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Abstract. The box-ball systems are integrable cellular automata whose long-time behav-
ior is characterized by soliton solutions, with rich connections to other integrable systems
such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball
system with two types of random initial configurations and obtain sharp scaling limits of the
soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton
lengths that turns out to be different from the single color case as established in [LLP20].
A large part of our analysis is devoted to studying the associated carrier process, which is
a multi-dimensional Markov chain on the orthant, whose excursions and running maxima
are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities,
Skorokhod decomposition, strong law of large numbers, and weak diffusive scaling limit to a
semimartingale reflecting Brownian motion with explicit parameters. We also establish and
utilize complementary descriptions of the soliton lengths and numbers in terms of the mod-
ified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion
processes.
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1. Introduction

1.1. The κ-color BBS. The box-ball systems (BBS) are integrable cellular automata in 1+1
dimension whose long-time behavior is characterized by soliton solutions. The κ-color BBS
is a cellular automaton on the half-integer lattice N, which we think of as an array of boxes
that can fit at most one ball of any of the κ colors. At each discrete time t ≥ 0, the system
configuration is given by a coloring ξ(t) : N → Zκ+1 := Z/(κ+ 1)Z = {0, 1, · · · , κ} with finite
support, that is, such that ξ(t)x = 0 for all but finitely many sites x. When ξ

(t)
x = i, we say

the site x is empty at time t if i = 0 and occupied with a ball of color i at time t if 1 ≤ i ≤ κ.
To define the time evolution rule, for each 1 ≤ a ≤ κ, let Ka be the operator on the subset
(Zκ+1)

N of all (κ+ 1)-colorings on N with finite support defined as follows:
(i) Label the balls of color a from left as a1, a2, · · · , am.
(ii) Starting from k = 1 to m, successively move ball ak to the leftmost empty site to its

right.
Then the time evolution (Xt)t≥0 of the basic κ-color BBS is given by

ξ(t+1) = K1 ◦K2 ◦ · · · ◦Kκ(ξ
(t)) ∀t ≥ 0. (1)

A typical 5-color BBS trajectory is shown below.

t = 0 : 321000051300411252000000000000000000000000000000 · · ·
t = 1 : 000321000153000141522000000000000000000000000000 · · ·
t = 2 : 000000321010530010410522000000000000000000000000 · · ·
t = 3 : 000000000302115301004100522000000000000000000000 · · ·
t = 4 : 000000000030002150311041000522000000000000000000 · · ·
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t = 5 : 0000000000030000251003104110005220000000000000000 · · ·
t = 6 : 0000000000003000020510031004110005220000000000000 · · ·
t = 7 : 0000000000000300002005100310004110005220000000000 · · ·

The grounding observation in the κ-color BBS with finitely many balls of positive colors is
that the system eventually decomposes into solitons, which are sequences of consecutive balls
of positive and non-increasing colors, whose length and content are preserved by the BBS
dynamics in all future steps. For instance, all of the non-increasing consecutive sequences of
balls in ξ(6) in the example (specifically, 3, 2, 51, 31, 411, 522) above are solitons and they
are preserved in ξ(7) up to their location and will be so in all future configurations. Note
that a soliton of length k travels to the right with speed k. Therefore, the lengths of solitons
in a soliton decomposition must be non-decreasing from left to right. In the early dynamics,
longer solitons can collide into shorter solitons (e.g., 321 during t = 0, 1, 2) and undergo a
nonlinear interaction.

The soliton decomposition of the BBS trajectory initialized at ξ(0) can be encoded in a
Young diagram Λ = Λ(ξ(0)) having jth column equal in length to the jth-longest soliton. For
instance, the Young diagram corresponding to the soliton decomposition of the instance of
the 5-color BBS given before is

Λ(ξ(0)) =

Note that the ith row of the Young diagram Λ(ξ(0)) is precisely the number of solitons of
length at least i.

1.2. Overview of main results. We consider the κ-color BBS initialized by a random BBS
configuration of system size n, and analyze the limiting shape of the random Young diagrams
as n tends to infinity. We consider two models that we call the ‘permutation model’ and
‘independence model’. For both models, we denote the kth row and column lengths of the
Young diagram encoding the soliton decomposition by ρk(n) and λk(n), respectively,

In the permutation model, the BBS is initialized by a uniformly chosen random permutation
Σn of colors {1, 2, · · · , n}. A classical way of associating a Young diagram to a permutation is
via the Robinson-Schensted correspondence (see [Sag01, Ch. 3.1]). A famous result of Baik,
Deift, and Johansson [BDJ99] tells us that the row and column lengths of the random Young
diagram constructed from Σn via the RS correspondence scale as

√
n. In Theorem 2.1, we

show that for the random Young diagram constructed via BBS, the columns scale as
√
n but

the rows scale as n. Namely,

ρk(n) ∼
n

k(k + 1)
, λk(n) ∼

2
√
n

√
k − 1 +

√
k
. (2)

While the row lengths in RS-constructed Young diagram are related to the longest increasing
subsequences, we show that the row lengths in the BBS-constructed Young diagram are related
to the number of ascents (Lemma 3.5). This will show that the majority of solitons have a
length of order O(1). Hence the row and column scalings in (2) are consistent.
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In the independence model, which we denote ξn,p, the colors of the sites in the interval [1, n]
are independently drawn from a fixed distribution p = (p0, p1, · · · , pκ) on Zκ+1. Recently, Lyu
and Kuniba obtained sharp asymptotics for the row lengths as well as their large deviations
principle in this independence model [KL20]. In Theorems 2.4-2.7, we establish a sharp
scaling limit for the column lengths for the independence model, as summarized in Table 1
and as bullet points below. Let p∗ := max(p1, . . . , pκ) denote the density of the maximum
positive color and let r denote the multiplicity of p∗ (i.e., number of pi’s such that pi = p∗ for
i = 1, . . . , κ).

• In the subcritical regime (p0 > p∗), top soliton lengths have sharp scaling logθ n +
(r − 1) logθ log n+O(1), where θ = p∗/p0.

• In the critical regime (p0 = p∗), n−1/2λ1(n) converges weakly to the maximum L1-
norm of a κ-dimensional semimartingale reflecting Brownian motion (SRBM).

• In the supercritical regime (p0 < p∗), λ1(n) = (p∗ − p0)n+Θ(
√
n). If r = 1, then all

subsequent top solitons are of order log n; If r ≥ 2, they are of order
√
n.

• The fluctuation of λ1(n) depends explicitly on a κ-dimensional SRBM, which arises
as the diffusive scaling limit of the associated carrier process.

 

 

Λ(𝑋!,#) = 

λ!(𝑛) 

𝜌!(𝑛) 
X!,# = 010001101110011001010000⋯ 

𝑛 

Bernoulli(p) 

𝑖 ≥ 1, 𝑗 ≥ 2 fixed 𝜌!(𝑛)  𝜆"(𝑛)  𝜆#(𝑛) 
Subcritical phase (𝑝 < 1/2) Θ(𝑛) Θ(log 𝑛	) Θ(log 𝑛	) 

Critical phase (𝑝 = 1/2) Θ(𝑛) Θ4√𝑛	6 Θ4√𝑛6 

Supercritical phase (𝑝 > 1/2) Θ(𝑛) Θ(log 𝑛) Θ(𝑛	) 
 

𝑖 ≥ 1, 𝑗 ≥ 2 fixed 𝜌"(𝑛)  𝜆!(𝑛) 𝜆#(𝑛)  

Subcritical phase 
(𝑝∗ < 𝑝%) 

Simple (𝑝∗ = 𝑝ℓ	for	unique	ℓ) 
𝑐"	𝑛 + Θ<√𝑛> 

𝑐 log 𝑛 + Θ(1)	 

Non-simple (𝑝∗ = 𝑝ℓ	for	multiple	ℓ) 𝑐 log 𝑛 + 𝑐' log log 𝑛 + Θ(1) 

Critical phase (𝑝∗ = 𝑝%) 𝑐"	𝑛 + Θ<√𝑛> 𝐷√𝑛 + 𝑜(√𝑛) Θ<√𝑛	> 

Supercritical 
phase (𝑝∗ > 𝑝%) 

Simple (𝑝∗ = 𝑝ℓ	for	unique	ℓ) 
𝑐"	𝑛 + Θ<√𝑛> 𝑐	𝑛 + Θ<√𝑛> 

Θ(log𝑛) 

Non-simple (𝑝∗ = 𝑝ℓ	for	multiple	ℓ) Θ<√𝑛	> 

 

Λ(𝑋!) = 

λ!(𝑛) 

𝜌!(𝑛) 
X! = 10	8	3	4	2	1	7	5	6	9	0	0	0⋯		 

Uniform random permutation ∈ 𝑆( 

Λ(𝑋!,𝒑) = 

λ!(𝑛) 

𝜌!(𝑛) 
X!,𝒑 = 00312051300411252003211000⋯ 

𝑛 

i.i.d ~𝒑 = (𝑝% , 𝑝! ,⋯ , 𝑝)) 

BBS 

BBS 

𝜌%(𝑛) ∼
𝑛

𝑘(𝑘 + 1)
 𝜆%(𝑛) ∼

√𝑛
√𝑘 − 1 + √𝑘

 

Table 1. Asymptotic scaling of the ith row length ρi and the jth column length
λj for the independence model with ball density p = (p0, p1, · · · , pκ) and p∗ =
max(p1, · · · , pκ). The asymptotic soliton lengths undergo a similar ‘double-jump’
phase transition depending on p∗ − p0 as in the κ = 1 case established in [LLP20],
but the scaling inside the subcritical and supercritical regimes depends on the multi-
plicity of the maximum positive color p∗. Sharp asymptotics for the row lengths have
been obtained in [KL20]. ci’s are constants depending on p and i; Constnts c, c′ do
not depend on j; D is a nonnegative and non-degenerate random variable.

We establish a similar ‘double-jump’ phase transition for the κ = 1 case established by
Levine, Lyu, and Pike [LLP20]. We find that in the multicolor (κ ≥ 2) case, the maximum
positive ball density p∗ = max(p1, · · · , pκ) compared to the zero density p0 dictates gen-
eral phase transition structure. However, we find that the scaling inside the subcritical and
supercritical regimes depends on the multiplicity r of the maximum positive color p∗. Further-
more, the fluctuation of the top soliton length λ1(n) about its mean behavior is described by
a κ-dimensional semimartingale reflecting Brownian motion (SRBM) lurking behind, whose
covariance matrix depends on p explicitly. Such SRBM arises as the diffusive scaling limit of
the associated carrier process.
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A large part of our analysis is devoted to studying the associated carrier process, which
is a Markov chain on the κ-dimensional nonnegative integer orthant, whose excursions and
running maxima are closely related to soliton lengths (see Lemmas 3.1-3.2). We establish its
sharp scaling of ruin probabilities, strong law of large numbers, and weak diffusive scaling
limit to an SRBM with explicit parameters (Theorems 2.3-2.5). We also establish and utilize
alternative descriptions of the soliton lengths and numbers in terms of the modified Greene-
Kleitman invariants for the box-ball systems (Lemma 3.5) and associated circular exclusion
processes.

1.3. Background and related works. The κ-color BBS was introduced in [Tak93], gener-
alizing the original κ = 1 BBS first invented by Takahashi and Satsuma in 1990 [TS90]. In
the most general form of the BBS, each site accommodates a semistandard tableau of rect-
angular shape with letters from {0, 1, · · · , κ} and the time evolution is defined by successive
application of the combinatorial R (cf. [FYO00, HHI+01, KOS+06, IKT12]). For a friendly
introduction to the combinatorial R, see [KL20, Sec. 3]. The κ-color BBS treated in this
paper corresponds to the case where the tableau shape is a single box, which was called the
basic κ-color BBS in [KL20, Kon20]. The BBS is known to arise both from the quantum and
classical integrable systems by the procedures called crystallization and ultradiscretization,
respectively. This double origin of the integrability of BBS lies behind its deep connections
to quantum groups, crystal base theory, solvable lattice models, the Bethe ansatz, soliton
equations, ultradiscretization of the Korteweg-de Vries equation, tropical geometry, and so
forth; see for example the review [IKT12] and the references therein.

BBS with random initial configuration is an emerging topic in the probability literature
and has gained considerable attention with a number of recent works [LLP20, CKST18, KL20,
FG18, KL20, CS19a, CS19b]. There are roughly two central questions that the researchers
are aiming to answer: 1) If the random initial configuration is one-sided, what is the limiting
shape of the invariant random Young diagram as the system size tends to infinity? 2) If
one considers the two-sided BBS (where the initial configuration is a bi-directional array
of balls), what are the two-sided random initial configurations that are invariant under the
BBS dynamics? Some of these questions have been addressed for the basic 1-color BBS
[LLP20, FNRW18, FG18, CKST18] as well as for the multicolor case [KL20, KLO18, Kon20].
More recently, invariant measures of the discrete KdV and Toda-type systems have been
investigated [CS20].

Three important works are strongly related to this paper. In [LLP20], Levine, Lyu, and
Pike studied various soliton statistics of the basic 1-color BBS when the system is initialized
according to a Bernoulli product measure with ball density p on the first n boxes. One of
their main results is that the length of the longest soliton is of order log n for p < 1/2, order√
n for p = 1/2, and order n for p > 1/2. Additionally, there is a condensation toward the

longest soliton in the supercritical p > 1/2 regime in the sense that, for each fixed j ≥ 1,
the top j soliton lengths have the same order as the longest for p ≤ 1/2, whereas all but the
longest have order log n for p > 1/2. Their analysis is based on geometric mappings from
the associated simple random walks to the invariant Young diagrams, which enable a robust
analysis of the scaling limit of the invariant Young diagram. However, this connection is not
apparent in the general κ ≥ 1 case. In fact, one of the main difficulties in analyzing the soliton
lengths in the multicolor BBS is that within a single regime, there is a mixture of behaviors
that we see from different regimes in the single-color case.
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The row lengths in the multicolor BBS are well-understood due to recent works by Kuniba,
Lyu, and Okado [KLO18] and Kuniba and Lyu [KL20]. The central observation is that, when
the initial configuration is given by a product measure, then the sum of row lengths can be
computed via some additive functional (called ‘energy’) of carrier processes of various shapes,
which are finite-state Markov chains whose time evolution is given by combinatorial R. In
[KLO18], the ‘stationary shape’ of the Young diagram for the most general type of BBS is
identified by the logarithmic derivative of a deformed character of the KR modules (or Schur
polynomials in the basic case). In [KL20], for the (basic) κ-color BBS that we consider in
the present paper, it was shown that the row lengths satisfy a large deviations principle and
hence the Young diagram converges to the stationary shape at an exponential rate, in the
sense of row scaling.

The central subject of this paper is the column lengths of the Young diagram for the basic
κ-color BBS. We develop two main tools for our analysis, which are a modified version of
Greene-Kleitman invariants for BBS (Section 3.3) and the carrier process (see Def. 2.2).
For the independence model, we obtain the scaling limit of the carrier process as an SRBM
[Wil95] and it plays a central role in our analysis. For the permutation model, the carrier
process gives rise to a ‘circular exclusion process’, which can be regarded as a circular version
of the well-known Totally Asymmetric Simple Exclusion Process (TASEP) on a line (see, e.g.,
[F+18, BFPS07, BFS08]). For its rough description, consider the following process on the unit
circle S1. Starting from some finite number of points, at each time, a new point is added to
S1 independently from a fixed distribution, which then deletes the nearest counterclockwise
point already on the circle. Equivalently, one can think of each point in the circle trying to
jump in the clockwise direction. It turns out that this process is crucial in analyzing the
permutation model (Section 4.2), whereas for the independence model, the relevant circular
exclusion process is defined on the integer ring Zκ+1 where points can stack up at the same
location (Section 3.1). Interestingly, a cylindric version of Schur functions has been used to
study rigged configurations and BBS [LPS14].

1.4. Organization. In Section 2, we define the carrier process, state the permutation and
the independence model for the κ-color BBS, and state our main results. We also provide
numerical simulation to validate our results empirically. In Section 3, we introduce infinite
and finite capacity carrier processes for the κ-color BBS and state the three key combinatorial
lemmas (Lemmas 3.1, 3.3, 3.5). In Section 4, we prove our main result for the permutation
model (Theorem 2.1) by using the modified GK invariants for BBS (Lemma 3.5) and analyzing
the associated circular exclusion process. In Section 5, we prove Theorem 2.3 (i) about the
stationary behavior of the subcritical carrier process. Next, in Section 6, we introduce the
‘decoupled carrier process’ and develop the ‘Skorokhod decomposition’ of the carrier process.
These will play critical roles in the analysis in the following sections. In Section 7, we analyze
the decoupled carrier process over the i.i.d. ball configuration. In Section 8, we prove Theorem
2.3 (ii) and Theorem 2.4. In Sections 9 and 10, we establish a linear and diffusive scaling
limit of the carrier process, which is stated in Theorem 2.5. Background on SRBM and
an invariance principle for SRBM are also provided in Section 10. In Section 11, we prove
Theorems 2.6 and 2.7. Lastly, in Section 12 we provide postponed proofs for the combinatorial
lemmas stated in Section 3.
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1.5. Notation. We use the convention that summation and product over the empty index
set equal zero and one, respectively. For any probability space (Ω,F ,P) and any event A ∈ F ,
we let 1(A) denote the indicator variable of A. Let Cd(0,∞) denote the space of continuous
functions f : [0,∞) → Rd endowed with the topology of uniform convergence on compact
intervals. We let tridiagonald(a, b, c) denote the d× d matrix which has a on its subdiagonal,
b on its diagonal, and c on its superdiagonal entries, and zeros elsewhere.

We adopt the notations R+ = [0,∞), N = {1, 2, 3, . . .}, and Z≥0 = N∪{0} throughout. For
a sequence of events (An)n≥1, we say An occurs with high probability if P(An) → 1 as n→ ∞.
We employ the Landau notations O(·), Ω(·), Θ(·) in the sense of stochastic boundedness.
That is, given {an}∞n=1 ⊂ R+ and a sequence {Wn}∞n=1 of nonnegative random variables, we
say that Wn = O(an) with high probability if for each ε > 0, there is a constant C ∈ (0,∞)
such that P(Wn < Can) ≥ 1 − ε for all sufficiently large n. We say that Wn = Ω(an) if for
each ε > 0, there is a c ∈ (0,∞) such that P(Wn > can) ≥ 1 − ε for all sufficiently large n,
and we say Wn = Θ(an) with high probability if Wn = O(an) and Wn = Ω(an) both with
high probability. In all of these Landau notations, we require that the constants c, C do not
depend on n.

2. Statement of results

Our main results concern the asymptotic behavior of top soliton lengths associated with
the κ-color BBS trajectory for two models of random initial configuration ξ: (1) κ = n and
ξ[1, n] is a random uniform permutation of length n; (2) κ is fixed and ξx = i independently
with a fixed probability pi, i ∈ Zκ+1 for each x ∈ [1, n].

2.1. The permutation model. For the permutation model, let (Ux)x≥1 be a sequence of
i.i.d. Uniform([0, 1]) random variables. For each integer n ≥ 1, we denote by V1:n < V2:n <
· · · < Vn:n the order statistics of U1, U2, · · · , Un. Then it is easy to see that the random
permutation Σn on [n] such that Vi:n = UΣn(i) for all 1 ≤ i ≤ n is uniformly distributed
among all permutations on [n]. Define

ξnx := Σn(x) · 1(1 ≤ x ≤ n). (3)

We now state our main result for the permutation model. We obtain a precise first-order
asymptotic for the largest k rows and columns, as stated in the following theorem.

Theorem 2.1 (The permutation model). Let ξn be the permutation model as above. For each
k ≥ 1, denote ρk(n) = ρk(ξ

n) and λk(n) = λk(ξ
n). Then for each fixed k ≥ 1, almost surely,

lim
n→∞

n−1ρk(n) =
1

k(k + 1)
, lim

n→∞
n−1/2λk(n) =

2
√
k − 1 +

√
k
.

Our proof of Theorem 2.1 proceed as follows. We first establish a combinatorial lemma
(Lem. 3.5) that associates the soliton lengths and numbers with a modified version of Greene-
Kleitman invariants for BBS. We then utilize the tail bounds on longest increasing subse-
quences in uniformly random permutations in Baik, Deift, and Johansson [BDJ99] for es-
tablishing the scaling limit for the lengths of the columns. For the row lengths, we use the
characterization of soliton numbers as an additive functional of finite-capacity carrier processes
[KL20]. Such a process becomes an exclusion process on the unit circle for the permutation
model.
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2.2. The independence model. To define the independence model, fix integers n, κ ≥ 1.
Let p = (p0, p1, · · · , pκ) be a probability distribution on {0, 1, · · · , κ}. Let ξ = ξp be the
sequence (ξx)x∈N of i.i.d. random variables ξx where

P(ξx = i) = pi for i = 0, 1, . . . , κ.

For each integer n ≥ 1, define κ-color BBS configuration ξn,p of size n by

ξn,px = ξpx · 1(1 ≤ x ≤ n).

We may further assume, without loss of generality, that pi > 0 for all 1 ≤ i ≤ κ. Indeed,
if pi = 0 for some i, then we can omit the color i entirely and consider the system as a
(κ− 1)-color BBS by shifting the colors {i+ 1, · · · , κ} to {i, · · · , κ− 1}.

Through various combinatorial lemmas (see Section 3), we will establish that the soliton
lengths λj(n) of for the i.i.d. model are closely related to the extreme behavior of a Markov
chain (Wx)x∈N defined on the nonnegative integer orthant Zκ

≥0, which we call the ‘κ-color
carrier process’. Denote ei ∈ Zκ whose coordinates are all zero except the ith coordinate
being 1.

𝑖 ≥ 1, 𝑗 ≥ 2 fixed 𝜌!(𝑛)  𝜆"(𝑛) 𝜆#(𝑛)  

Subcritical phase (𝑝∗ < 𝑝%) Θ(𝑛) Θ(log𝑛	) Θ(log𝑛	) 

Critical phase (𝑝∗ = 𝑝%) Θ(𝑛) Θ3√𝑛5 Θ3√𝑛	5 

Supercritical phase 
(𝑝∗ > 𝑝%) 

Simple (𝑝∗ = 𝑝ℓ	for	unique	ℓ) 
Θ(𝑛) Θ(𝑛) 

Θ(log𝑛) 

Non-simple (𝑝∗ = 𝑝ℓ	for	multiple	ℓ) O3√𝑛5 ∩ Ω3√𝑛/log𝑛5 

 

 

 

 

   𝑝! 𝑝" 

𝑝# 

𝑝" 

𝑝# 

𝑝! 

𝑝! 

𝑝" 

𝑝# # color 1 balls  

# color 2 balls  

𝑥 + 𝑦 = 8 

Figure 1. State space diagram for the carrier process Wx for κ = 2. Red arrows
illustrate the transition kernel at the ‘interior’ (gray) and ‘boundary’ (green) points
in the state space. A single excursion (starting and ending at the origin) of ‘height’
8 is shown in a blue path with arrows.

Definition 2.2 (κ-color carrier process). Let ξ := (ξx)x∈N be κ-color ball configuration. The
(κ-color) carrier process over ξ is a process (Wx)x∈N on the state space Ω := Zκ

≥0 defined by
the following evolution rule: Denoting i := ξx+1 if ξx+1 ∈ {1, . . . , κ} and i := κ+1 if ξx+1 = 0,

Wx+1 −Wx =

{
ei − 1(i∗ ̸= 0) ei∗ if 1 ≤ i ≤ κ

−1(i∗ ̸= 0) ei∗ if i = κ+ 1,
(4)

where i∗ := sup{1 ≤ j < i : Wx(j) ≥ 1} with the convention sup ∅ = 0. Unless otherwise
mentioned, we take W0 = 0 and ξ = ξp with density p = (p0, . . . , pκ).
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In words, at location x, the carrier holds Wx(i) balls of color i for i = 1, . . . , κ. When a new
ball of color 1 ≤ ξx+1 ≤ κ is inserted into the carrier Wx, then a ball of the largest available
color that is smaller than ξx is excluded from Wx; if there is no such ball in Wx, then no ball
is excluded. If ξx+1 = 0, then no new ball is inserted, and a ball of the largest available color
that is smaller than ξx is excluded from Wx. The resulting state of the carrier is Wx+1. We
call the transition rule (4) as the ‘circular exclusion’ (since a ball in the carrier’s possession is
excluded from the carrier upon the insertion of a new ball according to the circular ordering).
One can also view the carrier process as a multi-type queuing system, where Wx denotes the
state of the queue and Wx(i) is the number of jobs of ‘cyclic hierarchy’ i to be processed.

A large portion of this paper will be devoted to analyzing scaling limits of the carrier
process Wx over the i.i.d. configuration ξp. In this case, Wx is a Markov chain on the state
space of the nonnegative integer orthant Ω. See Figure 1 for an illustration.

Theorem 2.3 states the behavior of the carrier process in the subcritical regime p0 >
max(p1, · · · , pκ). Define a function π : Ω → R by

π(n1, n2, · · · , nκ) =
κ∏

i=1

(
1− pi

p0

)(
pi
p0

)ni

, (5)

This is a valid probability distribution on Ω when p0 > max(p1, · · · , pκ) since
∞∑

n1=0

· · ·
∞∑

nκ=0

κ∏
i=1

(
pi
p0

)ni

=
κ∏

i=1

(
1− pi

p0

)−1

∈ (0,∞).

Note that π is the the product of geometric distributions of means pi/(p0 − pi) > 0 for
i = 1, . . . , κ.

Theorem 2.3 (The carrier process at the subcritical regime). Let p∗ := max(p1, · · · , pκ) and
suppose p0 > p∗. Let r denote the multiplicity of p∗ (i.e., number of i’s in {1, . . . , κ} s.t.
pi = p∗).
(i) (Convergence) The carrier process Wx is an irreducible, aperiodic, and positive recurrent

Markov chain on Zκ
≥0 with π in (5) as its unique stationary distribution. Thus, writing

dTV for the total variation distance and denoting the distribution of Wx by πx, then

lim
x→∞

dTV (πx, π) = 0.

(ii) (Multi-dimensional Gambler’s ruin) Let T1 denote the first return time of Wx to the origin
and let h1 := max0≤x≤T1∥Wx∥1. Then for all N ≥ 1, there exists a constant δ > 0
such that

δ

(
N + r − 1

r − 1

)(
p∗

p0

)N

≤ P(h1 ≥ N) ≤ C

(
N + r − 1

r − 1

)(
p∗

p0

)N

, (6)

where C = 1 if r = κ and C =
(

p∗

p∗−p(2)

)κ−r
if r < κ with p(2) being the second largest

value among p1, . . . , pκ.

By using Theorem 2.3, we establish sharp scaling limit of soliton lengths for the indepen-
dence model in the subcritical regime, which is stated in Theorem 2.4 below. (See Section 1.5
for a precise definition of Landau notations.)
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Theorem 2.4 (The independence model – Subcritical regime). Fix κ ≥ 1 and let ξn,p be
as the i.i.d. model above. Denote λj(n) = λj(ξ

n,p), p∗ := max1≤i≤κ pi, and r := |{1 ≤ i ≤
κ : pi = p∗}|. Suppose p0 > p∗ and denote θ := p∗/p0. Then for each fixed j ≥ 1,

λj(n) = logθ n+ (r − 1) logθ log n+Θ(1). (7)

Furthermore, denote νn := (1 + δn) logθ (σn/(r − 1)!), where σ :=
∏κ

i=1

(
1− pi

p0

)
and

δn := (r−1) log logθ(σn/(r−1)!)+log(r−1)!
log σn/(r−1)! . Then for all x ∈ R,

exp(−δθ−x) ≤ lim inf
n→∞

P (λj(n) ≤ x+ νn) (8)

≤ lim sup
n→∞

P (λj(n) ≤ x+ νn) ≤ exp

(
− C

(r − 1)!
θ−(x−1)

) j−1∑
k=0

θ−k(x−1)

k!(r − 1)!
,

where δ > 0, C ≥ 1 are constants in Theorem 2.3.

Next, we turn our attention to the critical and the supercritical regime, where p0 ≤
max(p1, · · · , pκ). In this regime, the carrier process does not have a stationary distribu-
tion and we are interested in identifying the limit of the carrier process in the linear and
diffusive scales. A natural candidate for the diffusive scaling limit (if it exists) would be the
semimartingale reflecting Brownian motion (SRBM) [Wil95], whose definition we recall in
Section 10. Roughly speaking, an SRBM on a domain S ⊆ Rκ is a stochastic process W that
admits a Skorokhod-type decomposition

W = X +RY,

where X is a κ-dimensional Brownian motion with drift θ, covariance matrix Σ, and initial
distribution ν. The ‘interior process’ X gives the behavior of W in the interior of S. When
it is at the boundary of S, it is pushed instantaneously toward the interior of S along the
direction specified by the ‘reflection matrix’ R and an associated ‘pushing process’ Y . We say
such W a SRBM associated with (S, θ,Σ, R, ν). If R = I −Q for some nonnegative matrix Q
with spectral radius less than one, then such W is unique (pathwise) for possibly degenerate Σ
when S = Rκ

≥0 [HR81]. If Σ is non-degenerate and S is a polyhedron, a necessary and sufficient
condition for the existence and uniqueness of such SRBM is that R is ‘completely-S’ (see Def.
10.2) [Wil95, KW07].

