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Abstract—Recent investigations into Quantum Machine Learn-
ing (QML) techniques have unveiled methodologies that ac-
celerate training in established machine learning models to
provide an alternative for capturing complex patterns. This study
focuses on implementing a practical QML Algorithm, Variational
Quantum Classification (VQC) for cybersecurity dataset so that
detecting anomalies can be improved and faster by reducing
number of attributes log, M while training the model using
Qiskit. Also, we study quantum algorithms to understand how it
impacts on cyber datasets to detect anomalies in a improved
way as it follows logarithms in the dimensionality reduction
of quantum states which opens new horizons to quantum big
data applications. Most importantly, we aim to also investigate
the impact of various parameterized quantum circuits on VQC
using quantum data as quantum states encoded by the cyber
security dataset, NSL-KDD. In this research, we train VQC
with various structures and parameters of quantum circuits as
well as optimizers to adjust parameters of quantum -circuits
(ansatz) to minimize the objective function values so as to improve
accuracy of the model in which quantum circuit, EfficientSU2,
along with optimizer, COBYLA, outperforms the accuracy than
other circuits and optimizers which shows great potential for
improving cybersecurity systems. The research could effectively
bridge in the gap between theory and implementation based
quantum machine learning on cybersecurity systems.

Index Terms—quantum machine learning, variational quan-
tum classifier, parameterized quantum circuit, optimizer

I. INTRODUCTION

Quantum computing (QC) has driven significant progress in
diverse fields as it shows impressive potential with exponential
acceleration to address traditionally unsolvable problems with
improved effectiveness and velocity. In other words, quantum
computing has caught huge attention in recent years, because
it can solve complex problems using special features like
superposition and entanglement, which regular computers can
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not handle [1-6]. Quantum devices are being made to do these
jobs much faster than normal computers. For example, they
can search through a bunch of data super fast, like finding
something in a messy pile, but even quicker [7].

When quantum computing and machine learning come
together, it forms a new area called quantum machine learning
(QML). Scientists have created quantum versions of popular
machine learning models, such as quantum support vector
machines, quantum reinforcement learning, and quantum vari-
ational autoencoders [8-11].

Meanwhile, research papers on machine learning and net-
work security are looking at different ways to spot and
stop Distributed Denial of Service (DDoS) attacks, which
make networks crash. They are also working on making sure
important data gets sent quickly and smoothly over industrial
wireless networks. They are focusing on making the rules for
how devices communicate really good to support important
jobs in factories and other industrial places [12-13]. Hossain et
al., (2012) underscore the importance of addressing program
security vulnerabilities, highlighting various approaches and
challenges [14]. Additionally, Hossain et al., (2014) emphasize
the significance of effectively detecting vulnerable and mali-
cious browser extensions, contributing to enhanced computer
security measures [15].

Also, one work used difefernt machine learning approaches
for the prediction of risk factor for elements of cryptocurrency
market [16]. Moreover, Rahman used K-means clustering to
make the dataset as clustered input to the Random Forest
classifier for big data distributed systems for detecting in
a high accuracy using big data processing because it was
introduced to use computing capabilities across clusters of
machines in the case of huge amount of data [17]. Therefore,
they focused to enhance this work to address the imbalanced
dataset problem using GANs by generating dataset for specific
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Fig. 1. A schematic representation of a typical quantum circuit, illustrating the flow of quantum information within a
quantum computing system.

classes so that the imbalanced dataset issues can be resolved
for IDS in distributed computing using PySpark.

Even though there is been significant progress in quantum
computing, it is still facing numerous problems, especially in
the NISQ stage [18]. Right now, quantum computers only
use a few qubits because the hardware is not good enough
yet. This means we can not make a quantum computer that
doesn’t make mistakes. However, the emergence of VQA [19]
is proving helpful in tackling current quantum tasks. With
VQA, we construct different quantum setups and methodolo-
gies to improve the detection of anomalies using NSL-KDD
dataset. Some common VQA include VQE, which aids in
finding molecule energies, dynamical quantum simulation, and
QAOA [20-23], as well as QML [24-26]. However, VQA still
encounters numerous challenges. Presently, it operates within a
simulated quantum environment created by regular computers.
This simulated environment introduces a significant amount
of errors, especially in NISQ phase quantum machines, where
qubits and quantum gates frequently make mistakes [25-26].
Additionally, due to the limited number of qubits, we can
not develop very complex algorithms, which impacts their
effectiveness.

