [27] showed
over two studies that teachers’ use of talk moves to facilitate academically pro-
ductive talk was associated with significantly higher standardized math tests in
their students when compared to those who received direct instruction.

In essence, substantial research has shown the potential of rich discussions,
as indicated by the use of talk moves, in improving students’ learning outcomes.
However, as far as we know, no attempts were made to connect group-based
discourse during tutoring sessions with individual-based ITS performance.

1.2 Student Logs and Performance on Intelligent Tutoring Systems

Based on the considerable logistical challenges associated with offering frequent
human tutoring, Intelligent Tutoring Systems (ITSs) are sought as interactive e-
learning environments where students have the opportunity to individually learn
in a personalized fashion [11]. Prior work has shown that tracing students’ logs
and overall performance on ITS is predictive of their final performance on ITSs
[1, 3–6, 14, 15] and on test scores [8, 12, 17]. The traced logs include time on task
and the use of problem-solving strategies, amongst others.

To predict and influence learning outcomes on ITSs, Islam et al. [15] showed
that an apprenticeship learning framework effectively modeled students’ peda-
gogical decision-making strategies on a probability ITS and impacted students’
learning gains positively. Hostetter et al. [14] revealed that students with spe-
cific personality traits benefited significantly more from personalized explana-
tions individually tailored to their pedagogical decisions. Abdelshiheed et al. [1,
3–6] found that the knowledge of how and when to use each problem-solving
strategy predicted students’ learning outcomes on a logic ITS and the transfer
of metacognitive knowledge to a subsequent probability ITS.
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In the context of predicting test scores, Baker et al. [8] found that individual stu-
dent modeling frameworks performed significantly better than ensemble models
on a genetics ITS for predicting students’ paper test scores. Jensen et al. [17]
showed that context-specific activity features extracted from interaction pat-
terns on a math platform were significantly predictive of post-quiz performance.
Feng et al. [12] tracked the students’ number and average of hints received and
requested to predict a standardized math assessment (i.e., the MCAS) of high
school students. They found that the fitted regression models showed positive
evidence of predicting the assessment scores.

In short, considerable work has leveraged students’ performance on ITSs
in predicting their achievement. However, as students practice individually on
ITSs, it remains an open question whether their performance interacts with the
instructional environment they experience when working with a human educator,
such as the discourse occurring during small group tutorial sessions. In this study,
we address this research question to explain and predict math assessment scores
of students who receive tutoring from both an ITS and a human tutor.

1.3 Present Study

We investigate whether group-based human tutoring discourse interacts with the
student’s individual ITS performance to explain and predict the student’s math
achievement. We evaluate our research question in the context of high-dosage,
small group tutorials with a human tutor on 1080 9th-grade students from a
large urban Midwestern district. We focus on whether the combination of the
tutor talk moves and the student’s ITS performance can accurately predict the
student’s math assessment scores and changes in those scores over time.

We prioritize inducing an interpretable model that accurately explains
and predicts students’ math achievement in terms of the interaction between tu-
tor talk moves and students’ ITS performance. Specifically, we extract a Decision
Tree (DT) from a Random Forest Classifier (RFC) to leverage the benefits of
the high interpretability of a DT and the high accuracy of a RFC. We emphasize
that the interpretability and accuracy of the model take higher priority than
computational efficiency for the interest of the present work.

2 Methods
2.1 Participants
Students received tutoring during their regular school day (i.e., a second math
period), where they attended small group tutorials with a human tutor every
other day. Each group comprised at most six students (though most were two
or three students) and was assigned to a tutor at the beginning of the year.
Providing human tutors was part of a partnership between a large urban Mid-
western district and Saga Education, a non-profit tutoring service provider. The
frequency and duration of tutorials depended on many factors, such as the sched-
ule, the tutor’s pace, and the group’s pace of processing information. A tutorial
was typically 30 to 60 minutes long, and students received 2−3 tutorials a week,
yielding approximately 70− 85 tutorials in the school year.

Students alternated between working with the human tutor and individually
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working on the MATHia ITS from Carnegie Learning1 to work on assigned
math problems. Students practiced on the ITS without peer or human tutoring
support. The ITS consists of 165 unique workspaces, each covering an algebraic
or geometric topic. A workspace consists of topic-specific skills where a student
aims to master each skill. On average, a workspace has four skills, yielding a total
of 645 skills. Each workspace had a limited availability as it could be assigned
only at a certain time of the year. Due to this limited availability and high
content variability between workspaces, we collected the aggregate features of
the ITS (Section 2.2). From now on, we refer to human tutors as ‘tutors ’ and
MATHia ITS as ‘ITS ’ to distinguish the human factor from the artificial one.

