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Abstract—Recent research has shown growing interest in the
arithmetic reasoning capabilities of large language models (LLMs),
especially those built on the Transformer architecture. However,
our understanding of the intrinsic processes within these models
for arithmetic calculations remains scant. This study leverages
causal mediation analysis to offer an in-depth look at how
Transformer-based LLMs approach complex arithmetic problems.
We experimentally intervened on particular model activations and
assessed the resulting shifts in prediction probabilities, allowing
us to pinpoint which parameters are crucial for such reasoning
tasks. We discovered that for complex arithmetic operations,
information is channeled from mid-layer activations to the final
token through enhanced attention mechanisms. Subsequently,
Multi-Layer Perceptrons (MLP) modules synthesize this data,
integrating it into the model’s residual pathways. To validate these
observations, we also evaluated the activation dynamics across
different types of tasks, such as retrieving numbers from text and
answering fact-based questions.

LLM’s, Interpretation, Arithmetic, Causal Mediation Analy-
sis, Reasoning

I. INTRODUCTION

Understanding mathematical reasoning within Transformer-
based language models is a formidable task, as it requires
a grasp of both numerical values and abstract mathematical
concepts [1]. Despite the considerable progress that large lan-
guage models (LLMs) have made in performing well on math-
oriented benchmarks [2], these models exhibit behavior that is
inconsistent and dependent on the context. A large number of
recent studies suggests various strategies for enhancing LLM
performance on mathematical tasks, whether through special-
ized pre-training schemes [3–5] or through unique prompting
methods [6]. Despite these advancements, the internal mechan-
ics by which these LLMs handle and manipulate numerical
information for arithmetic tasks remain unclear. Gaining a
deeper understanding of these inner workings is vital for
advances such as real-time adjustment of model responses and
safer application of these technologies. Therefore, examining
this aspect is essential for developing more dependable and
precise next-generation LLM-based computational systems.

In this paper, we extend our scope to more intricate areas of
arithmetic reasoning, particularly focusing on complex opera-
tions such as exponentiation and roots. For example, we inves-
tigate questions like ”What is the 4th root of 256?” and ”What
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Fig. 1: We present a visual representation of our discov-
eries regarding how numerical information moves through
Transformer-based Language Models (LMs). When given an
input query, these models initially handle numbers and op-
erators in the early layers (a). Subsequently, the attention
mechanism carries the pertinent information to the end of the
input sequence (b). At this point, late MLP modules process it,
producing output information related to the results, which then
gets integrated into the residual stream (c).

is 2 raised to the power of 5?”. In our analysis of LLM models
we found a common trend. Neurons in the MLP layers from 15
to 32 and in the Attention layers from 11 to 32 play a key role
in handling complex arithmetic tasks. However, the exact layers
differ slightly depending on the individual model. Utilizing the
causal mediation analysis framework [7, 8], we conceptualize
the model as a causal graph that transitions from input to output,
where specific model components, such as neurons or layers,
act as mediators [9]. Our aim is to evaluate the role of these
mediators in the observed output by analyzing the changes in
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output probabilities for complex arithmetic questions. Further-
more, our study finds that the attention mechanisms in layer 14
exhibit a unique pattern of intense focus on the operands and
operators, thereby facilitating accurate arithmetic calculations.
These enhanced attention mechanisms channel information
from mid-layer sequences to the final token, where Multi-Layer
Perceptrons (MLP) modules further process this information,
ultimately incorporating it into the model’s residual pathways.
To validate these findings, we perform experiments across
several pre-trained large language models (LLMs) with varying
architectures and capacities—2.8B, 6B, and 7B parameters.
Additionally, we make comparative assessments by examin-
ing the influence of specific model components in complex
arithmetic tasks versus their roles in simpler tasks, such as
number retrieval and factual question answering. Through this,
we elucidate a unique activation dynamic that appears to be
specific to complex arithmetic reasoning.

The remainder of this paper is structured as follows: Section
2 presents the background required for the study. Section 3
details the methodology. Section 4 provides the results derived
from the measurements in terms of both interpretability and
accuracy from various operators. Section 5 concludes the paper,
and Section 6 discusses limitations and suggests directions for
future work.

The preliminary version of this contribution appears in [10].