Quantum computing faces challenges in handling cyberse-
curity datasets NSL-KDD due to limited resources, algorithmic
complexity, and security implications [27-28]. Current quan-
tum devices suffer from high error rates and noise, impacting
data accuracy [29]. Moreover, the potential vulnerability of
traditional cryptographic protocols heightens security concerns
[30]. Developing quantum-safe cryptography is crucial [31]
amidst the evolving landscape of cybersecurity threats [32]
and quantum technologies [33].

In this work, Section 2 discusses the basic background
of Variation Quantum Classifier (VQC) in quantum machine
learning (QML). Section 3 and Section 4 presents the dataset
and methods respectively. Section 5 describes results and
discussion and finally, we conclude with summary of our
works.

II. VARIATIONAL QUANTUM CLASSIFIER (VQC)

The Variation Quantum Classifier (VQC) is a novel ap-
proach in realm of quantum computing that has garnered at-
tention for potential applications in various domains, including

cybersecurity. When it comes to detecting intrusions in cyber
security datasets like NSL-KDD, VQC presents a promising
arena with worth exploring. An overview of VQC and its
potential in intrusion detection is described below:

A. Quantum Computing and VOC

The Variation Quantum Classifier (VQC) is an innovative
application of quantum computing, which represents a ground-
breaking shift in computational paradigms by harnessing the
fundamental principles of quantum mechanics. Unlike conven-
tional classical computers that depend on binary bits, which
can only exist as either 0 or 1, quantum computers utilize
quantum bits, commonly referred to as qubits. The unique
property of qubits is their ability to exist in a superposition of
states, allowing them to represent multiple values simultane-
ously. For each quantum states as data points, the parameters
are assigned to the feature map and the variational circuit
shown in Fig. 1.

B. Features of VQC

e Variational Circuits: VQC uses special quantum circuits
called variational quantum circuits. These circuits have
settings that can be adjusted to do certain jobs better.

e Quantum-Classical Hybrid: VQC combines quantum and
classical components, where classical algorithms are used
to optimize the quantum circuit’s parameters.

o Feature Mapping: In the context of intrusion detection,
VQC can be used to map input data (such as network
traffic logs) into a quantum state, effectively encoding
features in a quantum format.

C. Framework of VQC algorithm

Fig. 2 shows the framework of VQC algorithm which illus-
trates to compute cost function with various features, quantum
circuits and optimizers. It combines quantum circuitry and
neural networks to create a robust classifier. By employing
variational techniques, it interprets measured bitstrings as
classification outputs. Labels can be provided for attacks as
a one-dimensional array. The VQC also supports one-hot en-
coded labels, transforming them into binary representation. Its
training process consistently utilizes one-hot labels, ensuring
effective and accurate learning. This flexibility in label formats
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Fig. 2. A framework of VQC algorithm to compute cost function with various features, quantum circuits and optimizers.

enhances the versatility and practicality of the VQC algorithm,
making it suitable for various classification tasks.

D. Potential Benefits for Intrusion Detection

o Enhanced Data Representation: VQC’s ability to trans-
form data into quantum states may capture intricate
patterns and relationships in cyber threats that are chal-
lenging to discern with classical techniques.

e Quantum Parallelism: Quantum computers can potentially
explore multiple data patterns simultaneously, which
might speed up the detection process.

o Complex Pattern Detection: Cyber threats often involve
complex, evolving patterns. VQC’s capacity to handle
high-dimensional data could improve the detection of
sophisticated intrusions.

E. Challenges and Considerations:

o Quantum Hardware: As of my last knowledge update in
September 2021, practical quantum hardware is still in its
infancy and may not be readily available for widespread
use.

o Algorithm Development: Developing quantum algo-
rithms, including VQC, requires expertise in both quan-
tum physics and computer science, making it a special-
ized field.

III. DATASET

Within the NSL-KDD dataset, the training subset comprises
125,973 records, however there are 22,544 records in the
test subset. For this work, we extracted the features for
this supervised model: protocol_type, service, src_bytes,
dst_bytes, dst_host_srv_count, dst_host_same_srv_rate,
dst_host_diff_srv_rate, and dst_host_same_src_port_rate.
The attribute ’attack’ is chosen for target variables. It has 4
four types of attacks as well as nornal value. We study to
understtod how protocol type connects the attack types. These
attacks fall into four primary categories, as described below:

o Denial-of-Service (DoS): This category includes attacks

like syn flood, aiming to overwhelm and disrupt services,
making them inaccessible to legitimate users.

o Unauthorized Remote Access (R2L): Attacks in this cat-
egory involve unauthorized access attempts from remote
machines, often employing techniques like password
guessing to breach security barriers.

o Unauthorized Local Access (U2R): This category entails
attacks seeking unauthorized access to local superuser
(root) privileges, using techniques like “buffer overflow”
attacks to exploit vulnerabilities and elevate privileges.

o Probing: Attacks in this category involve surveillance
and probing activities, such as port scanning, where
attackers try to gather information about potential system
vulnerabilities.