The participants in this study are 9th-grade students who received math tu-
toring during the 2022-23 school year, where the majority of students (> 80%)
were low-income. During the school year, students completed five rounds of a
math skills assessment. The assessments used or adapted items from existing
measures with demonstrated reliability and validity and measured students’ con-
tent knowledge at their current level as well as below-grade fundamentals. Each
assessment consists of 30 questions that were graded in a binary manner, re-
sulting in integer scores within the [0, 30] range. The five assessments occurred
roughly in August, October, January, March, and May.

Students occasionally skipped assessment rounds, tutorials, and ITS sessions.
Out of 1521 students, we only analyzed data from 1080 students across 46 tutors
who had at least one assessment and attended at least 50% of the tutorials and
50% of the ITS sessions during the school year. Table 1 shows the distribution
of completed assessments over the final set of included participants.

Table 1. Completed Assessment Rounds Distribution Across Students

# Completed Assessments Per Student # Students # Completed Assessments
1 112 112
2 65 130
3 127 381
4 379 1516
5 397 1985

Total: 1080 Total: 4124

2.2 Input Features: Talk Moves and ITS metrics
Tutorials were audio and video recorded as part of the standard protocol used by
Saga Education, the tutoring service provider. To investigate how the tutor talk
interacts with students’ proximal content knowledge, we analyzed the tutors’ talk
moves from tutorials and the students’ current performance on the ITS. In align-
ment with our goal of extracting an interpretable model, we selected a limited
number of input features —talk moves and ITS metrics— to ensure exhausting
as many possible feature combinations without computational limitations.

The talk moves framework [16, 26] categorizes an utterance made by a tutor
or student into one of several labels that capture different dimensions of com-
munication and learning. Table 2 lists the six tutor talk moves included in our

1https://www.carnegielearning.com/solutions/math/mathia
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study. For the scope of this work, we only focused on tutor talk moves within
these categories. To automatically measure tutor talk moves, we leveraged a
Robustly Optimized Bidirectional Encoder Representations from Transformers
Pretraining Approach (RoBERTa)[20] model, which we fine-tuned on large data
sets of talk in classrooms and a small number of Saga tutoring sessions. Details
on model training and validation are discussed in Booth et al. [9]. Overall, the
model was moderately accurate with a macro F1 of 0.765 for tutor talk moves.

For each student, on each completed assessment, we collected six features
(the six tutor talk moves) for each tutorial session. For each talk move, we com-
puted the micro-average per session during tutorials that occurred in between
each assessment round (i.e., after the previous but before the current assessment
date). We note that we had no way of identifying whether each tutor’s talk move
was directed to a specific student or a set of students in the tutorial.

Table 2. Description of Tutor Talk Moves

Category Tutor Talk Move Description

Learning
Community

Keeping Students Together Orienting students to each other
and to be active listeners

Getting Students to Relate
to Each Other’s Ideas

Prompting students to react to
what another student said

Restating Verbatim repetition of all or part
of what a student said

Content
Knowledge

Press for Accuracy Eliciting mathematical
contributions and vocabulary

Rigorous
Thinking

Press for Reasoning Eliciting explanations, evidence,
thinking aloud, and ideas’ connection

Revoicing Repeating what a student said while
adding on or changing the wording

Based on ITS data, we collected five aggregate features for each student to
reflect the overall performance before each assessment round: 1) average number
of mastered skills, 2) average number of opportunities needed before mastering
a skill, 3) average time spent on a workspace, 4) average performance score on a
workspace, and 5) average Adaptive Personalized Learning Score (APLS), which
is based on a combination of the above.

2.3 Rationale of Decision Tree Extraction from Random Forest

Three popular, non-parametric, supervised learning algorithms are decision
trees, random forest classifiers, and random forest regressors. A Decision Tree
(DT) produces a single, interpretable tree from all features of a dataset whose
response variable is discrete. While a Random Forest Classifier (RFC) is also
trained on a discrete response variable, it is an ensemble model based on the
majority vote of many DTs that were each trained on a random subset of the
input features and data points. A Random Forest Regressor (RFR) is similar to
a RFC but rather works on a continuous response variable.

A main advantage of DTs is their high interpretability, as the final output
is a single tree that is easy to understand. However, DTs are more prone to
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overfitting, as they can easily overlearn the patterns to produce a perfect split
of the data, resulting in models without generalizability on unseen data. In
contrast, RFCs and RFRs overcome the issue of overfitting by training many
trees on random subsets of features and data points. However, RFCs and RFRs
lack interpretability as the majority voting mechanism is difficult to explain,
especially when the number of trees comprising the ensemble model increases.

