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Abstract

Black-box variational inference performance
is sometimes hindered by the use of gradi-
ent estimators with high variance. This vari-
ance comes from two sources of randomness:
Data subsampling and Monte Carlo sampling.
While existing control variates only address
Monte Carlo noise, and incremental gradient
methods typically only address data subsam-
pling, we propose a new "joint" control vari-
ate that jointly reduces variance from both
sources ofnoise. This significantly reduces
gradient variance, leading to faster optimiza-
tion in several applications.

1 INTRODUCTION

Black-box variational inference (BBVI) (Hoffman et al.,
2013; Titsias and Lazaro-Gredilla, 2014; Ranganath
et al., 2014; Kucukelbir et al., 2017; Blei et al., 2017)
is a popular alternative to Markov Chain Monte Carlo
(MCMC) methods. The idea is to posit a variational
family and optimize it to be close to the posterior, us-
ing only "black-box" evaluations of the target model
(either the density or gradient). This is typically done
by minimizing the KL-divergence using stochastic op-
timization methods with unbiased gradient estimates.
Often, this allows the use of data subsampling, which
greatly speeds-up optimization with large datasets.

The BBVI optimization problem is often called "doubly-
stochastic" (Titsias and Lazaro-Gredilla, 2014; Salim-
beni and Deisenroth, 2017), as the gradient estimation
has two sources of randomnessiMonte Carlo sampling
from the variational distribution, and data subsampling
from the full dataset. Because of the doubly-stochastic
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nature, one common challenge for BBVI is the variance
of the gradient estimates: If this is high, it forces small
stepsizes, leading to slow optimization convergence (Ne-
mirovski et al., 2009; Bottou et al., 2018).

Numerous methods exist to reduce the "Monte Carlo"
noise that comes from drawing samples from the vari-
ational distribution (Miller et al., 2017; Roeder et al.,
2017; Geffner and Domke, 2018, 2020; Boustati et al.,
2020). These can typically be seen as creating an ap-
proximation of the objective for which the Monte Carlo
noise can be integrated exactly. This approximation
can then be used to define a control variate—a zero
mean random variable that is negatively correlated with
the original gradient estimator. These methods can
sometimes be used with data subsampling, essentially
by creating different approximations for each datum.
However, they are only able to reduce per-datum Monte
Carlo noise—they do not reduce subsampling noise it-
self. This is critical, as subsampling noise is often the
dominant source of gradient variance (Sec. 3).

For (non-BBVI) optimization problems with only sub-
sampling noise, there are numerous incremental gra-
dient methods, that "recycle" previous gradient eval-
uations to speed up convergence (Roux et al., 2012;
Shalev-Shwartz and Zhang, 2013; Johnson and Zhang,
2013; Defazio et al., 2014a,b). However, with few ex-
ceptions (Sec. 6) these methods do not address Monte
Carlo noise and, due to how they rely on efficiently
maintaining running averages, cannot be applied to
doubly-stochastic problems.

This paper presents a method that jointly controls
Monte Carlo and subsampling noise. The idea is to
create approximations of the target for each datum,
where the Monte Carlo noise can be integrated exactly.
The method maintains running averages of the ap-
proximate gradients, with noise integrated, overcoming
the challenge of applying incremental gradient ideas
to doubly-stochastic problems. The method addresses
both forms of noise and also interactions between them.
Experiments with variational inference on a range of
probabilistic models show that the method yields lower
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variance gradients and significantly faster convergence
than existing approaches.

2 BACKGROUND: BLACK-BOX

VARIATIONAL INFERENCE
Given a probabilistic model P(X; Z) = p(Z) QL P(Xn |
Z) and observed dataXq, - - -, ¥, variational inference’s
goal is to find a tractable distribution Gw(Z) to approx-
imate the (often intractable) posterior P(Z | X) over the
latent variable z € RY. BBVI achieves this by finding
the parameters W that minimize the KL-divergence
from Gw(2) to P(Z | X), equivalent to minimizing the
negative Evidence Lower Bound (ELBO)

fw)=-E a E(Z) N log p(xn | ) +log p(z) - H(w),
(1)

where H(w) denotes the entropy of qw.

The expectation with respect tozin Equation (1) is typ-
ically intractable. Thus, BBVI methods rely on stochas-
tic optimization with unbiased gradient estimates, usu-
ally based on the score function method (Williams,
1992) or the reparameterization trick (Kingma and
Welling, 2014; Rezende et al., 2014; Titsias and Lazaro-
Gredilla, 2014). The latter is often the method of
choice due to the fact that it often yields estimators
with lower variance (Kucukelbir et al., 2017; Xu et al.,
2019). The idea is to define a fixed base distribution
S(€) and a deterministic transformation Tw (€) such that
for € ~ s, we have Tw(€) ~ gw. Then, the objective in
Equation (1) can be re-written as

flw)=E ) eEf(W; n, €), (2)

where

f(w; n, €) =-Nlog p(x n | Tw(€)) - log p(Tw(€))
- HWw). ()

The "naive" gradient estimate is obtained by drawing
a random n and €, and evaluating

Ghaive (W; n, €) =W (W; n, E). (4)
Since this only requires point-wise evaluations oflog p
and its gradient, it can be applied to a diverse range
of models, including those with complex and non-
conjugate likelihoods. And by subsampling data, it
can be used with large datasets, which may be chal-
lenging for traditional methods like MCMC (Hoffman
et al.,, 2013; Kucukelbir et al., 2017). However, the
effectiveness of this strategy depends on the gradient
estimator’s variance; if it is too large, then very small
step sizes will be required, slowing convergence.

Task Ve [F(w;n, €)] Vo[ (w;n)] V[T (w; €)]
Sonar 4.04 x 10* 2.02 x 10* 1.16 x 10*
Australian ~ 9.16 x 10* 8.61 x 10* 2.07 x 10°
MNIST 4.21 x 108 3.21 x 10 1.75 x 10*
PPCA 1.69 x 100 1.68 x 10'° 3.73x 10
Tennis 9.96 x 10’ 9.59 x 107 8.56 x 10*
MovieLens 1.78 x 10° 1.69 x 10° 1.75 x 108

Table 1: BBVI gradient variance decomposition across
tasks, computed at the optimization endpoint. With
a batch size of 5, step size of 5% 10 for Sonar and
Australian, a batch size of 100, step size of 1% 1072
for others. We generally observe subsampling noise
Vn[VF (w; n)] dominates MC noise V ¢ [VF (w; €)].