The categorization and visualization of these attacks provide
valuable insights for researchers and cybersecurity experts, en-
abling the development of robust defense mechanisms against
various intrusion attempts. Leveraging these datasets and their
analyses contributes significantly to enhancing our collective
knowledge and understanding of network security, ultimately
fortifying digital infrastructures against potential cyber threats.

IV. METHODS

In our method, we initially employ the ZZFeatureMap
technique for encoding data within the classification circuit.
A dedicated function is developed to encode the extracted
features of NSL-KDD dataset into the feature map by setting
variational parameters within the quantum circuit. It is crucial
to ensure that the correct parameters within the circuit are
associated with the appropriate quantities. Subsequently, after
training the Variational Quantum Classifier (VQC) with both
data and parameters, the parameters are set within both the
feature map and the variational circuit.

To classify our data, we devise a function that takes in
data and parameters. For each data point in the dataset, the
parameters are assigned to the feature map and the variational
circuit. Once the quantum circuit is stored, the system under-
goes a transformation. This crucial step enables the execution
of circuits. After running these circuits, the system computes
probabilities based on both the bit string and the assigned
class labels for each circuit, providing valuable insights into
the outcomes. During the training phase, the objective function
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Fig. 3. The flowchart to illustrate steps to train the VQC
with various features.

value serves as the cost function or loss function. Classical
optimizers, specifically COBYLA, and AQSD are utilized
to initialize quantum circuit parameters for reproducibility,
optimizing our cost function across 100 training epochs. This
optimization process adjusts the variational circuit parameters
based on the output of the cost function.

The performance of the trained VQC classifier is evalu-
ated using a testing dataset. It is expected that the training
optimization process may require significant time, potentially
leading to convergence to a local minimum rather than a global
minimum. The whole steps are described in the flowchart (Fig.
3).

V. RESULTS AND DISCUSSIONS

We implemented this work in the Google Colab environ-
ment using the Qiskit tool (IBM) since we lack access to
quantum computers for quantum computing in our laboratory,

thus encountering significant challenges. However, we can still
explore quantum algorithms and concepts through simulation
on classical computers. While these simulations may not
provide the same speed-up as actual quantum computers,
they allow us to understand quantum principles and develop
algorithms that could be used in the future when quantum com-
puting technology becomes more accessible. This approach
enables us to stay engaged with quantum computing research
and prepares us for advancements in the field.

Firstly, we extracted 8 important features of NSL-KDD
datasets to improve the intrusion detection systems using
VQC. Through this implementations, we have made plots for
the objective function values for quantum circuits, optimizers,
and various features so that we can measures how well the
model predicts anomalies. VQC adjusts its parameters by
making this function as small as possible to improve accuracy.
It is used like a scorecard for evaluating how good the model
is at classifying anomalies in training and testing observations.

In fact, the objective function value reflects the alignment
between predicted and actual labels which guides model
optimization. While setting up EfficientSU2 and COBYLA
with 3 features after applying PCA, objective function values
minimization correlates with heightened accuracy compared
to configurations with 8 features of dataset. Moreover, this
value tends to be lower in EfficientSU2 and COBYLA setups
than in RealAmplitudes and COBYLA configurations. This
clearly indicates that EfficientSU2 has superior performance
in accurately classifying attacks from normal observations.

Moreover, EfficientSU2 with reduced features exhibits supe-
rior performance than RealAmplitudes due to its more flexible
representation of quantum states as it employs a combination
of single-qubit rotations and entangling gates which allow it
to more efficiently explore complex quantum feature spaces.
This flexibility enables EfficientSU?2 to capture intricate attack
patterns from normal data instances effectively. Consequently,
it results in enhanced classification accuracy. However, Re-
alAmplitudes tends to converge faster and it is also observed
that RealAmplitudes is required little less time to train VQC
than EfficientSU2.

In Variational Quantum Classification (VQC), the objective
function reflects the alignment between predicted and actual
labels, guiding model optimization. Particularly in setups uti-
lizing EfficientSU2 and COBYLA with 3 attributes, objective
function minimization correlates with heightened accuracy
compared to configurations with 8 attributes. Moreover, this
value tends to be lower in EfficientSU2 and COBYLA setups
than in RealAmplitudes and COBYLA configurations, indicat-
ing superior performance in accurately classifying input data
points.