Interestingly, DTs and RFCs have an advantage —that RFRs lack— from
having a discrete response variable: the no need for threshold exploration.
For example, assuming a response variable of an individual’s income, the discrete
version will have income labeled as high or low for each individual. Therefore, a
DT or RFC would simply evaluate the Gini index or information gain for each
potential split on high versus low incomes. However, a continuous version of
the income will have various numbers, so a RFR would have first to determine
(explore) the threshold of distinguishing high from low incomes before training
the model. The issue with threshold exploration is that it is highly prone to local
minima that evaluate suboptimal rather than optimal thresholds, despite many
attempts to optimize such exploration [28].

In this work, although our assessment scores are within the [0, 30] range and
could be treated as continuous, we avoid the RFR’s threshold exploration issue
by following these three steps:
1- Attempting every reasonable threshold to binarize scores into high and low.
2- Training a Random Forest Classifier (RFC) on each reasonable threshold.
3- Avoiding the RFCs’ lack of interpretability by extracting a Decision Tree (DT)
from each RFC, which simultaneously avoids the DT’s overfitting issue.
By exploring many possible thresholds for splitting, we are not hypothesizing
that our approach is efficient. Rather, we prioritize exhausting all possible com-
binations of extracted decision trees to find one that best explains and predicts
the assessment scores from the tutor’s talk moves and the tutee’s ITS metrics.
2.4 Procedure

Figure 1a shows the data analysis mechanism for a student with no missing
data. For each assessment round, the preceding six tutor talk moves and five ITS
metrics features were collected as described in Section 2.2. To account for missing
data (as there are only 397(37%) out of 1080 students who had data on all five
assessment rounds), Figure 1b illustrates the generic format of collating data
before each assessment round. Since assessment rounds happen on specific dates
during the year, we leveraged the notion of an Evaluation Period (EP), where
tutor talk moves and ITS metrics are only considered in the period that follows
the previous assessment date. We had a total of 4124 EPs, one per completed
assessment for each student, as suggested by the rightmost column of Table 1.
Algorithmic Procedure: Each EP is a record in our dataset with the input as
11 features (6 tutor talk moves + 5 student’s ITS metrics) and the output as the
assessment score. We extracted the decision tree using this six-step procedure:

1. Binarizing Scores: Pick a set of thresholds that distinguish high from
low assessment scores. We explored thresholds from 15 to 24, as 2531(61%)
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(a) No Missing Data (b) Handling Missing Data via Evaluation Periods

Fig. 1. Data Collected for a Student in a School Year: Tutor Talk Moves, Student’s
ITS Performance, and Assessment Rounds Scores.

out of 4124 assessment scores were within that range from the original [0, 30]
range. Convert scores into high and low, once per candidate threshold. Values
greater than or equal to the threshold become ‘high,’ while those below it
become ‘low.’

2. Stratified, Tutor-Based2, Five Folds for Cross Validation: Generate
1000 random partitions of the dataset, where each partition is a five-fold
candidate, and each fold has unique tutors with their students. Pick the
best five-fold candidate that minimizes the sum of squared error of this
constraint: each fold having ≈ 20% of the students being tutored by ≈ 20%
of the tutors. The selected five-fold partition of the 46 tutors (T) and 1080
students (S) was as follows: {(T:8, S:184), (T:8, S:194), (T:10, S:225), (T:10,
S:238), (T:10, S:239)}.

3. A 60-20-20 Nested Cross-Validation: Each fold from Step 2 acts as the
test set exactly once. For the remaining four folds, one is randomly chosen
as the validation set, and the other three as the training set.

4. Training Random Forest Classifiers (RFCs): For each binarization of
scores, use the training set to induce 10, 000 RFCs, each with a different
random seed. The hyperparameter for the number of internally generated
trees was set at 10. The Gini index was used for judging the splits’ quality
and was computed as G = 1−

∑2
i=1 p

2
i , where p1 and p2 are the respective

probabilities of high and low labels in a given branch. The lower the Gini
index, the better the split is.

5. Extracting Decision Trees (DTs): From each RFC, extract the DT whose
decisions agree most with the majority vote within the RFC. Evaluate the
100, 000 extracted DTs (10 binarization thresholds X 10, 000 RFCs) on the

2Students belonging to the same tutor are in training or testing sets, but not both.
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validation set, and pick the DT with the highest AUC to represent the
current fold. Repeat Steps 4 and 5 on all folds to yield five DTs.