A crucial observation for analyzing the carrier process in the critical and supercritical
regimes is the following. Of all the κ coordinates of Wx, some have a negative drift and some
others do not. We call an integer 1 ≤ i ≤ κ an unstable color if pi ≥ max(pi+1, · · · , pκ, p0)
and a stable color otherwise. Since balls of color i can only be excluded by balls of colors in
{i+1, . . . , κ, 0}, then the coordinate Wx(i) is likely to diminish if the color i is stable but not
if i is unstable. Denote the set of all unstable colors by Cp

u = {α1, · · · , αr} with α1 < · · · < αr

and let Cp
s := {0, 1, · · · , κ} \ Cp

u denote the set of stable colors. (See Figure 8 for illustration.)
By definition, we have

pα1 ≥ pα2 ≥ · · · ≥ pαr ≥ pαr+1 := p0. (9)

Now, we will construct a new process Xx, which we call the ‘decoupled carrier process’ (see
Section 6.1), that mimics the behavior of Wx but the values of Xx on the unstable colors are
unconstrained and thus can be negative. Since Wx is confined in the nonnegative orthant
Zκ
≥0 but Xx is not, we need to add some correction process to Xx that ‘pushes’ it toward the
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orthant Zκ
≥0 whenever Xx has some of its coordinates going to negative. More precisely, in

Lemma 6.3, we identify a ‘reflection matrix’ R ∈ Rκ×κ and a ‘pushing process’ Yx on Zκ such
that

Wx = Xx +RYx for x ≥ 0,

where Y0 = 0 and for each i ∈ {1, . . . , κ}, the ith coordinate of Yx is non-decreasing in x
and can only increase when Wx(i) = 0. We call the above as a Skorokhod decomposition of
the carrier process (Our definition is motivated by the Skorokhod problem, see Def. 10.3.)
This and the classical invariance principle for SRBM [RW88] is the key to establishing the
following result on the scaling limit of the carrier process.

 

  

Figure 2. Simulation of the carrier process Wx in diffusive scaling for κ = 2, n =
2 × 105, at three critical ball densities (left) p = (4/11, 4/11, 3/11), (middle) p =
(1/3, 1/3, 1/3) , and (right) p = (4/11, 3/11, 4/11). In all cases, the process converges
weakly to a semimartingale Reflecting Brownian motion on R2

≥0 whose covariance
matrix is non-degenerate in the middle and degenerate in the other two cases.

Theorem 2.5 (Linear and diffusive scaling limit of the carrier process). Suppose p0 ≤
max(p1, · · · , pκ). Let α1 < · · · < αr as before and define

µ = (µ1, . . . , µκ) :=
r∑

j=1

eαj (pαj − pαj+1), (10)

where we let pαr+1 = p0.
(i) (Linear scaling) Almost surely,

lim
x→∞

x−1Wx = lim
x→∞

x−1

(
max
0≤t≤x

Wt(i) ; i = 1, . . . , κ

)
= µ.

(ii) (Diffusive scaling) Let (W t)t∈R≥0
denote the linear interpolation of (Wx−xµ)x∈N. Then

as n→ ∞,

(x−1/2W xt ; 0 ≤ t ≤ 1) =⇒ W in C([0, 1]),

where W is an SRBM associated with data (S,0,Σ, R, δ0) (see Def. 10.1) with S :=
{(x1, . . . , xκ) ∈ Rκ : xi ≥ 0 if µi = 0}, Σ the limiting covariance matrix (possibly
degenerate) in (49), R := tridiagκ(0, 1,−1), and δ0 the point mass at 0.
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In Figures 2 and 3, we provide simulations of the carrier process Wx = (Wx(1),Wx(2))
for κ = 2 in various regimes, numerically verifying Theorem 2.5. In Figure 2, we show the
carrier process in diffusive scaling (n−1/2) at three different critical ball densities p. The
carrier process in diffusive scaling converges weakly to an SRBM in R2

≥0, whose covariance
matrix depends on p and can be degenerate. For instance, at p = (4/11, 4/11, 3/11), Wx(2)
is subcritical (since p2 = 3/11 < 4/11 = p0), and Wx(1) is critical, so the SRBM degenerates
in the second axes.

In Figure 3, we show the carrier process in diffusive scaling at three different supercritical
ball densities p. The carrier process has a nonzero drift µ = (µ1, µ2) ∈ R2

≥0. If µ1, µ2 > 0,
then the centered carrier process Wx − xµ converges weakly to a 2-dimensional Brownian
motion in diffusive scaling. If either µ1 or µ2 equals zero, then the diffusive scaling limit is
an SRBM on R≥0 × R or R × R≥0, which is the domain S in the statement of Theorem 2.5
(ii). For instance, for p = (3/11, 6/11, 2/11) as in Figure 3 (d), the SRBM is on domain
S = R×R≥0 and has a degenerate covariance matrix, since Wx(2) is subcritical and vanishes
in the diffusive scale.

 

  

(𝑎) (𝑏) (𝑐) (𝑑) 

Figure 3. Simulation of the carrier process Wx in diffusive scaling for κ = 2,
n = 2 × 105, at four supercritical ball densities (a) p = (3/11, 4/11, 4/11), (b)
p = (3/11, 5/11, 3/11), (c) p = (2/11, 5/11, 4/11), and (d) p = (3/11, 6/11, 2/11).
The processes grow linearly at least in one dimension (the top row shows uncentered
processes in diffusive scaling). As shown in the second row, after centering by the
mean drift µ, the processes converge weakly to semimartingale Reflecting Brownian
motion on domains (a) R≥0×R, (b) R×R≥0, (c) R2 (no reflection), and (d) R×R≥0

(with a degenerate covariance matrix).

Using the linear and the diffusive scaling limit of the carrier process in Theorem 2.5, we
obtain a sharp scaling limit of soliton lengths for the independence model in the critical and
subcritical regimes. These results are stated in Theorems 2.6 and 2.7 below.
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Theorem 2.6 (The independence model – Critical regime). Suppose p∗ = p0. Then for each
fixed j ≥ 1, λj(n) = Θ(

√
n). Furthermore, let Σ be a κ×κ covariance matrix defined explicitly

in (49) and R = tridiagκ×κ(0, 1,−1). Let W be a semimartingale reflecting Brownian motion
associated with data (Rκ

≥0,0,Σ, R, δ0) (see Def. 10.1). Then as n→ ∞,

n−1/2λ1(n) =⇒ sup ∥W∥1, (11)

where =⇒ denotes weak convergence.

Theorem 2.7 (The independence model – Supercritical regime). Suppose p∗ > p0.
(i) (Top soliton length in the supercritical regime) It holds that

lim
n→∞

n−1λ1(n)
a.s.
= p∗ − p0 and λ1(n) = (p∗ − p0)n+Θ(

√
n).

More precisely, let α1 < · · · < αr denote the unstable colors and let αr+1 := 0. Let
µ = (µ1, . . . , µκ) be as in (10) and J := {i : µi > 0}. Let W = (W1, . . . ,Wκ) denote
the SRBM in Theorem 2.5 (ii). Then

κ∑
i=1

W i(1) ⪯ lim inf
n→∞

λ1(n)− (p∗ − p0)n√
n

(12)

⪯ lim sup
n→∞

λ1(n)− (p∗ − p0)n√
n

⪯
∑
j∈J

Bj(1) + sup
0≤v≤1

κ∑
j∈{1,...,κ}\J

W i(v),

where ⪯ denotes stochastic dominance and B = (B1, . . . , Bκ) is a Brownian motion
in Rκ with zero drift and the same covariance matrix with W.

(ii) (Subsequent soliton lengths in the simple supercritical regime) Suppose r = 1. Then for
any fixed j ≥ 2, λj(n) = Θ(log n) with high probability.

(iii) (Subsequent soliton lengths in the non-simple supercritical regime) Suppose r ≥ 2. Then
for any fixed j ≥ 2, λj(n) = Θ(

√
n) with high probability, that is, for each ε > 0, there

exists constants c1, c2 > 0 such that lim inf
n→∞

P(λj(n)/
√
n ∈ [c1, c2]) ≥ 1− ε.

Multiple remarks on Theorems 2.4-2.7 are in order. These results extend the ‘double-jump’
phase transition on soliton lengths for the κ = 1 case established by Levine, Lyu, and Pike
[LLP20] to the multicolor case. As in the κ = 1 case, we find that there exists three regimes
– subcritical (λ1(n) = Θ(log n)), critical (λ1(n) = Θ(

√
n)), and supercritical (λ1(n) = Θ(n))

– depending whether the maximum ball density p∗ = max(p1, . . . , pκ) exceeds the empty box
density p0. However, we find that the scaling behavior of the soliton lengths inside each regime
is significantly more nuanced in the multicolor case than in the single-color case.

In the subcritical regime p∗ < p0, we find all top soliton lengths λj(n) for j ≥ 1 is concen-
trated around logθ n+(r−1) logθ log n, where θ = p∗/p0 and r denotes the multiplicity of the
maximum positive color p∗, and the tail of λn(n) has a Gumbel-type tail distribution. While
this scaling coincides with that in the κ = 1 case for r = 1, if r ≥ 2, then the top solitons
are an asymptotically ‘a tad’ longer by (r − 1) logθ log n, which is caused by the competition
between multiple maximal colors.
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In the critical regime p∗ = p0, we find that λ1(n)/
√
n ⇒ D, where the distirbution of the

non-degenerate random variable D depends on a SRBM on the orthant Rκ
≥0 with zero drift

and an explicit covariance matrix Σ. This is the same SRBM to which the entire carrier
process converges weakly in diffusive scaling as in Theorem 2.5. For instance, if p∗ is uniquely
achieved, then the SRBM W is degenerate in all but one dimension. In particular, for κ = 1,
our result recovers the corresponding result in [LLP20]. In general, Σ can depend on the
entire p, capturing the intertwined interaction between balls of all colors in the multicolor
case.

In the supercritical regime p∗ > p0, Theorem 2.7 shows that λ1(n)/n → p∗ − p0 almost
surely and the fluctuation of λ1(n) about its mean is of order

√
n. While a central limit

theorem (CLT) for λ1(n) in the supercritical regime was shown in [LLP20] for the κ = 1 case,
we find in the multicolor case that the distribution of the fluctuation of λ1(n) does not always
satisfy CLT. More precisely, the following corollary shows that CLT holds for λ1(n) if and
only if the ball density is strictly decreasing on the unstable colors. (Recall (9).)

Corollary 2.8. (Fluctuation of λ1 in the supercritical regime) Keep the same setting as in
Theorem 2.4. Suppose supercritical regime p∗ > p0. Let α1 < · · · < αr denote the unstable
colors.
(i) Further assume pα1 > · · · > pαr , Then λ1(n) satisfies the following central limit theorem

λ1(n)− (p∗ − p0)n√
n

=⇒ N(0, ∥Σ∥1),

where the limiting distribution is the normal distribution with mean zero and variance
∥Σ∥1 for Σ the covariance matrix in Theorem 2.5.

(ii) If pαj = pαj+1 for some 1 ≤ j ≤ r − 1, then

E
[
lim inf
n→∞

λ1(n)− (p∗ − p0)n√
n

]
> 0.

In particular, λ1(n) does not satisfy the central limit theorem.

Indeed, suppose pα1 > · · · > pαr as in Corollary 2.8 (i). Then Theorem 2.5 states that
x−1/2(Wx−µx) converges weakly to the (non-reflecting) Brownian motion in Rκ with covari-
ance matrix Σ. Hence in this case Theorem 2.7 (i) immediately implies that

λ1(n)− (p∗ − p0)n√
n

=⇒
κ∑

i=1

Bi(1),

where B = (B1, . . . , Bκ) is a Brownian motion in Rκ with zero drift and covariance matrix
Σ in Theorem 2.5. Since B(1) is a standard normal vector with mean zero and covariance
matrix Σ, the result in Corollary 2.8 (i) follows.

If we are in the situation as in Corollary 2.8 (ii), then some of the consecutive unstable
colors have the same ball density, i.e., pαj = pαj+1 . For every such αj , the corresponding
coordinate has to remain nonnegative in the limiting SRBM. So in this case, the fluctuation
of λ1 about its mean in the diffusive scaling has a positive expectation. As an example,
consider the case p = (p0, p1, p2) with p1 > p2 = p0 (see Figure 3 (b)). In this case, the
limiting SRBM W = (W 1,W 2) is on the domain R×R≥0, so the lower bound W 1(1)+W 2(1)
on the fluctuation in (12) has a positive expectation. This can be understood for the following
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reasons. Since p1 > max(p0, p2), the number of color 1 balls in the carrier grows linearly and
makes the dominant contribution (of order n) to λ1(n). However, the number of color 2 balls
in the carrier still contributes to λ1(n) by order

√
n since p2 = p0. While the fluctuation of

the number of color 1 balls around its mean (p1 − p0)n has mean zero, the contribution of
color 2 balls of order

√
n is only visible in the diffusive scaling and it is almost always of a

positive amount.
Another interesting behavior of the multicolor BBS is the order of subsequent soliton

lengths, λj(n) for j ≥ 2, in the supercritical regime, which depends drastically on the multi-
plicity r of the maximal ball density p∗. That is, λj(n) for all j ≥ 2 is of order log n if r = 1,
but they are of order

√
n if r ≥ 2. The former case agrees with the results for the κ = 1

case in [LLP20]. There, it was shown that λ2(n) comes from the subexcursions of the carrier
process below its running maximum. The height of such subexcursions has exponential tails,
so we have order log(n) as the order of the maximum of n subexponential random variables.
However, if r ≥ 2 in the multicolor case, the discrepancy between the number of balls of two
maximal colors is of order

√
n and contributes to λ2(n) (see the proof of Theorem 2.7 (iii)).

We remark that a duality between the subcritical and the supercritical regimes for κ = 1
established in [LLP20], in the sense that λj+1 in the superciritcal regime corresponds to λj
in the subcritical regime for j ≥ 1. Our results confirm a similar correspondence still holds
asymptotically for the simple (r = 1) supercritical regime; but λj+1 in the non-simple (r ≥ 2)
supercirital regime, corresponds to λj in the critical regime.

3. Key combinatorial lemmas

3.1. Infinite capacity carrier process and soliton lengths. The definition of κ-color BBS
dynamics we gave in the introduction involves the non-local movement of balls. It can instead
be defined using a ‘carrier’, which gives a localized characterization of the process and reveals
a number of important invariants that fully determine the resulting solitons. For the simplest
case κ = 1, imagine a carrier of infinite capacity sweeps through the time-t configuration ξ(t)
from the left, picking up each ball it encounters and depositing a ball into each empty box
whenever it can. We will see that after we run this carrier over ξ(t), the resulting configuration
is in fact ξ(t+1). Moreover, the maximum number of balls in the carrier during the sweep is
in fact the first soliton length λ1.

Now we introduce the infinite-capacity carrier process and the carrier version of the κ-color
BBS dynamic. Denote

B∞ :=
{
x ∈ {0, 1, · · · , κ}N | x is non-increasing and has finite support

}
,

which is the set of ‘reversed’ semi-standard Young tableaux of shape 1×∞ and letters from
{0, . . . , κ}. Namely, an element in this set is an infinite string of letters consisting of finitely
many non-increasing nonzero letters followed by an infinite string of zeros. An element x in
B∞ describes the state of the infinite-capacity carrier. If the carrier at state x encounters a
new ball of color y, it produces a new carrier state x′ and a new ball color y′ according to
the ‘circular exclusion rule’: Inserting y into x, y′ is the largest letter in x with y′ < y, and
x′ is obtained by replacing the leftmost letter y′ in x with y. More precisely, define a map
Ψ : B∞ × {0, 1, · · · , κ} → {0, 1, · · · , κ} × B∞, (x, y) 7→ (y′,x′) by
(i) Suppose y ≥ 1 and denote i∗ = min{i ≥ 1 | x(i) < y}. Then y′ = x(i∗) and

x′(i) = x(i)1(i ̸= i∗) + y1(i = i∗) ∀i ≥ 1.
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(ii) Suppose y = 0. Then y′ = x(1) = max(x) and

x′(i) = x(i+ 1) ∀i ≥ 1.
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Figure 4. Time evolution of the infinite capacity carrier process (Γx)x≥0 over the
7-color initial configuration ξ, producing new configuration ξ′ consisting of exiting
ball colors. For instance, ξ2 = 2, Γ2 = [2, 0, 0, · · · ], and ξ′4 = 5. Notice that ξ′ can
also be obtained by the time evolution of the 7-color BBS applied to ξ.

Fix a κ-color BBS configuration ξ : N → {0, 1, · · · , κ}. Fix Γ0 ∈ B∞, and recursively define
a new κ-color BBS configuration ξ′ and a sequence (Γx)x≥0 of elements of B∞ by

(ξ′x+1,Γx+1) = Ψ(Γx, ξx+1) ∀x ∈ N. (13)

We call the sequence (Γx)x≥0 the infinite capacity carrier process over ξ. The carrier state
Γx is determined by the balls in the interval [1, x] (see Figure 4 for an illustration). Unless
otherwise mentioned, we will assume Γ0 = 0 = [0, 0, 0, · · · ] ∈ B∞. The induced update map
ξ 7→ ξ′ turns out to coincide with the κ-color BBS evolution (1). See Remark 3.4 for more
details.

It is important to note that the carrier process (Wx)n∈N we introduced in (4) can be derived
from the infinite-capacity carrier process (Γx)x∈N above by simply recording the number of
balls of each color i = 1, . . . , κ. That is,

Wx = (m1(Γx), . . . ,mκ(Γx)) for all x ≥ 0,

where mi(Γx) denotes the number of balls of color (letter) i in Γx for i = 1, . . . , κ.
Lemma 3.1 below states that the first soliton length λ1 equals the maximum number of

balls of positive colors in the associated carrier process.

Lemma 3.1. Suppose the initial κ-color BBS configuration ξ has finite support. Let (Wx)x≥0

and (Γx)x≥0 be as before. Then

λ1(ξ) = max
x≥0

∥Wx∥1 = max
x≥0

(# of positive letters in Γx) .

For κ = 1, it is possible to precisely characterize all subsequent soliton lengths λ2, λ3, . . . by
applying the ‘excursion operator’ to the carrier process multiple times and taking maximum
[LLP20]. Roughly speaking, given the 1-dimensional carrier process W = (Wx)x≥0 for κ = 1,
which starts at 0 and takes value 0 for all large x, let E(W ) denote the new lattice path that
describes the excursion heights above the record minimum of W away from the rightmost
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global maximizer of W . Then λ2 = max(E(W )), and λ3 = max(E2(W )), and so on. We
currently do not have a similar κ-dimensional excursion operator for exactly describing the
subsequent soliton lengths for the general multicolor case. However, we provide a lower bound
on λj in terms of the jth largest ‘excursion height’ of the carrier process, which is enough to
obtain sharp asymptotics for λj in the subcritical regime.

We introduce some notation. Let 0 = (0, 0, · · · , 0) ∈ (Z≥0)
κ denote the origin, and write

Mn :=

n∑
x=1

1(Wx = 0) (14)

for the number of visits of Wx to 0 during [1, n]. For each k ≥ 1, let Tk denote the time of
the kth visit of Wx to 0 and set T0 = 0. We say that the trajectory of Wx restricted to the
time intervals [Tk−1, Tk] between consecutive visits to 0 are its excursions. Also note that Mn

defined at (14) equals the number of complete excursions of the carrier process during [1, n].
We will define the height of the carrier at site x by

∥Wx∥1 =Wx(1) + · · ·+Wx(κ), (15)

which equals the number of balls of positive color that the carrier possesses at site x. Define
the kth excursion height hk and height of the final meander rn by

hk = max
Tk−1≤t≤Tk

∥Wx∥1, rn = max
TMn≤t≤n

∥Wx∥1. (16)

Denote by h1(n) ≥ h2(n) ≥ · · · ≥ hMn(n) the order statistics of the excursion heights
h1, · · · , hMn . We then have the following lemma.

Lemma 3.2. Soliton decomposition of ξ is obtained as the union of the soliton decomposition
of the support of each excursion of the carrier process over ξ. In particular, for j, n ≥ 1,
λj(n) ≥ hj(n).

Proofs of Lemmas 3.1 and 3.2 are relagated to Section 12.

3.2. Finite capacity carrier processes and soliton numbers. In [KL20], it is shown that
the row lengths of the invariant Young diagram of any κ-BBS trajectory can be extracted by
running carrier processes of finite capacities, as we will summarize in this subsection. This
will provide one of the key combinatorial lemmas in the present paper.

First, fix an integer parameter c ≥ 1 that we call capacity. Denote

Bc = {[x1, · · · , xc] ∈ {0, 1, · · · , κ}c | x1 ≥ · · · ≥ xc},

which can also be identified as the set of all (1× c) semistandard tableaux with letters from
{0, 1, · · · , κ}. Define a map Ψc : Bc × {0, 1, · · · , κ} → {0, 1, · · · , κ} × Bc, ([x1, · · · , xc], y) 7→
(y′, [x′1, · · · , x′c]) by the following ‘circular exclusion rule’:
(i) Suppose y > xc and denote i∗ = min{i ≥ 1 | xi < y}. Then y′ = xi∗ and

[x′1, · · · , x′c] = [x1, · · · , xi∗−1, y, xi∗+1, · · · , xc].

(ii) Suppose xc ≥ y. Then y′ = x1 and

[x′1, x
′
2, · · · , x′c] = [x2, · · · , xc, y].
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Fix a κ-color BBS configuration ξ : N → {0, 1, · · · , κ}. Let Γ0 = [0, · · · , 0] ∈ Bc, and
recursively define a new κ-color BBS configuration ξ′ and a sequence (Γx)x≥0 of elements of
Bc by

(ξ′x+1,Γx+1) = Ψc(Γx, ξx+1) ∀x ∈ N.

We call the sequence (Γx)x≥0 the capacity-c carrier process over ξ. See Figure 5 for an
illustration.
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Figure 5. Time evolution of the capacity-3 carrier process (Γx)x≥0 over the 7-color
initial configuration ξ, with new configuration ξ′ consisting of exiting ball colors. For
instance, ξ2 = 2, Γ2 = [2, 0, 0], and ξ′4 = 5. Notice that while ξ is the same as in the
example in Figure 4, the new 7-color BBS configuration ξ′ is different. In this case,
the map ξ 7→ ξ′ does not agree with the 7-color BBS time evolution.

The following lemma, which is proven in [KL20], gives a closed-form expression of the row
sums of the invariant Young diagram:

Lemma 3.3. Let (ξ(t))t≥0 be a κ-color BBS trajectory such that ξ(0) has finite support. For
each c ≥ 1, let (Γx;c)x≥0 denote the capacity-c carrier process over ξ(t). Then for all k ≥ 1
and t ≥ 0, we have

ρ1(ξ
(0)) + · · ·+ ρk(ξ

(0)) ≡
∞∑
x=1

1(ξ(t)x > minΓx−1;k),

where minΓx−1;k denotes the smallest letter in Γx−1;k.

Proof. See eq. (13) and Prop. 4.5 in [KL20]. We also provide a self-contained proof in
Section 12.2. □

Remark 3.4. It is well-known that, if the capacity c ≥ 1 is large enough compared to the
number of balls of color ≥ 1 in the system, then the induced update map ξ 7→ ξ′ agrees
with the κ-color BBS time evolution (see, e.g., [HKT01]). Also, once the capacity c is large
enough, the capacity-c carrier process is equivalent to the infinite capacity carrier process in
the sense that they always contain the same number of each positive letter. Hence it follows
that the map ξ 7→ ξ′ defined in (13) coincides with the κ-color BBS time evolution defined
in the introduction. In other words, the κ-color BBS dynamic can be equivalently defined
by repeatedly applying the infinite-capacity carrier process to the current ball configuration,
analogously as in the κ = 1 case in [LLP20].
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3.3. Modified Greene-Kleitman invariants for BBS. One natural way to associate a
Young diagram with a given permutation is to use the celebrated Robinson-Schensted cor-
respondence (see [Sag01, Ch. 3.1]), which gives a bijection between permutations and pairs
of standard Young tableaux of the same shape. For each permutation σ, record the common
shape of the Young tableaux as ΛRS(σ). Let ρRS

i (σ) and λRS
j (σ) denote its ith row length

and its jth column lengths, respectively. According to Greene’s theorem [Gre82], the sum of
the lengths of the first k columns (resp. rows) of ΛRS(σ) is equal to the length of the longest
subsequence in σ that can be obtained by taking the union of k decreasing (resp. increasing)
subsequences. That is, for each k ≥ 1,

ρRS
1 (σ)) + · · ·+ ρRS

k (σ)) = max
(∣∣∣⊔ k increasing subsequences of σ

∣∣∣) ,
λRS
1 (σ)) + · · ·+ λRS

k (σ)) = max
(∣∣∣⊔ k decreasing subsequences of σ

∣∣∣) .
The quantities on the right-hand sides are called the Greene-Kleitman invariants.

If we consider the κ-color BBS trajectory started at ξ(0) = σ1([1, n]), then we obtain
another Young diagram Λ(σ) := Λ(ξ(0)), whose jth column length equals the jth longest
soliton length. Then a natural question arises: Do the sums of the first k rows and columns
of Λ(σ) relate to some type of Greene-Kleitman invariants? For the rows, we find that the
correct modification is to localize the length of an increasing sequence into the number of
ascents in a subsequence. On the other hand, for the columns, it turns out that we just need
to impose that the k decreasing subsequences be non-interlacing. In fact, in Lemma 3.5,
we establish these modified Greene-Kleitman invariants for BBS in the more general setting
when σ is an arbitrary κ-color BBS configuration with finite support, where having 0’s and
repetitions are both allowed.

Let ξ : N → {0, 1, · · · , κ} be a κ-color BBS configuration with finite support. For subsets
A,B ⊆ N, denote A ≺ B if max(A) < min(B). We say A,B are non-interlacing if A ≺ B or
B ≺ A. We say ξ is non-increasing on A ⊆ N if ξa1 ≥ ξa2 for all a1, a2 ∈ A such that a1 ≤ a2.
Denoting the elements of A by a1 < a2 < · · · , define the number of ascents of ξ in A by

NA(A, ξ) := 1 +

|A|∑
i=2

1(ξai−1 < ξai).

Moreover, define the penalized length of A with respect to ξ by

L(A, ξ) :=

[
|A| −

maxA∑
i=minA

1(ξi = 0)

]
1(ξ is non-increasing on A). (17)

Note that the summation in (17) is over the interval [minA,maxA] ∩ Z, which may contain
A properly.

Lemma 3.5. Let (ξ(t))t≥0 be a κ-color BBS trajectory such that ξ(0) has finite support. Then
for each k, t ≥ 0, we have

ρ1(ξ
(0)) + · · ·+ ρk(ξ

(0)) ≡ max
A1⊔···⊔Ak=N

k∑
i=1

NA(Ai, ξ
(t)),
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λ1(ξ
(0)) + · · ·+ λk(ξ

(0)) ≡ max
A1≺···≺Ak⊆N

k∑
i=1

L(Ai, ξ
(t)).

The proof of Lemma 3.5 may be found in Section 12.2.

4. Proof of Theorem 2.1

In this subsection, we prove our first main result, Theorem 2.1. Let Σn be a uniformly
chosen random permutation of the set {1, 2, · · · , n}, and let ξn = Σn1([1, n]) be the random
n-color BBS configuration induced from Σn. Let λk(n) = λk(ξ

n) denote the length of the kth

longest soliton in ξn.

4.1. Proof of Theorem 2.1 for the columns. Our proof of Theorem 2.1 for the columns
relies on Lemma 3.5 and the sharp asymptotic of longest decreasing subsequence of a uniform
random permutation due to Baik, Deift, and Johansson [BDJ99].

Proof of Theorem 2.1 for the columns. Fix an integer k ≥ 1. It suffices to show that,
almost surely,

lim
n→∞

n−1/2
k∑

i=1

λi(n) = 2
√
k.

For each integer k ≥ 1, let L(k) denote the length of the longest increasing subsequence in a
uniformly random permutation of k letters. By Lemma 3.5, recall that

λ1(n) + · · ·+ λk(n) = max

{
k∑

i=1

L(Ai, ξ
n) |A1 ≺ · · · ≺ Ak ⊆ [1, n]

}
.

We view a random permutation as a ranking among n i.i.d. Uniform([0, 1]) random variables
U1, · · · , Un. If A ⊆ {1, · · · , n}, then the ranking of Ui for i ∈ A gives a uniform random
permutation of A, which we call a random permutation of [n] restricted on A. Moreover, one
can also see that if we restrict a random permutation on multiple disjoint subsets, then these
smaller permutations are independent. Hence, if A1 ≺ · · · ≺ Ak are non-interlacing subsets of
[0, n], then the permutations restricted on these subsets are independent. Moreover, since the
random permutation model ξn does not assign color 0 on any site in [0, n], for any increasing
subsequence A ⊆ [0, n] and its supporting interval I = [minA,maxA],

L(A, ξn) = |A| ≤ |I| = L(I, ξn) d
= L(|I|).

It follows that
k∑

i=1

λi(n)
d
= max

{
k∑

i=1

L(ni)

∣∣∣∣ k∑
i=1

ni = n, L(n1), . . . , L(nk) are indepenent

}
. (18)

Baik, Deift, and Johansson [BDJ99] proved the following tail bounds for L(n) (see also
equations (1.7) and (1.8) in [BDJ99] or p. 149 in [Rom15]): There exist positive constants
M, c,C such that for all m ≥ 1,

(Lower tail): P
(
m−1/6(L(m)− 2

√
m) ≤ −t

)
≤ C exp(−ct3) for all t ∈ [M, 2m1/3];

(Upper tail): P
(
m−1/6(L(m)− 2

√
m) ≥ t

)
≤ C exp(−ct3/5) for all t ∈ [M,m5/6 − 2m1/3].
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Taking t = (logm)2, we obtain

P
(
|L(m)− 2

√
m| ≥ (logm)2m1/6

)
≤ 2C exp(−c(logm)6/5).

Fix ε > 0. Note that if m ≥ ε
√
n, then for any fixed d > 0,

P
(
|L(m)− 2

√
m| ≥ (logm)2m1/6

)
= O(n−d). (19)

Now, denote the random variable in the right-hand side of (18) by X. We write X =
max(Y,Z), where

Y = max{L(n1) + · · ·+ L(nk) : n1 + · · ·+ nk = n, ni ≥ ε
√
n for all i},

Z = max{L(n1) + · · ·+ L(nk) : n1 + · · ·+ nk = n, ni < ε
√
n for at least one i }.

Denote A := {(n1, . . . , nk) : n1 + · · · + nk = n, ni ≥ ε
√
n for all i}. For each η =

(n1, . . . , nk) ∈ A, denote Yη := L(n1) + · · ·+L(nk) and Mη := 2(
√
n1 + · · ·+√

nk). Then by
a union bound and (19),

P(|Yη −Mη| ≥ k(logm)2m1/6) = O(n−d).