The Objective function value exhibited minimal fluctuations
and reached a stable state after only 50 and 60 iterations for
EfficientSU2 and RealAmplitudes respectively. This suggests
that the model’s performance, as measured by the objective
function, converges to a consistent value relatively quickly
when using this subset of features. Fig. 5 corresponds to the
utilization of 3 features which have a high degree of stability.
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Fig. 4. Objective function value generated in VQC using 8 features, various parameterized quantum circuits and COBYLA:
(a) RealAmplitudes (b) EfficientSU2
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Fig. 5. Objective function value generated in VQC using 3 features, various parameterized quantum circuits and COBYLA:
(a) RealAmplitudes (b) EfficientSU2

Conversely, Fig. 4 employed 8 features and observed a
substantially different patterns. The Objective function value
exhibited significant fluctuations over the course of the itera-
tions. Unlike the 3 features scenario, stability was not achieved
within the same timeframe, indicating that the model’s perfor-
mance remained more volatile when utilizing this larger set of
features.

The TABLE I presents a comprehensive comparison be-
tween different Variational Quantum Classifier (VQC) setups
based on various Quantum Circuits and Optimizers alongside
Training Time. For 8 features, Real Amplitudes with COBYLA
optimizer boasts the highest test score of 0.89 and train score
of 0.87, accompanied by a comparatively low training time
of 1316 seconds. Conversely, EfficientSU2, under the same
COBYLA optimizer, exhibits a slightly lower test score and
train score which are 0.80 and 0.77 respectively. It required
training time 1506 seconds.

On the other hand, when utilizing the AQSD optimizer,
training Variational Quantum Classifiers (VQC) suffer signif-
icant time costs and yields lower efficiency. For 8 features,
AQSD required a lengthy training time of 9047 seconds,
resulting in lower accuracy (0.49 in testing, 0.45 in train-
ing) for RealAmplitudes. Similarly, EfficientSU2 under AQSD
exhibited a prolonged training duration of 9738 seconds,
accompanied by reduced accuracy (0.46 in testing, 0.42 in
training).

When reducing attributes from 8 to 3 using Principal
Component Analysis (PCA), VQC demonstrated remarkable

performance enhancements, particularly with EfficientSU2 and
COBYLA. Compared to RealAmplitudes under the same opti-
mizer configuration, EfficientSU2 achieved superior accuracy,
scoring 0.90 in testing and 0.93 in training. Moreover, it
trained efficiently in only 356 seconds. Conversely, RealAm-
plitudes attained lower accuracy scores of 0.81 in testing
and 0.82 in training, requiring less time 275 seconds for
convergence. These datapoints proves the potential of Effi-
cientSU2 and COBYLA in exploiting reduced attribute sets for
optimal VQC training, and showing their efficacy in quantum
classification tasks. Moreover, these results provides the sig-
nificance of various quantum circuits and optimizers selections
for improved classifier performance to detect anomalies.

TABLE I
TEST AND TRAINING SCORES FOR OUR VQC IMPLEMENTATIONS
QCircuit Features  Optimizers Test Train Train time
Real Amplitudes 8 AQSD 0.49 0.45 9047
EfficientSU2 8 AQSD 0.46 0.42 9738
Real Amplitudes 8 COBYLA 0.89 0.87 1316
EfficientSU2 8 COBYLA 0.79 0.81 1441
RealAmplitudes 3 COBYLA 0.81 0.82 275
EfficientSU2 3 COBYLA 0.90 0.93 356

In TABLE II, our VQC with NSL-KDD dataset outperforms
existing work with IRIS dataset with a remarkable testing
accuracy of 90% compared to 76.76% and 89.25% achieved by
VQC and Classical SVM, respectively. Additionally, our VQC
exhibits superior training accuracy of 93% surpassing 82.10%
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TABLE 11
COMPARISON OUR VQC WITH EXISTING WORK
Dataset Test(%) Train(%)
Classical SVM(Saxena et al.,22)[34] IRIS 89.25 90.00
VQC (Saxena et al.,22)[34] IRIS 76.76 82.10
Our VQC NSL-KDD 90.00 93.00

and 90% achieved by VQC and Classical SVM, respectively.

VI. CONCLUSION

In conclusion, we applied various parameterized quantum
circuits and optimizers for training and testing Variational
Quantum Classifier (VQC) which demonstrates exceptional
performance in cyber attack detection after fine tuning and it
is proved when it is evaluated against existing works. With
a testing accuracy of 90%, our VQC outperforms existing
VQC and Classical SVM models, achieving 76.76% and
89.25% respectively on the IRIS dataset. Furthermore, our
VQC showcases superior training accuracy, reaching 93%,
surpassing the performance of both VQC and Classical SVM
models on the IRIS dataset. This underscores the efficacy of
our approach in enhancing cyber attack detection capabilities.
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