3 GRADIENT VARIANCE IN BBVI

Let Ve [VF (W; n €)] denote the variance of the naive
estimator from Eq. (4)." The two sources of variance
correspond to data subsampling (n) and Monte Carlo
noise (€). It is natural to ask how much variance each
of these sources contributes.

Let f (w;n) = E, f(W;n, €) be the objective for a sin-
gle datum N with Monte Carlo noise integrated out.
Similarly, let f (W;€) = E,f (W; n € be the objective
for a fixed € evaluated on the full dataset. In Fig. 1
and Table. 1, we do a single run of BBVI using our
proposed gradient estimator (described below). Then,
for each iteration on that single optimization trace,
we estimate the variance of ¥ (W; n €), V¥ (W;¢), and
VF (W; n). We do this for multiple tasks, described in
detail in Sec. 7. For later reference, we also include the
joint estimator developed below.

The amount of variance contributed by each source is
task-dependent. But in many tasks considered, sub-
sampling noise is larger than Monte Carlo noise. This
is problematic since computingf (W; ) requires looping
over the full dataset, eliminating any benefit of subsam-
pling. These results also illustrate the limitations of
any approach that only handles a single source of noise:
No control variate applied to each datum can do bet-
ter than Y (w;n), while no incremental-gradient-type
method can do better than VF (w; €).

4 VARIANCE REDUCTION FOR
STOCHASTIC OPTIMIZATION

This section introduces existing methods of variance
reduction for stochastic optimization problems with a
single source of gradient variance and their applicability
to doubly-stochastic settings.

'"When z is a vector, we use V[z] = tr C[z].
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Figure 1: The contributions of subsampling and

Monte Carlo noise vary by probleniThe pro-
posed joint estimator reduces bothitange lines
denote variance from data subsampling (), and green
lines denote Monte Carlo noise variance €). We use
a batch size of 5. For the Sonar dataset, both sources
show similar scales. For the Australian dataset, sub-

sampling noise dominates. Regardless,our proposed
gradient estimator 9int  (red line, Eq. (15)) mitigates

subsampling noise and controls MC noise, aligning

closely with or below green lines (i.e. the variance
without data subsampling) in both datasets.

4.1 Monte Carlo sampling and
approximation-based control variates

Suppose we sum over the full dataset in each it-
eration. Then the objective from Eq. 3 becomes
f(w)= E. f(W;e). Agradient can easily be estimated
by sampling €. Previous work (Paisley et al., 2012;
Tucker et al., 2017; Grathwohl et al., 2018; Boustati
et al., 2020) has proposed to reduce the variance using
a control variate (Robert et al., 1999): A (zero-mean)
random variable ¢(W; €) negatively correlated with the
gradient estimator and defining the new estimator

g(w; €) = W (w; €) + c(w; €). )]

The hope is that ¢(w;€) = Vf (w) = F (w; €) approx-
imates the noise of the original estimator, which can
lead to large reductions in variance and thus more
efficient and reliable inference.

A general way to construct control variates involves
using an approximation function f=f for which the ex
pectation E¢ f(W, €) is available in closed-form (Miller
et al.,, 2017; Geffner and Domke, 2020). Then, the
control variate is defined as ¢(W; €) = E; Vf(W; &)~
Vf(w; €), and the estimator from Eq. (5) becomes

gw; €)= W (w; ) +E Viw, §) - V f(w;€). (6)

The better f approximates f, the lower the variance
of this estimator tends to be. (For a perfect approxi-
mation, the variance is zero.) A popular choice for fis

a quadratic function as the expectation of a quadratic
under a Gaussian is tractable. The quadratic can be
learned (Geffner and Domke, 2020) or obtained through
a second-order Taylor expansion (Miller et al., 2017).

In doubly-stochastic problems of the form f (w;n, €),
data I is subsampled as wellas €. While the above
control variate has typically been used without sub-
sampling, it can be adapted to the doubly-stochastic
setting by developing an approximation f(W; n, € to
f (w;n, €) for each datum N. This leads to the con-
trol variate E¢ VI (W;n, €) — VI (w;n, €) and gradient
estimator

v (W; n, €) = VF (W, n, €)
+E Vfw,n & -Vfwne - (7)
{z 1

zero mean control variate ¢ ¢, (w;n,€)

Note, however, that such a control variate cannot re-
duce subsampling noise.Even if f(W; n, € were a per-
fect approximation there would still be gradient vari-

ance due to? being sampled randomly. Using the law
of total variance, one can show that

Vlger] =E VITF (W; n, €) = V f(w; n, )]
+ \g[Vf(W; ml.  (8)

(See Appendix. C.1 for a proof.) While the first term
on the right-hand side can be made arbitrarily small if
f is close tof , the second term is irreducible. Fig. 2
and Table 1 show that this subsampling variance is
typically substantial, and may be orders of magnitude
larger than Monte Carlo variance. When this is true,
this type of control variate can only have a limited
effect on overall gradient variance.

4.2 Data subsampling and incremental
gradient methods

Now consider an objectivef (W) = E, f (W; n), where n
is uniformly distributed on {1, - .., N Jand there is no
Monte Carlo noise. While one can compute the exact
gradient by looping over N, this is expensive whenN
is large. A popular alternative is to use stochastic
optimization by drawing a random n and using the es-
timator W (W; n). Alternatively, incremental gradient
methods (Roux et al., 2012; Shalev-Shwartz and Zhang,
2013; Johnson and Zhang, 2013; Defazio et al., 2014b;
Gower et al., 2020) can lead to faster convergence.
While details vary by algorithm, the basic idea of these
methods is to "recycle" previous gradient evaluations
to reduce randomness.SAGA (Defazio et al., 2014a),
for instance, storesW" for the most recent iteration
where f (w; n) was evaluated and takes a step

Wew=-A Ww; n)+E_V(w ™ m)- Ww "n)

(9)
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where A is the step size. The expectation over M is

tracked efficiently using a running average, so the cost
per iteration is independent of N . This update rule can

be interpreted as regular stochastic gradient descent
using the naive estimator ¥ (W;n) along with a control

variate, i.g.

g(w; n) = Wi(w; n) + El“ Vw ™ m) - Ww ";n).
{z }

zero mean control variate

(10)
When W" =W | the first and last terms in Eq. (10) will
approximately cancel, leading to a gradient estimator
with much lower variance.