Note that Y = maxη∈A Yη and since there are at most nk partitions of [n] into k intervals,
|A| ≤ nk. So by a union bound we have

P
(∣∣Y −max

η∈A
Mη

∣∣) ≤
∑
η∈A

P
(
|Yη −Mη| ≥ k(logm)2m1/6

)
= O(n−d).

for any fixed d > 0. The deterministic optimization problem

max
η∈A

Mη = max{2
√
n1 + · · ·+ 2

√
nk : n1 + · · ·+ nk = n, ni ≥ ε

√
n ∀ i}

achieves its maximum when
∑k

i=1 |ni − (n/k)| is minimized, in which case we have |ni −
(n/k)| ≤ 1 for all 1 ≤ i ≤ k. Denoting the maximizer as n1, · · · , nk, it follows that, for all
1 ≤ i ≤ k,

|
√
ni −

√
n/k| ≤ 1

√
ni +

√
n/k

≤ 1

2
√
(n/k)− 1

.

So this yields, for all sufficiently large n ≥ 1,

P
(
|Y − 2

√
kn| > 2k(log n)2n1/6

)
(20)

≤ P

(
|Y − 2

√
kn| > k(log n)2n1/6 +

k√
(n/k)− 1

)
= O(n−d)

for any fixed d > 0.
Next, if ni < ε

√
n, then we use the trivial upper bound L(ni) ≤ ni ≤ ε

√
n, otherwise if

ni > ε
√
n, we continue to use the tail bound for |L(ni)− 2

√
ni| in (19). Hence

P
(
Z > 2

√
(k − 1)n+ 2k(log n)2n1/6 + kε

√
n
)
= O(n−d), (21)

where the first term bounds the contribution from at most k − 1 intervals of size ≥ ε
√
n, the

second term is given by the BDJ tail bound in (19), and the last term gives a trivial bound



22 JOEL LEWIS, HANBAEK LYU, PAVLO PYLYAVSKYY, AND ARNAB SEN

for intervals of size < ε
√
n. Hence if we choose ε < 2/k(

√
k − 1 +

√
k), then (20) and (21)

give us

P (Z > Y ) ≤ P
(
Y < 2

√
kn+ 2k(log n)2n1/6

)
(22)

+ P
(
Z > 2

√
(k − 1)n+ 2k(log n)2n1/6 +

2
√
n

√
k − 1 +

√
k

)
= O(n−d)

for each fixed d > 0. Now note that, for each t > 0,

P

(∣∣∣∣∣
(

1√
n

k∑
i=1

λi(n)

)
− 2

√
k

∣∣∣∣∣ > t

)
= P

(
|max(Y,Z)− 2

√
kn| > t

√
n
)

≤ P
(
|Y − 2

√
kn| > t

√
n
)
+ P (Z > Y ) .

Hence by choosing t = 1/ log n, for any fixed d > 0, (20) and (22) yield

P

(∣∣∣∣∣
(

1√
n

k∑
i=1

λi(n)

)
− 2

√
k

∣∣∣∣∣ > 1

log n

)
= O(n−d).

Then the assertion follows from the Borel-Cantelli lemma. □

4.2. Circular exclusion process and the row lengths. In this subsection, we prove The-
orem 2.1 for the rows. By Lemma 3.3, this can be done by analyzing the carrier process over
the uniform random permutation ξn. Let X := (Ux)x≥1 be a sequence of i.i.d. Uniform([0, 1])
random variables. For each capacity k ≥ 1, we may define the carrier process (Γx)x≥0 over X
using the same ‘circular exclusion rule’ we used to define the map Ψ in Section 3.2. More pre-
cisely, denote Ck = {(x1, · · · , xk) ∈ [0, 1]k | x1 ≥ · · · ≥ xk}. Define a map ϕ : Ck × [0, 1] → Ck,
[x1, · · · , xk, y] 7→ [x′1, · · · , x′k] by
(i) If y > xk, then denote i∗ = min{i ≥ 1 | xi < y} and let

[x′1, · · · , x′k] = [x1, · · · , xi∗−1, y, xi∗+1, · · · , xk].

(ii) If xk ≥ y, then [x′1, · · · , x′k] = [x2, · · · , xk, y].
Then the k-point circular exclusion process (Γx)x≥0 over X is defined recursively by

Γx+1 = ϕ(Γx, Ux+1).

See Figure 6 for an illustration. Note that (Γx)x≥0 forms a Markov chain on state space Ck.
When Γ0 = [0, 0, · · · , 0], we call (Γx)x≥0 the carrier process over X with capacity k.

In the following lemma, which will be proved in Section 4.3, we show that the k-point cir-
cular exclusion process converges to its unique stationary measure π, which is the distribution
of the order statistics from k i.i.d. Uniform([0, 1]) variables.

Lemma 4.1. Fix an integer k ≥ 1 and let (Γx)x≥0 denote the k-point circular exclusion
process with an arbitrary initial configuration.
(i) Let π denote the distribution of the order statistics from k i.i.d. uniform random variables

on [0, 1]. Then π is the unique stationary distribution for the Markov chain (Γx)x≥0.
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Figure 6. Evolution of a 4-point circular exclusion process. The states in the unit
circle are ordered clockwise. Each newly inserted point (black dot) annihilates the
closest pre-existing point in the counterclockwise direction (light blue dot).

(ii) For each x ≥ 0, let πx denote the distribution of Γx. Then πx converges to π in total
variation distance. More precisely,

dTV (πx, π) := sup
A⊆[0,1]k

|πx(A)− π(A)| ≤
(
1− 1

(2k)k−1k!

)⌊x/k⌋
,

where the supremum runs over all Lebesgue measurable subsets A ⊆ [0, 1]k.

Now we derive Theorem 2.1 for the row asymptotics.

Proof of Theorem 2.1 for the rows. Let X = (Ux)x≥1 denote an infinite sequence of
i.i.d. Uniform([0, 1]) random variables, Σn be the random permutation on [n] induced by
U1, · · · , Un, and ξn = Σn1([1, n]) be the random n-color BBS configuration as defined at (3).
Fix an integer k ≥ 1 and let (Γx)x≥0 be the k-point circulr exclusion process over X. Also, let
(Γx)x≥0 be the capacity-k carrier process over ξn as defined in Section 3.2. By construction,
for each 1 ≤ x ≤ n, we have

1(ξn(x) > minΓx−1) = 1(Ux > minΓx−1).

Thus according to Lemma 3.3, almost surely,

n−1 (ρ1(ξ
n) + · · ·+ ρk(ξ

n)) = n−1
n∑

x=1

1(Ux > minΓx−1).

By Lemma 4.1 and Markov chain ergodic theorem, almost surely,

lim
n→∞

n−1 (ρ1(ξ
n) + · · ·+ ρk(ξ

n)) = P (Uk+1 > min(U1, · · · , Uk)) =
k

k + 1
.

Then the assertion follows. □

4.3. Stationarity and convergence of the circular exclusion process. We prove Lemma
4.1 in this subsection. We will assume the stationarity of the circular exclusion process as
asserted in the following proposition, which will be proved at the end of this section.

Proposition 4.2. Fix an integer k ≥ 1 and let π denote the distribution of the order statistics
from k i.i.d. uniform random variables on [0, 1]. Then π is a stationary distribution of the
k-point circular exclusion process.

Proof of Lemma 4.1. For convergence, we use a standard coupling argument. Namely, fix
arbitrary distributions π0 and π̄0 on Ck and let X = (Ux)x≥1 denote a sequence of i.i.d.
Uniform([0, 1]) variables. Let (Γx)x≥0 be k-point circular exclusion processes over X with ini-
tial distribution π0 and let (Γ̄x)x≥0 be k-point circular exclusion processes over X with initial
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distribution π̄0. These two processes are naturally coupled since they evolve simultaneously
over the same environment X. Let τ = inf{x ≥ 0 | Γx = Γ̄x} denote the first meeting time
of the two chains (see Figure 7). By the coupling, Γs = Γ̄s and s ≤ x imply Γx = Γ̄x. A
standard argument shows

dTV (πx, π̄x) ≤ P(Γx ̸= Γ̄x) = P(τ > x),

where πx and π̄x denote the distributions of Γx and Γ̄x. We claim that

P(τ > t) ≤ P(Γ0 ̸= Γ̄0)

(
1− 1

(2k)k−1k!

)⌊t/k⌋
. (23)

According to Proposition 4.2, this will imply Lemma 4.1 by choosing π̄0 = π.
To bound the tail probability of meeting time τ , we will show that two circular exclusion

processes ‘synchronize’ after k steps with probability at least 1/k!, in the sense that

P(Γx+k = Γ̄x+k | Γx ̸= Γ̄x) ≥
1

(2k)k−1k!
for all x ≥ 0.

Then the claim (23) follows since

P(τ > Nk) = P(ΓNk ̸= Γ̄Nk | Γ0 ̸= Γ̄0)P(Γ0 ̸= Γ̄0)

≤ P(Γ0 ̸= Γ̄0)
N∏
i=1

P(Γik ̸= Γ̄ik | Γ(i−1)k ̸= Γ̄(i−1)k)

≤ P(Γ0 ̸= Γ̄0)

(
1− 1

(2k)k−1k!

)N

.

We begin with the following simple observation for a sufficient condition of meeting. Let
X = (Ut)t≥1 be a sequence of i.i.d. Uniform([0, 1]) variables. Fix t ≥ 1 and let Γx =
[x1, · · · , xk] and Γ̄x = [x̄1, · · · , x̄k] be arbitrary elements of Ck. Superpose the two k-point
configurations into a one 2k-point configuration 0 ≤ y1 ≤ y2 ≤ · · · ≤ y2k ≤ 1. For a special
case, suppose y2k < 1. Observe that on the event {y2k < Ut+k < · · · < Ut+1 ≤ 1}, we have

Γx+k = [Ut+1, Ut+2, · · · , Ut+k] = Γ̄x+k,

as all of the k points in Γx and Γx will be successively annihilated from the largest to the
smallest by inserting Ut+1, · · · , Ut+k.

For the general case, regard each Us as a uniformly chosen point from the unit circle S1.
Then the 2k points y1, · · · , y2k will divide S1 into disjoint arcs of lengths, say, ℓ1, · · · , ℓm, for
some 2 ≤ m ≤ 2k. If the points Ut+1, · · · , Ut+k are strictly decreasing in the counterclockwise
order within one of the m arcs, then by circular symmetry and a similar observation, we will
have Γx+k = Γ̄x+k. Noting that

P
(

Ut+1, · · · , Ut+k are strictly decreasing in the
counterclockwise order within an arc of length ℓ

)
=
ℓk

k!

and ℓ1 + · · ·+ ℓm = 1, Hölder’s inequality yields

P
(
Γx+k = Γ̄x+k | Γx = [x1, · · · , xk], Γ̄x = [x̄1, · · · , x̄k]

)
≥

m∑
i=1

ℓki
k!

≥ 1

k!

(ℓ1 + · · ·+ ℓm)k

mk−1
=

1

mk−1k!
≥ 1

(2k)k−1k!
.
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Figure 7. Joint evolution of two 3-point circular exclusion processes. The states in
the unit circle are ordered clockwise. A newly inserted point annihilates one of the
closest pre-existing points in the counterclockwise direction. Blue (resp., red) dots
represent points that are shared (resp., not shared) in both processes. The two chains
meet after the fifth transition.

This shows the assertion. □

Lastly in this section, we prove Proposition 4.2.

Proof of Proposition 4.2. We show π is a stationary distribution for the Markov chain
(Γs)s≥0. Let X(1) < X(2) < · · · < X(k) be the order statistics from k i.i.d. uniform RVs
on [0, 1]. Let Y be an independent Uniform([0, 1]) random variable. After a new point Y is
inserted to the preexisting list of k points X(1) < X(2) < · · · < X(k), the updated list of points
will be

X(1) < · · · < X(I−1) < Y < X(I+1) < · · · < X(k), (24)

where I ∈ {1, 2, · · · , k} is the random index such that Y ∈ (X(I), X(I+1)). For I = k, the
interval (X(k), X(k+1)) denotes the union of (0, X(1)) and (X(k), 1). In this case, the point X(k)

is deleted and Y is added as the smallest or largest point depending on which sub-intervals it
falls.

We claim that (24) is still the order statistics from k i.i.d. uniforms on [0, 1], which would
prove that the distribution of k i.i.d. uniform points remains invariant under the transition
rule. To show this, take a bounded test function f : [0, 1]k → R. First, we write

E
[
f(X(1), · · · , X(I−1), Y,X(I+1), · · · , X(k))

]
=

k∑
i=1

E[f(X(1), · · · , X(i−1), Y,X(i+1), · · · , X(k))1Y ∈(X(i),X(i+1))]

=
k−1∑
i=1

1

k!

∫
z1<···<zi<y<zi+1<···<zk

f(z1, · · · , zi−1, y, zi+1, · · · , zk) dz1 · · · dzkdy

+
1

k!

∫
z1<···<zk<y

f(z1, · · · , zk−1, y) dz1 · · · dzkdy

+
1

k!

∫
y<z1<···<zk

f(y, z1, · · · , zk−1) dz1 · · · dzkdy.
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Integrating out zi and denoting z0 := 0,

=
k−1∑
i=1

1

k!

∫
z1<···<zi−1<y<zi+1<···<zk

f(z1, · · · , zi−1, y, zi+1, · · · , zk)(y − zi−1)

dz1 · · · zi−1zi+1 · · · dzkdy

+
1

k!

∫
z1<···<zk−1<y

f(z1, · · · , zk−1, y)(y − zk−1) dz1 · · · dzk−1dy

+
1

k!

∫
y<z1<···<zk−1

f(y, z1, · · · , zk−1)(1− zk−1) dz1 · · · dzk−1dy,

We then rename y as zi for the first integral above and as zk for the second integral above.
For the last integral, we rename y as z1 and zi as zi+1 for i = 1, . . . , k − 1. This gives

=
1

k!

∫
z1<···<zk

f(z1, · · · , zk)

[
(1− zk) +

(
k−1∑
i=1

zi − zi−1

)
+ (zk − zk−1)

]
dz1 · · · dzk

= E
[
f(X(1), · · · , X(I−1), X(I), X(I+1), · · · , X(k))

]
.

This shows the assertion. □

5. Proof of Theorem 2.3 (i)

We prove Theorem 2.3 (i) in this section. Recall the probability distribution π in (5). We
assume p0 > p∗ := max(p1, . . . , pκ) in the following proof.

Proof of Theorem 2.3 (i). We first show the irreducibility and aperiodicity of the chain
Wx. For its irreducibility, fix x,y ∈ B∞ and write y = [y1, y2, · · · ]. Since all elements of B∞
have finite support, there exists an integer m ≥ 1 such that x(i) ≡ 0 and y(i) ≡ 0 for all
i ≥ m. Then note that

P(Γx+2m = y | Γx = x)

≥ P
(
ξp(x+ 1) = 0, · · · , ξp(x+m) = 0, ξp(x+m+ 1) = y1, · · · , ξp(x+ 2m) = ym

)
= pm0 py1 · · · pym > 0.

Since x,y ∈ B∞ were arbitrary, this shows the Markov chain Wx is also irreducible. Then for
its aperiodicity, it is enough to observe that

P
(
Γx+1 = [0, 0, · · · ] | Γx = [0, 0, · · · ]

)
= p0 > 0.

Next, we show that π is a stationary distribution for (Wx)t≥0. The uniqueness of stationary
distribution and convergence in total variation distance will then follow from general results
of countable state space Markov chain theory (see, e.g., [LP17, Thm. 21.13 and Thm. 21.16]).
We work with the original carrier process Γx. For each x ∈ B∞ and i ∈ {0, 1, · · · , κ}, denote

exp(wt(x)) =
κ∏

i=1

(
pi
p0

)mi(x)

, exp(wt(i)) = pi.

Recall the definition of the map Ψ : B∞×{0, 1, · · · , κ} → {0, 1, · · · , κ}×B∞ given in Section
3.1. Note that for each pair (x, y) ∈ B∞×{0, 1, · · · , κ} and (y′,x′) ∈ {0, 1, · · · , κ}×B∞ such
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that Ψ(x, y) = (y′,x′), y′ = y′(x, y), we have

exp(wt(x)) exp(wt(y)) = pyp
−∥x∥1
0

κ∏
i=1

p
mi(x)
i

= py′p
−∥x′∥1
0

κ∏
i=1

p
mi(x

′)
i = exp(wt(y′)) exp(wt(x′)).

Indeed, the total number of each letter 1 ≤ i ≤ κ in both pairs (x, y) and (y′,x′) is the same.
So if y′ ≥ 1, then some ball of positive color in x is replaced by a ball of positive color y′, so
∥x∥1 = ∥x′∥1 and the above identity holds; If y′ = 0 and y ≥ 1, then x′ has one more ball
of color y than x does so the above identity holds; If y′ = y = 0, then both x′ and x do not
contain any ball of positive color so the above identity holds.

Now, observe that for each fixed x′ ∈ B∞, Ψ gives a bijection between {0, 1, · · · , κ} × {x′}
and its inverse image under Ψ. If we denote the second coordinate of Ψ by Ψ2, then this
yields ∑
(x,y)∈B∞×{0,1,··· ,κ}

Ψ2(x,y)=x′

exp(wt(x)) exp(wt(y)) =
∑

(x,y)∈B∞×{0,1,··· ,κ}
Ψ2(x,y)=x′

exp(wt(y′(x, y))) exp(wt(x′))

= exp(wt(x′))
∑

y′∈{0,1,··· ,κ}

exp(wt(y′))

= exp(wt(x′)).

Dividing both sides by∑
x∈B∞

exp(wt(x)) =
∞∑

n1=0

· · ·
∞∑

nκ=0

κ∏
i=1

(
pi
p0

)ni

=
κ∏

i=1

(
1− pi

p0

)−1

> 0,

we get ∑
(x,i)∈B∞×{0,1,··· ,κ}

Ψ2(x,i)=x′

π(m1(x), · · · ,mκ(x))pi = π(m1(x
′), · · · ,mκ(x

′)).

This shows that π is a stationary distribution of the Markov chain (Wx)x≥0, as desired.
Lastly, positive recurrence follows from the irreducibility and the existence of stationary

distribution [LP17, Thm. 21.13]. Convergence of the distribution of Wx to the stationary
distribution in total variation distance then follows from the irreducibility, aperiodicity, and
positive recurrence (see [LP17, Thm. 21.16]). □

Remark 5.1. The statement and the proof of Theorem 2.3 (i) are reminiscent of [KL20,
Thm. 1], where the authors show that for all p = (p0, · · · , pκ), the (finite) capacity-c carrier
process over ξp is irreducible with unique stationary distribution

πc(x) =
1

Zc

κ∏
i=0

p
mi(x)
i , x ∈ B∞,

where Zc denotes the partition function. In fact, their result applies to more general finite-
capacity carriers whose state space is the set B(a)

c (κ) of all semistandard tableaux of rectan-
gular shape (c×a) with letters from {0, 1, · · · , κ}. In this general case, the partition function
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Zc = Z
(a)
c (κ,p) is identified with the Schur polynomial associated with the (a × c) Young

tableau with constant entries c and parameters p0, p1, · · · , pκ.

6. The Skorohkod decomposition of the carrier process

In this section, we develop the Skorohkod decomposition of the carrier process, which we
briefly mentioned in the introduction. The idea is to write the carrier process, which is
confined in the nonnegative integer orthant Zκ

≥0, as the sum of a less confined process and
a boundary correction. Namely, let (Wx)x≥0 be the carrier process over an arbitrary ball
configuration ξ as in (4). We seek for the following decomposition

Wx = Xx +RYx for x ≥ 0, (25)

where
1. (Xx)x≥0 is the ‘decoupled carrier process’, which is a version of the carrier process that

allows the number of balls of certain ‘exceptional colors’ to be negative;
2. R = tridiagκ(0, 1,−1) is the κ× κ ‘reflection matrix’ (see (31));
3. (Yx)x≥0 is the ‘pushing process’: Y0 = 0 and for each i ∈ {1, . . . , κ}, the ith coordinate of

Yx is non-decreasing in x and can only increase when Wx(i) = 0.
We will first introduce the decoupled carrier process (Xx)x≥0 in Section 6.1 and establish

its basic properties in Proposition 6.2. In Section 6.2, we will introduce the reflection matrix
R and the pushing process (Yx)x≥0 and verify the Skorohkod decomposition (25) in Lemma
6.3. All results in this section are for a deterministic ball configuration ξ.

6.1. Definition of the decoupled carrier process. In this section, we introduce a ‘decou-
pled version’ of the carrier process Wx in (4), which will be critical in proving Theorem 2.3
(ii) as well as Theorems 2.6-2.7.
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Figure 8. Illustration of the original circular exclusion rule (left) and its decoupled
version (right) for κ = 7 and ball density p = (.1, .1, .25, .05, .15, .2, .1, .05). We
take the set of exceptional colors Ce to be the set of unstable colors Cp

u = {2, 5, 6}.
For instance, in the decoupled carrier process, inserting new balls of color 5 into the
carrier only excludes existing balls of colors 2, 3 and 4.To illustrate the idea, consider the carrier process Wx with κ = 2 as in Figure 1. While

the transition kernel for this Markov chain depends on whether it is in the interior or at the
boundary of the state space Z2

≥0, we may consider a similar Markov chain on the entire integer
lattice Z2 that only uses the kernel in the interior, by allowing the counts of color 1 and 2
balls in Wx to be negative. In the general construction of decoupled carrier processes, we will
allow the freedom to choose positive colors α1 < · · · < αr in {1, . . . , κ} whose count can be
negative. Recall that inserting a ball of color i to the carrier Wn will exclude the largest color
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i∗ in Wn that is less than i. In the decoupled carrier process, the color wheel Zκ+1 is divided
into intervals [0, α1], [α1, α2], . . . , [αr, κ], and inserting a color i in (αj , αj+1] can only exclude
a color in the interval [αj , αj+1]. Hence, the interaction between colors in distinct intervals is
‘decoupled’. See Figure 8 for an illustration.

Definition 6.1 (Decoupled carrier process). Let ξ := (ξx)x∈N be κ-color ball configuration
and fix a set Ce ⊆ {1, . . . , κ} of ‘exceptional colors’. Let

Ω := {(x1, . . . , xκ) ∈ Zκ : xi ≥ 0 if i /∈ Ce}.
The decoupled carrier process over ξ associated with Ce is a process (Xx)x∈N on the state
space Ω defined as follows. If Ce = ∅, the we take Xx ≡ Wx, where Wx the carrier process in
(4). Suppose Ce = {α1, . . . , αr} for some r ≥ 1 with α1 < · · · < αr. Denote αr+1 := κ + 1.
Having defined X1, . . . , Xx, denote i := ξx+1 if ξx+1 ∈ {1, . . . , κ} and i := κ + 1 if ξx+1 = 0.
Then

Xx+1 −Xx :=


ei − 1(i∗ ̸= 0) ei∗ if 1 ≤ i ≤ α1

ei − ei′ if α1 < i ≤ κ

−ei′ if i = κ+ 1,

(26)

where i∗ := sup{j : 1 ≤ j < i, Xx(j) ≥ 1} (with the convention sup ∅ = 0) and

i′ :=

{
αj if αj < i ≤ αj+1 and Xx(αj) = · · · = Xx(i− 1) ≤ 0

q if αj < q < i ≤ αj+1 and Xx(q) ≥ 1, Xx(q + 1) = · · · = Xx(i− 1) = 0.

Unless otherwise mentioned, we take X0 = 0 and ξ = ξp with density p = (p0, . . . , pκ).

It is helpful to compare the recursion (26) for the decoupled carrier process to that of
the carrier process in (4). Notice that in (4), inserting i into Wx can decrease by one at
coordiante i∗ only when Wx(i∗) ≥ 1. Hence Wx is confined in the nonnegative orthant Zκ

≥0.
In comparison, when a ball of color i is inserted to the decoupled carrier Xx, it decreases
by one at coordinate, say ℓ ∈ {i′, i∗}. If ℓ /∈ Ce, then the above construction ensures that
Xx(ℓ) ≥ 1. From this, one can observe that Xx(j) ≥ 0 for all x ≥ 0 whenever j /∈ Ce. In
contrast, if ℓ ∈ Ce, then Xx+1(ℓ) = Xx(ℓ)− 1 regardless of whether Xx(ℓ) ≥ 1. Hence Xx can
take negative values on the exceptional colors. We call the recursion in (26) as the ‘decoupled
circular exclusion’.

In the proposition below, we establish a basic coupling result between the carrier and the
decouple carrier processes. For its proof, we will introduce the following notation. Define the
following function fW : Zκ

≥0 × {0, . . . , κ} → {0, . . . , κ} as

fW (w, y) :=

{
0 if [W0 = w and ξ1 = y =⇒ W1 −W0 = ey]
j if [W0 = w and ξ1 = y =⇒ W1 −W0 = ey − ej or −ej ].

(27)

Roughly speaking, if fW (w, y) = j, then j is the color of the ball that is excluded when
a ball of color y is inserted into the carrier of state w. The circular exclusion rule says
fW (w, y) = sup{i : 1 ≤ i < y, w(i) ≥ 1} with the convention κ + 1 ≡ 0 and sup ∅ = 0.
Similarly, define a function fX : Ω× {0, . . . , κ} → {0, . . . , κ} as

fX(w, y) :=

{
0 if [X0 = w and ξ1 = y =⇒ X1 −X0 = ey]
j if [X0 = w and ξ1 = y =⇒ X1 −X0 = ey − ej or −ej ].

(28)
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Intuitively, if fX(w, y) = j, then j is the color of the ball that is excluded when a ball of color
y is inserted into the decoupled carrier of state w.

For each x ∈ N, define X̂x ∈ Zκ
≥0 by

X̂x(i) := Xx(i)− min
0≤s≤x

Xs(i) for all i = 1, . . . , κ. (29)

Note that X̂x(i) ≥ max(0, Xx(i)) for all i by definition and X0 = 0. Also, X̂x(i) ≡ Xx(i) for
all i /∈ Ce since Xx(i) ≥ 0 for all x ∈ N and all i /∈ Ce.

Proposition 6.2 (Basic coupling between the carrier and the decoupled carrier processes).
Let (Wx)x≥0 be the carrier process in (4) and let (Xx)x≥0 be the decoupled carrier process in
(26) associated with Ce = {α1, . . . , αr} for some r ≥ 1. Suppose these two processes evolve
over the same ball configuration ξ and W0 = X0 = 0 ∈ Zκ

≥0. Then the following hold.
(i) Wx(i) = Xx(i) for all αr < i ≤ κ and x ≥ 0. Furthermore,

Wx(αr) = Xx(αr) if X1(αr), . . . , Xx−1(αr) ≥ 1.

(ii) Wx(i) ≤ X̂x(i) for all 1 ≤ i ≤ κ and x ≥ 0. Furthermore, for each x ≥ 0, denoting
y := ξx+1 if ξx+1 ∈ {1, . . . , κ} and y := κ+ 1 if ξx+1 = 0,

fW (Wx, ξx+1) ≤ fX(Xx, ξx+1) < y. (30)

Proof. In this proof, we denote yX := fX(Xx, ξx+1) and yW := fW (Wx, y). Note that
yW , yX ∈ [0, ξx+1) (recall that sup ∅ = 0).

The second part of (i) follows from the first part of (i) and definition. Now we show
the first part of (i) by induction on x ≥ 0. For x = 0 we have W0 = X0 = 0. Denote
ℓ := αr and suppose Wx(i) = Xx(i) for all ℓ < i ≤ κ for some x ≥ 0. If y ≤ ℓ, then
inserting a ball of color y into the carrier Wx and the decoupled carrier Xx does not affect
their state for colors strictly larger than ℓ. Hence Wx+1(i) = Wx(i) = Xx(i) = Xx+1(i)
for all ℓ < i ≤ κ. So suppose y > ℓ. In this case, yW = sup{1 ≤ j < y : Wx(j) ≥ 1}
and yX = max{ℓ, sup{1 ≤ j < y : Xx(j) ≥ 1}}. Note that Wx+1 is obtained from Wx by
increasing its value on color y by one and decreasing its value on color yW by one. If yW > ℓ,
then by the induction hypthesis, yW = yX , so Xx+1 is obtained from Xx|(ℓ,κ] = Wx|(ℓ,κ] by
the same way, so Xx+1|(ℓ,κ] =Wx+1|(ℓ,κ]. Otherwise, suppose yW ≤ ℓ. Then Xx+1 is obtained
from Xx|(ℓ,κ] = Wx|(ℓ,κ] by increasing its value on color y by one and decreasing its value on
color ℓ by one. Hence Wx+1|(ℓ,κ] = Xx+1|(ℓ,κ], as desired.

Now we prove (ii) by an induction on x ≥ 0. The base step when x = 0 follows by definition
(W0 = X̂0 = X̂ = 0 and 0 = yW ≤ yX < y). For the induction step, suppose Wx ≤ X̂x

coordinatewise for some x ≥ 0. We first show that yW ≤ yX < y. That yX < y follows from
the definition (26). To show yW ≤ yX , we assume yW ≥ 1 since otherwise the claim holds
trivially. Since a ball of color yW ≥ 1 is excluded from the carrier Wx, we have Wx(yW ) ≥ 1.
If yW /∈ Ce, then by the induction hypothesis, 1 ≤ Wx(yW ) ≤ Xx(yW ), so it follows that
yW ≤ yX . Otherwise, suppose yW ∈ Ce. Then since yX is at least the largest exceptional
color that is < y, it follows that yW ≤ yX , as desired.

It remains to show Wx+1 ≤ X̂x+1 coordinatewise. First suppose yW = 0. Then Wx(1) =
· · · = Wx(y − 1) = 0, so Wx+1(1) = · · · = Wx+1(y − 1) = 0 and Wx+1 −Wx = ey. Hence
Wx+1(i) = 0 ≤ X̂x+1(y) for all 1 ≤ i < y. Noting that Xx+1(y) = Xx(y) + 1, by definition
we have X̂x+1(y) = X̂x(y) + 1. Then by the induction hypothesis, we have Wx+1(y) =
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Wx(y) + 1 ≤ X̂x(y) + 1 = X̂x+1(y). Furthermore, Wx+1(i) = Wx(i) ≤ X̂x(i) = X̂x+1(i) for
all y < i ≤ κ, where the middle inequality is from the induction hypothesis and the equalities
are from the definition. Thus we have shown that Wx+1 ≤ X̂x+1 coordinatewise.