II. RELATED WORK

Structural Interpretability: The aim of Structural inter-
pretability is to deconstruct the computations of the model into
components that are comprehensible to humans, striving to un-
cover, understand, and confirm the algorithms (or circuits) that
the model weights realize [11]. Initial research in this domain
inspected the activation values of individual neurons during text
generation with LSTMs [12]. Following this, many studies have
focused on analyzing the weights and intermediate representa-
tions in neural networks [13–18], and on understanding the
processing of information by Transformer-based [1] language
models [19]. While not exclusively mechanistic, several other
recent researches have explored the hidden representations and
the functioning of the inner components of large Language
Models [20, 21].
Causality-based Interpretability: Causal mediation analy-
sis serves as a pivotal instrument for effectively assigning
the causal influence of mediators on a dependent variable
[22]. This methodology has been utilized to explore Language
Models by Vig et al. [7], introducing a framework structured
around causal mediation analysis to scrutinize gender bias.
Subsequent adaptations of this strategy have been employed
to mechanistically interpret the internal mechanisms of pre-
trained Language Models in diverse tasks, including subject-
verb agreement [23], natural language inference [24], indirect
object recognition [25], and the analysis of their ability to retain
factual information [8].
Math and Arithmetic Reasoning: Math and Arithmetic
Reasoning. There is an expanding collection of research that
has introduced techniques for evaluating the proficiency and

resilience of expansive Language Models (LMs) in tasks related
to mathematical reasoning [26, 27]. Nonetheless, the presented
methodology remains constrained to behavioural analysis, lack-
ing insights into the intrinsic workings of the models. To the
best of our knowledge, our study is the first to merge the field
of mechanistic interpretability with the analysis of advanced
mathematical reasoning abilities in Transformer-based language
models.

III. METHODOLOGY

A. Background and Objective

Our focus lies in dissecting how LLMs understand and
compute complex arithmetic operations, emphasizing exponen-
tiation and root calculations. We extend our original autore-
gressive model G : X → P to include specialized modules
that enhance the understanding of these operations.

For exponentiation, consider a base b and an exponent e.
The operation is defined as E(b, e). Within our model, this
operation is interpreted through a combination of attention
mechanisms and transformation layers, specifically designed for
exponentiation [1]. In our model, this operation is interpreted
through attention mechanisms followed by an MLP transfor-
mation tailored for exponentiation:

e′t
(l) = E(l)(h

(l−1)
1 , . . . , h

(l−1)
t ; b, e)

e
(l)
t = M (l)(e′t

(l))

Here, e′t
(l) represents the attention-driven transformation which

is then passed through the MLP M (l) to produce e
(l)
t .

Similarly, for root calculations, we describe the operation as
follows. Given a number n and a root degree d, the operation
R(n, d) is expressed as:

r′t
(l) = R(l)(h

(l−1)
1 , . . . , h

(l−1)
t ;n, d)

r
(l)
t = M (l)(r′t

(l))

Where r′t
(l) represents the attention-driven transformation for

root calculations, and r
(l)
t is its MLP-transformed counterpart.

The specialized states resulting from the MLP transforma-
tions and the generic hidden states of the model merge to
produce:

h
(l)
t = h

(l−1)
t + αe

(l)
t + βr

(l)
t

Where α and β are scalar coefficients that adjust the impact of
the specialized transformations on the final hidden state.

By scrutinizing these internal states, including the influence
of the MLP transformations, we gain comprehensive insight
into the mechanisms through which LLMs process advanced
arithmetic operations.

Moreover, we explore the computational intricacies of arith-
metic operations within large-language models, focusing on
complex operations such as exponentiation and root extraction.
Each arithmetic query is composed of a set of operands N =
{n1, n2, . . .} and a function fO representing the application of
various arithmetic operators (+, −, ×, ÷, ,̂ √ ). The resultant
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value, derived from applying these operators to operands, is
depicted as r = fO(N).

For an intuitive model interface aligned with natural lan-
guage, each query metamorphoses into a prompt p(N, fO) ∈
X . For example, in an exponentiation scenario, the query might
be phrased as “What is n1 raised to the power of n2?” (here,
fO(n1, n2) = nn2

1 ).
Feeding this prompt into the LLM produces a probability

distribution P over V . Internally, in the LLM, the operation
undergoes transformations defined by distinct sets of weights
and biases tailored for the operation at hand. Our core goal is
to dissect these transformations and ascertain if specific hidden
state variables, particularly those associated with E(l) and R(l),
hold dominant roles in computing r.