We now consider a doubly-stochastic objective
f(w;n, €. In principle, one might compute the es-
timator from Eq. (10) for each value of€, i.e. use the
gradient estimator

Ginc (W; N, €) = VF n(w; n, €)
+E VFw ™;m,e)- Fw";n, e) (11)
{z }

zero mean control variate ¢ inc (W;n,€)

One issue with this is that it does not address Monte
Carlo noise. It can be shown that the variance is

Vigne 1= E VIF (W n, ©) - T (w ", €))

+ \é[\?f(w; e)]. (12)
(See Appendix C.2 for a proof.) Since the second term
above is irreducible, the variance does not go to zero
even when all the stored parameters W' are to the
current parameters. Intuitively, this estimator cannot
do better than evaluating the objective on the full
dataset for a random e.

But there is an even larger issue: 9, cannot be imple-
mented efficiently. The value of Vf (W";n, €) depends
on €, which is resampled at each iteration. Therefore, it
is not possible to efficiently maintain E ,, Vi{lw ™; m, €)
(as needed by Eq. (11)) as a running average. The
only general strategy is to compute this by looping
over the full dataset in each iteration, eliminating the
computational benefit of subsampling. For some mod-
els with special structures (e.g. log-linear models), it
is possible to efficiently maintain the needed running
average (Wang et al., 2013; Zheng and Kwok, 2018),
but this can only be done in special cases with model-
specific derivations, breaking the universality of BBVI.

4.3 Ensembles of control variate

It can be valuable to ensemble multiple control variates.
For example, (Geffner and Domke, 2018) combined
control variates that reduced Monte Carlo noise (Miller

—— naive (W, [VAw; n,g)])
cV (Vn, elgev(w; n,€)])
ideal cv (V4 [Vf(w; n)])

—— joint (Vy, elgjoint(w; n,€)])
—— 1inc (Vn,elGinc(w; n,€)])
ideal inc (W[Vf(w; €)])

Sonar Australian
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Figure 2: In practicecv andinc reduce variance
nearly as much as theoretically possibTde
joint estimator variance is lower than these
bounds. The naive gradient estimator (Eq. (4)) is
the baseline, while the cv estimator (Eq. (7)) controls
the Monte Carlo noise, the inc estimator (Eq. (11))
controls for subsampling noise, and the proposegbint
estimator (Eq. (15)) controls for both. The variance
of cv and inc, as is shown in Eq. (8) and Eq. (12)
are lower-bounded by the dotted lines, while joint is
capable of reducing the variance to significantly lower
values, leading to better and faster convergence (first
two grids in Fig. 3).

et al., 2017) with one that reduced subsampling noise
(Wang et al., 2013) (for a special case whereg,. is
tractable). While this approach can be better than
either control variate alone, it does not reduce joint
variance. To see this, consider a gradient estimator that
uses a convex combination of the two above control
variates. For any 3 € (0, 1) write

Oens(W; N, €) = VF(w; n, €)
+ ﬁicc\,(w; n, €) + (27— B)Cinc (W; N, ?' (13)

zero mean control variate ¢

ens(W;n,€)

Even if both €., and G are "perfect” (i.e. f(w;n, € =
f(w; n, €) and w" = w for all n), then the variance is

VIGens] = B2 VIVF (w; n)] + (1 - B) 2V[VF (w; €)]. (14)

(See Appendix C.3 for a proof.) So, even in this ideal-
ized scenario, such an estimator cannot reduce variance
to zero. Lastly, as Gens relies on Gy, it also faces
the computational efficiency issue ofGj,; , making it
impractical in general problems.

5 JOINT CONTROL VARIATE

We now introduce the joint control variate, a new ap-
proach for controlling the variance of gradient estima-
tors for BBVI, which jointly reduces both subsampling
noise from n and Monte Carlo noise from €. In order
to construct such control variate, we take two steps:
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1. Create an approximation f(W; n, €) of the true ob-
jective f (W; n, €), designed so that the expectation
Ee Vf(W; n, €) can easily be computed for any da-
tum N (Miller et al., 2017; Geffner and Domke,
2020). A common strategy for this is a Taylor-
expansion—replacing’ with a low-order polynomial.
If the base distribution S(€) is simple, the expecta-
tion E¢ [Vf(W; n, €)] may be available in closed-form.

2. Inspired by SAGA (Defazio et al., 2014a), maintain a
table W = (w1, ..., W} with w" e RP that stores
the variational parameters at the last iteration each
of the data points X4, - - -, ¥ were accessed, along
with a running average of gradient estimates evalu-
ated at the stored parameters, denoted byG. Unlike
SAGA, however, this running average is for the gra-
dients of the approximation f, with the Monte Carlo
noise€ integrated out, i.e. G = E,Ee VI (W"; iy ¢).
In practice, we initialize W using a single epoch of
optimization with the naive estimator.

Intuitively, as optimization nears the solution, the pa-
rameters W tend to change slowly, meaning the entries
w" in W will tend to become close to the current iterate
w. Soiff isa good approximation of the true objective,
we may expect ¥ (w;n, €) to be close to VI (w":n, ¢,
meaning the two will be strongly correlated. However,
thanks to the running average G, the full expectation
of V{(W";n, € is available in closed-form. This leads
to our proposed gradient estimator

Goint (W; n, €) = V¥ (w; n, €)
+E §E Vfw™ m, &) - Vf(w";n, €) (15)
{z }

zero mean control variate

The running average G = E, E; Vf(W“; n €) can be
cheaply maintained through optimization, since a single
value W" changes per iteration and E; V1 (W;n, €) is
known in closed form. The variance of the proposed
gradient estimator is

Vigiont 1=V [F(w;n, €)= VF(w"n €]l (16)

This shows that the variance of9,t  can be arbitrarily
small, only limited by how closef is to f and how close
the stored valuesW" are to the current parameters W.
This is in contrast with the variance achieved by typical
control variates or incremental gradient methods, which
are unable to reduce both sources of variance jointlyln
fact, as shown in Eq. (8) and Eq. (12), these methods,
even in ideal scenarios, are provably unable to produce
estimators with zero variance, as they can only handle
a single source of gradient noise.

Alg. 1 illustrates how the joint gradient estimator can
be used for black-box variational inference. The same

idea could also be applied more generally to doubly-
stochastic objectives in other domains. A generic ver-
sion of the algorithm and an example of how it can
be applied for generalized linear models with Gaussian
dropout on the feature is shown in Appendix. E.

Memory overhead Like SAGA, our method re-
quires O(ND ) storage for the parameter tableW. How-
ever, it is easy to create analogous methods based on
other incremental gradient methods. In Appendix. B,
we develop an analogous method based on SVRG (John-
son and Zhang, 2013) which only requires @) storage.
Our empirical evaluation shows that its performance is
comparable to the SAGA version. However, it has an
extra hyperparameter that controls the frequency of re-
computing full dataset gradient and involves additional
gradient evaluations per iteration.