Lastly, we suppose yW ≥ 1 and show Wx+1 ≤ X̂x+1 coordinatewise. Then 1 ≤ yW ≤ yX <
y, Wx+1 −Wx = ey − eyW , and Xx+1 −Xx = ey − eyX . By the induction hypothesis and the
definition, we only need to verify Wx+1(yX) ≤ X̂x+1(yX). This holds when yW = yX since
then Wx+1(yX) = Wx(yX) − 1 ≤ X̂x(yX) − 1 ≤ X̂x+1(yX). So we may assume yW < yX .
By definition of yW , we have Wx(yW + 1) = · · · = Wx(y − 1) = 0 and so Wx+1(yW + 1) =

· · · = Wx+1(y − 1) = 0. Then by definition Wx+1(yX) = 0 ≤ X̂x+1(yX). This completes the
induction. □

6.2. Proof of the Skorokhod decomposition of the carrier process. Now we give
an explicit construction of the Skorokhod decomposition of (Wx)x≥0. First, let R be the
κ × κ tridiagonal matrix with 0 on the subdiagonal, 1 on the main diagonal, and -1 on the
superdiagonal entries:

R := tridiagκ(0, 1,−1) =


1 −1 0
0 1 −1 0
...

. . .
0 · · · 0 1 −1
0 · · · 0 1

 = I −Q, (31)

where I is the κ × κ identity matrix and Q = I − R. Notice that the spectral radius of Q
is zero for all κ ≥ 2 being an upper triangular matrix with zero diagonal entries. The above
reflection matrix also has the property of being ‘completely-S’, see Def. 10.2 and the proof of
Theorem 2.5 for justification.

Next, we define the pushing process (Yx)x≥0 on Zκ
≥0 recursively as follows: Set Y0 = 0.

Having defined Yx, denoting yW := fW (Wx, ξx+1) (see (27)) and yX := fX(Xx, ξx+1) (see
(28)), define

Yx+1 − Yx :=

{
0 if yW = yX

eyW+1 + · · ·+ eyX if yW < yX .
(32)

Note that (32) covers all cases since yW ≤ yX due to Proposition 6.2. From the definition, it
is clear that every coordinate of Yx is non-decreasing. Also, clearly, Yx is determined by the
first x ball colors ξ1, . . . , ξx.

Lemma 6.3 (Skorokhod decomposition of the carrier process). Let Wx, Xx, R, and Yx as
before. Then
(i) Wx = Xx +RYx for all x ≥ 0;
(ii) Y0 = 0 and for each i ∈ {1, . . . , κ}, the ith coordinate of Yx is non-decreasing in x and

can only increase when Wx(i) = 0, i.e.,
∑

x≥0 1(Wx(i) ≥ 1)(Yx+1(i)− Yx(i)) = 0.

Proof. Let y := ξx+1 if ξx+1 ̸= 0 and y := κ+1 if ξx+1 = 0. Also let yW := fW (Wx, ξx+1) and
yX := fX(Xx, ξx+1) (see (27) and (28)). We first show (ii). According to (30) in Proposition
6.2, we have yW ≤ yX < y. Also, by the definition of yW , we have Wx(yW + 1) = · · · =
Wx(y − 1) = 0. Hence if Yx+1(i) − Yx(i) > 0, then i ∈ {yW + 1, . . . , y − 1} and hence
Wx(i) = 0. This shows (ii).
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Next, we show (i) by induction on x ≥ 0. It holds trivially when x = 0, so suppose for the
induction step that it holds for some x ≥ 0. We wish to show that

Wx+1 = Xx+1 +RYx+1. (33)

From (27)-(28), note that

(Wx+1 −Wx)− (Xx+1 −Xx) =


0 if yW = yX

eyX − eyW if 1 ≤ yW < yX

eyX if 0 = yW < yX .

(34)

If yW = yX , then R(Yx+1−Yx) = 0 so (33) holds by the induction hypothesis. Next, suppose
1 ≤ yW < yX . Note that

R(Yx+1 − Yx) = R(eyW+1 + · · ·+ eyX )

= (eyW+1 − eyW ) + (eyW+2 − eyW+1) + · · ·+ (eyX − eyX−1)

= eyX − eyW .

Lastly, suppose 0 = yW < yX . Then

R(Yx+1 − Yx) = R(e1 + · · ·+ eyX )

= e1 + (e2 − e1) + (e3 − e2) + · · ·+ (eyX − eyX−1) = eyX .

Hence in all cases, the induction step holds by the induction hypothesis, (34), and (32). □

7. Probabilistic analysis of the decoupled carrier process

In the previous section, we defined the decoupled carrier process (Xx)x≥0 associated with
an arbitrary set Ce = {α1, . . . , αr} ⊆ {1, . . . , κ} of exceptional colors over a deterministic ball
configuration ξ. In this section, we establish various important probabilistic results for the
decoupled carrier process (Xx)x≥0 over the i.i.d. ball configuration ξp with a particular choice
of the associated set Ce of exceptional colors.

7.1. Decomposition of the decoupled carrier process. Let p = (p0, . . . , pκ) be the ball
density at each site. We choose the set of exceptional colors Ce so that it satisfies the following
‘stability condition’:

For all 1 ≤ j ≤ r, max{pi : αj < i < αj+1} < pαj+1 , (35)

where we set α0 = 0 = αr+1. Since balls of a non-exceptional color i in (αj , αj+1) can be
excluded by balls of color αj+1 in the decoupled carrier, the above condition ensures that
(Xx(i))x≥0 do not blow up. A canonical choice of such Ce is the set of unstable colors Cp

u that
we defined above the statement of Theorem 2.5.

Define the following processes
Xx := The decoupled carrier process over ξ = ξp associated with Ce satisfying (35)
Xs

x := (1(i /∈ Ce)Xx(i) ; i = 1, . . . , κ) (▷ The ‘stable part’ of Xx)

Xu
x := (1(i ∈ Ce)Xx(i) ; i = 1, . . . , κ) (▷ The ‘unstable part’ of Xx).

(36)
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Namely, Xs
x (resp., Xu

x ) agrees with Xx on the non-exceptional (resp., exceptional) colors but
its coordinates on exceptional (resp., non-exceptional) colors are zero. Clearly, we have the
following decomposition

Xx = Xs
x +Xu

x for all x ≥ 0.

In Lemma 7.1, we will show that (Xs
x)x≥0 defines an irreducible Markov chain whose em-

pirical distribution converges to its unique stationary distribution πs defined as

πs
(
n1, . . . , nκ

)
=
∏
j∈Cp

u

1(nj = 0)
r∏

j=0

 ∏
αj<i<αj+1

(
1− pi

pαj+1

)(
pi

pαj+1

)ni

 , (37)

where we set α0 = 0 = αr+1. Hence the expression in the bracket above is a non-degenerate
geometric distribution. Thus the above is the product of κ−r geometric distributions, so it is
indeed a probability distribution on Ωs. Comparing (37) with (5), we see that the exceptional
color αj+1 plays the role of color 0 for the non-exceptional colors in the interval (αj , . . . , αj+1).

Lemma 7.1. Let (Xs
x)x≥0 be the process defined in (36). Then it is an aperiodic Markov

chain on the state space Zκ
≥0 and has a unique communicating class with unique stationary

distribution πs defined in (37). Furthermore, if we denote the distribution of Xs
x by πsx, then

lim
x→∞

dTV (π
s
x, π

s) = 0. (38)

Proof. First we show (Xs
x)x≥0 defines a Markov chain. Clearly the full decoupled carrier

process (Xx)x≥0 over ξ = ξp defines a Markov chain on Zκ. Hence it is enough to show that
Xs

x+1 is determined from Xs
x and ξx+1 for each x ≥ 0. Fix x ≥ 0 and denote y := ξx+1. Fix

a non-exceptional color i. Let j be such that αj < i < αj+1. If y /∈ [i, αj+1], then Xs
x+1(i) =

Xs
x(i). If y = i, then Xs

x+1(i) = Xs
x(i) + 1. If y ∈ (i, αj+1], then Xs

x+1(i) − Xs
x(i) = −1 if

Xs
x(i) ≥ 1 and Xs

x(i + 1) = · · · = Xs
x(αj+1 − 1) = 0; otherwise Xs

x+1(i) −Xs
x(i) = 0. In all

cases, Xs
x+1(i) is determined by Xs

x and y. Since i was an arbitrary non-exceptional color,
this verifies that (Xs

x)x≥0 is a Markov chain.
Next, let Ωs denote the subset of Zκ

≥0 consisting of all points whose coordinates on ex-
ceptional colors are zeroed out. Clearly (Xs

x)x≥0 lives in Ωs. We show the irreducibility of
the chain (Xs

x)x≥0 on Ωs. Aperiodicity will follow from irreducibility by noting that 0 ∈ Ωs

is aperiodic. Observe that Xs
x visits every state eventually in Ωs with positive probabil-

ity starting from the initial state 0. Hence it suffices to show the converse transition. Fix
x = (x1, . . . , xκ) ∈ Ωs. Denote n1 = x1 + · · ·+ xα1−1, which is the number of balls of color in
[1, α1). Observe that inserting n1 balls of color α1 into the decoupled carrier Xx removes all
balls of colors in [1, α1) and leaves with xα1+n1 balls of color α1. Next, we insert xα1+n1+n2
balls of color α2 into the decoupled carrier, where n2 = xα1+1+ · · ·+xα2−1. This will remove
all remaining balls of colors in [1, α2) and leave xα2 + (xα1 + n1 + n2) balls of color α2. Re-
peating this process, we can remove all balls of stable colors in the decoupled carrier, so Xs

x

visits 0 with a positive probability.
Next, we can verify that πs is a stationary distribution of (Xs

x)x≥0 by using a similar
argument as in the proof of Theorem 2.3 (i). The key idea is the following: The evolution
of balls of colors in (αj , αj+1) in the decoupled carrier Xx depends only on balls of colors in
(αj , αj+1] and inserting balls of color αj+1 can exclude any color in that interval. Moreover,
the ‘stable component’ Xs

x of Xx does not count the number of balls of color αj+1 and recall
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the ‘stability condition’ (35). So one can treat αj+1 as color 0 in the subcritical carrier. We
omit the details.

Lastly, the convergence of the empirical distribution in (38) follows from the same soft
argument given at the end of the proof of Theorem 2.3 (i). □

Next, we introduce a representation of the decoupled carrier process as a (truncated) partial
sums process. By Lemma 7.1, (Xs

x, ξx+1)x≥0 defines an aperiodic Markov chain on Zκ
≥0 ×

{0, . . . , κ} with unique stationary distribution πs ⊗ p. For each ℓ ∈ {1, . . . , κ}, define a
functional gℓ : Zκ × {0, . . . , κ} → Z by

gℓ(w, i) :=



1 if i = ℓ

−1
if αj ≤ ℓ < i ≤ αj+1 for some j ∈ {0, . . . , r − 1}

and w(ℓ+ 1) = · · · = w(i− 1) = 0

−1 if αr ≤ ℓ, i = 0, and w(ℓ+ 1) = · · · = w(i− 1) = 0

0 otherwise,

(39)

where we denoted α0 := 0. It is easy to verify that, for each ℓ ∈ {1, . . . , κ} and x ≥ 0,

Xx+1(ℓ) =

{
Xx(ℓ) + gℓ(Xs

x, ξx+1) if ℓ ∈ Ce
max(0, Xx(ℓ) + gℓ(Xs

x, ξx+1)) if ℓ /∈ Ce.
(40)

In words, the random variable gℓ(Xs
x, ξx+1) gives the increment of Xx+1(ℓ) for exceptional

ℓ; for non-exceptional ℓ, the same holds but with additional truncation at 0 to ensure the
value of Xx(ℓ) stays nonnegative. In particular, we can view Xx(ℓ) for non-exceptional ℓ as a
Lindley process in queuing theory.

Another consequence of the observation in (40) is that the decoupled carrier process Xu
x on

the exceptional colors (the unstable component of Xx) can be written as an additive function
of the Markov chain (Xs

x, ξx+1)x≥0:

Xu
x =

x∑
z=1

∑
ℓ∈{α1,...,αr}

gℓ(Xs
z , ξz+1) eℓ. (41)

This representation will be used critically in Sections 7, 9, and 10.
In the following proposition, we compute the stationary expectation of the increments

gℓ(Xs
x, ξx+1) in (40).

Proposition 7.2 (Bias of the decoupled carrier). Let gℓ be the function in (39). Then

Eπs⊗p[g
ℓ(Xs

x, ξx+1)] = pℓ − pℓ+ ,

where ℓ+ is the smallest exceptional color strictly larger than ℓ. (If ℓ > αr, then take ℓ+ = 0.)

Proof. Fix j ∈ {0, . . . , r} and and αj ≤ ℓ < αj+1. Denote ℓ+ := αj+1, where we take α0 = 0

and αr+1 = κ+ 1 ≡ 0 (modκ+ 1). Denote ζx := gℓ(Xs
x, ξx+1). It is clear from the definition

that

Pπs⊗p (ζx = 1) = pℓ.

It remains to show

Pπs⊗p (ζx = −1) = pℓ+ .
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To this end, observe that

Pπs⊗p(ζx = −1) = pℓ+1 +
ℓ+∑

i=ℓ+2

Pπs(Xs
x(ℓ+ 1) = · · · = Xs

x(i− 1) = 0) pi. (42)

Since Xs
x is distributed as the stationary distribution πs for all x ≥ 0,

Eπs

 ∑
ℓ<i<ℓ+

Xs
x+1(i)−

∑
ℓ<i<ℓ+

Xs
x(i)

 = 0. (43)

Let T denote the random variable in the expectation above. Then

Pπs⊗p(T = −1) =

1− Pπs

 ∑
ℓ<i<ℓ+

Xs
x(i) = 0

 pℓ+ ,

Pπs⊗p(T = 1) = pℓ+1 +
ℓ+−1∑
i=ℓ+2

Pπs(Xs
x(ℓ+ 1) = · · · = Xs

x(i− 1) = 0) pi.

Since T ∈ {−1, 0, 1} and (43) holds, this yields

pℓ+ = pℓ+1 +
ℓ+∑

i=ℓ+2

Pπs(Xs
x(ℓ+ 1) = · · · = Xs

x(i− 1) = 0) pi.

Note that the right-hand side equals Pπ̃⊗p(ζx = −1) in (42), as desired. This shows the
assertion. □

7.2. Finite moments of return times of the decoupled carrier process. The main
goal of this section is to prove Theorem 7.3 below, which shows that the first return time to
the origin of the stable part of the decoupled carrier process (Xs

x)x≥0 has finite moments of
all orders. In fact, we prove this result in a more general setting that includes the excursions
of Xx(i) under the past maximum for exceptional colors i with a positive drift. (Handling
such a general setting will be useful in the proof of Proposition 9.2.) Define a new process
(X̃x)x≥0 on Zκ

≥0 by

X̃x(i) :=


Xx(i) if i /∈ Ce
max0≤t≤xX

u
t (i)−Xu

x (i) if i = αj ∈ Ce for some j and pαj > pαj+1

0 otherwise.
(44)

Notice that (X̃x)x≥0 defines a Markov chain on the nonnegative orthant Zκ
≥0.

Theorem 7.3. Let (X̃x)x≥0 be the Markov chain on Zκ
≥0 in (44). Assume (36) holds. Let

τ denote its first return time to the origin. Then τ has finite moments of all orders. Fur-
thermore, (X̃x)x≥0 is irreducible, aperiodic, positive recurrent and has a unique stationary
distribution.

We recall the following geometric ergodic theorem for Markov chains on a countable state
space. It is an important tool for showing finite exponential moments of return times.
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Theorem 7.4 (Geometric Ergodic theorem; Special case of Thm. 15.0.1 in [MT12]). Let
(Xt)t≥0 be a Markov chain on a countable state space Ω with transition kernel P , which is
irreducible and aperiodic. Then the following conditions are equivalent:
(i) There exists a state x ∈ Ω such that the return time of the chain to x has a finite expo-

nential moment;
(ii) The chain is geometrically ergodic, that is, there exists a function V : Ω → [1,∞),

constant ε ∈ (0, 1), and a finite set C such that

PV (x) ≤ (1− ε)V (x) for all x ∈ Ω \ C.

In order to prove Theorem 7.3, we will establish a general lemma on the first return time of
Markov chains defined on the nonnegative integer orthant that abstracts important structure
of the subcritical carrier process Wx. Its proof is relegated to the end of this section.

Lemma 7.5. Let Zx = (Zx(1), . . . , Zx(d)) be an aperiodic and irreducible Markov chain on
Zd
≥0. Suppose Z0 = 0 and assume the following three properties:

(A1) (Geometric ergodicity of top coordinate) The return time of Zx(d) to zero has a finite
exponential moment.

(A2) (Hierarchical dependence) There is a sequence of i.i.d. random variables (ξx)x∈N with
distribution p and functions fi : Zd−i−1 × R → {−1, 0, 1} such that

Zx+1(i) = max(0, Zx(i) + fi(Z
>i
x , ξx+1)) for all x ∈ N and i ∈ {0, . . . , d− 1},

where Z>i
x := (Zx(i + 1), . . . , Zx(d)). Furthermore, Z>i

x has a unique stationary dis-
tribution, say λ>i.

(A3) (Coordinatewise negative drift) For all i = 0, . . . , d− 1,

Eλ>i⊗p

[
fi(Z

>i
x , ξx+1)

]
< 0.

Now fix i ∈ {0, . . . , d − 1}. For each j ≥ 1, let τj be the jth return time of (Z>i
x )x≥0 to the

origin. Then τ1 has finite moments of all orders. Furthermore, denote Rj := Zτj (i) for j ≥ 0.
Then (Rj)j≥1 is a Markov chain on Z≥0 such that there exists constants c,K > 0 for which

sup
m≥K

E[R1 −R0 |R0 = m] ≤ −c. (45)

In addition, (Rj)j≥1 is geometrically ergodic (see Theorem 7.4).

We now deduce Theorem 7.3 assuming Lemma 7.5.

Proof of Theorem 7.3. Let Cp
u denote the set of unstable colors, which is empty in the

subcritical regime p0 > max(p1, . . . , pκ) and non-empty in the critical and the supercritical
regimes p0 ≤ max(p1, . . . , pκ). In the latter case, we let α1 < · · · < αr denote the unstable
colors. For each x ≥ 0, we write X̃x = (Yx(0), Yx(1), . . . , Yx(r)), where

Yx(0) :=
(
Xx(1), · · · , Xx(α1 − 1)

)
,

and for each j ∈ {1, . . . , r} (setting pαr+1 = p0),

Yx(j) :=

{
(Xx(αj), Xx(αj + 1), · · · , Xx(αj+1 − 1)) if pαj = pαj+1

(max1≤s≤xXs(αj)−Xx(αj), Xx(αj + 1), · · · , Xx(αj+1 − 1)) if pαj > pαj+1
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We will show that for each j, the return time to the origin of (Yx(j))x≥0 has finite moments
of all orders. Then by an inductive argument (see the proof of Lemma 7.5), it follows that
the return time of (X̃x)x≥0 also has finite moments of all orders.

Denote Rx := Yx(j). Note that Rx is a Markov chain on Zℓ+−ℓ
≥0 with ℓ = αj . We wish to

show that the return time to the origin of Rx has finite moments of all orders. We will only
show this for the case of pαj > pαj+1 , as a similar and simpler argument will show the desired
statement for the case pαj = pαj+1 .

First, consider a partial sums process Sn =
∑n

k=1 ηk, S0 = 0, where the increments ηk
take values from {−1, 0, 1} and they are not necessarily i.i.d.. Consider the new process
Sn := max1≤k≤n Sk − Sn, which measures the height of the excursion of (Sk)1≤k≤n below the
running maximum. Note that Sn satisfies the following recursion:

Sn − Sn−1 =

{
−ηn if ηn = −1 or Sn−1 ≥ 1,

0 if Sn−1 = 0 and ηn ∈ {0, 1}.

Equivalently, we have

Sn = max(0, Sn−1 − ηn).

Now suppose ℓ = ℓ+−1 so that Rx := max1≤s≤xXs(ℓ)−Xx(ℓ). In this case, Xx(ℓ) a simple
random walk on Z with positive drift pℓ − pℓ+ > 0, so Rx is a birth-deatch chain on Z≥0 with
negative drift pℓ+ −pℓ < 0. In this case, the claim follows immediately. Hence we may assume
ℓ < ℓ+ − 1. Notice that (Xx(ℓ

+ − 1))x∈N is a birth-deach chain on Z≥0 which moves to the
right with probability pℓ+−1 and to the left with probability pℓ+ . Since ℓ < ℓ+ − 1, by the
choice of ℓ and ℓ+, we have pℓ+−1 < pℓ+ . Hence Xx(ℓ

+−1) has negative drift pℓ+−1−pℓ+ < 0
on Z>0. Thus the return time to the origin of Xx(ℓ

+ − 1) has a finite exponential moment.
This verifies the hypothesis (A1) in Lemma 7.5; (A2) follows from the observation in the
previous paragraph and (40); (A3) follows from Proposition 7.2. Therefore, by Lemma 7.5
we deduce that the return time to the origin of Rx has finite moments of all orders.

One can easily check the irreducibility of Xx by using a similar argument as in the proof
of Lemma 7.1. Aperiodicity is clear, as one can stay at the origin in one step when a color
0 is encountered. We have established that the return time to the origin of Xx has finite
moments of all orders. This implies that the chain is positive recurrent. Hence the chain has
a stationary distribution [LLP20, Thm. 21.13], and it is unique from the irreducibility and
Kac’s theorem [LLP20, Lem. 21.12]. □

We now prove Lemma 7.5. The argument is soft and inductive in nature.

Proof of Lemma 7.5. We first claim the following:
For each i ∈ {0, . . . , d− 1}, the first return time of (Z>i

x )x≥0

to some state x has a finite exponential moment. (46)

We show the (46) by induction on i = d− 1, . . . , 0. Fix i ∈ {0, . . . , d− 1}. The base step for
i = d − 1 is given by the hypothesis (A1). For the induction step, suppose the first return
time of (Z>i

x )x≥0 to some state x′ has a finite exponential moment. Let τj denote the jth
return time of (Z>i

x )x≥0 to x′. Consider a new process

(Qj ,x
′) := (Zτj (i), Zτj (i+ 1), . . . , Zτj (d)).

By the strong Markov property, this defines a Markov chain (Qj)j≥1 on Z≥0.



38 JOEL LEWIS, HANBAEK LYU, PAVLO PYLYAVSKYY, AND ARNAB SEN

Step 1. (45) holds for (Qj)j≥1. We would like to show

sup
m≥K

E[Q1 −Q0 |Q0 = m] ≤ −c (47)

for some constants c,K > 0. Instead of Zx(i), we consider its ‘untruncated version’

Zx(i) :=

j∑
ℓ=1

fi(Z
>i
x , ξx+1)

with Z0(i) = 0. (Note that Zx(0) = Zx(0) by the hypothesis.) Since (Z>i
x )x≥0 is a Markov

chain by the hypothesis (A2), by the strong Markov property, excursions from x for the
recurrent chain Z>i

x are i.i.d.. Hence Qj := Zτj (i) for j ≥ 1 forms a random walk, whose
increments are i.i.d. and has the same distribution as Q1. We claim that this random walk
has a negative drift:

E[Q1] < 0. (48)

To see this, first, note that

lim
x→∞

1

x
Zx(i) = Eλ>i⊗p[fi(Z

>i
0 , ξ1)] =: α < 0

by the hypothesis (A3). Since τ1, τ2− τ1, τ3− τ2, . . . are i.i.d. by the strong Markov property
and since τ1 has a finite exponential moment by the induction hypothesis, τj → ∞ almost
surely. So Zτj/τj → α < 0 almost surely. Also, to the strong law of large numbers and the
previous results,

E[Q1] = lim
j→∞

Qj

j
= lim

j→∞

Zτj

τj

τj
j

= αE[τ1] < 0.

This shows the claim.
Now note that

E[Q1 −Q0 |W0 = m] = E[Zτ1(i)− Z0(i) | Z0(i) = m]

= E[(Zτ1(i)− Z0(i))1τ1≤m | Z0(i) = m]

+ E[(Zτ1(i)− Z0(i))1τ1>m | Z0(i) = m]

= E[Zτ11τ1≤m] + E[(Zτ1(i)− Z0(i))1τ1>m | Z0(i) = m]

= E[Zτ1 ]− E[Zτ11τ1>m] + E[(Zτ1(i)− Z0(i))1τ1>m | Z0(i) = m].

For the third equality, we have used the fact that τ1 ≤ m and Z0(i) = m in conjunction with
the hypothesis imply Zx(i) ≥ 0 for all 0 ≤ x ≤ τ1. Note that |Zτ1 | ≤ τ1 and τ1 has a finite
expectation by the induction hypothesis, so E[Zτ11τ1>m] → 0 as m → ∞ by the dominated
convergence theorem. Also,

E[(Zτ1(i)− Z0(i))1τ1>m | Z0(i) = m] ≤ E[(τ1 −m)+1τ1>m],

so again by the dominated convergence theorem, the above tends to zero as m → ∞. Since
E[Zτ1 ] < 0 by (48), we have shown (47).
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Step 2. (Qj)j≥1 is geometrically ergodic. Next, we show that the Markov chain
(Qj)j≥0 on Z≥0 is geometrically ergodic. To this end, first note that |Qj+1 −Qj | ≤ τj+1 − τj ,
so it has finite exponential moment by the hypothesis. By the dominated convergence theorem,

lim
β↘0

E
[
exp(β(Qj+1 −Qj))− 1

β

∣∣∣∣Qj = m

]
= E[Qj+1 −Qj |Qj = m].

Let c,K > 0 be the constants in (47). Then by choosing sufficiently small β > 0, we can find
ε > 0 such that

E[exp(β(Qj+1 −Qj)) | Qj = m] ≤ 1− ε ∀m ≥ K.

So, by taking V (x) = exp(βx), we have PV (x) ≤ (1 − ε)V (x) for all x outside the finite set
{0, 1, · · · ,K}, verifying the geometric ergodicity condition for the chain Qj .

Step 3. Completing the induction step. By the geometric ergodic theorem (Theorem
7.4), the first return time σ of the geometrically ergodic chain (Qj)j≥1 to some sate x′ ∈ Z≥0

has a finite exponential moment. Denote x = (x′,x′) ∈ Zd−i
≥0 . We now show that the first

return time S of the chain (Z≥i
x )x≥0 to the state x has a finite exponential moment. Note

that S = τσ. Since σ has a finite exponential moment, there exists a constant c > 0 such that
P(σ = l) ≤ e−cl for all ℓ ≥ 1. Also, by the induction hypothesis, τ1 has a finite exponential
moment. Hence there exists A > 1 such that E[Aτ1 ] < ∞. By choosing A sufficiently close
to 1, and applying dominated convergence, we can assume E[A2τ1 ] ≤ ec/2. Now by Cauchy-
Schwarz,

E[AS ] = E[Aτσ ] =
∞∑
l=1

E[Aτl1σ=l] ≤
∞∑
l=1

√
E[A2τl ]

√
P(σ = l)

=
∞∑
l=1

√
E[A2τ1 ]l

√
P(σ = l) ≤

∞∑
l=1

ecl/4e−cl/2 =
∞∑
l=1

e−cl/4 <∞.

This shows that S has a finite exponential moment, as desired. Thus far, we have shown (46).
Step 4. Concluding for the return time to the origin. Fix i ∈ {0, 1, . . . , d− 1}. By

(46), there exists a state x ∈ Zd−i
≥0 such that the first return time τ1 of (Z>i

x )x≥0 to x has a
finite exponential moment. Thus, τ1 has finite moments of all orders. It is well-known that,
for any recurrent and irreducible Markov chain on a countable state space, if for any state i
the first moment of the first return time is finite, then this also applies to any other state.
This generalizes to moments all orders of the first return time [HJR53]. Therefore, we can
conclude that the first return time of (Z>i

x )x≥0 to the origin has finite moments of all orders.
Lastly, let σj denote the jth return time of (Z>i

x )x≥0 to the origin and denote Rj := Zτj (0)
for j ≥ 1. We know that σ1 has finite moments of all orders. We can repeat Steps 1-2
above for the chain (Rj)j≥1 to conclude (45) and its geometric ergodicity. This completes the
proof. □

Remark 7.6. In [ADOS11], Aurzada, Döring, Ortgiese, and Scheutzow show that having a
finite exponential moment for first return times is actually not a class property. Hence in the
proof of Lemma 7.5, knowing that the first return time to some state x has a finite exponential
moment does not necessarily imply that the first return time to the origin also has a finite
exponential moment.
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7.3. Linear and diffusive scaling limit of the decoupled carrier process. In this
section, we establish linear and diffusive scaling limits of the decoupled carrier process. We
start with an illustrating example.

Example 7.7. Suppose Ce = {1, . . . , κ} so that all positive colors are exceptional. Denote
ηx := Xx −Xx−1 for x ≥ 1. Then (ηk)k≥1 are i.i.d. random vectors in Zκ with the following
distribution:

P (ηi = −eκ) = p0, P (ηi = e1) = p1, P (ηi = ej − ej−1) = pj for j = 2, . . . , κ.

Then note that

µ := E[ηi] = −p0eκ + p1e1 +
κ∑

j=2

(ej − ej−1)pj

= e1(p1 − p2) + e2(p2 − p3) + · · ·+ eκ(pκ − p0),

Σ := E
[
ηiη

T
i

]
= eκe

T
κ p0 + e1e

T
1 p1 +

κ∑
j=2

(ej − ej−1)(ej − ej−1)
T pj

=


p1 + p2 −p2 0
−p2 p2 + p3 −p3 0
0 −p3 p3 + p4

0
. . . −pκ
−pκ pκ + p0

 .