6. Final Model and Reporting Results: Evaluate the five DTs on their
test sets and save the test-set AUC per fold. Report the average 5-fold,
test-set, AUC in Table 3 (rightmost column), but choose the DT from the
fold with the highest AUC as the final model to evaluate on the whole
dataset (Figures 2 and 3). To aid visualization, convert the labels (high vs.
low) back to original numeric values and show the mean(SD) of assessment
scores for each branch.

To compare our approach to standard classifiers, we appropriately modified some
steps of our procedure to yield the DTs, RFCs, and RFRs shown in the middle
columns of Table 3. Importantly, to induce RFRs, we skipped score binarization
(Step 1), then merged and modified Steps 4− 6 to train 10, 000 RFRs based on
the squared-error criterion, evaluate each on the validation set, and report the
average 5-fold, test-set, performance. Since a RFR’s default output is a coeffi-
cient of determination (R2) between predictions and ground truth, we converted
the R2 to AUC via an effect size converter3.

3 Results
We investigated three analyses via our algorithmic procedure: 1) how tutor talk
moves and student’s ITS metrics interact to predict assessment scores for each
round, 2) whether the algorithmic procedure can accurately predict changes in
assessment scores across rounds, and 3) how our decision tree extraction from a
random forest classifier compares to other classifiers. Table 3 summarizes the
average 5-fold AUCs of different predictors (columns) on different inputs (rows).

Table 3. Average 5-fold, test-set, AUCs of Talk Moves, ITS, and Their Combination

Decision Tree
(DT)

Random Forest
Classifier (RFC)

Random Forest
Regressor (RFR)

Extracted DT
from RFC

Predicting Assessment Scores
Tutor Talk Moves 0.54 0.58 0.53 0.63

MATHia ITS 0.56 0.59 0.54 0.66

Combined (Talk Moves + ITS) 0.59 0.63 0.57 0.77

Predicting the Changes in Assessment Scores
Tutor Talk Moves 0.55 0.57 0.55 0.62

MATHia ITS 0.56 0.59 0.56 0.64

Combined (Talk Moves + ITS) 0.57 0.64 0.58 0.76

Unlike average 5-fold AUCs here, Figures 2 and 3 evaluate final models on the whole dataset.

3.1 Interaction of Talk Moves and Intelligent Tutoring Metrics

Figure 2 shows the best-extracted decision trees from Table 3 (rightmost column,
top half) but on the whole dataset (and hence the figures have higher AUCs4).
Coincidentally, the three trees were generated by picking the threshold of 20 for
splitting high and low scores. Each root node starts from 4124 assessment rounds,
and the rounds are split as we progress downwards. The Mean (SD) is shown for

3https://www.escal.site
4Final models yield respective AUCs of 0.64, 0.68, and 0.79 on the whole dataset.
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(a) Tutor Talk Moves Features: AUC = 0.64

(b) MATHia ITS Features: AUC = 0.68

(c) Combined Features (Tutor Talk Moves + MATHia ITS): AUC = 0.79

Fig. 2. Extracted Decision Trees for Explaining Assessment Scores on Whole Dataset
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high (in green) and low (in red) scores following the binary labeling. The AUC
score ranges from 0 to 1 and reflects how well a decision tree separates high
scores from low ones, where AUC of 0.5 denotes prediction by chance (luck).

Figure 2a shows that the decision tree resulting from tutor talk moves only
(AUC = 0.64) is not very informative, despite the potentially promising right
half of the tree. In particular, Press for Accuracy is the most discriminating
talk move. The right half suggests that the use of Revoicing results in improved
discrimination of 24% (from 17 to 21.1) for the High Press for Accuracy group.
However, the left half of Figure 2a shows no score discrimination for the Keep
Together talk move among the Low Press for Accuracy group.

Figure 2b illustrates that the tree based on ITS metrics only (AUC = 0.68)
is slightly better than Figure 2a, as both halves of the tree are more stable.
Specifically, for students who need more than four opportunities to master a
skill —denoting low mastery— the assessment scores improve on average by
13% (from 18 to 20.4) when they have higher Adaptive Personalized Learning
Score (APLS) scores. A similar 12% average improvement (from 18.2 to 20.3)
occurs for high-mastery students when achieving higher performance scores.

The best decision tree (AUC = 0.79) emerges from combining all features as
shown in Figure 2c. The left half of the tree shows that Revoicing significantly
distinguishes scores for low-mastery students. On the other hand, the right half
suggests Press for Reasoning is a significant discriminator of scores —within one
to two standard deviations— for high-mastery students. In brief, on average, the
assessment scores witnessed a 50% improvement (from 15.2 to 22.8) for the high
usage of Revoicing for low-mastery students and a 45% improvement (from 15.7
to 22.7) for the high usage of Press for Reasoning for high-mastery students.