Advantages over existing estimatof®mpared
with cv and inc, joint can reach arbitrary small gra-
dient variance without lower bound (Eq.  (16)), we
empirically verify the lower bounds on two small prob-
lems: Fig. 2 shows a detailed trace of gradient variance
for different estimators using the same optimization
trace acquired from joint , where the variance of cv
and inc both reach the theoretical lower bounds de-
rived in Eq. (8) and Eq. (12), whereasjoint shows
much lower variance. A summarization of variance
lower bounds can be seen in Table 3.Moreover, unlike
inc , our proposed joint estimator controls subsam-
pling noise without the efficiency issue, as joint only
stores (approximate) gradients after integrating over
the Monte Carlo variable €, which makes the needed
running average independent of €.

6 RELATED WORK

Recently, Boustati et al. (2020) proposed to approxi-
mate the optimal per-datum control variate for BBVI

using a recognition network. This takes subsampling
into account. However, like C,, this control variate
reduces the conditional variance of MC noise (condi-
tioned on n) but does not address subsampling noise.

Also, Bietti and Mairal (2017) proposed new incre-
mental gradient method called SMISO, designed for
doubly-stochastic problems, which we will compare
to below. Intuitively, this uses exponential averages
to approximately marginalize out €, and then runs
MISO/Finito (Defazio et al., 2014b; Mairal, 2015) (a
method similar to SAGA) to reduce subsampling noise.
This is similar in spirit to running SGD with a kind

of joint control variate. However, it is not obvious
how to separate the control variate from the algorithm,
meaning we cannot use the SMISO idea as a control
variate to get a gradient estimator that can be used
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Algorithm 1 Black-box variational inference with the joint control variate.

Input step size A, negative ELBO estimator f (w; n, €), and approximation
gy W} using a single epoch with naive.

Initialize parameters w and parameter table W = {w '

f (w; n, €) with closed-form over €.

Initialize running mean. G «~ EmEs \7f~(w; m, €) > Sum over m, closed-form over €
Repeat until convergence:
Sample n and €.
Compute base gradient. 9 < Ww;n,e
Compute control variate. c o EIEE VAiw ™ m, € - VAw "; n, €) > Use E VAw ™ m, §=G
m ~ ~ m
Update the running mean. G -G*¥ ,\JFI;’E Viw;n & -V fw";n,¢ [> Closed-form over €
Update the parameter table w' o w
Update parameters. W  —w=-A(g+c) > Or use g + ¢ in any stochastic optimization algorithm
Task N Dims _ Model class classification on MNIST (LeCun et al., 1998).
Sonar 208 60 Logistic regression o L )
Australian 690 14 Logistic regression * Probabilistic principalcomponentanalysis
MNIST 60,000 7,840 Logistic regression (PPCA). Given a centered dataset X4, ..., X €
PPCA 60,000 12,544 Matrix factorization RP . PPcA (Tipping and Bishop, 1999) seeks to
Tennis 169,405 5,525 Bradley Terry model . P DxK .
MovieLens 100,000 85,050 Hierarchical model extract its principal axes W e R assuming

Table 2: Dataset size (N), latent dimensionality (Dims)
and model class of tasks used in experiments

with other optimizers like Adam, we include a detailed
discussion on this issue in Appendix. A. Nevertheless,
we still include SMISO as one of our baselines.

7 EXPERIMENTS

This section evaluates the proposegbint estimator for
BBVI on a range of linear and non-linear probabilistic
models, with 208 to 170K samples and latent dimen-
sionalities ranging from 14 to 85K . Aside from two toy
models (Sonar and Australian) these are large enough
that a single full-batch evaluation of log ptakes 15-20
times longer than subsampled valuation, even when im-
plemented on GPU. We compare the proposedjoint
estimator against the naive estimator which controls
for no variance, as well as estimators that control for
Monte Carlo or data subsampling separately. Our ex-
periments on GPUs show that the joint estimator’s
reduced variance leads to better solutions in fewer opti-
mization steps and lower wallclock time. The code can
be found at https://github.com/xidulu/JointCV.

7.1 Experiment setup

Tasks and datasets We evaluate our method by per-
forming BBVI on the following tasks (the complete
dataset size and latent dimensionality of each task are
provided in table. 2):

* Binary/Multi-class Bayesian logistic regres-

sion. We consider Bayesian logistic regression with
standard Gaussian prior for binary classification on
the Sonar and Australian datasets, and multi-class

Wj ~N(0,1),1<i<sD, 1<j<K,
 ~N (0, WV + diag(X ?)).

In our experiments, we use BBVI to approximate the
posterior over W. We test PPCA on the standardized

training set of MNIST with K=16 and A = 1.

Bradley Terry modelfor tennis players rat-
ing. Given a set of N tennis match records among
M players. Each record has format (X, 1, X, 2, Yn),
which denotes a match between players X, and
X, with result ¥» € {0 1}: ¥n = 1 denotes player
Xp 1 winning the match and vice versa. The Bradley
Terry model (Bradley and Terry, 1952) assigns each
player a score 6n eR,m=1,...,M and models
the match result via

em ~ N (0} 1)1
yn ~ Bernoulli(logit ™" (8x,, — 8x,, ))-

We subsample over matches and perform inference
over the score of each player. Following Giordano

et al. (2024), we evaluate the model on men’s tennis
matches log starting from 1960, which contains the
results of 169405 matches among 5525 players.
MovieLens analysis with Bayesian hierarchical
model. The dataset contains a set oN movie review
records from M users, where each record from user

m has a feature vector of the movie X, €{ 0, 1}'®

and a user rating Y» €{ 1, ... 5}. Assigning each
user a weight matrix Zm € R8¢, m=1,..., Mwe
model the review through a hierarchical model

Mi ~N(0,1), 0 ~N(0 1),1<i<18 1<j<5
Zm ~ N (M, exp o),
yn ~ Categorical softmax(x, Zm) -

We evaluate the model on MovieLens100K (Harper
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and Konstan, 2015), which has 100000 reviews from
943 users, and perform subsampling over the reviews.

Variationaldistribution. We focus on mean-field
Gaussian BBVI, where the variational distribution fol-
lows a factorized Gaussian Gw(Z) = N (u, diag(9?)),
parameterized by W = ( u, log g). The mean parame-
ters M is randomly initialized using a standard Gaussian
and and we initialize log o as 0.