In this case, the decoupled carrier process (Xx)x≥0 is a Markov chain on Zκ with the mean and
the covariance matrix of the increments ηx are given as above. Then the linear interpolation
of the linear interpolation of the d-dimensional process ( 1√

n
(Xn − nµ)n∈N converges weakly

to the d-dimensional Brownian motion with covariance matrix Σ (see, e.g., [DMR94, Thm.
1] and the following remark). Note that µ = 0 if p0 = p1 = · · · = pκ = 1/(κ+ 1), which is a
special case of the critical regime for the multicolor BBS (i.e., p0 = max(p1, . . . , pκ)). See the
simulation in Figure 2 for κ = 2 and uniform ball density. ▲.

Next, we compute the mean and the variance of the increments of the unstable part of the
decoupled carrier process.

Proposition 7.8 (Mean and limiting covariance matrix). Let (Xx)x≥0 be the decoupled carrier
process in (36). Denote ζx := Xu

x −Xu
x−1 for x ≥ 1. Then the following hold:

(i) We have

µ := Eπs⊗p[ζ1] ≡ eα1(pα1 − pα2) + eα2(pα2 − pα3) + · · ·+ eαr(pαr − pα0),

Eπs⊗p

[
ζ1ζ

T
1

]
=

∑
ℓ∈{α1,...,αr}

eℓe
T
ℓ

pℓ + ∑
ℓ<q≤ℓ+

pq
∏

ℓ<j<q

(
1− pj

pℓ+

)
−

∑
ℓ∈{α1,...,αr−1}

(eℓe
T
ℓ+ + eℓ+e

T
ℓ ) pℓ+

∏
ℓ<j<ℓ+

(
1− pj

pℓ+

)
.
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(ii) Define the ‘limiting covariance matrix’ Σ ∈ Rκ×κ as

Σ := lim
n→∞

n−1Eπs⊗p

[
(Xu

n − nµ)(Xu
n − nµ)T

]
. (49)

Then Σ is well-defined, nonzero, symmetric, and positive semidefinite.

Proof. We first show (i). The stationary expectation of ζ1 can be easily verified from Propo-
sition 7.2. Denote m(a,b)(X

s
x) :=

∑
a<i<bX

s
x(i), which is set to zero if b ≤ a + 1. From (41),

we can write

ζx =
∑

ℓ∈{α1,...,αr}

eℓ

1(ξx = ℓ)−
∑

ℓ+1≤q≤ℓ+

1(ξx = q)1
(
m(ℓ,q)(X

s
x−1) = 0

) .

Then it is straightforward to compute

ζxζ
T
x =

∑
ℓ∈{α1,...,αr}

eℓe
T
ℓ

1(ξx = ℓ) +
∑

ℓ+1≤q≤ℓ+

1(ξx = q)1
(
m(ℓ,q)(X

s
x−1) = 0

)
−

∑
ℓ∈{α1,...,αr−1}

(eℓe
T
ℓ+ + eℓ+e

T
ℓ )1(ξx = ℓ+)1

(
m(ℓ,ℓ+)(X

s
x−1) = 0

)
.

Thus by taking the stationary expectation of ζxζTx in conjunction with (37), we obtain the
second identity in (i).

Lastly, we show (ii). Assuming Σ is well-defined, that it is symmetric and positive semidef-
inite is clear from the definition. Next, we argue that Σ is well-defined. Let ζ̄x := ζx − E[ζx].
For i ≥ 0, let σi denote the number of steps that the Markov chain Zx takes until it returns to
the origin for the i+1st time, By strong Markov property, σi’s are i.i.d.. Furthermore, the ex-
cursions of Zx from the origin (that is, Zx restricted on the time intervals [0, σ0], [σ0, σ1], . . . )
are i.i.d.. Furthermore, by Theorem 7.3 and the fact that ξx’s are i.i.d. with distribution
p = (p0, . . . , pκ), p0 > 0 (in fact, we assume min(p1, . . . , pκ) > 0), it follows that σ0 has finite
moments of all orders. Hence there exists some λ > 0 such that E[λσ0 ] < ∞. Moreover, by
Kac’s theorem [LLP20, Lem. 21.12],

lim
n→∞

1

E[σ1]
= πs ⊗ p(0, 0) = πs(0) p0,

where the stationary distribution πs is explicitly given in (37).
Now consider decomposing the trajectory of Zx into excursions from the origin. Write

si :=
∑σi+1−1

k=σi
ζ̄kζ̄

T
k . By the strong Markov property, s1, s2, . . . are i.i.d. and also note that

E[si] = 0. Denote Σn := E
[
(Xu

n − nµ)(Xu
n − nµ)T

]
. Observe that

Σσn = E
[
(Xu

σn
− σnµ)(X

u
σn

− σnµ)
T
]
= E

[
(s1 + · · ·+ sn) (s1 + · · ·+ sn)

T
]
= nE[s1sT1 ].

So by the elementary renewal theorem, almost surely,

lim
n→∞

1

σn
Σσn = lim

n→∞

n

σn
E[s1sT1 ] =

E[s1sT1 ]
E[σ1]

= p0π
s(0)E[s1sT1 ].

To show the convergence holds along the whole sequence, let T (n) denote the total number
of visits of Zx to the origin in the first n steps. Denote rn :=

∑n
k=σT (n)

ζ̄kζ̄
T
k . Then since
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s1, . . . , sT (n), rn are independent and E[si] = 0,

Σn = E
[(
s1 + · · ·+ sT (n) + rn

) (
s1 + · · ·+ sT (n) + rn

)T ]
= ΣσT (n)

+ E[rnrTn ]. (50)

Denote Λn := E
[∑n

x=1∥ζ̄xζ̄Tx ∥
]
, which is non-decreasing in n. Then similar argument as before

shows that 1
σn

Λσn converges a.s., and by the monotonicity of Λn, an elementary renewal theory
argument shows that n−1Λn converges as n→ ∞. Now by Jensen’s inequality,

∥E[rnrTn ]∥ ≤ Λn − ΛσT (n)
. (51)

Since σT (n) ≤ n ≤ σT (n)+1 and E[σ1] <∞, it follows that σT (n)/n→ 1 a.s. as n→ ∞. Hence
deviding both sides of (51) by n and letting n→ ∞ shows that n−1∥E[rnrTn ]∥ → 0 as n→ ∞.
Then from (50), we deduce

lim
n→∞

n−1Σn = lim
n→∞

σT (n)

n

1

σT (n)
ΣσT (n)

+ lim
n→∞

E[rnrTn ]

= lim
n→∞

σ−1
n Σσn

= p0π
s(0)E[s1sT1 ]

= πs(0) p0 E
[
(ζ̄1 + · · ·+ ζ̄σ1)(ζ̄1 + · · ·+ ζ̄σ1)

T
]
.

Finally, since ζ̄x’s are uniformly bounded and σ1 has a finite expectation, the last expression
is a matrix with finite entries by Wald’s identity. From this formula, it is also easy to verify
that Σ is nonzero. □

Now we establish linear and diffusive scaling limits of the decoupled carrier process on
unstable colors. This is the main outcome of this section.

Proposition 7.9 (Limit theorems for the decoupled carrier process on unstable colors). Let
(Xx)x≥0 be the decoupled carrier process in (36). Denote ζx := Xu

x −Xu
x−1 for x ≥ 1. Then

the following hold.
(i) (SLLN) Almost surely,

lim
n→∞

n−1Xn = eα1(pα1 − pα2) + eα2(pα2 − pα3) + · · ·+ eαr(pαr − pα0) := µ.

(ii) (FCLT) Let (Xv)v∈R≥0
denote the linear interpolation of the lattice path (Xx − xµ)x∈N.

Let B = (Bt : 0 ≤ t ≤ 1) denote the standard Brownian motion. Then as n→ ∞,

(n−1/2Xnt ; 0 ≤ v ≤ 1) =⇒ (Bt ; 0 ≤ t ≤ 1) in C([0, 1]),

where B = (Bv : 0 ≤ v ≤ 1) is the Brownian motion in Rκ with mean zero and
covariance matrix Σ defined in (49). Here =⇒ denotes weak convergence in C([0, 1]).

Proof. Recall the decomposition Xx = Xu
x +X

s
x. From Lemma 7.1 and Theorem 7.3, we know

that Xs
x is a geometrically mixing Markov chain on a subset of Zκ

≥0 with unique stationary
distribution πs in (37). Hence n−1Xs

n converges to zero almost surely. Also, the linear
interpolation of (Xs

x)x∈N in diffusive scaling converges almost surely to zero in C([0, 1]). Thus
it is enough to verify (i) and (ii) with Xn replaced by Xu

n .
Recall the Markov additive function representation (41) of Xu

x , where the underlying
Markov chain (Xs

x, ξx)x≥0 has the unique stationary distribution πu ⊗ p and is geometrically
ergodic (see Theorem 7.3). Thus (i) follows from the standard Markov chain ergodic theorem
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for positive Harris chains (see, e.g., [MT12, Thm. 17.1.7]). Recall that the limiting covariance
matrix Σ defined in (49) is well-defined and nontrivial by Proposition 7.8. Then (ii) follows
from the functional CLT for multivariate strongly mixing processes (see, e.g., [DMR94, Thm.
1] and the following remark). See also [RS10, Thm. 3.1]. For a functional central limit theo-
rem for additive functionals (univariate) of a positive Harris chain, see [MT12, Thm. 17.4.4
and eq. (17.38)]. □

8. Proofs of Theorem 2.3 (ii) and Theorem 2.4

We prove Theorem 2.3 (ii) and Theorem 2.4 in this section. Throughout this section, we
fix a probability distribution p = (p0, p1, · · · , pκ) on {0, 1, · · · , κ}, and let (Wx)x≥0 be the
carrier process in (4) over the i.i.d. configuration ξ = ξp.

8.1. Strong stability of the subcritical carrier process. In order to prove Theorem
2.3 (ii), we need stronger stability properties of the carrier process than what is stated in
Theorem 2.3. More specifically, (1) if W0 = 0, then its first return time to the origin has
finite moments of all orders; and (2) if W0 ∼ π and conditional on ∥W0∥1 = N , it has a
uniformly positive probability to visit the origin before it visits ‘level’ N + 1. These results
are established in the following proposition. In the remainder of this section, we will denote
W≥a

x := (Wx(a), . . . ,Wx(κ)) and W<a
x := (Wx(1), . . . ,Wx(a − 1)) and use similar notation

for X≥a
x and X<a

x . This is the content of Proposition 8.1 below, and proving this result is the
main goal of this section.

Proposition 8.1. Suppose p0 > p∗ := max(p1, · · · , pκ) and let (Wx)x≥0 be the carrier process
over ξp. The following hold.
(i) The first return time of Wx to the origin has finite moments of all orders.
(ii) For each m ∈ N, let τm = inf{x ≥ 1 : ∥Wx∥1 = m}. There exists constants L0, N0 ≥ 1

and c0 > 0 such that

inf
N≥N0

Pπ

(
τ0 < min(τN , c0N

2 + L0) | ∥W0∥1 = N
)
> 0. (52)

We prove a series of lemmas in order to prepare for the proof of Proposition 8.1.

Lemma 8.2 (Birth-deach chain domination of excursions of the carrier). Let (Wx)x≥0 be the
carrier process in (4) and suppose p0 > p∗ := max(p1, . . . , pκ). Fix a ∈ {1, . . . , κ} and define
a birth-deach chain (Sx)x≥0 on Z≥0 by S0 :=Wx(a) and

Sx+1 − Sx =


1 if ξx+1 = a

−1 if ξx+1 = 0 and Sx ≥ 1

0 otherwise.

Note that (Sx)x≥0 is a birth-death chain on Z≥0 with negative drift pa−p0 < 0. For all x ≥ 0,

∥W≥a
x ∥1 ≤ Sx if min

0≤t≤x
Wt(a) ≥ 1. (53)

Proof. The proposition says that as long as the carrier has at least one ball of color a, then
the total load ∥W≥a

x ∥1 is dominated by Sx. This is easy to verify by induction. The inequality
could be violated when Wx(a) = 0, since then the total load can increase by inserting balls
of color > a while Sx does not. □

In the statement and proofs below, we denote Px(·) = P(· |W0 = x).
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Lemma 8.3 (Quadratic first hitting time of the origin of the subcritical carrier). Let (Wx)x≥0

be the carrier process in (4) and suppose p0 > p∗ := max(p1, . . . , pκ). There exists a constant
c > 0 such that

inf
x∈Zκ

≥0

Px(∥Wx∥1 = 0 for some x ≤ c∥x∥21) > 0.

Proof. We prove the assertion by induction on κ. If κ = 1, then the assertion follows easily
since Wx then is a birth-deach chain on Z≥0 with negative bias p1 − p0 < 0 (e.g., see Lemma
8.5). For the induction step, note that W≥2

x behaves as the subcritical carrier process with
ball colors {0, 2, 3, . . . , κ}. That is, it evolves by the circular exclusion restricted on colors
{0, 2, . . . , κ} while ignoring balls of color 1. Thus W≥2

x is a lazy version of a carrier process
with subcritical ball density as max(p2, . . . , pκ) < p0. Let τi for i = 1, 2, · · · denote the ith
time that W≥2

x returns to the origin. By the strong Markov property, τi+1 − τi for i ≥ 1
are i.i.d. and they have finite moments of all orders by Lemma 7.5. Also, by the induction
hypothesis, there exists a constant c1 > 0 such that

inf
x∈Zκ−1

≥0

Px(τ1 ≤ c1∥x∥21) > 0. (54)

Denote Qi := Wτi(1) for i ≥ 1. Then (Qi)i≥1 is a Markov chain on Z≥0. Denote σ :=
inf{i ≥ 1 : Qi ≤ L} where L ≥ 1 is a constant. Let M := ∥W0∥1 and let c2 > 0 be a constant
to be determined. Introduce the following events:

E1 := {τ1 ≤ c1M
2},

E2 :=
{

max
1≤k≤⌊2c2M⌋

|τi+1 − τi| < M
}
,

E3 := {Wτ1(1) ≤ 2M},
E4 := {σ ≤ c2Wτ1(1)}.

These events depend on constants M,L, c2 > 0 that we will subsequently choose below. Note
that

στ = τ1 +

σ−1∑
i=1

(τi+1 − τi) ≤ τ1 + σ max
1≤i≤σ

(τi+1 − τi),

so σ ≤ 2c2M on E3 ∩ E4. Hence τσ ≤ (c1 + 2c2)M
2 on E :=

⋂4
i=1Ei. Also note that

∥Wτσ∥1 =Wτσ(1) = Qσ ≤ L. Hence denoting c := (c1 + 2c2) ∨ 1,{
∥Wx∥1 ≤ L for some x ≤ cM2

}
⊇ E.

Moreover,

Px(∥Wx∥1 = 0 for some x ≤ cM2 + L) ≥ pL0 Px(∥Wx∥1 ≤ L for some x ≤ cM2).

Furthermore, since c ≥ 1,

inf
∥x∥1<M

Px(∥Wx∥1 = 0 for some x ≤ c∥x∥21 + L) ≥ pM0 .

Therefore, it suffices to show that for some constant M0 ≥ 1,

inf
M≥M0

inf
∥x∥1=M

Px(E) > 0.
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Since E1 has a uniformly positive probability by the induction hypothesis (54), it is enough
to show that E2, E3, E4 have high probaiblity to occur.

For E2, since τi+1 − τi for i ≥ 1 are i.i.d. and have finite moments of all orders, it follows
that E2 occurs with a high probability if M is sufficiently large. To see this, note that

P(E2) = (1− P(τ2 − τ1 ≥M))⌊2c2M⌋ ≥
(
1− E[(τ2 − τ1)

2]

M2

)⌊2c2M⌋
→ 1 as M → ∞.

For E3, by Lemma 8.2, on the event that Wτ1(1) > 2M , a negatively biased birth-death
chain (Sx)x≥0 on Z≥0 makes an up-crossing of height at least M in c1M2 steps, so

1− Px(E3) ≤ P
(

max
0≤x≤⌊c1M2⌋

Sx > M

∣∣∣∣S0 = 0

)
.

Since Sx is a negatively biased simple random walk, the probability in the last expression is
exponentially small in M .

For E4, by Lemma 7.5 there are constants K, c3 > 0 such that

sup
m≥K

E[Q1 −Q0 |Q0 = m] ≤ −c3.

By Lemma 8.5, σ ≤ c4Q1 = c4Wτ1(1) occurs with probability at least 1 − 1
c3c4

for some
constant c4 > 0. Hence by choosing L ≥ K, c2 ≥ c4, and letting c4 sufficiently large, E4

occurs with a high probability. This shows the assertion. □

Lemma 8.4 (Growth of (sub-)critical carrier). Let (Wx)x≥0 be the carrier process in (4) with
arbitrary initial state W0 and suppose p0 ≥ p∗ := max(p1, . . . , pκ). Then for each ε > 0,
almost surely,

lim sup
n→∞

n−1 max
0≤x≤n

∥Wx∥1 ≤ ε.

Proof. Suppose W0 = (W0(1), . . . ,W0(κ)) is arbitrary and write M := ∥W0∥1. We may
prepend to the ball configuration ξ the following sequence:

(κ, . . . , κ︸ ︷︷ ︸
W0(κ)

, κ− 1, . . . , κ− 1︸ ︷︷ ︸
W0(κ−1)

, . . . , 1, . . . , 1︸ ︷︷ ︸
W0(1)

)

and denote the extended configuration ξ̃ = (ξ̃1, . . . , ξ̃M , ξ1, ξ2, . . . ). Let W̃ denote the carrier
process with zero initial state run on ξ̃. Then after scanning the first M in the extended
configuration, the new carrier W̃ attains exactly the same state W0 (i.e., W̃M = W0) and
thereafter it undergoes the same dynamics as W (i.e., W̃x+M = Wx for all x ≥ 0). Further-
more, max0≤x≤n∥Wx∥1 ≤ max0≤x≤n+M∥W̃x∥1, so it is enough to show the assertion for W̃ .
For simplicity, below we will denote W̃ and ξ̃ as W and ξ, respectively, and assume that the
first M entries of ξ may be deterministic.

Fix ε > 0. By Lemmas 3.1 and 3.5,

max
0≤x≤n

∥Wx∥1 = λ1(n) = max
A1⊆[0,n]

L(A1, ξ),

where the right-hand side equals the penalized length of the longest non-increasing subse-
quence in ξ(n) := (ξ0, ξ1, . . . , ξn). Let Di(x1, x2) denote the number of i’s minus the number
of 0’s in (ξx1 , ξx1+1, . . . , ξx2). If λ1(n) ≥ εn +M , then Di(x1, x2) ≥ εn/κ for some i and



46 JOEL LEWIS, HANBAEK LYU, PAVLO PYLYAVSKYY, AND ARNAB SEN

M < x1 ≤ x2 ≤ n. Note that Di(x1, x2) is the sum of x2 − x1 i.i.d. Bernoulli variables with
success probability pi − p0 ≤ 0. Hence by union bound and Hoeffding’s inequality,

P(λ1(n) ≥ εn+M) ≤
κ∑

i=1

∑
M<x1≤x2≤n

P(Di(x1, x2) ≥ εn/κ)

≤ κn2 exp(−cn)

for some constant c > 0. By Borel-Cantelli lemma, it follows that lim sup
n→∞

λ1(n)/n ≤ ε almost

surely. Then the assertion follows. □

We remark Theorem 2.5, which will be proved in Section 10, establishes the exact asymp-
totic max0≤x≤n∥Wx∥1 ∼ C

√
n for some constant C > 0.

Lemma 8.5 (Drift and bound on hitting time). Let (Yt)t≥0 be a Markov chain on Z≥0 with
transition kernel P . Suppose Ex[|Yt|] < ∞ for all x, t ≥ 0 and there exists constants c, L > 0
such that

Ex[Y1 − x] ≤ −c for all x ≥ L. (55)

Let τ := inf{t ≥ 0 : Yt ≤ L}. Then

Px(τ ≥ Cx) ≤ 1

cC
for all x ≥ 0 and C > 0.

Proof. For any function g : Z≥0 → R, denote Pg(x) :=
∑

y g(y)P (x, y) and PY := P id(Y ).
Note that the condition (55) reads

Px− x ≤ −c for all x /∈ [0, L]. (56)

Define the compensator (Kt)t≥0 of (Yt)t≥0 as K0 = 0 and

Kn :=
n−1∑
k=0

(PYk − Yk).

Then Yn−Kn is a martingale with respect to the natural filtration (Ft)t≥0, Ft := σ(Y0, . . . , Yt).
Also note that by (56), Kn∧τ ≤ −c(n ∧ τ), for if k < n ∧ τ , then PYk − Yk ≤ −c. Now using
the martingale condition,

x = Ex[Y0 −K0] = Ex[Yn∧τ −Kn∧τ ] ≥ cEx[n ∧ τ ].

Now if n ≥ Cx, then {τ ≥ Cx} = {n ∧ τ ≥ Cx}. Hence by Markov’s inequality, by choosing
n ≥ Cx, we can conclude as

Px(τ ≥ Cx) = Px(n ∧ τ ≥ Cx) ≤ Ex[n ∧ τ ]
Cx

≤ 1

cC
.

□

We now prove Proposition 8.1.

Proof of Proposition 8.1. Part (i) follows immediately from Theorem 7.3 with Ce = ∅.
Such choice of the set Ce of the exceptional colors satisfy the stability condition (35) in the
subcritical regime p0 > p∗.
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Next, we show (ii). Suppose the maxium ball density p∗ is achieved at positive colors
i1 ≤ i2 ≤ · · · ≤ ir. That is,

p0 > pi1 = · · · = pir > max{pj : 1 ≤ j ≤ κ, , j /∈ {i1, . . . , ir}}.

Denote C∗ := {i1, . . . , ir}. Fix λ ∈ (0, 1) and define a set

Xλ,M :=
{
x = (x1, . . . , xκ) ∈ Zκ

≥0 : ∥x∥1 =M, xi1 ≥ λM
}
. (57)

We will omit λ from the subscript of the above sets unless otherwise mentioned. By Propo-
sition 8.6,

Pπ(∥W0∥1 = N) = Θ

((
N + r − 1

r − 1

)(
p∗

p0

)N
)
.

Noting that

Pπ(W0 ∈ XN | ∥W0∥1 = N) =
Pπ(W0 ∈ XN )

Pπ(∥W0∥1 = N)

≥ Pπ(∥W0∥1 = N − ⌈λN⌉)
Pπ(∥W0∥1 = N)

(
p∗

p0

)⌈λN⌉
,

it follows that

inf
N≥1

Pπ(W0 ∈ XN | ∥W0∥1 = N) ≥ c∗ > 0 (58)

for some constant c∗ = c∗(λ) > 0.
For each x ∈ Zκ

≥0, let Px denote the law of (Wx)x≥0 with W0 = x. We claim that there
exists constants L0,M0 ≥ 1 and λ, c0 > 0 such that

inf
M≥M0

inf
x∈XM

Px

(
τ0 < min(τM+L0 , c0M

2)
)
> 0. (59)

Due to (58), this is enough to conclude (52). Indeed, since W0 ∈ XN implies ∥W0∥1 = N ,
(58) implies

Pπ(· | ∥W0∥1 = N) ≥ c∗Pπ(· |W0 ∈ XN ) ≥ c∗ inf
x∈XN

Pπ(·).

Also note that, for any integer L0 ≥ 1,

Px

(
τ0 < min(τN , c0N

2 + L0)
)
≥ pL0

0 Py

(
τ0 < min(τN+L0 , c0N

2)
)
,

where y ∈ XN−L0 is the carrier state obtained by inserting L0 0’s into the carrier with state
x. This yields

inf
N≥N0

Pπ

(
τ0 < min(τN , c0N

2 + L0) | ∥W0∥1 = N
)
≥ c∗ inf

N≥N0

inf
x∈XN−L0

Px

(
τ0 < min(τN+L0 , c0N

2)
)
,

where the right-hand side is positive due to (59) by choosing N0 =M0 + L0.
For the rest of the proof, we will show (59). Let a := i1, ρ := inf{x ≥ 0 : Wx(i1) = 0},

and τ0 := inf{x ≥ 0 : ∥Wx∥1 = 0}. According to Lemma 8.3, there exists a constant c0 > 0
such that τ0 ≤ c0∥W0∥21 with a positive probability. Denote M := ∥W0∥1 and fix ε, L > 0.
Define the following events

A1 := {τ0 ≤ c0M
2},
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A2 :=

{
∥W≥a

x ∥1 ≤M +
L

2
− 2εx for all x ∈ [0, ρ]

}
,

A3 :=

{
∥W<a

x ∥1 ≤
L

2
+ εx for all x ≥ 0

}
,

A4 := {∥Wx∥1 ≤M for all x ∈ [ρ, τ0]} .

Note that {
∥Wx∥1 hits 0 before it hits M + L for some x ≤ c0M

2
}
⊇ A :=

4⋂
i=1

Ai.

Thus it suffices to show that, for M0, L sufficiently large and ε > 0 sufficiently small,

inf
M≥M0

inf
x∈XM

Px (A) > 0.

To this effect, first note that A1 occurs with a uniformly positive probability by Lemma
8.3. Next, we observe that A2 and A3 occur with high probability. For A2, according to
Lemma 8.2, ∥W≥a

x ∥1 ≤ Sx for all x ∈ [0, ρ), where (Sx)s≥0 is a biased random walk on Z with
a negative drift pa − p0 < 0. Let ρ′ denote the first time that (Sx)s≥0 hits the origin. Then
ρ ≤ ρ′ by the coupling, so

Px(A
c
2) ≤ P

(
Sx > S0 +

L

2
− 2εx for some x ≥ 0

)
.

The right-hand side above is the probability that a biased simple random walk on Z with
mean increment pa − p0 + 2ε starts at zero and ever reaches height L/2. We choose ε > 0
small so that pa− p0+2ε < 0. Then by gambler’s ruin for a negatively biased simple random
walk on Z, this probability is exponentially small in L. Thus by choosing L large and ε > 0
small, we can make infM≥1,x∈XM

Px(A2) arbitrarily close to one.
For A3, let Xx denote the decoupled carrier process with exceptional colors Ce = {a}.

Then by Proposition 6.2, ∥W<a
x ∥1 ≤ ∥X̂<a

x ∥1 = ∥X<a
x ∥1 for all x ≥ 0. Note that ∥W<a

0 ∥1 ≤
(1−λ)M since W0 ∈ XM . Moreover, note that X<a

x behaves exactly as the subcritical carrier
process with ball colors in {1, . . . , a} and balls of color a acting as the empty box. That is,
X<a

x evolves by the circular exclusion restricted on colors {1, . . . , a} while ignoring balls of
colors in {a+1, . . . , κ, 0}. Thus X<a

x is a lazy version of a carrier process with subcritical ball
density as max(p1, . . . , pi1−1) < pi1 . Thus by Lemma 8.4, lim sup

n→∞
max0≤x≤n n

−1∥X<a
x ∥1 ≤ ε

almost surely. Hence A3 occurs with high probability for any fixed ε > 0 if L is large enough.
Next, we show that

⋂4
i=1Ai occur with a uniformly positive probability. By definition,

ρ < τ0. By the definition of the set XM in (57), we getW0(a) ≥ λM . SinceWx(a) can decrease
at most by one, it follows that ρ ≥ λM almost surely. On A2 ∩A3, ∥Wρ∥1 ≤M(1− λε) +L.
Thus

A1 ∩A2 ∩A3 ∩Ac
4

⊆ {∥Wx∥1 makes an up-crossing from M(1− λε) + L to M + L in c0M2 steps}

⊆
⋃

1≤i≤κ

{Wx(i) makes an up-crossing of length Mλε/κ in c0M2 steps}.
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By the coupling (53) in Lemma 8.2, the last up-crossing probability is exponentially small in
M . This shows

Px

(
4⋂

i=1

Ai

)
≥ Px

(
3⋂

i=1

Ai

)
− e−O(M).

Since A1 has uniformly positive probability and A2 ∩ A3 has a high probability, by union
bound the above is uniformly positive for M sufficiently large. This finishes the proof. □

8.2. Order statistics of the excursion heights and multi-dimensional Gambler’s
ruin. According to Theorem 2.3 (i), the carrier process (Wx)x≥0 in the subcritical regime
p0 > max(p1, · · · , pκ) will visit the origin 0 := (0, 0, · · · , 0) ∈ (Z≥0)

κ infinitely often with
finite mean excursion time π(0)−1. Namely, the number Mn of visits of Wx to 0 during [1, n]
(defined in (14)) satisfies

Mn

n
→ π(0) =

κ∏
i=1

(
1− pi

p0

)
a.s. as n→ ∞ (60)

by Theorem 2.3 (i) and the Markov chain ergodic theorem.
According to Lemma 3.1, the first soliton length λ1(n) is essentially the same as the maxi-

mum of the firstMn excursion heights of the carrier process. Roughly speaking, each excursion
height is O(1) with an exponential tail. Since there are Mn ∼ π(0)n i.i.d. excursions, their
maximum height behaves as O(log n).

To make this estimate more precise, we analyze the order statistics of the excursion heights
of the carrier process during [1, n]. For this, let h1:m ≥ h2:m ≥ · · · ≥ hm:m denote the order
statistics of the first m excursion heights h1, · · · , hm. The strong Markov property ensures
that these excursion heights are i.i.d., so we have

P{hj:m ≤ N} =

j−1∑
ℓ=0

(
m

ℓ

)
P(h1 ≤ N)m−ℓ P(h1 > N)ℓ, j = 1, · · · ,m. (61)

In the simplest case κ = 1, the distribution function of the excursion height h1 follows from
the standard gambler’s ruin probability and is given by

P(h1 ≤ N) =

(
1− 1− 2p

θN+1 − 1

)
1(N ≥ 0),

where θ = p0/p1 (see [LLP20, Sec. 4]). In order to obtain sharp asymptotics for top soliton
lengths in the multicolor case, we need a similar result for a generalized gambler’s ruin prob-
lem. That is, we need an asymptotic expression of the probability that the subcritical carrier
process reaches ‘height’ N (see (15)) before coming back to the origin.