B. Experimental Method

We consider the model G as a causal graph and interpret
internal model components, such as specific functions E(l)

and R(l), along with their MLP-transformed equivalents, as
mediators on the causal path that connects model inputs to
outputs [28]. By applying a causal mediation analysis approach,
we evaluate the impact of these specific functions and their
MLP-transformed versions by intervening on their activations
and observing the resulting change in the model’s output.

Given the model’s expansive nature, isolating the effect of
each neuron or parameter becomes impractical [23]. Hence,
our main experiments are chiefly centered on the outputs of
the functions E(l) and R(l) and their MLP-transformed outputs
for each token t, denoted as e

(l)
t and r

(l)
t respectively.

The procedure to ascertain the significance of modules E(l),
R(l), and their subsequent MLP transformations in shaping the
model’s predictions at position t encompasses:

1) Sample two arithmetic questions with distinct operands:
q1 = q(N, fO) and q2 = q(N ′, fO), and input them into
the model.

2) During the forward pass with q1 as the input, retain the
activation values ē

′(l)
t := E(l)(h

(l−1)
1 , . . . , h

(l−1)
t ) and

r̄
′(l)
t := R(l)(h

(l−1)
1 , . . . , h

(l−1)
t ). Then, transform these

activations using the MLP to obtain ē
(l)
t = M (l)(ē

′(l)
t )

and r̄
(l)
t = M (l)(r̄

′(l)
t ).

3) Execute a forward pass with q2 as the input, intervening
on functions E(l) and R(l) at position t, and setting their
MLP-transformed activations to ē

(l)
t and r̄

(l)
t respectively.

4) Compute the causal impact of intervening on variables
e
(l)
t and r

(l)
t by determining the shift in probability values

for the results r and r′.
To be precise, the indirect effect (IE) of a particular mediat-

ing component, be it the raw outputs or their MLP-transformed
versions, is computed as:

IE(z) =
1

2

(
P ∗
z (r

′)− P (r′)

P (r′)
+

P (r)− P ∗
z (r)

P ∗
z (r)

)
Where z can be any activation variable (like e

(l)
t or r(l)t ). Larger

values of IE suggest a pronounced influence of component z

in modulating probability from the result r′ to the one derived
from alternate input q1.

Additionally, we evaluate each component’s mediation im-
pact concerning operation fO. This is realized by maintaining
the operands fixed and alternating the operator between two
input queries. Specifically, for the first step, we select operands
N and two functions fO and f ′

O. We then frame two ques-
tions, q1 = ”What is the 4th root of 256?” = q(256, 4

√
) and

q2 = ”What is 4 to the power of 4?” = q(4,̂ ), and then adhere
to steps 2–4.

C. Experimental Setup

We present the results of our analyses on GPT-J [29], a state-
of-the-art model particularly adept at intricate mathematical
calculations. Additionally, to validate our findings, we also
scrutinized Pythia 2.8B [30], LLaMA 7B [31], and Goat [3], an
iteration of LLaMA optimized for advanced arithmetic tasks.

Our empirical explorations majorly focus on sophisticated
arithmetic problems, encompassing two operands. In alignment
with previous research [32], for single-operator two-operand
tasks, we engage multiple templates representing queries as-
sociated with mathematical functions such as exponential and
nth-root operations, beyond basic arithmetic.

We present the results of our analyses on GPT-J, a state-of-
the-art model that is particularly adept at intricate mathematical
calculations. To validate our findings further, we also scruti-
nized models such as Pythia 2.8B, LLaMA 7B, and Goat, an
iteration of LLaMA optimized for advanced arithmetic tasks.

Our empirical explorations primarily focus on sophisticated
arithmetic problems, involving two-operand tasks, utilizing
operands such as (+,−,×,÷,̂ ,

√
).

For the dual-variable context, for each function fO, and for
every distinct template, we generate 50 sets of prompts by sam-
pling two sets of operands (n1, n2) ∈ S2 and (n′

1, n
′
2) ∈ S2,

where S is a subset of valid numbers. For the operand-centric
evaluations, we sample (n1, n2) alongside a different function
f ′
O. In every instance, we ensure that the resultant r is within
S.