Choice of approximation functiofor joint and
cv, we use a second-order Taylor expansion as the

approximation function f(W; n, € (Miller et al., 2017),

applied only for the mean parameters H, as for mean-
field Gaussian BBVI the total gradient variance is often
dominated by variance from M (Geffner and Domke,
2020). We provide further details in Appendix. F.

BaselinesWe compare thejoint estimator (Yoint ,

Eq. (15)) with the naive estimator (Gnaive , EQ. (4))

and the cv estimator (9., Eq. (7)). For Sonar and

Australian (small datasets) we include the inc estima-
tor (9nc, Eq. (11)) as an additional baseline, which

requires a full pass through the dataset at each itera-
tion. For larger-scale tasks, theinc estimator becomes
intractable, so we use SMISO instead.

Optimization detailsFor the larger-scale MNIST,
PPCA, Tennis, and MovielLens, we optimize using
Adam (Kingma and Ba, 2014). For the small-scale
Sonar and Australian datasets, we use SGD without
momentum for transparency. The optimizer for SMISO
is pre-determined by its algorithmic structure and can-
not be changed. For all estimators, we perform a
step-size search to ensure a fair comparison (see Ap-
pendix D), testing step sizes between 10° and 107"
when using Adam and step sizes between 10° and
102 when using SGD.

Mini-batching. We use mini-batches B of data at
each iteration (reshuffling each epoch). For SMISO
and the inc and joint estimators, we update multiple
entries in the parameter table in each iteration and

adjust the running mean accordingly. For the Sonar
and Australian datasets, due to their small sizes, we
use |B| = 5. For all other datasets we use |B| = 100.

Evaluation metricsYVe show optimization traces
for the best step size chosen retrospectively for each
iteration. All ELBO values reported are on the full
dataset, estimated with 5000 Monte Carlo samples.We
also show the final ELBO achieved after training vs.
the step size used to optimize. All results reported are
averages over multiple independent runs (10 runs for
Sonar and Australian datasets, and 5 for the larger
scale problems).

Experiment environmentlVe use JAX (Bradbury
et al., 2018) to implement BBVI, and NumPyro (Phan

et al., 2019) for the models.We conduct all experiments
on single GPU machines.

7.2 Results

On Sonar and Australian, while both the inc and
cv estimators display lower variance than the naive
estimator, our proposed joint  estimator consistently
shows the lowest variance (Fig.2). This enables the
use of larger step sizes, leading to faster convergence
(firstrow in Fig. 3). Notice that, on Austraian, the
subsampling noise dominates gradient variance Thus,
inc shows performance on par withjoint . Yet, itis
crucial to highlight that inc requires a full pass over the
entire dataset at each optimization step (only possible
with small datasets), while joint does not. Lastly, we
employ MCMC to obtain true posteriors for Sonar and
Australian, benefiting from their small scale. The true
posterior allows us to measure approximation error
by comparing dw(Z)’'s mean and variance to the true
posterior. Results in Fig. G (Appendix. G) confirm
that the accelerated convergence fronjoint  also helps
reduce the (mean) approximation error at a faster rate.

The results for large-scale models, MNIST, PPCA, Ten-
nis, and MovielLens, are also presented in Fig. 3 (for
these datasets, theinc estimator is intractable, so we
use SMISO as a baseline instead).For MovielLens, as
the parameter table required by SAGA does not fit
into the GPU memory, we use the SVRG version of the
joint estimator with an update frequency equal to the
length of an epoch, introducing one additional gradient
call per iteration (amortized). Broadly, we observe
that joint leads to faster and improved optimization
convergence thannaive and cv. cv shows little or no
improvement upon naive , which implies that most of
the improvement in the joint estimator comes from
reducing subsampling variance. SMISO, which does
not adopt momentum nor adaptive step sizes, suffers
from significantly slower convergence, as it requires the
use of a considerably smaller step size (to prevent di-
verging during optimization). We provide comparisons
of different estimators using SGD in Appendix. H.

7.3 Efficiency analysis

We now study the computational cost of different esti-
mators. In terms of the number of "oracle" evaluations

(i.e. evaluations of f (W; N, €) and its gradient), naive is
the most efficient, requiring a single oracle evaluation

per iteration. The cv estimator requires one gradient
and one Hessian-vector product, and the joint esti-
mator requires one gradient and two Hessian-vector
products (one for the control variate and one for up-

dating the running mean G.)

Table. 3 shows measured measured runtimes on an
Nvidia 2080ti GPU. All numbers are for a single opti-
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Wall-clock time per iteration

Estimator Variance lower bound ¥ evals per iteration
MNIST PPCA Tennis MovielLens

naive Ve [VF (w; n, €)] 1 10.4ms 12.8ms 10.2ms 16.3ms

cv Vo[ F (w; n)] 2 12.8ms 18.5ms 14.6ms 19.6ms
inc Ve[V (w; €)] N+2 328ms 897ms 588ms -

joint 0 3 17.6ms 31.2ms 29.6ms 24.4ms
Fullbatch-naive Ve[V (w; €)] N 201lms  740ms 203ms 267ms
Fullbatch-cv 0 2N 360ms  1606ms 246ms 702ms

Table 3: Variance, oracle complexity, and wall-clock time for different estimators. Notice that inc is more
expensive than Fullbatch-naive . We hypothesize this is becauseinc uses separatéV” for different data points,
which is less efficient for parallelism. MovieLens is too large to fit the parameter table into GPU memory, so we
use the SVRG version of joint instead, which requires 4 gradient evals per iteration (amortized).

—— naive cv —— joint —— 1inc —— SMISO
Best step size 5000 iterations = Best step size 5000 iterations
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Figure 3: On various tasks, the proposednt control variate leads to faster convergence through
controlling both Monte Carlo and subsampling noisiampared to the naive estimator, cv controls

only Monte Carlo noise, while inc and SMISO control anly subsampling noise. Our proposed joint éstimator
converges faster thannaive and cv on all tasks. The step sizes for SMISO are rescaled for each model for
visualization. On PPCA and MovieLens, SMISO has not converged enough to appear, see Fig. 7 in Appendix. H

for full results. In Tennis, there is periodic behavior for many estimators as gradients have correlated noise that
cancels out at the end of each epoch—thejoint  estimator largely cancels this. All lines presented the average of
multiple trials (5 for Sonar and Australian, 10 for the rest), with shaded areas showing one standard deviation.