However, solving the ‘carrier’s ruin’ problem asymptotically for N → ∞ seems to be a
nontrivial problem. The essential issue is that the subcritical carrier process for κ ≥ 2 may
have a positive drift on a boundary of its state space. For instance, consider the κ = 2 carrier
process as in Figure 1. Assuming p0 > max(p1, p2), the carrier process has a drift toward the
origin in the interior and the right boundary of the state space Z2

≥0, but this is not necessarily
true when there is no ball of color 1 (e.g., consider p = (0.4, 0.3, 0.3)). A standard martingale
argument for the gambler’s ruin problem for κ = 1 does not seem to readily apply for the
general κ ≥ 2 dimensional case for this reason. Another standard approach is the one-step
analysis, which is computationally challenging since it involves inverting a large matrix (with
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blocks of expanding sizes) at every N , and one needs to obtain an asymptotic expression of
the solution of a Nκ ×Nκ linear equation as N → ∞.

Despite the technical difficulties we mentioned above, as stated in Theorem 2.3 (ii), we are
able to obtain exact asymptotic expression on the probability that an excursion reaches height
N as N → ∞. Our analysis uses a novel idea of ‘stationary balancing’, which we believe to
be useful for solving other multi-dimensional ruin problems. A major technical component
we will use in the proof is Proposition 8.1(ii).

The following combinatorial observation will be used in the proof of Theorem 2.3 (ii)
below. It states that if we have k independent geometric random variables of parameters
p1/p0, . . . , pκ/p0, and if we condition on their sum being N , then the total mass should be
concentrated on the most probable colors. We note that in the statement, the 1 − pi

p0
terms

are omitted from the product since they are all between 1− p∗

p0
and 1. The proof is given at

the end of this section.

Proposition 8.6. Let p0 > p∗ = max(p1, . . . , pκ). Let r denote the number of is in {1, . . . , κ}
such that pi = p∗. If p1 = · · · = pκ, then∑

x1+···+xκ=N

κ∏
i=1

(
pi
p0

)xi

=

(
p∗

p0

)N (N + κ− 1

κ− 1

)
. (62)

Suppose r < κ and let p(2) denote the second largest value among p1, . . . , pκ. Then(
p∗

p0

)N (N + r − 1

r − 1

)
≤

∑
x1+···+xκ=N

κ∏
i=1

(
pi
p0

)xi

≤
(
p∗

p0

)N (N + r − 1

r − 1

)(
p∗

p∗ − p(2)

)κ−r

.

We are now ready to prove Theorem 2.3 (ii).

Proof of Theorem 2.3 (ii). Fix two disjoint subsets A,B ⊆ Zκ
≥0. Let τi for i ≥ 1 denote

the ith time that the Markov chain (Wx)x≥0 hits the union A ∪ B. Then by strong Markov
property, the subsequential process W̃i :=Wτi for i ≥ 1 is a Markov chain on the state space
A ∪ B. Since (Wx)x≥0 is irreducible and aperiodic, so is the restricted chain (W̃i)i≥1. So if
the restricted chain has a stationary distribution, it has to be unique. Note that that the
following probability distribution πA∪B on A ∪B is a stationary distribution for (W̃i)i≥1:

πA∪B(x) = π(x)/π(A ∪B) for x ∈ A ∪B, (63)

where for each subset R ⊆ Zκ
≥0, we denote π(R) :=

∑
y∈R π(y). Here π is the stationary

distribution for the subcritical carrier process defined in (5). This can be justified by using
the Markov chain ergodic theorem (see, e.g., [? , Sec. 2.7.1]).

Let (W ′
x)x≥0 be a carrier process on the ball configuration ξp but initialized as W ′

0 ∼ πA∪B.
If we restrict this chain at hitting times of A∪B, then the restricted chain is stationary with
distribution πA∪B . That is, if we denote the ith time that W ′

t visits A ∪ B as τ ′i , then W ′
0

and W ′
τ ′1

has the same distribution πA∪B . The key idea is to treat the restricted stationary
process (W ′

τ ′i
)i≥0 as if it is a two-state process on {A,B} and then derive a ‘balance equation’

for the mass transport between A and B.
By using (63),

P
(
W ′

x visits B before A
)
= P

(
W ′

τ ′1
∈ B

)
= πA∪B(B) =

π(B)

π(A ∪B)
.



SCALING LIMIT OF SOLITON LENGTHS IN A MULTICOLOR BOX-BALL SYSTEM 51

This gives

πA∪B(B) = P
(
W ′

x visits B before A
)

= P
(
W ′

x visits B before A, W ′
0 ∈ A

)
+ P

(
W ′

t visits B before A, W ′
0 ∈ B

)
= P

(
W ′

x visits B before A
∣∣∣∣W ′

0 ∈ A

)
πA∪B(A)

+ P
(
W ′

x visits B before A
∣∣∣∣W ′

0 ∈ B

)
πA∪B(B).

Simplifying using (63), we obtain the following ‘balance equation’

P
(
(W ′

x)x≥1 visits B before A
∣∣∣∣W ′

0 ∈ A

)
= P

(
(W ′

x)x≥1 visits A before B
∣∣∣∣W ′

0 ∈ B

)
π(B)

π(A)
.

Now we specialize in the above result. Take A = {0} and B = {x ∈ Zκ
≥0 : ∥x∥1 = N}.

Note that

P
(
(W ′

x)x≥1 visits B before 0 |W ′
0 = 0

)
= P(h1 ≥ N).

Recalling the the formula for π in (5), it follows that

P(h1 ≥ N) = P
(
W ′

x visits 0 before B |W ′
0 ∈ B

) ∑
x1+···+xκ=N

κ∏
i=1

(
pi
p0

)xi

, (64)

where the sum is over all integers x1, . . . , xκ ≥ 0 that sum to N . The above along with
Proposition 8.6 is enough to deduce the upper bound in (6).

To obtain a lower bound of matching order, we need to show that the probability in the
right-hand side of (64) is uniformly positive for all sufficiently large N . This requires a
substantial analysis, which we have done in proving Proposition 8.1. By this result, there
exists a constant δ > 0 such that

lim inf
N≥1

P
(
(W ′

x)x≥1 visits 0 before B |W ′
0 ∈ B

)
> δ > 0. (65)

Then the assertion follows from (64), (65), and Proposition 8.6. □

Proof of Proposition 8.6. Suppose we have real numbers a1 = a2 = · · · = ar ≥ ar+1 ≥
· · · ≥ aκ > 0. Note that∑

x1+···+xκ=N

ax1
1 · · · axκ

κ = aN1
∑

x1+···+xκ=N

(
ar+1

a1

)xr+1

· · ·
(
aκ
a1

)xκ

= aN1

N∑
q=0

(
q + r − 1

r − 1

) ∑
xr+1+···+xκ=N−q

(
ar+1

a1

)xr+1

· · ·
(
aκ
a1

)xκ

.(66)

If a1 = · · · = aκ, then the above expression equals to aN1
(
N+κ−1
κ−1

)
. Hence, if p1 = · · · = pκ, we

get (62).
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We now assume a1 = · · · = ar > ar+1 ≥ · · · ≥ aκ for some r ∈ {1, . . . , κ}. Then the last
expression in (66) is at most

aN1

N∑
q=0

(
q + r − 1

r − 1

) ∑
xr+1+···+xκ=N−q

(
ar+1

a1

)N−q

= aN1

N∑
q=0

(
q + r − 1

r − 1

)(
N − q + κ− r − 1

κ− r − 1

)(
ar+1

a1

)N−q

≤ aN1

(
N + r − 1

r − 1

)∑
n≥0

(
n

κ− r − 1

)(
ar+1

a1

)n−(κ−r−1)
 .

Note that the sum in the bracket above equals(
a1
ar+1

)(κ−r−1)∑
n≥0

(
n

κ− r − 1

)(
ar+1

a1

)n

=

(
a1
ar+1

)(κ−r−1)

(
ar+1

a1

)(κ−r−1)

(
1− ar+1

a1

)κ−r =

(
a1

a1 − ar+1

)κ−r

,

where we used the generating function
∑

n≥0

(
n
k

)
yn = yk

(1−y)k+1 (with
(
n
k

)
= 0 for n < k).

Hence it follows that∑
x1+···+xκ=N

κ∏
i=1

(
pi
p0

)xi

≤
(
p∗

p0

)N (N + r − 1

r − 1

)(
p∗

p∗ − p(2)

)κ−r

.

For the lower bound, note that the last expression in (66) is at least

aN1

N∑
q=0

(
q + r − 1

r − 1

) ∑
xr+1+···+xκ=N−q

(
aκ
a1

)N−q

= aN1

N∑
q=0

(
q + r − 1

r − 1

)(
N − q + κ− r − 1

κ− r − 1

)(
aκ
a1

)N−q

≥ aN1

(
N + r − 1

r − 1

)
.

Hence we get ∑
x1+···+xκ=N

κ∏
i=1

(
pi
p0

)xi

≥
(
p∗

p0

)N (N + r − 1

r − 1

)
.

This shows the assertion. □

8.3. Proof of Theorem 2.4. Now that we have the asymptotic soliton to the ‘carrier’s ruin’
problem (Theorem 2.3(ii)), we are ready to obtain sharp scaling limit for the top soliton
lengths in the subcritical regime, as stated in Theorem 2.4. To do so, we first obtain the
following scaling limit of hj(n) using a similar argument to that developed in [LLP20]. For
instance, the maximum excursion height h1(n) of the subcritical carrier process during [0, n]
scales like (1 + o(1)) log n, where its tail follows the Gumbel distribution up to a constant
shift. The tail cannot have a tight scaling limit due to a rounding error even in the κ = 1
case, see [LLP20, Remark 5.5].
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Proposition 8.7. Suppose p0 > p∗ := max(p1, · · · , pκ). Let r denote the multiplicity of p∗,
θ := p0/p

∗, and σ := π(0) > 0 (see (60)). Let νn := (1 + δn) logθ (σn/(r − 1)!), where we set
δn := (r−1) log logθ(σn/(r−1)!)+log(r−1)!

log σn/(r−1)! . Fix j ≥ 1 and x ∈ R. Then

lim sup
n→∞

[
exp

(
− C

(r − 1)!
θ−(x−1)

)(j−1∑
ℓ=0

θ−ℓx

ℓ!(r − 1)!

)]−1

(P {hj(n) ≤ x+ νn}+ o(1)) ≤ 1,

lim inf
n→∞

[
exp

(
− δ

(r − 1)!
θ−(x−1)

)(j−1∑
ℓ=0

θ−ℓ(x−1)

ℓ!(r − 1)!

)]−1

(P {hj(n) ≤ x+ νn}+ o(1)) ≥ 1,

where constants δ > 0 and C ≥ 1 are as in the Theorem 2.3 (ii).

Proof. Fix ε ∈ (0, σ) and let bn = ⌊(σ − ε)n⌋. As Mn/n → σ a.s. (see (60)), we have that
Mn ≥ bn for all sufficiently large n almost surely. Hence for each fixed x ∈ R,

P (hj(n) ≤ x+ νn) ≤ P (hj:bn ≤ x+ νn) + o(1). (67)

Furthermore, according to Theorem 2.3 (ii) and (61),

P (hj:bn ≤ x+ νn)

≤
j−1∑
ℓ=0

(
bn
ℓ

)(
1−

C
(⌊x+νn⌋+r−1

r−1

)
θ⌊x+νn⌋

)bn−ℓ((⌊x+νn⌋+r−1
r−1

)
θ⌊x+νn⌋

)ℓ

=

(
1−

C
(⌊x+νn⌋+r−1

r−1

)
θ⌊x+νn⌋+1

)bn j−1∑
ℓ=0

b−ℓ
n

(
bn
ℓ

)(
1−

C
(⌊x+νn⌋+r−1

r−1

)
θ⌊x+νn⌋

)−ℓ((⌊x+νn⌋+r−1
r−1

)
bn

θ⌊x+νn⌋

)ℓ

.

Since νn = (1 + δn) logθ (σn/(r − 1)!), note that

log

(
σνr−1

n n

θνn

)
= (r − 1) log(1 + δn) + (r − 1) log logθ (σn/(r − 1)!) + log(r − 1)!

+ δn (log(r − 1)!− log σn)

= (r − 1) log(1 + δn) → 0 as n→ ∞,

where the second equality uses the definition of δn and the limit follows since δn = o(1). Using
Stirling’s approximation,

(
N+r−1
r−1

)
= (1 + o(1))N r−1/(r − 1)! as N → ∞, we get

lim
n→∞

θ⌊x+νn⌋

θνn
log

(
1−

C
(⌊x+νn⌋+r−1

r−1

)
θ⌊x+νn⌋

)bn

= − lim
n→∞

bnC
(⌊x+νn⌋+r−1

r−1

)
θνn

= − lim
n→∞

1

(r − 1)!

(
⌊x+ νn⌋

νn

)r−1 bnCν
r−1
n

θνn

= −
C(1− ε

σ )

(r − 1)!
.

Similarly,

lim
n→∞

θ⌊x+νn⌋

θνn

(⌊x+νn⌋+r−1
r−1

)
bn

θ⌊x+νn⌋
=

(1− ε
σ )

(r − 1)!
.
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Writing ηn = (x+ νn)− ⌊x+ νn⌋ ∈ [0, 1), since θ > 1,

θx−1 ≤ θ⌊x+νn⌋

θνn
= θxθ−ηn ≤ θx.

Also note that limn→∞ b−ℓ
n

(
bn
ℓ

)
= 1

ℓ! . From the above computations, we deduce

lim sup
n→∞

exp

(
C

(r − 1)!

(
1− ε

σ

)
θ−x+1

)(
1−

C
(⌊x+νn⌋+r−1

r−1

)
θ⌊x+νn⌋

)bn

≤ 1,

lim sup
n→∞

(r − 1)!

1− ε
σ

θx−1

(⌊x+νn⌋+r−1
r−1

)
bn

θ⌊x+νn⌋
≤ 1.

Then we obtain

lim sup
n→∞

[
exp

(
− C

(r − 1)!

(
1− ε

σ

)
θ−(x−1)

)(j−1∑
ℓ=0

(1 + ε)
(
1− ε

σ

)ℓ θ−ℓ(x−1)

ℓ!(r − 1)!

)]−1

× P (hj:bn ≤ x+ νn)

≤ 1.

Therefore letting ε↘ 0 and using (67) give the limsup in the statement. A similar argument
using bn = ⌈(σ + ε)n⌉ shows the liminf in the statement. □

Now we are ready to establish sharp scaling for the top soliton lengths in the subcritical
regime.

Proof of Theorem 2.4. Let νn be as in Theorem 2.4. Note that

νn = logθ n+ (r − 1) logθ log n+ c+ o(1)

for some constant c. Hence the asymptotic (7) for λj(n) follows from (8).
Now we derive (8). Fix j ≥ 1 and x ∈ R. Then by Proposition 8.7,

lim inf
n→∞

P (h1(n) ≤ x+ νn) ≥ exp
(
−δθ−x

)
, (68)

lim sup
n→∞

P (hj(n) ≤ x+ νn) ≤ exp

(
− C

(r − 1)!
θ−(x−1)

) j−1∑
k=0

θ−k(x−1)

k!(r − 1)!
. (69)

Moreover, recall the quantities Mn and rn in (14) and (16), respectively. By Lemma 3.1,

h1(n) = max{h1, · · · , hMn} ≤ λ1(n) ≤ max{h1, · · · , hMn+1}.
Also, note that

0 ≤ P(h1(n) ≤ x+ νn)− P(max{h1, · · · , hMn+1} ≤ x+ νn) ≤ P(hMn+1 > h1(n)) = o(1).

It follows that

P(λ1(n) ≤ x+ νn) = P(h1(n) ≤ x+ νn) + o(1).

Moreover, since λ1(n) ≥ λj(n) ≥ hj(n) by Lemma 3.1,

P (λ1(n) ≤ x+ νn) ≤ P (λj(n) ≤ x+ νn) ≤ P (hj(n) ≤ x+ νn) .

Then (68)-(69) show (8), as desired. □
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9. The linear scaling limit of the carrier process

In this section, we prove Theorem 2.5 (i), concerning the linear scaling limit of the carrier
process Wx in (4).

Throughout this section, we assume p0 ≤ p∗ = max(p1, . . . , pκ). In this case the set Cp
s of

unstable colors (defined above the statement of Theorem 2.5) is nonempty. Let α1 < · · · < αr

denote the unstable colors. Let (Xx)x≥0 be the decoupled carrier process in (36) with Ce = Cp
u .

Recall the process (X̂x)x≥0 in (29).
We first show that the coordinate Xx(ℓ) for ℓ an unstable color of supercritical density

behaves like a random walk with a positive drift.

Proposition 9.1. Fix j ∈ {1, . . . , r} and denote ℓ := αj, ℓ+ := αj+1. If pℓ > pℓ+ , then
M̄ := − infk∈NXk(ℓ) has a finite exponential moment.

Proof. Recall that (Xx(ℓ))x≥0 is a Markov additive functional with increments gℓ(Xs
x, ξx+1)

(see (40)). Under the hypothesis, it has a positive bias Eπs⊗p[g
ℓ(Xs

x, ξx+1)] = α := pℓ−pℓ+ >
0 (see Proposition 7.2). Hence one can expect that Xx(ℓ) will essentially behave as a simple
random walk on Z with a positive bias. Since M̄ measures the height of the excursion of
Xx(ℓ) below the x-axis, it should have a finite exponential moment. Below we give a rigorous
justification.

Consider the Markov chain

Yx :=
(
Xx(ℓ+ 1), · · · , Xx(ℓ

+ − 1)
)
.

Let τj := j for j ≥ 0 if ℓ + 1 = ℓ+; Otherwise, let τj be the jth return time of
(
Xx(ℓ +

1), · · · , Xx(ℓ
+−1)

)
to the origin. By strong Markov property, τ1, τ2−τ1, τ3−τ2, . . . are i.i.d.,

and they have finite moments of all orders by Lemma 7.5. Let Rj := Xτj (ℓ) for j ≥ 1. Then
(Rj)j≥1 is a random walk. Let ηi := Ri −Ri−1 denote the increments. It has a positive drift
as

E[η1] = lim
j→∞

Rj

j
= lim

j→∞

Xτj (ℓ)

τj

τj
j

= αE[τ1] > 0,

where the first two equalities use the strong law of large numbers and the Markov chain
ergodic theorem.

Next, we claim that Xx(ℓ) returns to the origin only finitely many times almost surely.
First note that by the strong law of large numbers n−1Rn → α > 0 almost surely. Hence
n−1Rn > α/2 infinitely often almost surely. Note that for each j ≥ 1, since τj+1 − τj is
independent from Rj and has the same distribution as τ1, by Chebyshev’s inequality,

P (Xx(ℓ) = 0 for some x ∈ [τj , τj+1)) ≤ P(Rj ≤ τj+1 − τj) (70)
≤ E[P(τj+1 − τj ≥ Rj |Rj)]

≤ E[R−2
j E[τ21 ]]

≤ E[τ21 ]
(
(αj/2)−2 + cP(Rj ≤ (α/2)j)

)
,

where the last inequality follows by partitioning on two cases depending on Rj ≤ (α/2)j or
Rj > (α/2)j. If we denote ηi := E[ηi] − ηi, then ηi’s are mean zero i.i.d., so, noting that
E[Rn] = αn,

P(Rn ≤ (α/2)n) ≤ P(E[Rn]−Rn ≥ (α/2)n)
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≤ P

(
n∑

i=1

−ηi ≥ (α/2)n

)

≤ P

( n∑
i=1

−ηi

)4

≥ (α/2)4n4


≤ C(E[η̄21]2 + E[η̄41])

n2

for some constant C > 0. Note that for the last inequality, we have used Chebyshev’s
inequality along with the fact that only the O(n2) terms of the form η̄2i η̄

2
j for i ̸= j and η̄4i

have nonzero expectations. Sincet |η1| ≤ τ1 has a finite moments of all orders, so does η̄1.
Thus (70) implies ∑

j≥1

P (Zx(0) = 0 for some x ∈ [τj , τj+1)) <∞.

By the Borel-Cantelli lemma, it follows that Xx(ℓ) visits the origin only finitely many times
almost surely. This shows the claim.

Now we conclude that M̄ has a finite exponential moment. For this, we use the general
result by Hansen [Han06] about the running maximum of a random walk with negative drift,
that if the running maximum is uniformly bounded almost surely, then the supremum of the
running maximum has a finite exponential moment. We apply this result to the random
walk (−Rj)j≥1. According to the claim, it follows that supx≥0−Xx(ℓ) = − infx≥0Xx(ℓ) is
almost surely finite. Hence supj≥1−Rj is almost surely finite, so by [Han06, Thm. 2.1],
supj≥1−Rj = − infj≥1Rj has a finite exponential moment. Since the increments of Rj have
finite exponential moments, we can conclude that − infx≥0Xx(ℓ) also has a finite exponential
moment. □

Proposition 9.2. Let j ∈ {1, . . . , r} be arbitrary with ℓ := αj, ℓ+ := αj+1, and pℓ > pℓ+ .
Then for each integer d ≥ 1, there exists a constant c > 0 such that for all n ≥ 1 and s > 0,

P
(
max
0≤t≤n

Xt(ℓ)−Xn(ℓ) ≥ s

)
≤ exp(−cs), (71)

P
(∣∣∣∣max

0≤t≤n
X̂t(ℓ)−Xn(ℓ)

∣∣∣∣ ≥ ε

)
≤ exp(−cs).

Proof. Consider the following Markov chain

Yx :=
(
max
1≤s≤x

Xs(ℓ)−Xx(ℓ), Xx(ℓ+ 1), · · · , Xx(ℓ
+ − 1)

)
on Zℓ+−ℓ

≥0 . Note that Y0 = 0. Let τ denote the first return time of Yx to the origin. In Theorem
7.3, we have shown that τ has finite moments of all orders. Let L1, L2, . . . denote the lengths
of excursions of Yx to the origin. Since Lk ≥ 1 for all k ≥ 1, Mn ≤ n. Let h1, h2, · · · denote its
subsequent excursion heights of Yx. Since h1 ≤ L1 = τ and using the elementary inequality

1− (1− a)n ≤ na for a ∈ (0, 1), (72)
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for each s > 0,

P
(∣∣∣∣max

1≤t≤n
Xt(ℓ)−Xn(ℓ)

∣∣∣∣ ≥ s

)
≤ P (∥Yn∥1 ≥ s)

≤ P (max(h1, . . . , hMn) ≥ s)

≤ P (max(h1, . . . , hn) ≥ s)

≤ 1− (1− P(h1 ≥ s))n

≤ nP(h1 ≥ s)

≤ nP(τ ≥ s)

Note that P(τ ≥ s) is exponentially small in s. Hence the first inequality in (71) follows.
Next, we show the second inequality in (71). By definition of X̂x, we have

P
(∣∣∣∣ max

1≤s≤x
X̂s(ℓ)−Xx(ℓ)

∣∣∣∣ ≥ s

)
= P

(∣∣∣∣ max
0≤s≤x

(
Xs(ℓ)− min

0≤t≤s
Xt(ℓ)

)
−Xx(ℓ)

∣∣∣∣ ≥ s

)
≤ P

(
max
0≤s≤x

Xs(ℓ)−Xx(ℓ) ≥ s/2

)
+ P

(
max
0≤s≤x

(
− min

0≤t≤s
Xt(ℓ)

)
≥ s/2

)
.

The second term in the last expression is exponentially small in s due to Proposition 9.1.
Hence the second inequality in (71) follows from the above and the first equality in (71). □

The following lemma shows half of Theorem 2.5 (i).

Lemma 9.3. Let µ = (µ1, . . . , µκ) :=
∑r

j=1 eαj (pαj −pαj+1). For i = 1, . . . , κ, almost surely,

lim sup
n→∞

n−1

(
max
0≤t≤n

Wt(i)

)
≤ µi. (73)

Proof. By Proposition 6.2,

max
0≤t≤x

Wx(i) ≤ max
0≤t≤x

X̂x(i) i = 1, . . . , κ, (74)

where X̂x(i) = Xx(i)−min0≤s≤xXs(i). Let τ0 := 0 and let τj for j ≥ 1 denote the jth return
time of Xs

x to the origin, and let hj denote the maximum value of ∥Xs
s∥1 during the interval

[τj−1, τj ]. By the strong Markov property, hj ’s are i.i.d.. By Lemma 7.1, (Xs
x)x≥0 is a Markov

chain on Zκ
≥0 with a unique stationary distribution and its return time to the origin, say τ ,

has finite moments of all order by Theorem 7.3.
Now note that, for each s > 0,

P
(
max
0≤t≤n

∥Xs
t ∥1 ≥ s

)
≤ P (max(h1, . . . , hn) ≥ s) = 1− (1− P(h1 ≥ s))n

≤ nP(h1 ≥ s) ≤ nP(τ ≥ s).

Now choosing s = n1/4, it follows that P
(
n−1/2max0≤t≤n∥Xs

t ∥1 ≥ n−1/4
)

is summable, so by
the Borel-Cantelli lemma,

lim
n→∞

n−1/2 max
0≤t≤n

∥Xs
t ∥1 = 0 a.s..
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Combining with (74) and recalling X̂x(i) = Xx(i) for i ∈ Cp
s , we deduce (73) for all i ∈ Cp

s .
By the argument in the previous paragraph, we may assume the set Cp

u of unstable colors
is nonempty and it remains to show the statement for unstable colors. Fix j ∈ {1, . . . , r} and
let ℓ = αj , ℓ+ = αj+1 (with αr+1 = 0). Since ℓ is an unstable color, pℓ ≥ pℓ+ . First, suppose
pℓ > pℓ+ . Then Propositions 9.2 and 7.9 imply

lim
n→∞

n−1 max
1≤t≤n

X̂t(ℓ) = lim
n→∞

n−1Xn(ℓ) = pℓ − pℓ+

almost surely. Then the assertion follows from (74).
It remains to consider the case pℓ = pℓ+ . In this case, we wish to show

lim sup
n→∞

n−1

(
max
0≤t≤n

Wt(ℓ)

)
= 0.

Rewrite (74) as

max
0≤t≤x

Wx(ℓ) ≤ max
0≤t≤x

(
Xt(ℓ)− min

0≤k≤t
Xk(ℓ)

)
≤ max

0≤t≤x
Xt(ℓ) + max

0≤t≤x
(−Xt(ℓ)).

Hence it suffices to show

lim sup
n→∞

n−1

(
max
0≤t≤n

Xt(ℓ)

)
= lim sup

n→∞
n−1

(
max
0≤t≤n

−Xt(ℓ)

)
= 0.

First assume ℓ+ 1 = ℓ+. In this case Xx(ℓ) is a lazy simple random walk on Z. Hence by
the reflection principle,

P
(
max
0≤t≤n

(−Xt(ℓ)) ≥ a

)
≤ 2P (−Xn(ℓ) ≥ a) ≤ exp(−a

2

n
).

The right-hand side is exponentially small in a by the bounded difference inequality. So
taking a = n2/3 and applying the Borel-Cantelli lemma show that n−1max0≤t≤n(−Xt(ℓ))
converges to zero almost surely. By a symmetric argument, the same conclusion holds for
n−1max0≤t≤nXt(ℓ). Hence this verifies the assertion.

Lastly, suppose ℓ + 1 < ℓ+. In this case, Xx(ℓ) is not a random walk. Instead, from (40),
we can write it as a Markov additive functional:

Xx(ℓ) =

x∑
t=0

gℓ(Xs
t , ξt+1).

Moreover, the increment gℓ(Xs
t , ξt+1) does not depend on the whole Xs

t , but only on

Yt :=
(
Xt(ℓ+ 1), · · · , Xt(ℓ

+ − 1)
)
.

Let τ0 = 0 and τi for i ≥ 1 denote the ith return time of Yx to the origin. According to
Theorem 7.3, τ1 (and hence all τi’s) have a finite moments of all orders.

Consider the process Ri := −Xτi(ℓ). By the strong Markov property, the sequence Ri for
i ≥ 1 is a random walk. Denote its increment ηi := Ri −Ri−1. Then ηi has finite moments of
all orders since each τi − τi−1 does so and Xx(ℓ) changes at most by one in x. Moreover, by
the strong law of large numbers and the Markov chain ergodic theorem,

E[η1] = lim
n→∞

Rn

n
= lim

n→∞

τn
n

(−Xτn(ℓ))

τn
= E[τ1]Eπs⊗p[g

ℓ(Xs
x, ξx+1)] = 0.

Hence Ri is a mean-zero random walk.
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Denote M := max(τ1, τ2 − τ1, . . . , τn − τn−1). Since this is the maximum of i.i.d. random
variables of finite moments of all orders, union bound and Chebyshev’s inequality and (72)
give

P(M ≥ a) = 1− (1− P(τ1 ≥ a))n ≤ nP(τ1 ≥ a) = O(na−d)

for any integer d ≥ 1. Also, since the increments Xs+1(ℓ)−Xs(ℓ) are bounded by 1,

max
0≤s≤n

Rs ≥ max
0≤s≤τn

−Xs(ℓ)−M ≥ max
0≤s≤n

−Xs(ℓ)−M.

Hence combining the above inequalities and using Kolmogorov’s maximal inequality, for any
b > 1/

√
n,

P
(
n−1 max

0≤s≤n
−Xs(ℓ) ≥ b

)
≤ P

(
max
0≤s≤n

Rs(ℓ) ≥ nb−M

)
≤ P

(
max
0≤s≤n

Rs(ℓ) ≥ nb−
√
n

)
+ P

(
M >

√
n
)

=
nVar(η1)
(nb−

√
n)2

+O(n−2).

Then taking b = n−1/6 and denoting Tn := max0≤s≤n−Xs(ℓ), we get

P
(
n−1Tn ≥ n−1/3

)
≤ c

n2/3
(75)

for some constant c > 0. Notice that Tn is non-decreasing in n. By Borel-Cantelli Lemma
and (75), we have that n−2Tn2 → 0 almost surely. Fix k ≥ 1 and let n = n(k) denote the
largest inetger such that n2 ≤ k < (n+ 1)2. Then using monotonicity,

n2

(n+ 1)2
Tn2

n2
≤ Tk

k
≤

T(n+1)2

(n+ 1)2
(n+ 1)2

n2
.

Taking k → ∞, we deduce that k−1Tk → 0 almost surely as k → ∞. Therefore, it follows
that n−1max0≤t≤n(−Xt(ℓ)) converges to zero almost surely. By a symmetric argument, the
same conclusion holds for n−1max0≤t≤nXt(ℓ). This completes the proof. □

Now we are ready to prove Theorem 2.5 (i).