3.2 Predicting the Changes in Assessment Scores

To assess whether our results would persist after including students’ prior as-
sessment scores, we repeated the algorithmic procedure (Section 2.4) using the
difference between consecutive assessment rounds as the output. Accordingly,
we excluded the 112 students in the first row of Table 1 as they only had one
assessment, making it impossible to compute their score change. We adjusted the
candidate thresholds of splitting high versus low changes in assessment scores
to be [2, 2.5, 3, 3.5], as 68% of the changes in scores were in that range.

Fig. 3. Extracted Decision Tree for Predicting Changes in Scores (AUC = 0.77)
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Figure 3 depicts the best-extracted decision tree from Table 3 (rightmost column,
bottom half) but on the whole dataset. The tree comprised 968 students with
4012 assessments and was generated from a threshold of 2.5 for splitting high
and low changes in scores. As the tree in Figure 3 used the same nodes as the tree
in Figure 2c and had a comparable AUC of 0.77, this provides evidence of the
robustness of the Revoicing and Press for Reasoning talk moves in discriminating
assessment scores for low- and high-mastery students, respectively.
3.3 Comparison to Other Classifiers
To evaluate the accuracy of our procedure of extracting Decision Trees (DTs),
we compared it against a traditional DT, a Random Forest Classifier (RFC), and
a Random Forest Regressor (RFR), as shown in the middle columns of Table 3.
None of these attempts came close to the results from the last column of Table
3. Specifically, the best traditional DT had an AUC of 0.59 and likely overfitted
the data by picking suboptimal features, such as Press for Accuracy, at the root
node due to its low Gini index score. The best RFC had an AUC of 0.64 and
may have suffered from the majority vote mechanism, which minimized the role
of meaningful trees’ votes as they were a minority. Finally, the best RFR had
an AUC of 0.58 (coefficient of determination: R2 = .018), presumably due to
the local minima resulting from the lack of picking the optimal threshold for
splitting. This analysis suggests that our approach to generating a predictive
model yields both robust and meaningful results.

4 Discussion & Conclusion
We investigated different methods of interpreting how a tutor’s talk moves inter-
acts with the student’s content knowledge on a math Intelligent Tutoring System
(ITS) for predicting achievement on external math assessments. Our investiga-
tion occurred in the context of high-dosage, small group human tutoring sessions
that were blended with individual ITS performance. We found that extracting
a decision tree from a random forest significantly outperformed the traditional
classifiers in predicting students’ assessment scores and changes in those scores.

The best-extracted tree emerged from combining the tutor’s talk moves that
encouraged rigorous thinking —Revoicing and Press for Reasoning— with the
student’s ITS mastery level. Specifically, tutors’ use of talk moves that encour-
aged mathematical reasoning discriminated learning outcomes for students who
demonstrated high mastery on the ITS, whereas tutors’ revoicing of mathemati-
cal contributions and ideas was discriminating for those with lower mastery. Our
findings about the significance of combining tutor talk moves and students’ ITS
performance were verified, as the extracted decision tree from the combined fea-
tures significantly outperformed the trees resulting from the individual features.

Whereas it is intriguing to consider the possibility that these different types
of talk (revoicing vs. reasoning) might benefit students with different levels of
mastery on the ITS, our results are correlational and not causal. In particular,
tutors may have perceived higher-knowledge students (i.e., those with higher
ITS mastery) as more confident and capable of showing their reasoning, being
asked about their math ideas, or seeing other students in their group provide
explanations. Meanwhile, tutors may have perceived lower-knowledge students
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(i.e., those who needed more time or effort to master ITS content) as feeling
more comfortable with the tutor being the one to build on students’ expressed
math ideas. Although the tutors centered discussions around student thinking
in both cases, pressing for reasoning was predictive of achievement for students
with higher content mastery, while revoicing predicted achievement for students
with lower content mastery. These findings speak to the significance of future
interventions in raising human educators’ awareness about these two talk moves
and their differential impact on students with different levels of content mastery.
Limitations and Future Work There are at least three caveats in our work.
First, we did not analyze temporal dependencies between talk moves and ITS
performance metrics. Future work should investigate possible causal and tem-
poral relationships. Second, our approach of extracting decision trees from a
random forest is not efficient as we prioritized more accurate models by explor-
ing many candidate thresholds for splitting and by exhausting as many possible
feature combinations without computational limitations. Future work should
balance accuracy with efficiency. Finally, our analysis did not account for other
student-specific factors, such as demographics, socio-economic status, and tuto-
rial attendance, which are important directions for future work.
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