mization step. For estimators with () oracle com- | all, computing the joint estimator is between 1.5 to
plexity (e.g. inc ) we report average values over 5 steps. 2.5 times slower than computing the naive estimator,
For other estimators, we average over 200 stepsOver- and around 1.2 times slower thancv. Given that the
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joint estimator achieves a given performance using an
order of magnitude fewer iterations (Fig. 3), it leads to
significantly faster optimization than the baselines con-
sidered. This can be observed in Appendix. |, where we
show optimization results in terms of wall-clock time
instead of iterations (i.e. ELBO vs. wall-clock time).
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A SMISO

In this section, we will have a brief introduction to SMISO (Bietti and Mairal, 2017). Assume we have a loss
function of the form

InE€ f(w; n, €) (17)

Similar to SAGA (Defazio et al., 2014a), SMISO maintains a parameter table W = {w1, ..., W} which stores
the parameter value the last time each data point was accessedSMISO then maintains an average of the value in
the parameter table Wx = E, W} where K denotes theKm iteration. Wk will later be used as the point for gradient
evaluation. Given a randomly drawed sample N and €, SMISO would first update the N entity in W using
exponential average

Wi = (1 - a)w § + a( Wk — y W Wi; €, n)). 1o

Then, it updates Wk using running average
- - 1
Wiy = Wy + NW,’§+1 - Wy, (19)

If we expand the equation above, we get

1

Wiy = Wy + N1W£” - NWﬁ (20)
— 1 — -
=Wt 5 (1= oW +a(We -y W "W €, n)) - w (21)
— a — _
= Wi = o YW Wics €, n) + uh ~ W (22)
— a — _
=W = o YV Wis €, n) = (Wi — W) (23)

In this case, aY/N s the effective step size.Notice that, if we are using a mini-batch of indices/samples, denoted
as B = {np}, in which case multiple entities in the parameter table would be updated in an iteration, then we
would have

X

L 1 1
Wi = Wi + NW5b1 - Nng (24)
npeB
= _ al| . ek
=W -~ VE W We;€, ) - E (W~ Wk, (25)
no nb

in which case the effective step size would becomeﬂ‘,ﬂ#. Therefore, in order to compare SMISO with other

estimators using SGD under the same step size, we can first select a range of step sizes for SMISAY o, ¥y, - - -}

and test SGD with step sizes of
alB| ~ alB|
{ N Yor ny1, - (26)

It is also worth mentioning that, it is not clear to us how to introduce momentum or adaptive step size into
SMISO, as we have to strictly follow the running mean update formula (Eq. (19)) to ensure Eq(Wk ~ Wﬁ) =0 for
unbiasedness Adding additional terms (e.g. momentum) or changing the scale of the updates (e.gnormalizing the
update by its norm) without careful design could break the unbiasedness. However, studying such modifications
is beyond the scope of our paper therefore we only compare our methods with SMISO in its original form.
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Algorithm 2 Black-box variational inference with the joint control variate (SVRG version).

Input step size A, negative ELBO estimator f (w; n, €), and approximation f(W; n, €) with closed-form over €.
Input update frequency K.

Initialize the parameter .

Repeat until convergence:

Compute the full gradientof fat w. 9 « EFEE Vf(w; m, €
Letwo « W.

fork=1,2,---,Kdo
Sample n and €.
Compute base gradient. 9 ~ Vi w;n,¢€
Compute control variate. ¢ -EE Vf(w; m, § - VI (it;n, €) > Use B Vi, m € =1
Update parameters. Wk « Wy —Ag+c) > Or use g + ¢ in any stochastic optimization algorithm

Update W « Wk,

= Ir=1e-03 Best Ir 1000 iterations 5000 iterations
© SR, : — - . S—
— ) i ——— =  —
@ —260 el 7~
§ [,WW”\""“’ / /\\ \
< —280+% - - L : - L - \ - A=
2500 5000 2500 5000 16704 1e-08 le-04 1e-0§\
Iterations Iterations Lgarning rat Learning rate
—— naive cv —— 1inc —— joint (saga) joint (svrg)

I \ !

Figure 4: The SVRG version ofjoint shows performance similar to the SAGA version on Australian.
The origin version of SAGA-based joint control variate requires O(ND ) memory cost. It is possible to alleviate

the additional memory cost by using the SVRG version of joint , which costs no extra memory but would require
extra gradient evaluation at each step. In the experiments above, we update the SVRG cache every 1 epochs,

equivalent to 1 extra gradient evaluation per iteration. Overall, we observejoint  (svrg) showing results similar
to the saga version of joint.

B SVRG version of joint control variate

We present the end-to-end algorithm for applying SVRG version of the joint control variate in BBVI in Alg. 2.
On Australian, we find the SVRG version and SAGA version of joint showing similar performance (Fig. 4).

C Derivation of variance for different estimators
In this section, we will show the full derivation for the trace of the variance of g ¢y 9nc and gens.

C.1 Variance of g,

In this section, we will derive the trace for the cv estimator defined as

O (w;n, €)= F(w;n, €) +E Vf(w;n, & - Vf(w; n, €), (27)
{z
Ccv(v:/:n,E) )

where fis an approximation function of f with closed-form expectation with respect to €.

To start with, we will apply the law of total variance

Vo] =E VG +V EGey- (28)
ne ne
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The first term can be computed as
EV Oy =EVIFwin e) +E Vi(win & - Vf(w;n, e (29)
=EV[Fw:n e) -V f(w;n, e)], (30)

which follows since E Vf(w; n, €) is a constant with respect to € and therefore does not affect the variance.

The second term can be computed as

VEG, =V E[VF(w;n, €) + E§ Vfw;n, & - Vf(w;n,€)] (31)
=V E[F(w;n, o) +E [E Vf(w;n, €] - E[Vf (w; n, €)] (32)
=V E[F(W;n, )+ V flw; n) = 7 f(w; n)] (33)
=V E[VF(w;n, e)] (34)
=V [V (w; n)] (39)

Then we can combine the two terms together to get

Vlgo] =E VIV (w;n, €) - V f(w;n, e)+ VIVF (w; n)] (36)

C.2 Variance of g

Here, we will derive the trace of the variance of the inc estimator defined as

Goc(W; n, €)= n(w;n, ) +EVFw ™;m, €) - Vf(W"; n, €)- (37)
{z }
Cinc (W;n,€)

We can derive its variance by first applying the law of total variance

VI[ginc] = E VGing +V Einc - (38)
€ n €en
The first term can be computed as
IeE\r{ginC = Ee \r{[VIr n(w;n, €) + E Vi w ™; m, €) - F(w"; n, €)] (39)
=E V[T (w;n €)- T (w " n e, (40)

where the second line follows because g V(w ™; m, €) is a constant with respect to n.