D. Causal Effects on Arithmetic Queries

Our investigation aims to answer the key query: Q1: Which
elements within the model play a role in determining predic-
tions related to arithmetic computations? To tackle this, we
examine the information distribution across the model, focusing
on the impact of each element (be it an MLP or attention
mechanism) throughout the input sequence for queries with two
operands. Subsequently, we differentiate between the model
parts that hold details about the outcome and the operands in
arithmetic operations.

IV. TRACING THE INFORMATION FLOW

We embarked on our investigation by examining the indirect
influence of both the MLP and attention modules at different
positions within the input sequence. The outcomes of this
analysis are portrayed in Figures 2a and 2b, corresponding to
the MLP and attention units, respectively.
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Fig. 2: Measurement of the indirect impact (IE) within the MLP and attention components of GPT-J for two-operand arithmetic
queries. Figures (a) and (b) depict how information flows regarding both the operands and the query results, while Figures (c)
and (d) specifically show the effect on the operands (with the results remaining unchanged).

TABLE I: Mathematical Operations

Type Exponential Root
1 Q: What is n1 raised to the power of n2? A: Q: What is the n2th root of n1? A:
2 Q: How much is n

n2
1 ? A: Q: What is the result of extracting the n2th root from n1? A:

3 Q: What is the result of n1 to the power of n2? A: Q: How much is the n2th root of n1? A:
4 Q: Calculate n

n2
1 . A: Q: Compute the n2th root of n1. A:

5 The value of n1 raised to the power of n2 is The n2th root of n1 is
6 n

n2
1 = n2

√
n1 =

In scrutinizing the data, a distinct pattern of activations
became evident:

1) Early MLP units in the starting layer mainly linked to
tokens of complex math operands.

2) Middle attention units, especially strong at the end of the
sequence.

3) MLP units in the middle to later layers, mostly focused
at the sequence’s last token.

4) Increased attention in the 20th layer, closely observing
operands and the operation.

Our experiments spanned a variety of pre-trained LLMs,
including Pythia, Goat, and LLaMA, with different capaci-
ties—specifically, 2.8B, 6B, and 7B parameters. The results of
these analyses are depicted in Figure 3 for Pythia, Figure 4 for
LLaMA, Figure 5 for Goat, and Figure 6 for GPT-J (numeral
Words). When we compared them, we saw a unique activation
pattern for complex arithmetic reasoning, different from simpler
tasks like fetching numbers or answering factual questions.

In the subsequent section, we will delve further into the in-
tricate interplay of these fundamental components, elucidating

their collaborative role in enabling the model to adeptly address
sophisticated mathematical challenges.

A. Result-oriented vs. Operand-oriented Effects

In our pursuit to demystify the Transformer’s prowess in
handling complex arithmetic tasks, our main goal was twofold:
discerning whether a component’s contribution (as visualized in
Figures 2a and 2b) stems from its (1) representation of operand-
related information or (2) encoding of the computational out-
come.

To address this, we introduced a refined experimental pro-
tocol. Specifically, we anchored the secondary operand set
(n′

1, n
′
2) to the condition r = r′. Thus, constructing two input

queries p1 and p2 with congruent results, like “What is the 4th

root of 256?” and “What is 2 raised to the power of 5?”.
For the former scenario, a component with high Indirect

Effect (IE) in both varying-result and consistent-result settings
indicates its strong affiliation to operand information—since
operand alterations manifest in both settings. Contrarily, in the
latter scenario, the model’s segments which exhibit pronounced
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Fig. 3: Measurement of the indirect impact (IE) within the MLP and attention components of Pythia for two-operand arithmetic
queries.

influence when operands are unconstrained should display
diminished effect in fixed-result circumstances.

Insights gleaned from Figures 2c and 2d are illuminating.
Comparing Figures 2a and 2c, we discern:

1) Very slight influence in initial layers corresponding to
operand tokens, irrespective of result variability.

2) A marked attenuation in the impact of the concluding,
mid MLPs on the model’s output when the result remains
invariant, resonating with the characteristics of the second
scenario.

These revelations allude to the fact that MLP units around the
20th layer predominantly encode outcome-centric information.
As we juxtapose Figures 2b and 2d, the layers displaying peak
IE do not deviate considerably between the two experimental
conditions. This concurs with our hypothesis: attention mech-
anisms adeptly relay operand-oriented data to the sequence’s
end, which then undergoes MLP processing to determine the
arithmetic operation’s final result.