Proof of Theorem 2.5 (i). We wish to show that

lim
n→∞

n−1Wn = µ a.s.. (76)

Note that by Lemma 9.3,

lim sup
n→∞

n−1Wn ≤ µ a.s., (77)

where we interpret the inequality componentwise. Recall the Skorokhod decomposition Wx =
Xx + RYn in Lemma 6.3. We first consider the case when κ ≥ 3. Then writing R = I − Q
with Q = tridiagκ(0, 0, 1) and using the identity (I −Q)(I +Q+Q2 + . . . ) = I, we see that
R−1 is the following upper diagonal matrix whose nonzero entries equal to one:

R−1 = I +Q+ · · ·+Qκ−1.

Write

n−1Yn = R−1(n−1Wn − n−1Xn).
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Then by using (77) and the fact that limn→∞ n−1Xn = µ a.s. (see Prop. 7.9),

a := lim sup
n→∞

(n−1Wn − n−1Xn) ≤ 0, (78)

where we applied limsup as well as inequality componentwise. It is crucial to note that R−1

has nonnegative entries. Hence

lim sup
n→∞

n−1Yn = R−1a ≤ 0.

But since each Yn is a nonnegative vector by definition, it follows that limn→∞ n−1Yn = 0
almost surely. Then using the Skorokhod decomposition once more, we get

lim
n→∞

n−1Wn = µ+R lim
n→∞

n−1Yn = µ

almost surely, as desired.
It remains to verify (76) for the case when κ = 1, 2. Denote y := lim sup

n→∞
n−1Yn. Suppose

κ = 2. Then the Skorokhod decomposition and (78) yield[
1 −1
0 1

]
y = a ≤ 0.

Note that y ≥ 0 since Yn ≥ 0 for all n ≥ 1. Then it is easy to see that y must equal 0. The
case for κ = 1 can be argued similarly. □

10. The diffusive scaling limit of the carrier process

In this section, we prove Theorem 2.5 (ii) on the diffusive scaling limit of the carrier process
in the critical and the supercritical regime. The definition of SRBM below is adapted from
[Wil98, Def. 3.1].
Definition 10.1 (Semimartingale reflecting Brownian motion). Fix an integer κ ≥ 1 and a
subset J ⊆ {1, . . . , κ}. Let S := {(x1, . . . , xκ) ∈ Rκ : xi ≥ 0 for all i ∈ J} and let B denotes
the Borel σ-algebra on S, ν is a probability measure on (S,B), θ is a constant vector in Rκ, Σ
is a κ× κ covariance matrix (symmetric and positive semidefinite1), and R is a κ× κ matrix.
A semimartingale reflecting Brownian motion (SRBM) associated with the data (S, θ,Σ, R, ν)
is an {Ft}-adapted, κ-dimensional process W defined on some probability space (Ω,F ,P) and
filtration {Ft; t ≥ 0} (an increasing family of sub-σ-algebras of F) such that
(i) W = X +RY , P-a.s.;
(ii) P-a.s., W has continuous paths and W (t) ∈ S for all t ≥ 0;
(iii) Under P,

(a) X is a κ-dimensional Brownian motion with drift vector θ, covariance matrix Σ and
X(0) ∼ ν;

(b) {X(t)−X(0)− θt,Ft; t ≥ 0} is a martingale;
(iv) Y is an {Ft}-adapted, κ-dimensional process such that P-a.s. for i = 1, . . . , κ,

(a) Yi(0) = 0;
(b) Yi is continuous and non-decreasing;
(a) Yi can increase only when W is on the face Fi := {x ∈ S : xi = 0}, i.e.,

∫∞
0 1(Wi(s) >

0) dYi(s) = 0.

1We allow the covariance matrix to be degenerate.
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Roughly speaking, an SRBM W = X + RY behaves like the Brownian motion X in the
interior of the domain S and it is confined to the domain by the instantaneous “reflection”
(or “pushing”) at the boundary, where the direction of such “reflection” on the ith face Fi is
given by the ith column of the reflection matrix R. Note that in Def. 10.1, the domain S
only requires coordinates in the set J be nonnegative, while it is standard to take S to be the
nonnegative orthant Rκ

≥0. We take this slightly more general domain to analyze the diffusive
scaling limit of the centered carrier process W t in Theorem 2.5, which can take negative values
in coordinates corresponding to unstable colors.

A classical result of Reiman and Williams [RW88] (see also [Wil98, Thm. 3.1]) shows that
an SRBM associated with (S, θ,Σ, R, ν) with S = Rκ

≥0 and Σ non-degenerate uniquely exists
if and only if the reflection matrix R is completely-S (see Def. 10.2). Roughly speaking,
this condition means that at any boundary point of S, there exists a nonnegative linear
combination of the reflection directions (i.e., columns of R) that points to the interior of S.
When Σ is degenerate, then SRBM still exists but may not be unique.
Definition 10.2 (Completely-S). A matrix R ∈ Rd×d is completely-S if for every principal
submatrix R0 of R, there is a nonnegative vector x0 such that R0x0 has strictly positive
coordinates. Here a principal submatrix of R is a matrix obtained by deleting all rows and
columns of R with indices in some proper subset set I ⊊ {1, . . . , d} (possibly empty).

It is critical to notice that the reflection matrix R in (31) that gives a Skorokhod decom-
position of the carrier process Wx as in Lemma 6.3 has the following property: For κ ≥ 3,
R = I −Q where Q has a spectral radius less than one. In this case, we can say a lot about
SRBM with a more direct argument. The first step is to recall that the problem that defines
SRBM in Def. 10.1 is a particular instance of the classical Skorokhod problem stated below.
Definition 10.3 (Skorokod Problem). Fix a subset J ⊆ {1, . . . , κ} and let S := {(x1, . . . , xκ) ∈
Rκ : xi ≥ 0 for all i ∈ J}. Let CS denote the subspace of Cκ(0,∞) consisting of paths x
with x(0) ∈ S. Fix matrix R ∈ Rκ×κ and x ∈ CS . A pair (z, y) ∈ Cκ(0,∞) × Cκ(0,∞) is a
solution of the Skorohod problem for x w.r.t. R if the following conditions hold:
(i) z(t) = x(t) +Ry(t) for all t ≥ 0.
(ii) z(t) ∈ S for all t ≥ 0.
(iii) For i = 1, . . . , κ, yi(0) = 0, yi(t) is non-decreasing, and

∫∞
0 1(i ∈ J)1(zi(t) ≥ 0) dyi(t) =

0 .
When the reflection matrix R can be written as R = I − Q where Q is nonnegative and

has a spectral radius less than one, then there is a unique solution (z, y) to the Skorokhod
problem for each path x and the map x 7→ (z, y) (the Skorohod map) is continuous. This
result is stated and proved in Theorem 10.4.

Theorem 10.4 (Harrison and Reiman ’81). Let S = Rd × Rκ−d
≥0 and CS be as in Def. 10.3.

Suppose the reflection matrix R can be written as R = I − Q where Q is nonnegative and
has a spectral radius of less than one. Then for each path x ∈ CS, there exists a unique
pair of functions (z, y) ∈ Cκ(0,∞) × Cκ(0,∞) that solves the Skorokhod problem in Def.
10.3. Furthermore, denoting z = ϕ(x) and y = ψ(x), both ϕ and ψ are continuous mappings
CS → Cκ(0,∞).

Proof. The original result [HR81, Thm. 1] is stated for S = Rκ
≥0, where in our setting we

allow S to be the intersection of axes-parallel half-spaces in Rκ. A minor modification of
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the proof of [HR81, Thm. 1] will show the minor extension as stated above. We sketch the
argument for completeness.

Without loss of generality, assume S = Rd × Rκ−d
≥0 for some d ∈ {0, . . . , κ}. Denote

C = Cκ(0,∞) and fix x ∈ CS . Let C0 be the set of paths y ∈ C such that y(0) = 0 and and
non-decreasing componentwise. Define a map π = πx : C0 → C0 such that

π(y)i(t) =

{
0 if i = 1, . . . , d

sup0≤s≤t [y(s)Q− x(s)]+ if i = d+ 1, . . . , κ.

Then one can check that (z, y) is a solution to the Skorokhod problem if and only if

y ∈ C0, y = π(y), z = x+ (I −Q)y. (79)

One can then argue that there is a unique solution y ∈ C0 such that y = π(y).
To this end, for each square matrix Q, we let ∥Q∥∞ denote its maximum absolute row sum.

Since Q is nonnegative and has spectral radius < 1, there exists a positive diagonal matrix Λ
such that Q̃ := Λ−1QΛ satisfies ∥Q̃∥∞ < 1 [? , Lem. 3]. Observe that (z, y) satisfies (79) if
and only if (zΛ, yΛ) satisfies (79) with x and Q replaced by Λx and Q̃. Thus, without loss of
generality, we may assume ∥Q∥∞ < 1.

Now fix T ≥ 0 and define C0[0, T ] and CS [0, T ] in the obvious way. These are complete
metric spaces endowed with the norm

∥y∥ := max
1≤j≤κ

sup
0≤t≤T

|yj(t)|.

Then one can show that the map π is a contraction on C0[0, T ]:

∥π(y)− π(y′)∥ ≤ ∥Q∥∞ ∥y − y′∥.
Since ∥Q∥∞ < 1, it follows that π is a contraction mapping, implying that there is a unique
fixed point y ∈ C0.

Now to show the continuity of the mapping x 7→ ϕ(x), we observe that ϕ(x), being the
unique fixed point of y = πx(y) of the contraction mapping π, can be explicitly constructed
as the limit of yn(x) := πnx(y

0) with y0 ≡ 0. Then note that for x, x′ ∈ C0[0, T ],

∥yn+1(x)− yn+1(x′)∥ ≤ ∥x− x′∥+ ∥Q∥∞ ∥yn(x)− yn(x′)∥.

By an induction and taking n → ∞, we get ∥ϕ(x) − ϕ(x′)∥ ≤ 1
1−∥Q∥∞ ∥x − x′∥. Thus ϕ is

1
1−∥Q∥∞ -Lipschitz continuous on C0[0, T ]. Since T was arbitrary, this implies continuity of ϕ
on C0(0,∞). Thus ϕ is continuous on Cκ(0,∞) in the topology of uniform convergence on
compact intervals. The continuity of the mapping x 7→ ψ(x) is clear from the last identity in
(79). □

In the proof of Theorem 10.4, we have used the fact that of Q is a matrix of spectral
radius less than one, then there exists a positive diagonal matrix Λ such that Λ−1QΛ has
maximum absolute row sum strictly less than one, appealing to [? , Lem. 3]. In our case,
Q = tridiagκ(0, 0, 1) and we can directly take Λ to have diagonal entries Λ(i, i) = κ − i + 1
for i = 1, . . . , κ, in which case the maximum absolute row sum equals κ−1

κ < 1.

Proof of Theorem 2.5 (ii). For this proof, we will appeal to the continuity of the Skorokod
map x 7→ (y, z) we established in Theorem 10.4. Let J = {1, . . . , κ}\{αj ; j = 1, . . . , r, pαj >
pαj+1} and S := {(x1, . . . , xκ) ∈ Rκ : xi ≥ 0 for all i ∈ J}. Let µ = (µ1, . . . , µκ) :=
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j=1 eαj (pαj − pαj+1). Then µ is nonzero in its jth coordinate if and only if j ∈ J . Recall

the Skorokhod decomposition of the carrier process Wx in Lemma 6.3:

W x = Xx +RYx for x ∈ N, (80)

where we denoted W x =Wx − xµ and Xx = Xx − xµ. Since Wx ∈ Rκ
≥0, we have W s ∈ S for

all s ∈ R≥0. Note that (80) gives a Skorokhod decomposition of the centered carrier process
(W x)x∈N. Namely, for each i ∈ J , Yx(i) can increase only if W x(i) = 0. This is because for
i ∈ J , W x(i) = Wx(i), and by Lemma 6.3, we know that Yx(i) increases only if Wx(i) = 0.
From (80), we deduce

W̃n(t) = X̃n(t) +RỸ n(t) for t ∈ R≥0, (81)

where W̃n, X̃n, and Ỹ n are the linear interpolations of 1√
n
(Wx − xµ), 1√

n
(Xx − xµ), and

1√
n
Yx.
Since R = tridiagκ(0, 1,−1), we can write R = I − Q where Q = tridiagκ(0, 0, 1), so Q

has spectral radius zero for all κ ≥ 1 since Qκ is zero. Denoting x 7→ (ϕ(x), ψ(x)) by the
Skorohod mapping as in Theorem 10.4, according to (81), for each n ≥ 1, we have

ϕ(X̃n) = W̃n and ψ(X
n
) = Ỹ n.

That is, the pair (W̃n, Ỹ n) is the unique solution of the Skorokhod problem for X̃n with
respect to the reflection matrix R. Recall that by Proposition 7.9, X̃n converges weakly to
the Brownian motion B in Rκ with zero drift and covariance matrix Σ. By continuity of the
Skorohod mapping, it follows that

W̃n =⇒ lim
n→∞

ϕ(X̃n) = ϕ(B),

Ỹ n =⇒ lim
n→∞

ψ(X̃n) = ψ(B).

In particular, W̃n converges weakly to the SRBM associated with data (S,0,Σ, R, δ0), as
desired. □

11. Proofs of Theorems 2.7 and 2.7

In this section, we establish scaling limits of the top soliton lengths for the i.i.d. model in
the critical and the supercritical regimes.

By now, it is easy to deduce Theorem 2.6.

Proof of Theorem 2.6. Suppose p0 = max(p1, · · · , pκ). Then Cp
u = {0 ≤ i ≤ κ : pi = p0}

and we may write Cp
u = {α0, · · · , αr} with 0 = α0 < α1 < · · · < αr. Then the weak

convergence of the diffusively scaled first soliton length in (11) follows from Lemma 3.1,
Theorem 2.5, and the continuous mapping theorem.

Next, we justify that λj(n) = Θ(n) with high probability for all j ≥ 1. The upper bound
follows since λj(n) ≤ λ1(n) = O(

√
n) with high probability. For the lower bound, we use

the fact that the carrier process in the critical regime converges weakly to an SRBM as in
Theorem 2.5. In particular, there are excursions of the carrier process of height (i.e., the
L1-norm) at least c

√
n with high probability if c > 0 is small enough. Then the lower bound

λ1(n) = Ω(
√
n) with high probability follows from Lemma 3.2. □
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In the rest of this section, we prove Theorem 2.7. Throughout we will assume p∗ =
max(p1, · · · , pκ) > p0. Let α1 < · · · < αr denote the unstable colors. Under the hypothesis it
holds that pα1 = p∗.

Proof of Theorem 2.7 (i). Let µ = (µ1, . . . , µκ) be as in Theorem 2.5. By Lemma 3.1 and
Theorem 2.5, almost surely,

lim
n→∞

n−1λ1(n) = lim
n→∞

n−1∥Wn∥1 = ∥µ∥1
= (pα1 − pα2) + (pα2 − pα3) + · · ·+ (pαr − p0) = p∗ − p0.

Next, recall the Skorokhod decomposition Wx = Xx + RYx in Lemma 6.3. Define t(n) :=
argmax0≤t≤n∥Wt∥1. Let J denote the set of indices i ∈ {1, . . . , κ} such that µi > 0. Then
µi = 0 if i /∈ J , so

λ1(n)− n∥µ∥1 =
κ∑

i=1

Wt(n)(i)− nµi

=
∑
i∈J

Wt(n)(i)− nµi + max
0≤t≤n

∑
i/∈J

Wt(i).

By Proposition 6.2, it follows that∑
i∈J

Wn(i)− nµi +
∑
i/∈J

Wn(i) ≤ λ1(n)− nµ ≤
∑
i∈J

X̂t(n)(i)− nµi + max
0≤t≤n

∑
i/∈J

Wt(i).

Recall that the linear interpolation of n−1/2(Wn − nµ) converges weakly to the SRBM with
specified data as in Theorem 2.5. Hence the lower bound in Theorem 2.7 (i) follows from
above. For the upper bound, we use Proposition 9.2 to note that, almost surely,

lim
n→∞

n−1/2

∣∣∣∣∣∑
i∈J

X̂t(n)(i)−
∑
i∈J

Xt(n)(i)

∣∣∣∣∣ = 0.

Hence, almost surely,

lim sup
n→∞

n−1/2
∑
i∈J

(X̂t(n)(i)− nµi) + n−1/2 max
0≤t≤n

∑
i/∈J

Wt(i)

= lim sup
n→∞

n−1/2
∑
i∈J

(Xn(i)− nµi) + n−1/2 max
0≤t≤n

∑
i/∈J

Wt(i).

Recall that by Proposition 7.9, the linear interpolation of n−1/2(Xn − nµ) converges to a
Brownian motion on Rκ with mean zero and an explicit covariance matrix Σ. Also, by
Theorem 2.5 and the continuous mapping theorem,

n−1/2 max
0≤t≤n

∑
i/∈J

Wt(i) =⇒ sup
0≤v≤1

∑
i/∈J

W v(v),

where W = (W 1, . . . ,W κ) is the SRBM in Theorem 2.5. Thus the upper bound in (12)
follows by the continuous mapping theorem. □

Next, we complete the proof of Theorem 2.7 (ii)-(iii). To this effect, it suffices to show the
following statement.

Theorem 11.1. Suppose p∗ > p0 and fix j ≥ 2. Then the following hold.
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(i) Suppose pi = p∗ for a unique 1 ≤ i ≤ κ. Then λj(n) = Θ(log n) with high probability.
(ii) Suppose pi = p∗ at least two distinct colors 1 ≤ i ≤ κ. Then λj(n) = Θ(

√
n) with high

probability.

We begin with the following definition. For 0 ≤ i, j ≤ κ and a finite subset H ⊆ N, define
a random variable Di,j(H) by

Di,j(H) =
∑
x∈H

[1(ξp(x) = i)− 1(ξp(x) = j)] ,

which equals the difference of the number of color i and color j balls in H given by ξp.

Proposition 11.2. Fix 1 ≤ i, j ≤ κ and suppose pi > pj. Fix a finite subset H ⊆ N. Then
for any constant C > 0,

P (Dj,i(H) ≥ 2C log n) ≤ exp(−C(pi − pj) log n)

for all n ≥ 1.

Proof. Let ε = pi − pj > 0 and denote |H| = m. Note that E[Dj,i(H)] = −εm. Since Dj,i(H)
is a sum of i.i.d. increments with absolute value at most one, by Hoeffding’s inequality,

P(Dj,i(H)− E[Dj,i(H)] ≥ t) ≤ e−t2/(2m)

for any t > 0. Let t = εm+ 2C log n. Then t/m ≥ ε, so

P(Dj,i(H) ≥ 2C log n) = P(Dj,i(H)− E[Dj,i(H)] ≥ t) ≤ e−(ε/2)t ≤ e−εC logn.

This shows the assertion. □

Proof of Theorem 11.1. Denote ξ := ξn,p. Our argument is based on Lemma 3.5. In this
proof, for integers a < b, an ‘interval’ [a, b] will refer to the set {a, a + 1, . . . , b}. We say a
subset A ⊆ N is a non-increasing subsequence if ξ is non-increasing on A. The ‘support’ of A
is the interval of integers [min(A),max(A)].

We first show the upper bounds in (i) and (ii). It suffices to obtain bounds on λ2(n) in
the corresponding regimes. Recall the formula for λ1(n) + λ2(n) given by Lemma 3.5:

λ1(n) + λ2(n) = max
A1≺A2⊆[1,n]

L(A1, ξ) + L(A2, ξ). (82)

Let A1 ≺ A2 be an optimal choice of subsequences that achieves λ1(n) + λ2(n) according to
(82). Let I = [a, b] and J = [c, d] denote the supporting intervals of A1 and A2, respectively.
We split A1 into successive disjoint sub-subsequences A′

κ, A
′
κ−1, · · · , A′

1 where in each A′
ℓ we

only pick the balls of color ℓ in A1. Let Ij := [minA′
j ,maxA′

j ]. This gives a non-interlacing
partition of I = Iκ ⊔ · · · ⊔ I1. We split A2 similarly and obtain a non-interlacing partition
J = Jκ ⊔ · · · ⊔ J1 similarly. This gives us a partition of the whole interval [1, n] into the
following collection of disjoint sub-intervals

H = {[1, a− 1], Iκ, Iκ−1, · · · , I1, [b+ 1, c− 1], Jκ, Jκ−1, · · · , J1, [d+ 1, n]}, (83)

ordered from left to right.
For λ1(n), we choose a sub-optimal non-increasing subsequence A(i) by choosing all balls

of color i in [1, n]. Then λ1(n) ≥ L(A(i), ξ) by Lemma 3.5, so (82) yields

λ2(n) ≤ L(A1, ξ) + L(A2, ξ)− L(A(i), ξ). (84)
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Then breaking the right-hand side of (84) into sub-intervals given by the partition in (83), we
may write

L(A1, ξ) + L(A2, ξ)− L(A(i), ξ) =
∑
H∈H

f(H),

where if H = Ij or Jj (1 ≤ j ≤ k),

f(H) := (number of balls of color j in H − number of balls of color 0 in H)
− (number of balls of color i in H − number of balls of color 0 in H)

= Dj,i(H),

else if H = [1, a− 1], [b+ 1, c− 1] or [d+ 1, n],

f(H) := (number of balls of color 0 in H − number of balls of color i in H)

= D0,i(H).

Now suppose that pi is the unique maximum among p1, · · · , pκ and assume pi > p0. Note
that H contains 2κ + 3 intervals. Noting that Di,i(H) = 0, a union bound and Proposition
11.2 give

P

(∑
H∈H

f(H) ≥ 2(2κ+ 3)C log n

)
≤

∑
[s,t]⊆[1,n]

∑
0≤ℓ≤κ
ℓ̸=i

P (Dℓ,i([s, t]) ≥ 2C log n)

≤ 3n2
∑

0≤ℓ≤κ
ℓ̸=i

exp(−C(pi − pℓ) log n)

for any fixed constant C > 0. For sufficiently large constant C > 0, the last expression tends
to zero as n→ ∞, so this shows λ2 = O(log n) with high probability.

Next, suppose pi = p∗ at least two distinct colors 1 ≤ i ≤ κ. If we compare the number
of balls of color j in H ∈ H minus the number of balls of color i in H. By using a similar
argument, Dj,i(H) is O(log n) with high probability as long as pj < p∗. If pj = p∗, then by
the triangle inequality,

Dj,i(H) ≤ max
1≤s≤t≤n

|Dj,i([s, t])| ≤ 2 max
1≤t≤n

|Dj,i([1, t])| . (85)

In this case Dj,i([1, t]) is a symmetric random walk with t increments. Hence for some large
enough constant C > 0, the right-hand side of (85) is at most C

√
n with probability at least

1−ε by the functional central limit theorem. This shows that λ2(n) = O(
√
n) with probability

at least 1− ε.
Now we prove the lower bounds in (i) and (ii). Fix j ≥ 2. Let A1, . . . , Aj−1 denote an

optimal choice of non-interlacing subsets of [1, n] such that

λ1(n) + · · ·+ λj−1(n) =

j−1∑
i=1

L(Ai, ξ).

Denote Ii := [minAi,maxAi] for i = 1, . . . , r − 1, so that I1, . . . , Ij−1 are non-interlaving
supporting intervals for A1, . . . , Aj−1. For each interval J = [s, t], let N0(J) denote the
maximum number of consecutive 0’s in the sequence ξs, ξs+1, . . . , ξt. For each integer 1 ≤ ℓ ≤
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κ, let Mℓ(J) denote the maximum number of ℓ’s (not necessarily consecutive) in the sequence
ξs, ξs+1, . . . , ξt. We will use these notations for the rest of the proof.

Fix a constant 0 < c1 < 1/(3 log p−1
0 ). We first show that P(λj(n)/ log n ≥ c1) = 1− o(1).

To this end, we claim that

P (N0(Ii) ≥ c1 log n for some i = 1, . . . , r − 1) = 1− o(1). (86)

Note that if N0(Ii) ≥ c1 log n, then we can split the non-increasing subsequence Ai into two
non-increasing subsequences A′

i and A′′
i by removing the c1 log n consecutive zeros in the

supporting interval Ii. Then A1 ≺ . . . Ai−1 ≺ A′
i ≺ A′′

i ≺ · · · ≺ Aj−1 is a non-interlacing
collection of non-increasing subsequences, whose total penalized length has now increased by
at least c1 log n. Thus by Lemma 3.5, λj(n) ≥ c1 log n with high probability if the claim (86)
holds.

Now we show (86). Fix a constant 0 < c2 < p∗ − p0. Since L(Ai, ξ) ≤ |Ii|,

P

(
j−1∑
i=1

|Ii| < c2n

)
≤ P (λ1(n) + · · ·+ λj−1(n) < c2n) ≤ P(λ1(n) < c2n). (87)

Since λ1(n)/n→ p∗ − p0 > c2 a.s. by Theorem 2.7 (i), the above probability is of order o(1).
Next, by using a union bound,

P

(
j−1∑
i=1

|Ii| ≥ c2n, N0(Ii) < c1 log n for all i = 1, . . . , j − 1

)

≤ P

 ⋃
J1≺···≺Jj−1⊆[1,n]

{
j−1∑
i=1

|Ji| ≥ c2n, N0(Ji) < c1 log n for all i = 1, . . . , j − 1

}
≤ P

 ⋃
J1≺···≺Jj−1⊆[1,n]

j−1⋃
i=1

{
|Ji| ≥

c2n

r − 1
, N0(Ji) < c1 log n

}
≤ (r − 1)n2(r−2)

∑
J⊆[1,n], |J |≥ c2n

r−1

P (N0(J) < c1 log n)

≤ (r − 1)n2(r−1)P (N0([1, n]) < c1 log n) , (88)

where Jis and J above denote deterministic intervals. We can subdivide the interval [1, n]
into consecutive subintervals K1,K2, . . . of length ⌈c1 log n⌉. There are at least ⌊ n

c1 logn
⌋

such subintervals, and they can be fully occupied with balls of color 0 independently with
probability p⌈c1 logn⌉0 . Hence, recalling 0 < c1 < 1/(3 log p−1

0 ),

P (N0([1, n]) < c1 log n) ≤
(
1− pc1 logn0

)⌊ n
c1 logn

⌋

≤ exp

(
−pc1 logn0 ⌊ n

c1 log n
⌋
)

≤ exp(−n1/3).

Therefore, (88) is of order o(1). Now (86) follows by a union bound. In particular, this
completes the proof of (i).
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Finally, suppose pα1 = pα2 = p∗ for some 1 ≤ α1 < α2 ≤ κ. Fix ε > 0. We will show that
there exists a constant c = c(ε, j) > 0 such that

lim inf
n→∞

P
(
n−1/2λj(n) ≥ c

)
≥ 1− ε.

To this end, we split each Ai into successive disjoint sub-subsequences Ai,κ, · · · , Ai,2, Ai,1

where in each Ai,ℓ we only pick the balls of color ℓ in Ai. Denote Ii,ℓ := [minAi,ℓ,maxAi,ℓ].
By (87) and a union bound,

P
(
|Ii,ℓ| ≥

c2n

κ(j − 1)
for some 1 ≤ i ≤ j − 1 and 1 ≤ ℓ ≤ κ

)
= 1− o(1).

Fix δ > 0. Partition [0, n] into intervals Jk := [kδn, (k + 1)δn] of equal length ⌊δn⌋. We can
choose δ small enough so that any fixed interval of length c2n

κ(j−1) in [1, n] contains Jk for some
1 ≤ k ≤ ⌊δ−1⌋.

For each 1 ≤ ℓ ≤ κ, choose ℓ∗ ∈ {i1, i2}\{ℓ}. Fix a constant α > 0 and define the following
event

Ek,ℓ :=

{
max
t≤δn

n−1/2
∣∣Dℓ,ℓ∗

(
[(k − 1)⌊δn⌋, k⌊δn⌋+ t]

)∣∣ ≥ α

}
.

Since Di,i∗ on these disjoint intervals are i.i.d., by the functional central limit theorem, we
have

lim inf
n→∞

P

⌊1/δ⌋⋂
k=1

κ⋂
ℓ=1

Ek,ℓ

 ≥ 1− ε

2

as long as the constant α > 0 is small enough. By a union bound, for all n ≥ 1 sufficiently
large,

P ({Jk ⊆ Ii,ℓ for some k, i, ℓ} ∩ Ek,ℓ) ≥ 1− ε.

We now claim that

{Jk ⊆ Ii,ℓ for some k, i, ℓ} ∩ Ek,ℓ ⊆ {λj(n) ≥ α
√
n},

which is enough to conclude the desired lower bound λj(n) = Ω(
√
n). To show this claim,

suppose the event on the left-hand side above holds. Denote Ii,ℓ = [e, f ]. The maximum of
Dℓ,ℓ∗ in the event Ek,ℓ occurs at site m in Jk, so we may split the interval [e, f ] into [e,m]

and [m + 1, f ]. Supppose Dℓ,ℓ∗([e,m]) ≥ α
√
n. Let A−

i,ℓ and A+
i,ℓ denote the subsequences

formed by picking up all ℓ’s in [e,m] and all ℓ∗’s in [m + 1, f ], respectively. Now define two
non-increasing subsequences A′

i, A
′′
i by{

A′
i := [Ai,κ, . . . , Ai,ℓ+1, A

−
i,ℓ, A

+
i,ℓ], A′′

i := [Ai,ℓ−1, . . . , Ai,1] if ℓ > ℓ∗

A′
i := [Ai,κ, . . . , Ai,ℓ+1, A

−
i,ℓ], A′′

i := [A+
i,ℓ, Ai,ℓ−1, . . . , Ai,1] if ℓ < ℓ∗.