The second term can be computed as

VEGn =V E[W n(w;n, €)+EWw ™ m, e) - F(w"ne)] (41)
=\éh|nz\7fn(w; ne)+EE Ww ™ m, €) - EVw n;n,e?)I (42)
=\{; hﬁ[vfn(w; n, e)]+EVf(W M m, e)—LE\?f(w ", e)I (43)
=V E[VF n(w; n, €)] (44)
= \Z [an (w; €)], (45)

which then leads us to
V[Ginc] = I% \n/[Vf(W; ne-w " ne)+ \e/[\?f(w; €)]. (46)
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C.3 Variance of g
In this section, we will derive the variance for the estimator g ¢ns defined as

Gens(w; n, €) = F(w; n, €) + ﬁc o(W; n, €) + (;117— B)Cinc (w; n, 6})'

Cens(w;n,€)

under the ideal assumption where we have f = fandw=w "

V[Gens] = \gn[w(W; n, €) + B¢ cv(n, €) + (1 — B)C inc (N, €)]
=V Wwne)+p gE Viw;n & - Vf(w;n e) +
(1-pB) VEf(Wm;m, €)- W w ";n, e)

n

Then we replacefwith fand w ° with w based on our assumption,

V[Gens] = \€/n F(w;n e)+p IgE W(w;n, ¢ - W(w;ne) +

1-pB) VEf(W; m, €) — W(w; n, €)

=\gn VF(w;n,e)+B (W (w;n)— F(w;n, e))+(1-0)(f(w;e)—f(w;n,€))
T #
=V BT (win)+(1-B)7 (wie)

=B2VIVF(w; )] + (1 -B) Z\e/[Vf(W: e)l.
The last line follows because W (w; n) is independent of WF (w; €).

D Step-size search range

For Australian and Sonar, we experiment with learning rates of

{7.5%x107°%,5x10%,25x10%,1x10°%,5x10%,1x10%,5%x10°%,25x10%,1x10°}

For MNIST, PPCA ,Tennis and MovielLens, we used
{1x107",5x102,1%x102,5x10%,1x 103}

for naive, cv and joint, where the optimizer is Adam.

, vn. The variance can be derived through

(47)

(48)

(49)

(50)

(51)

(52)

(53)

When optimizing with SMISO, we set @ =0-9 and we perform grid search over the value ofY, for MNIST with

SMISO, we experiment with y in

{5x1072,25x102,1x102,5x10°%,25x10°%,1x10°%,5x10%,1x10%,5%x10°,1x10°}

For Tennis with SMISO, we experiment with y in

{5x1072,25x102,1x102,5x10%,1x103,1x10%,1x10°}

For PPCA with SMISO, we experiment with y in
{1x1072,5x10%,1x10°%,1x10%,1x10°%,1x10°%,1x107"}

For MovieLens with SMISO, we experiment with y in

{25x107%,1x10%,5x10%,1x 104}
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Algorithm 3 Joint control variate for generic doubly-stochastic optimization problem.

Input step size A, doubly-stochastic objective f (w; n, €), and approximation f~(W; n, €) with closed-form over €.

Initialize parameters w and parameter table W={w ..., W} using a single epoch with naive.

Initialize running mean. G «~ EmEs Vf~(W; m, €) [> Sum over m, closed-form over ¢

Repeat until convergence:
Sample n and €.
Compute base gradient. g
Compute control variate. c EEVAw ™ m, & - VAw " n, € > Use E VAw ™ m, §=G
Update the running mean. G G4 ,\JFI;’E Viw;n, & -V fiw"n,¢ "3 Closed-form over €
Update the parameter table w' o w
Update parameters. w w—A(g +c) > Or use g + ¢ in any stochastic optimization algorithm

1

VF(w; n, €)

1

1

1

E Generic optimization algorithm
In Alg. 1, we describe the end-to-end procedure of applying joint control variate in BBVI. The joint control
variate can also be applied in generic doubly-stochastic optimization problems as is shown in Alg. 3.

We evaluate the generic version on generalized linear models with Gaussian dropout, with an objective function
defined as

fw)=E Ef(w;n, ), (54)
f(w;n,€):=L(n, ¢(Xn;w, €)) (55)
O(Xn;w, €) =w(e © Xn), (56)

where X, e R, ¥ e R, we R®P andeeRP isa sample from N (1, al), © stands for element-wise product
and L is a loss function such as mean-squared error.

We can find an approximation to Eq. (55) by applying second-order Taylor expansion around € = 1, given by
fw;n, e)=fw;n, 1) +(@E=-1) " Vef(w;n, 1)+ %(e— 1)" VEf (w; n, 1)(e - 1), (37)

whose expectation with respect to € can be given in closed-form as

- 02
Efwin e)=f(wn, 1)+ —tr VZf(w;n, 1) - (58)

Results We compare the performance 09, , 9, and 9,y  on CIFAR-10 (Krizhevsky et al., 2009) classifica-
tion, where we apply dropout on features extracted from a LeNet (LeCun et al., 1998) pretrained on CIFAR-10
and then fine-tune the output layer using the cross-entropy loss with0 = 0.5. We use a batch size of 100, and
optimize using standard gradient descent without momentum for a wide range of learning rates. We present
the results in Figure 5 where we show the trace of objective evaluated on the full training set under different
learning rates and different numbers of iterations. We can see thatYix always reaches objectives smaller than
the baseline estimators, displaying significantly better convergence for large learning rates.

F Approximation function for mean-field Gaussian BBVI

Recall that, given w = (i, log @), the objective function for mean-field Gaussian BBVI is written as
flw)=E . IeEf(W; n, €), (59)
where f (w; n, €) = =N log p(x n | Tw(€)) - log p(Tw(€)) —HW), Tw(e)=p+e€o g, (60)

where we use the € notation here to also represent a vector. Inspired by previous work (Miller et al., 2017),
we get an approximation for f (W;n, €) using a second order Taylor expansion for the negative total likelihood
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Ir=0.05 Best Ir 5000 iterations 50000 iterations
Yoo
=
O
30'8
0 25K 50K0 25K 50K 0.005 0.025 0.075 0.005 0.025 0.075
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Figure 5: The joint estimator leads to improved convergence at higher learning rates on Gaussian
dropout on CIFAR-10. (For small enough learning rates, optimization speed is limited by the learning rate itself

and so all estimators perform identically.) The first column shows the trace of the objective (logistic loss) under a
learning rate of 0.05. The second column shows the trace of the objective under the best learning rate chosen
retrospectively at each iteration. The final two columns show the objective as a function of different learning

rates at two different numbers of iterations. Note that the learning that the joint has its best performance at a

higher learning rate than the other estimators. (the inc estimator is too expensive to be included here.)