B. Measuring the Shift in Information Flow
Denote the set of specialized modules focusing on com-

plex arithmetic computations by M . We define the relative
importance (RI) of a specific subset M∗ ⊆ M of these
specialized modules, concentrating on intricate operations like
exponentiation and roots, as

RI(M∗) =

∑
m∈M∗ log(IE(m) + 1)∑
m∈M log(IE(m) + 1)

.

To quantitatively illustrate the variance in activation sites as
observed in our experiments and analyses, we compute the RI
measure for the set

M late
1 =

{
m(L/2)−1,m(L/2+1)−1, . . . ,m(L)−1

}
,

where the subscript −1 signifies the last token of the input
sequence, and L represents the number of layers in the model.
This metric denotes the relative contribution of the mid-to-late
last-token specialized modules designed for complex arithmetic
compared to all the specialized modules in the model.

For the scenarios involving complex arithmetic operations,
we execute the experimental procedures outlined in previous
sections for multiple models including Pythia 2.8B, LLaMA
7B, and Goat, focusing particularly on their ability to process
and compute intricate mathematical tasks like exponentiation
and root calculations. Moreover, we reconduct the analyses
on GPT-J using diverse numeral representations; representing
quantities not only with Arabic numerals (e.g., the token 5)
but also using numeral words (e.g., the token five), enabling
a broader understanding of the model’s numerical processing
capabilities in complex arithmetic contexts. We assess the
impact using both operand pairs that are randomly selected
and those that preserve results, contrasting the RI values in
both scenarios. The outcomes (seen in Table 1) maintain unifor-
mity throughout all these supplementary tests. Such numerical
evaluations further underscore the role of the last-token late
MLP modules in predicting r. As delineated in Table II, we
showcase the Relative Importance (RI) measurements pertinent
to the last-token late MLP activation site across various models.
This table elucidates the differential RI values under both the
standard and result-fixed paradigms.

Observing GPT-J, it registered an RI of 26.5% under the
standard paradigm, which experienced a substantial reduction
to 1.8% when the outcomes were held constant. Pythia 2.8B,
on the other hand, displayed a commendable RI of 30.0%,
which tapered to 2.5% under the result-fixed regime. LLaMA
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Fig. 4: Measurement of the indirect impact (IE) within the MLP and attention components of LLaMA for two-operand arithmetic
queries.

7B showcased a consistent RI of 24.5% that attenuated to
2.2% with fixed results. Impressively, Goat manifested the apex
RI value of 33.5% under standard conditions, but this dipped
to 3.0% upon result stabilization. Lastly, the numeral word
representation variant of GPT-J (NW) demonstrated an RI of
18.5% in standard scenarios, dwindling further to 1.5% in a
controlled result context.

The differential RI values, when juxtaposed for standard
versus result-fixed scenarios, resonate with the essentiality of
the last-token late MLP modules in orchestrating result-aligned
computations. The consistent diminution in RI values across all
models, when transitioning from standard to fixed results, not
only underscores this role but also fortifies the precision and
applicability of our evaluative mechanism.

C. Causal Effects on Various Tasks

To determine if the observed patterns in the influence of
model components are unique to arithmetic queries, we com-
pare our results from these queries with two additional tasks:
extracting a number from the prompt and generating predictions
of factual knowledge. By expanding our experimental scope, we
aim to address the following question:

”Q2 Is the observed activation patterning exclusive to sce-
narios involving arithmetic computations?”

D. Information Flow in Number Retrieval

We investigate a structured synthetic task focusing on pre-
dictions involving complex arithmetic calculations. We develop
a series of templates exemplified as “Given the elements n1 e1
and n2 e2, compute the value of eq”, where n1, n2 are numbers

TABLE II: Relative Importance (RI) for the final-token’s late
MLP activation region

Model RI(M late
−1) RI(M late

−1 )ResultF ixed

GPT-J 26.5% 1.8%
Pythia 2.8B 30.0% 2.5%
LLaMA 7B 24.5% 2.2%
Goat 33.5% 3.0%
GPT-J (NW) 18.5% 1.5%

chosen at random, e1, e2 denote distinct mathematical entities,
and eq represents a complex arithmetic operation involving
e1, e2. In this scenario, the deviation between input prompts
p1 and p2 is purely based on the nature of eq. For accurate
resolution of a query, the model is compelled to extract the
pertinent number from the prompt meticulously and apply
intricate arithmetic operations.