Together with the other j−2 subsequencesA1, . . . , Ai−1, Ai+1, . . . , Aj−1, these j non-interlacing
and non-increasing subsequences achieve total penalized lengths at least λ1(n)+· · ·+λj−1(n)+
α
√
n. By Lemma 3.5, this implies λj(n) ≥ α

√
n. If Dℓ,ℓ∗([e,m]) ≤ −α

√
n, then let A−

i,ℓ and
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A+
i,ℓ denote the subsequences formed by picking up all ℓ∗’s in [e,m] and all ℓ’s in [m + 1, f ],

respectively, and define{
A′

i := [Ai,κ, . . . , Ai,ℓ+1, A
−
i,ℓ], A′′

i := [A+
i,ℓ, Ai,ℓ−1, . . . , Ai,1] if ℓ > ℓ∗,

A′
i := [Ai,κ, . . . , Ai,ℓ+1, A

−
i,ℓ, A

+
i,ℓ], A′′

i := [Ai,ℓ−1, . . . , Ai,1] if ℓ < ℓ∗.

In this case, we can also conclude λj(n) ≥ α
√
n similarly. This completes the proof. □

12. Proofs of combinatorial lemmas

In this section, we establish various combinatorial statements about the κ-color BBS dy-
namics and the associated carrier processes. Our main goal is to show Lemmas 3.1, 3.2, and
3.5. We also provide an elementary and self-contained proof of Lemma 3.3, which has been
proved in the more general form in [KL20, Prop. 4.5] using connections with combinatorial
R.

12.1. Proof of Lemmas 3.1 and 3.2. In this subsection, we prove Lemmas 3.1 and 3.2. We
rely on the finite-capacity carriers (see Section 3.2) and Lemma 3.3. We need an additional
combinatorial observation about the ‘coupling’ between the carrier processes of capacity c and
c+ 1 over the same BBS configuration, which is stated below.

Proposition 12.1. Let ξ : N → Zκ+1 be any κ-color BBS configuration with finite support.
Denote by (Γx;c)x≥0 and (Γx;c+1)t≥0 the carrier processes over ξ with finite capacities c and
c + 1, respectively. Then for any t ≥ 0, Γx;c viewed as a c-dimensional vector is obtained by
omitting a single coordinate in Γx;c+1 viewed as a c+ 1-dimensional vector.

Proof. Fix a κ-color BBS configuration ξ : N → Zκ+1. Let (Γx;c)x≥0 and (Γx;c+1)x≥1 denote
the carrier processes over ξ with finite capacities c and c+ 1, respectively. We will show the
assertion by induction on x ≥ 0. For x = 0, both carriers are filled with zeros so omitting any
entry of Γ0;c+1 gives Γ0;c. For the induction step, suppose the assertion holds for some x ≥ 0.
Denote S = Γx;c, T = Γx+1;c ∈ Bc and S′ = Γx;c+1, T

′ = Γx+1;c+1 ∈ Bc+1. Recall that the
entries in carrier states are non-increasing from left, which is the opposite of the convention
for semistandard Young tableaux (as used in [KL20] and [KLO18]).

By the induction hypothesis, we may assume that S can be obtained from T by omitting
its j∗th entry T (j∗) = r. Let B and A be the blocks to the left and right of the entry T (j∗)
of T . Hence S is the concatenation of the blocks B and A (see Figure 9 left). Let q := ξx+1.
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Figure 9. (Left) S ∈ Bc is obtained from T ∈ Bc+1 by omitting an entry r. (Right)
After inserting q into T and S according to the circular exclusion rule, one can still
omit a single entry from the larger tableau to get the smaller one.

First, suppose that q does not exceed the smallest entry of T . In this case inserting q into
T replaces the largest entry of T , so T ′ is given by T ′(j) = T (j + 1) for 1 ≤ j ≤ c and
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T ′(c+ 1) = q. We also have S′(j) = S(j + 1) for 1 ≤ j < c and S′(c) = q. It follows that S′

is obtained by omitting the same entry r = T ′(j∗ − 1) from T ′.
Second, suppose that q exceeds the smallest entry of T . so that T ′ is computed from the

pair (T, q) using the reverse bumping. If q replaces some entry of A or B in T to get T ′,
then the same replacement occurs to compute S′ from the pair (S, q). Hence in this case S′ is
obtained by omitting r = T ′(j∗) from T ′. Otherwise, q replaces r in T to get T ′ (see in Figure
9 right). Then q must replace the largest entry of A in S to get S′. Then S′ is obtained from
T ′ by deleting the largest entry in A. This shows the assertion. □

Proof of Lemma 3.1. Fix a κ-color BBS configuration ξ : N → Zκ+1. For each integer
c ≥ 1, let (Γx;c)x≥0 denote the capacity-c carrier process over ξ. Let (Γx)x≥0 denote the
infinite capacity carrier process over ξ. We also write

M = max
s≥0

(# of nonzero entries in Γs)

Note that from Lemma 3.3, we can deduce that for any 1 ≤ j ≤ ρ1(ξ),

λj(ξ) = |{k ≥ 1 : ρk(ξ) ≥ j}| = max

{
k ≥ 1

∣∣∣∣Ek(ξ) ≥ Ek−1(ξ) + j

}
, (89)

where Ek(ξ) is defined in (91).
Let τc be the first time t that the carrier Γx;c is completely full with nonzero entries and

X0(x+ 1) > 0 does not exceed the smallest entry of Γx;c. More precisely, let

τc := inf
{
x ≥ 0 | Γx;c contains all positive entries and 0 < ξx+1 ≤ minΓx;c(x)

}
.

We let τc = ∞ if the set on the right-hand side is empty. Note that if we consider two carrier
processes Γx;c and Γx;c+1, then τc+1 is the first time that they contain distinct sets of nonzero
entries. Moreover, Γτc+1;c+1 has c+ 1 nonzero entries. Hence if c ≥M , then τc = ∞ and the
two carrier processes have the same set of nonzero entries for all times. It follows that

Ec = Const. ∀c ≥M.

Hence λ1(ξ) ≤M by (89).
On the other hand, note that x∗ := τM−1 < ∞ and ξx∗+1 does not exceed the smallest

entry in Γx∗;M−1 by definition of τM−1. So 1(ξx∗+1 > minΓx∗;M−1) = 0. Also, since Γx∗;M−1

and Γx∗;M share the same positive entries, Γx∗;M is obtained from Γx∗;M−1 by augmenting 0
to its right. Since ξx∗+1 > 0 by definition of x∗, we have 1(ξx∗+1 > minΓx∗;M ) = 1. Moreover,
by Proposition 12.1,

1(ξx+1 > minΓx;c) ≥ 1(ξx+1 > minΓx;c−1)

for all c ≥ 1 and x ≥ 0. It follows that EM ≥ EM−1+1. Hence by (89), we deduce λ1(ξ) ≥M .
This shows λ1(ξ) =M , as desired. □

Proof of Lemma 3.2. Fix a κ-color BBS configuration ξ with finitely many balls of positive
colors. Let W := (Wx)x≥0 be the carrier process over ξ. Let T0 := 0 and let Tk for k ≥ 1

denote the kth site that the carrier returns to the origin. Define sub-configurations ξ(1) :=
(ξ0, ξ1, . . . , ξT1−1), ξ(2) := (ξT1 , ξT1+1, . . . , ξT2−1), and so on. Let N denote the number of
nontrivial excursions of the carrier process W . Then ξ is the concatenation of ξ(1), . . . , ξ(N).
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We wish to show that the soliton decomposition of ξ is the union of the soliton decomposition
of ξ(i)’s. Equivalently, we wish to show that

ρc(ξ) =
N∑
k=1

ρc(ξ
(k)) for all c ≥ 1. (90)

To show the claim (90) above, let (Γx;c)x≥0 denote the capacity-c carrier process over ξ.
By Proposition 12.1, we have ΓTk;c = 0 for all k ≥ 0. In words, the capacity-c carrier resets to
empty at each site Tk. Hence, if we let (Γ

(k)
x;c)Tk−1≤x<Tk

denote the capacity-c carrier process
over ξ(k), then

(Γ(k)
x;c)Tk−1≤x<Tk

= (Γx;c)Tk−1≤x<Tk
.

It follows that
N∑

x=1

1(ξs > minΓx−1;c) =
N∑
k=1

∑
Tk−1<x≤Tk

1(ξ(k)s > minΓ
(k)
x−1;c).

By Lemma 3.3, the above yields

ρ1(ξ) + · · ·+ ρc(ξ) =

N∑
k=1

ρ1(ξ
(k)) + · · ·+ ρc(ξ

(k)).

The above holds for all c ≥ 1. By using induction in c, one can then deduce (90).
The second part of the assertion that λj(n) ≥ hj(n) is immediate from the first part we

have just shown above and Lemma 3.1. □

12.2. Proof of Lemmas 3.3 and 3.5. Recall the notations introduced in Section 3.3. For
any κ-color BBS configuration X : N → Zκ+1 with finite support and integer k ≥ 1, we denote

Rk(ξ) := max
A1⊔···⊔Ak

k∑
i=1

NA(Ai, ξ), Lk(ξ) := max
A1≺···≺Ak⊆N

k∑
i=1

L(Ai, ξ).

Lastly, we also denote

Ek(ξ) :=
∞∑
s=1

1(ξs > minΓs−1;k) (91)

where (Γx;i)t≥0 is the capacity-i carrier process over ξ. We set R0(ξ) = L0(ξ) = E0(ξ) = 0 for
convenience. In this subsection, we will show with an elementary argument that the above
quantities associated with a κ-color BBS configuration are invariant under time evolution.
This will lead to the proof of Lemmas 3.5 and 3.3.

We remark that the invariants Ek(ξ) are called the energy. They were first introduced
in [FYO00] for the κ = 1 BBS and were recently used to define an energy matrix for the
general κ-color BBS that characterizes the full set of invariants. Time invariance of the
energy (and also the energy matrix) in the literature is usually shown by using the alternative
characterization of the BBS dynamics in terms of combinatorial R and connections to the
Yang-Baxter equation [FYO00, IKT12, KL20, KLO18].

Recall the BBS evolution rule defined in the introduction: For i = κ, κ− 1, · · · , 1, the balls
of color i each make one jump to the right, into the first available empty box (site with color
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0), with balls that start to the left jumping before balls that start to their right. (This is
the map Ki defined in the introduction.) A single step of κ-color BBS evolution X 7→ X ′ is
defined by

ξ′ := K1 ◦K2 ◦ · · · ◦Kκ(ξ).

We propose two ways to simplify the κ-color BBS dynamics. First, using the cyclic sym-
metry of the system, we can reformulate the update of a κ-color BBS configuration in terms
of κ applications of a single rule. Namely, let Tκ denote the following update rule for BBS
configurations with finite support: all the balls of color κ jump according to the rule Kκ, and
we relabel each of them with color 1 and increase the positive colors of all other balls by 1.
Then we have

K1 ◦K2 ◦ · · · ◦Kκ(ξ) = (Tκ)κ(ξ).
Second, we introduce “standardization” of BBS dynamics, which allows us to only consider

BBS configurations with no repeated use of any positive color. Namely, given a κ-color BBS
configuration ξ : N → Zκ+1 of finite support, we define its standardization to be the following
map ξ̂ : N → Z≥0: For each 1 ≤ i ≤ κ, let mi denote the number of balls in X of color
i. Then to produce ξ̂, we relabel first the color 1 balls from 1 to m1 from right to left (so
that the leftmost ball that was previously colored 1 is now colored m1), and then the original
color 2 balls are relabeled with colors m1 + 1 to m1 + m2 from right to left, and so on.
Thus, if N =

∑κ
i=1mi is the total number of balls of positive color then ξ̂ is an N -color BBS

configuration with each color in {1, · · · , N} used for exactly one ball.

Proposition 12.2. Let ξ and ξ̂ denote a κ-color BBS configuration with finite support and
its standardization, respectively. Then the following hold.
(i) Standardization preserves the number of ascents, non-interlacing non-increasing sequences,

and their penalized lengths. In particular, for each k ≥ 1,

Rk(ξ) = Rk(ξ̂), Lk(ξ) = Lk(ξ̂).

(ii) ξ and ξ̂ give the same soliton partition, i.e., Λ(ξ) = Λ(ξ̂).

Proof. By construction, standardization preserves ordering in the following sense: for y < z,
one has ξy < ξz if and only if ξ̂(y) < ξ̂(z). Thus, a given sequence of balls has an ascent in X
if and only if it has an ascent in ξ̂, and likewise, a given sequence of balls is non-increasing in
ξ if and only if it is non-increasing in ξ̂. Part (i) follows immediately.

To show (ii), denote by ξ′ and (ξ̂)′ the BBS configurations obtained by applying one step
of the BBS evolution rule to ξ and ξ̂, respectively. Since standardization does not change the
location of balls, it suffices to show that standardization commutes with BBS time evolution
rules, i.e.,

ξ̂′ = (ξ̂)′. (92)

To see this, observe that for the evolution ξ 7→ ξ′, after all, balls of color κ have jumped, they
return to the same left-right order as before: if some ball of color κ, say in position x, jumped
over some other ball of color κ, say in position y, to land in position z (so x < y < z), it
must be the case that sites between y and z were occupied. Therefore, when it is time for the
ball in position y to jump, it jumps over all sites in (y, z]. Hence in the first step, the balls
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of color κ in the previous step are triggered one by one from left, and since they restore the
same left-right order, they will continue to be triggered in this order in all future steps. This
exactly agrees with the time evolution ξ̂ 7→ ξ̂′. This shows (92), as desired. □

In the following proposition, we show the time-invariance of the three quantities associated
with a given BBS configuration. This will show most of Lemma 3.5.

Proposition 12.3. Let ξ be an arbitrary κ-color BBS configuration of finite support. Fix
j ≥ 1. The following hold.
(i) Ej(ξ) = Ej(Tκ(ξ)).
(ii) Rj(ξ) = Ej(ξ).
(iii) Lj(ξ) = Lj(Tκ(ξ)).
(iv) If (ξ(t))t≥0 denotes the κ-color BBS trajectory with ξ = ξ0, then for all t ≥ 1,

Ej(ξ
(t)) = Rj(ξ

(t)) ≡ Ej(ξ), Lj(ξ
(t)) ≡ Lj(ξ).

We first derive Lemmas 3.5 and 3.3 assuming Proposition 12.3.

Proof of Lemma 3.3 and 3.5. Let (ξ(t))t≥0 be a κ-color BBS trajectory such that ξ0 has
finite support. We take T ≥ 1 large enough so that at time T the system decomposes into
non-interacting solitons whose lengths are non-decreasing from left. We can reformulate the
condition that a κ-color BBS configuration has reached its soliton decomposition as follows:
Suppose two consecutive solitons are separated by g 0’s, where the left and right solitons have
length l and r, where ‘length’ of a soliton is its number of balls of positive colors. Suppose
the gap is small, i.e., g < l. In order for the left soliton to be preserved during the update
ξ(T ) 7→ ξ(T+1), all balls in the left soliton must be dropped by the carrier before any balls
in the right soliton are dropped. It follows that for each i ≥ 1, the following ‘separation
condition’ must hold at time T :

The ith largest entry of the right soliton is strictly larger
than the i+ gth largest entry of the left soliton. (93)

When κ = 1, this simply asserts that each soliton of length l must be followed by at least l
empty sites. This is not the case for κ > 1, as illustrated in the example

· · · 00433200431100 · · · .

For each k ≥ 1, let λk denote the length of the kth-longest soliton and let ρk denote the
number of solitons of length ≥ k. They both form the same Young diagram, whose kth
column and row lengths are given by λk and ρk, respectively.

For each j ≥ 1, let (Γs;j)s≥0 denote the capacity-j carrier process on ξ(t). As the carrier
process over ξ(t) runs over a soliton of length k, the carrier obtains min(k, j) contribution to
the energy. When the carrier was empty at the beginning of the soliton, this is clear, and
otherwise, it is still true due to the separation condition (93). Hence we have

Ej(ξ
(T )) =

∞∑
k=1

min(λk, j) =

j∑
k=1

ρk.
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Then by Proposition 12.3, we deduce

Rj(ξ
(t)) = Ej(ξ

(t)) = Ej(ξ
(T )) =

j∑
k=1

ρk

for all t ≥ 0, as desired. In the general case, the above equations hold due to the separation
condition (93). This shows Lemma 3.3 as well as the first equation in Lemma 3.5.

Similarly, for the second equation in Lemma 3.5, it suffices to show Lj(ξ
(T )) = λ1 + · · · +

λj . It is easy to see Lj(ξ
(T )) ≥ λ1 + · · · + λj by choosing the j longest non-increasing

sequences given by the top j solitons. It remains to show the converse inequality, choose
a collection of non-interlacing non-increasing subsequences on supports A1, A2, · · · , Aj that
achieves Lj(ξ

(T )). We may assume that |A1| + · · · + |Aj | is as small as possible, where | · |
means (non-penalized) cardinality. We claim that every Ai is contained in the support of
a single soliton (where it has positive colors). Then clearly the maximum sum of penalized
lengths is achieved when Ai’s are the support of the j longest non-increasing sequences given
by the solitons, which shows the assertion.

To show the claim, for each i ≥ 1, let ui denote the maximal non-increasing subsequence
of positive colors in the ith longest soliton in ξ(T ). Schematically, we can write ξ(T ) as

ξ(T ) : · · ·u30 · · · 0u20 · · · 0u100 · · · .

Let li denote the number of 0’s between ui+1 and ui.
Suppose for contradiction that some Ak intersects with two ui’s. Let i be as small as possible

so that Ak intersects with ui+1 and ui. We first suppose the case when the two solitons have
a sufficient gap, i.e., li+1 ≥ λi+1. Let A′

k = Ak \ ui+1. Then A1, · · · , Ak−1, A
′
k, Ak+1, · · · , Aj

is a sequence of non-interlacing non-increasing subsequences in ξ(t) with a strictly smaller
total number of elements than the original sequence. Moreover, this new sequence achieves
the optimum Lj(ξ

(T )) since

L(A′
k, ξ

(T )) ≥ L(Ak, ξ
(T ))− ui+1 + li ≥ L(Ak, ξ

(T )).

Namely, omitting all elements of ui+1 from Ak deletes at most |ui+1| positive numbers but at
least li ≥ |ui+1| zeros. This contradicts the minimality of the original sequence A1, · · · , Aj .
This shows the claim. Lastly, when the gap between the solitons is small, i.e., li+1 < λi+1,
one can argue similarly by using the separation condition (93). This shows the claim, as
desired. □

Lastly in this subsection, we prove Proposition 12.3.

Proof of Proposition 12.3. (iv) immediately follows from (i)-(iii). According to Proposi-
tion 12.2, the assertion is valid for arbitrary BBS if and only if it is true for the standardized
system with initial configuration ξ̂, where each positive color is used exactly once. Hence,
without loss of generality, we may assume that each positive color in ξ is used exactly once.
Furthermore, in proving (i)-(iii), we may assume that there is a ball of color κ in ξ, since
otherwise the cyclic update rule Tκ simply increases all positive colors by 1. Since all the in-
variants depend only on the relative ordering between ball colors, the assertion holds trivially.
We will also denote ξ′ = Tκ(ξ). For any string u of integers in {0, 1, . . . , κ − 1}, we let u′

denote the string obtained by incrementing the positive integers in u by one.
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(i) Suppose ξx = κ and the ball of color κ is in a contiguous block of balls whose labels are
uκv0w for some words u,v. Note that u and w consist of integers in {0, . . . , κ− 1},
while v is either empty or only has positive integers < κ. After the update ξ 7→
ξ′ := Tκ(ξ), we reach an arrangement in which u,v, and w have had their labels
incremented, the space between them is empty (ξ′x = 0), and 1 follows v. Let y be
the site such that ξ′y = 1. Here is a schematic:

configuration arrangement
ξ [ · · · u · · · ] κ [ · · · v · · · ] 0 w

ξ′ = Tκ(ξ) [ · · · u′ · · · ] 0 [ · · · v′ · · · ] 1 w′

Consider running the capacity-j carrier over ξ and Tκ(ξ) and computing their
energies Ej(ξ) and Ej(ξ

′). Let the corresponding carrier processes be denoted by
Γ := (Γx)x≥0 and Γ′ := (Γ′

x)t≥0, respectively. Observe that up to ‘time’ x−1, the two
carriers go through the equivalent environments u and u′, so Γ′

x−1 can be obtained
from Γx−1 by adding 1 to all positive colors in the latter carrier. It follows that the
contributions to the energies of both carry up to this point are the same.

Next, after inserting ξx = κ and ξ′x = 0 into these carriers, we get carrier states
Γx = [κ,A, 0 · · · 0] and Γ′

x = [A′, 0 · · · 0] for some (possibly empty) positive decreasing
sequence A (see Figure 10 left). This only adds 1 to the energy for the carrier Γ. Also
note that, since κ is the unique largest color in the system, it sits in the carrier Γ and
does not interact with any other incoming balls thereafter. We can think of this as
the capacity of the carrier Γ being decreased to j − 1 after time x. Then over the
interval (x,∞), the carriers go through the input [v0w] and [v′1w′], respectively.
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Figure 10. Two capacity-j carriers over ξ and ξ′ = Tκ(ξ). They end up with the
same energy.

Ignoring κ in the carrier Γ and shift by 1, they both have the same dynamics (and
hence the same contribution to the energy) until the first time x∗ that Γx∗ is full and
a new ball of color ξx∗+1 = q > minΓx∗ . In this case, q + 1 replaces 0 in Γ′

x∗ but it
replaces κ in Γx∗ . If such x∗ is not encountered up to the location y of 1 in ξ′, then
at site y, 0 replaces the maximum entry in Γy but 1 replaces 0 in Γ′

y, so this makes
up the energy gap of 1 between the two carriers. Otherwise, suppose there exists
such x∗ between x and y. Then we can write the carrier states as Γx∗ = [κ,B] and
Γ′
x∗ = [B + 1, 0] for some positive decreasing sequence B of length j − 1. Then since
ξx∗+1 = q > minΓx∗ , inserting q (resp., q + 1) into Γx∗ (resp., Γ′

x∗) replaces κ (resp.,
0), only adding 1 to the energy for Γ′. Then Γx∗+1 = [B, q] and Γ′

x∗+1 = [B+1, q+1]
and all colors in Γ′ are at least 2, so inserting 0 and 1 at site y does not increment
energies of both carriers. Hence they end up with the same energy. This shows the
assertion.
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(ii) Let (Γx)x≥0 denote the capacity-j carrier process over ξ. We will partition the sites that
contain balls of positive colors into j disjoint sets A1, . . . , Aj such that if x ∈ Ai and
the energy Ej increases when inserting the ball ξx into the carrier Γx−1, then either
x is the rightmost (smallest) element of Ai or there exists a unique y ∈ Ai such that
(y, x) counts as an ascent in Ai. The existence of such subsets A1, . . . , Aj implies that

Rj(ξ) ≥
j∑

i=1

NA(Ai, ξ) ≥ Ej(ξ).

For this proof, we will consider sites with color zero as having a ball of color zero.
We will recursively construct sets A1(x), . . . , Aj(x) for x ≥ 0 as follows. Initially,
make all j sets to be empty. Consider the ball at site x with color ξx (we may simply
call it the ‘ball ξx’) is inserted into the carrier Γx−1. There are j positions in Γx−1

at which ξx can be placed after the insersion, and let r(x) ∈ {1, . . . , j} denote that
position. Note that r(x) < j if and only if ξx > minΓx if and only if Ej increase by
one. Now define A1(x), . . . , Aj(x) as follows: For i = 1, . . . , j,

If r(x) < j: Ai(x) =

{
Ai(x− 1) ∪ {x} if r(x) = i

Ai(x− 1) if r(x) ̸= i,

If r(x) = j: Ai(x) =

{
Ai−1 (mod j)(x− 1) ∪ {x} if i = j

Ai−1 (mod j)(x− 1) if i ̸= j,

That is, if the energy Ej increases by inserting the ball ξx into the carrier Γx−1, which
occurs exaclty when r(x) < j, we append x to the set Ai(x − 1) where the new ball
ξx is placed at in Γx−1. Otherwise, the new ball ξx is inserted in position j, and all
the other balls are shifted to the left by one, while the ball at position 1 is dropped
out. In this case, we first shift the indices of all sets A1(x − 1), . . . , Aj(x − 1) by −1
modulo j, and then append x to the set with index j (previously of index 1).

Then clearly Ai’s are disjoint and partitions N. Moreover, we claim that it has
the required properties. Indeed, suppose that the energy Ej increases when inserting
the ball ξx into the carrier Γx−1, i.e., ξx > minΓx−1. Then ξx replaces some ball ξy
(possibly 0) in Γx−1. Then necessarily ξy < ξx. Moreover, if ξx is inserted in the ith
position in Γx−1, then the ball ξy it is replacing should also be in the ith position in
Γx−1. By construction, we have y, x ∈ Ai. So (y, x) is an ascent in Ai, as desired.

For the other direction, suppose that Rj(ξ) is achieved by a collection of disjoint
sets A′

1, · · · , A′
j that is different from the sets A1, · · · , Aj computed by the carrier

process. Find the first place that they differ, say that x belongs to Ai but to A′
i∗ for

i∗ ̸= i. Then perform the following surgery: let

A′′
ℓ =


([1, x] ∩Ai) ∪ ((x,∞) ∩A′

i∗) if ℓ = i

([1, x] ∩Ai∗) ∪ ((x,∞) ∩A′
i) if ℓ = i∗

A′
ℓ otherwise.

Then by construction, this new collection of sets A′′
1, · · · , A′′

j has at least as many
ascents as the A′-sequences do, and the point of disagreement with the A’s is moved
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later. Therefore repeating this process eventually produces the sets A1, · · · , Ak, and
does not decrease the number of ascents. This shows Rj(ξ) ≤ Ej(ξ), as desired.

(iii) Let Lnew
j := Lj(ξ

′). We wish to show Lj = Lnew
j . We begin by showing that Lj ≤ Lnew

j .
In the original system ξ, fix a set of k non-interlacing decreasing subsequences whose
sum of penalized lengths is the maximum value Lj . We will produce a set of non-
interlacing decreasing subsequences in ξ′ that have the same sum of penalized lengths.
We call the unique ball of color κ in ξ′ by simply κ. Suppose κ is in position a, and
that positions a+ 1, a+ 2, . . . , b− 1 have balls in them, but that position b is empty;
let I = {a, · · · , b−1}. There are cases, depending on two different questions: whether
κ is part of a decreasing subsequence, or is in the interval spanned by a decreasing
subsequence, or neither; and whether there is a decreasing subsequence whose interval
spans b, or one that ends in I with no other sequence that spans b, or neither.

If κ belongs to a decreasing subsequence, it is the largest entry. Therefore removing
it decreases the length by 1 and does not add a penalty (because the gap created is
not in the interior of any remaining sequence). If κ is in the interval spanned by a
decreasing subsequence but doesn’t belong to it, removing κ introduces a gap and
so penalizes the length of that sequence by 1. If neither holds, removing κ does not
change the penalized lengths of any subsequences. Adding 1 to every ball label does
not change the penalized lengths of any subsequences. If a sequence spans b then
inserting the new ball 1 removes a gap from that sequence, so increases its penalized
length by 1. If a sequence ends in I and no subsequence spans b, then the 1 inserted in
position b can be appended to this sequence; there are no gaps in I, so this increases
the penalized length by 1. And if neither holds, then inserting 1 does not change the
penalized lengths of any of the subsequences. Then, it is enough to observe that in
either of the cases that result in a decrease of 1, it is necessarily the case that some
sequence ends in I or spans b. Thus, Lnew

j ≥ Lj , as claimed.
Finally, to show that actually Lnew

j = Lj , we apply the “reverse-complement” oper-
ation, reversing the order of Z and the order of the labels. This preserves decreasing
subsequences, the non-interlacing relation between them, and their penalized lengths;
moreover, one time-step in the reverse-complement is exactly the reverse-complement
of one inverse time-step in the original. Thus also Lnew

j ≤ Lj . This shows Lj = Lnew
j ,

as desired.

□

13. Open questions and final remarks

In this section, we discuss some open problems and future directions.
Two-sided limiting shape of the Young diagrams. Many of the known results in scaling
limits of invariant Young diagrams of randomized BBS ([LLP20, KL20, KLO18] and the
present paper) concern rescaling of the first finite rows or columns. Is it possible to jointly
scale the rows and columns and obtain the proper two-sided limiting shape of the Young
diagram as in the case of the Plancherel measure [KKR88] [IO02]? This question is not
entirely obvious since the top rows (soliton numbers) obey the laws of large numbers, whereas
the top columns (soliton lengths) obey extreme value statistics.
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Column length scaling of higher order invariant Young diagrams. The κ-color BBS is
known to have κ-tuple of invariant Young diagrams, where the ‘higher order’ Young diagrams
describe the internal degrees of the freedom of the solitons [KL20]. It is our future work to
extend the methods and results in the present paper for the first-order Young diagram of the
κ-color BBS into higher-order Young diagrams.

Generalization to discrete KdV. One of the most well-known integrable nonlinear partial
differential equations is the Korteweg-de Vries (KdV) equation:

ut + 6uut + uxxx = 0,

where u = u(x, t) is a function of two continuous parameters x and t, and the lower indexes
denote derivatives with respect to the specified variables. In 1981, Hirota [Hir81] introduced
the following discrete KdV (dKdV) equation that arises from KdV by discretizing space and
time:

ytk +
δ

yti+1

=
δ

yt+1
k

+ yt+1
k+1. (94)

A further discretization of the continuous box state in dKdV leads to the ultradiscrete KdV
(udKdV) equation, which corresponds to the κ = 1 BBS by Takahashi-Satsuma [TS90]:

U t+1
n = min

(
1− U t

n,

n−1∑
k=−∞

(U t
k − U t+1

k )

)
,

where U t
k denotes the number of balls at time t in box k.

The scaling limit of soliton numbers and lengths of various BBS with random initial con-
figuration has been studied extensively [LLP20, KL20, KLO18], including the present paper.
Hence a natural open question is to generalize the similar program to the case of discrete KdV
(as opposed to ultradiscrete). For instance, suppose we initialize dKdV (94) so that the first
n box states are independent Exp(1) random variables and evolve the system until solitons
come out. What is the scaling limit of the soliton lengths and numbers as n → ∞? Can we
at least obtain estimates on their expectation? These are much harder questions for dKdV
because not everything decomposes into solitons: just like in the usual KdV, there is chaotic
“radiation” left behind.
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