kn(z) = N'log p(x n | 2) + log p(z) around z¢ = Tw(0)?, which yields
fw:n, €)=k n(zo) + (Tw(€) —z0) Kn(zo)+ %(Tw(e) -20)" V2kn(zo)(Tw(€) — z o) + Hw), (61)

where we assume the entropy can be computed in closed form. The approximation function’s gradient with
respect to the variational parameter is given by:

3 (Tw(e) - zo) '

Vwf(w; n, €)= W W n(z0) + V2Kn(zo)uteoa-pu+00a) + VwH(w), (62)
0(2# VK 1 (z0) + V2?Kn(z0)(€ © @) + VwH(W), (63)

where ‘ﬂa",jfi» denotes Jacobian matrix. Note that, despite the gradient computation involving the Hessian, it can

be computed efficiently without explicitly storing the Hessian matrix through Hessian vector product. However,
the expectation of the gradient can only be can only be computed efficiently with respect to the mean parameter
H but not for the scale parameter 0. To see that, we first compute the expected gradient with respect to H, using
the fact that Mf}ﬂi") =l and € is zero-mean:

EVuf(Win, €)= T n(20) + VuH(W) (64)

The expected gradient with respect to g is given by:

E Vef(w; n, €) =E diag(e) Wn(z0) + V2kn(zo)(e © @) + VoH(w), (65)
=E €0 Vkn(z0) * V2kn(zo)(€? © 0) + VaH(w), (66)
=diag V ?Kn(z9) © 0+ VaH(w), (67)

which requires the diagonal of the Hessian, causing computing difficulty in many problems.This means g, (W;; €)
and Gy (W; 1. €) can only be efficiently used as the gradient estimator for M. Fortunately, controlling only the
gradient variance on H often means controlling most of the variance, as, with mean-field Gaussians, the total
gradient variance is often dominated by variance from u (Geffner and Domke, 2020).

2We use z = stop_gradient (T w(0)) so that the gradient does not backpropagate from z o to w.
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G Comparision with true posterior

On small problems, in particular, Sonar and Australian, we can acquire the true posterior using MCMC and
compute the approximation error of the variational posterior using the true posterior. To be more specific, we run
MCMC on these two problems using NUTS (Hoffman et al., 2014) with 4 chains, where we warm up for 5,000
steps and then collect 25,000 samples from each chain, giving a total of 100K samples that we use to estimate the
mean and variance of the true posterior, denoted asM meme and 02, respectively. We then compute the L2
distance between the mean and variance of the variational posterior (a diagonal Gaussian) and that of the true
posterior as the approximation error. We additionally acquire a set of ground truth variational parameters using
full dataset and 200 Monte Carlo samples for gradient estimation, optimized for 10,000 iterations with a learning
rate of 1 X 107* . The approximation error based on the ground truth parameter serves as a reference value on
the smallest error each estimator can achieve.

The results are presented in Fig. 6, the observation aligns with the ELBO traces (Fig. 3), where joint is capable
of approaching the true posterior mean at a speed faster than with baseline estimators, eventually reach the
approximation error of the ground truth variational parameters.

H Results under SGD

In this section, we compare naive , cv, and joint with SMISO using SGD. The step sizes for SMISO are the
same as the values shown in Sec. D. The step sizes for other models under SGD are converted through Eq26)
correspondingly. Additionally, we compare their performance with the optimization results acquired using Adam.
The results are presented in Fig. 7 and Fig. 8. Overall, with SGD, joint still shows superior performance
compared with baseline estimators except for MovieLens, where all estimators fail to converge under the selected
step sizes (and using larger step sizes could cause divergence in optimization).In addition, all estimators show
performance worse than that of Adam when optimized with SGD except for joint on Tennis.

Note that, when experimenting with PPCA using joint and SGD, we perform updates with naive in the first
three epochs to avoid diverging, as thejoint shows a high gradient norm in the first few epochs when SAGA is
still warming up. This modification is not required when using Adam, as Adam adaptively chooses the step size
based on the gradient norm.

I Wall clock time v.s convergence

In this section, we provide the wall clock time v.s. convergence resultsThe results are presented in Fig. 9. The
results are identical to the results in the second column in Fig. 3 with the x-axis for each estimator rescaled using
the values from Table. 3.
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Figure 6: Meanfield VI under the propose¢bint

(b) Australian

estimator approaches true posterior mean faster.

On small-scale problems, we compare the mean and variance of the variational posterior (a diagonal Gaussian) to
that of the true posterior estimated with MCMC using 100K samples, with approximation error measured by
L2 distance. The last column shows the error trace under the best learning rate chosen retrospectively at each
iteration based on the ELBO. The grey dashed lines show the error under ground truth variational parameters
acquired with full batch gradient and 200 Monte Carlo samples per iteration, representing the best error each

estimator can achieve. On the mean parameter, joint reduces the error faster than baseline estimators. For
variance errors, all estimators demonstrate similar behavior, as we are only controlling the variance on the mean
parameters. The results presented are based on 10 random trials, where the solid lines denote the averaged values
and the shaded area represents the one standard deviation.
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Figure 7: Comparision of different estimators on MNIST, PPCA, and Tennis under SGD and Adam.
The proposedjoint combined with Adam shows the best performance on all tasks except Tennis, in whichjoint
with SGD demonstrates the best convergence.For other estimators, Adam leads to better and faster convergence

than SGD.
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Figure 8: Optimization results on MNIST, PPCA, Tennis and MovieLens with SGD. Using SGD
does not affect the improvement of joint against naive and cv. In addition, we notice that joint still performs
better than SMISO under SGD, we suspect that this is because joint marginalizes € out explicitly while SMISO
approximates the expectation using exponential averaging.All methods show slow convergence with SGD on
MovieLens under the largest step size, emphasizing the importance of using adaptive optimization methods.
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Figure 9: On large scale problemsthe joint estimator leads to faster convergence in terms of
wall-clock timeEor example, on MNIST, it takes joint around 300 seconds to reach an ELBO of~2.5% 10*
whereas the cv and the naive estimator would take around 600 secondsOn PPCA, while the joint estiamtor
displays slower convergence in the beginning, as SAGA is still warming up, it is capable of reaching much better
results at the end of the optimization.
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