This task is designed to explore the model’s responses in
an environment necessitating numerical predictions allied with
advanced arithmetic comprehension. We delineate the indirect
effects recorded for the MLP modules of GPT-J in Figure 8. In
this context, high-effect activation sites unsurprisingly correlate
to the tokens of the entity eq, with additional lower-effect sites
observed towards the sequence end in layers 15–20. These
sites are congruent with model components identified as active
during complex arithmetic queries.

Nonetheless, the evaluation of the relative importance of
the later-stage MLPs reveals a predominant contribution of
RI(M late

−1 ) = 5.1% to the overall log IE. This modest RI, in
contrast to the elevated levels witnessed during complex arith-
metic evaluations, implies that the function of the concluding-
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Fig. 5: Measurement of the indirect impact (IE) within the MLP and attention components of Goat for two-operand arithmetic
queries.

token late MLPs is likely governed more by their role in infor-
mation processing rather than by the numerical characteristics
of the prediction. This observation substantiates our proposition
that perceives M late

−1 as the crucial juncture where information
about r is integrated into the residual stream for sophisticated
mathematical computations.

E. Information Flow on Factual Predictions

We conduct our experimental approach using datasets from
the LAMA benchmark [? ], which consists of natural lan-
guage templates that reflect knowledge-base relations, such as
“[subject] is the capital of [object]”. By filling in a template
with a specific subject (e.g., “Paris”), we prompt the model to
predict the correct object (“France”). Following our method for
complex arithmetic queries, we create pairs of factual queries
that differ only in the subject. In particular, we choose pairs
of entities from the total set of entities appropriate for a given
relation (e.g., cities for the relation “is the capital of”).

Next, we measure the indirect effect, following the approach
described in Equation 2, where the correct object corresponds to
the exact numerical result in the context of complex arithmetic
operations. Results from the experiments (Figure 7) reveal a
primary activation site in the initial layers at the tokens related
to the query’s subject. Notably, in this setup, the IE shows a
wider spread across the earlier layers (2-7) compared to the
complex arithmetic scenario.

Additionally, we evaluate the RI metric for the final MLP
modules, providing quantitative evidence for the significance
of the first MLP activation site by noting a reduced value of
RI(M late

−1 ) = 3.3%. For our experiments that involve predicting

factual information, we use six relations from the T-REx subset
of the LAMA benchmark:

• “[subject] is located in [object]”
• “[subject] has official language [object]”
• “[subject] has currency [object]”
• “[subject] is a citizen of [object]”
• “[subject] is a part of [object]”
• “[subject] is the leader of [object]”

F. Neuron-level Interventions

The empirical results presented in Sections 4.4 and 4.5 reveal
a measurable difference in the functions of the last-token mid-
late MLPs between complex arithmetic queries and two other
tasks that do not involve arithmetic calculations. We investigate
further to see if the components active within M late

−1 differ
among these task types. A detailed analysis is conducted where
each neuron within an MLP module is examined individu-
ally—specifically, each dimension in the output vector of the
function MLP (l) at a particular layer l. More precisely, we
perform interventions on each neuron, adjusting its activation
to match what would occur if the input query had different
operands (or a different entity), and then measure the resulting
indirect effect according to Eq. 2.

This approach is applied to complex arithmetic queries in
both Arabic numerals (Ar) and numeral words (NW), the
number retrieval task (NR), and factual knowledge queries (F).
Neurons are ranked based on the average effect observed in
each of these four scenarios, and the overlap in the top 400
neurons is calculated, which represents about 10% of GPT-J’s
hidden dimension of 4096. This process is particularly focused
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Fig. 6: Measurement of the indirect impact (IE) within the MLP and attention components of GPT-J for two-operand arithmetic
queries, using numeral words to represent quantities.

Fig. 7: Indirect effect assessed on GPT-J’s MLPs for factual
queries prediction.

Fig. 8: Indirect effect evaluated on GPT-J’s MLPs for number
retrieval prediction.

on layer l = 20, which shows the most significant IE within
M late

−1 for all tasks considered.

G. Model Accuracy Across Arithmetic Operations

Table III showcases the accuracy of different models across
various arithmetic operations. Each model’s proficiency is mea-
sured across standard arithmetic operations—addition, subtrac-
tion, multiplication, division—as well as more complex ones,
such as exponentiation and root extraction.

Table III offers a comprehensive insight into the arithmetic
proficiency of various models. One notable observation is
the variation in performance across operations. While most
models exhibit commendable accuracy in standard operations
like addition and subtraction, there’s a tangible decline in their
proficiency during division tasks. This disparity underscores the

intrinsic challenges certain arithmetic operations pose, even to
state-of-the-art models. Another intriguing observation is the
significant performance boost GPT-J experiences when arith-
metic problems are presented using numeral words as opposed
to Arabic numerals, emphasizing the influential role input
representation plays in determining a model’s accuracy. Among
the models evaluated, LLaMA emerges as the top performer,
showcasing consistent excellence across all arithmetic tasks,
thereby reflecting its robust computational abilities. Conversely,
Pythia 2.8B lags, especially in handling complex operations, in-
dicating potential areas for improvement. The challenges posed
by complex operations like exponentiation and root extraction
are evident in the performances of all models, albeit LLaMA
and Goat manage to demonstrate commendable proficiency.
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TABLE III: Accuracy of the models on various types of arithmetic queries.

Model + − × ÷ ˆ
√ Overall

GPT-J 60.5 70.8 76.5 36.9 55.2 58.4 58.2
GPT-J (Numeral Words) 91.2 82.3 80.2 54.8 72.3 74.5 75.9
Pythia 2.8B 52.3 70.0 60.5 35.9 50.3 53.2 55.4
LLaMA 97.8 98.5 97.6 85.5 92.3 93.4 94.2
Goat 95.5 95.8 88.3 51.2 87.1 89.4 82.9

Overall, these findings suggest that while contemporary models
are equipped to handle arithmetic queries, there’s significant
room for improvement, especially when it comes to intricate
mathematical tasks. As research in this domain progresses,
refining these models to enhance their accuracy in such tasks
will be pivotal.

V. CONCLUSION

We introduced causal mediation analysis as a mechanism to
deeply explore the processing dynamics of Language Models
(LMs) particularly in relation to complex arithmetic operations.
By orchestrating precise interventions on distinct segments of
the model, we evaluated the consequential influence of these
segments on the resultant predictions of the model. Our hypoth-
esis centered on the model’s strategy for generating responses to
intricate arithmetic queries; it transfers mathematically pertinent
information from mid-sequence early layers to the conclud-
ing token. This information undergoes further processing by
the subsequent Multi-Layer Perceptrons (MLP) modules. In
validating our theory, we executed experiments grounded in
causality on four diverse Transformer-based LMs, yielding
empirical data corroborating our proposed model of information
flow. Moreover, we illustrated that the identified patterns of
information flow were predominantly evident in the context of
complex arithmetic inquiries, as opposed to tasks devoid of
arithmetic computations. These discoveries not only chart new
territories in research pertaining to model refinement, efficient
training, and fine-tuning but also emphasize the significance
of focusing on the model’s specific components responsible
for distinct types of inquiries or calculations. In addition, the
insights gleaned from this study furnish a foundation for the
exploration of corrective measures for LMs on intricate mathe-
matical tasks during inference and allow for the assessment of
the credibility of the model’s predictions, opening avenues for
enhanced reliability in intricate arithmetic problem-solving.

VI. LIMITATIONS AND FUTURE WORK

Our study has provided foundational insights into the inner
workings of Language Models (LMs) in handling arithmetic
reasoning, with a specific emphasis on complex operations
such as exponentiation and roots. However, we acknowledge
certain limitations that serve as avenues for further exploration.
Primarily, our focus was constrained to equations involving
just two operands. It would be insightful for future research
to expand this to encompass equations with three or more
operands, potentially unveiling more intricate interaction pat-
terns and processing dynamics within the models. Furthermore,

while our research complexity was centered on roots and expo-
nentiation, there is a vast landscape of advanced mathematical
operations, including derivatives and integrals, which remains
to be explored. Such investigations would offer a richer under-
standing of the models’ capabilities in processing diverse and
sophisticated mathematical concepts. Additionally, our current
approach leaned heavily on interpreting the model’s internal
mechanisms, and we did not focus on improving its accuracy.
As we move forward, integrating interpretative insights with
efforts to enhance model accuracy will provide a more holistic
understanding of how LMs handle mathematical challenges.
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