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SCALING LIMIT OF SOLITON LENGTHS
IN A MULTICOLOR BOX-BALL SYSTEM

JOEL LEWIS, HANBAEK LYU, PAVLO PYLYAVSKYY, AND ARNAB SEN

ABSTRACT. The box-ball systems are integrable cellular automata whose long-time behav-
ior is characterized by soliton solutions, with rich connections to other integrable systems
such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball
system with two types of random initial configurations and obtain sharp scaling limits of the
soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton
lengths that turns out to be different from the single color case as established in [LLP20)].
A large part of our analysis is devoted to studying the associated carrier process, which is
a multi-dimensional Markov chain on the orthant, whose excursions and running maxima
are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities,
Skorokhod decomposition, strong law of large numbers, and weak diffusive scaling limit to a
semimartingale reflecting Brownian motion with explicit parameters. We also establish and
utilize complementary descriptions of the soliton lengths and numbers in terms of the mod-
ified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion
processes.
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1. INTRODUCTION

1.1. The k-color BBS. The box-ball systems (BBS) are integrable cellular automata in 1+1
dimension whose long-time behavior is characterized by soliton solutions. The k-color BBS
is a cellular automaton on the half-integer lattice N, which we think of as an array of boxes
that can fit at most one ball of any of the x colors. At each discrete time ¢t > 0, the system
configuration is given by a coloring £®) : N = Z, | :== Z/(k +1)Z = {0,1,--- , &} with finite
support, that is, such that f;(tt) = ( for all but finitely many sites x. When f,(f) = i, We say
the site x is empty at time t if © = 0 and occupied with a ball of color i at time t if 1 <1 < k.
To define the time evolution rule, for each 1 < a < &, let K, be the operator on the subset
(Zy11)N of all (x + 1)-colorings on N with finite support defined as follows:

(i) Label the balls of color a from left as ay,ag, - , ap.
(ii) Starting from k£ = 1 to m, successively move ball a; to the leftmost empty site to its
right.
Then the time evolution (X3)¢>¢ of the basic k-color BBS is given by
€M) — Ko Kyo---0 K. (¢W) vE>o. (1)
A typical 5-color BBS trajectory is shown below.
t=0: 321000051300411252000000000000000000000000000000 - - -
t=1: 000321000153000141522000000000000000000000000000 - - -
t=2: 000000321010530010410522000000000000000000000000 - - -
t=3: 000000000302115301004100522000000000000000000000 - - -

t=4: 000000000030002150311041000522000000000000000000 - - -
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t=>5: 0000000000030000251003104110005220000000000000000 - - -
t=06: 000000000000:30000205100:31004110005220000000000000 - - -
t="7: 0000000000000300002005100310004110005220000000000 - - -

The grounding observation in the x-color BBS with finitely many balls of positive colors is
that the system eventually decomposes into solitons, which are sequences of consecutive balls
of positive and non-increasing colors, whose length and content are preserved by the BBS
dynamics in all future steps. For instance, all of the non-increasing consecutive sequences of
balls in £ in the example (specifically, 3, 2, 51, 31, 411, 522) above are solitons and they
are preserved in &7 up to their location and will be so in all future configurations. Note
that a soliton of length £ travels to the right with speed k. Therefore, the lengths of solitons
in a soliton decomposition must be non-decreasing from left to right. In the early dynamics,
longer solitons can collide into shorter solitons (e.g., 321 during ¢ = 0,1,2) and undergo a
nonlinear interaction.

The soliton decomposition of the BBS trajectory initialized at £@ can be encoded in a
Young diagram A = A(¢ (0)) having j* column equal in length to the j*™-longest soliton. For
instance, the Young diagram corresponding to the soliton decomposition of the instance of
the 5-color BBS given before is

AED) =

Note that the ith row of the Young diagram A(ﬁ’(o)) is precisely the number of solitons of
length at least .

1.2. Overview of main results. We consider the x-color BBS initialized by a random BBS
configuration of system size n, and analyze the limiting shape of the random Young diagrams
as n tends to infinity. We consider two models that we call the ‘permutation model’ and
‘independence model’. For both models, we denote the kth row and column lengths of the
Young diagram encoding the soliton decomposition by pg(n) and Ag(n), respectively,

In the permutation model, the BBS is initialized by a uniformly chosen random permutation
" of colors {1,2,--- ,n}. A classical way of associating a Young diagram to a permutation is
via the Robinson-Schensted correspondence (see [SagO1l, Ch. 3.1]). A famous result of Baik,
Deift, and Johansson [BD.J99] tells us that the row and column lengths of the random Young
diagram constructed from X" via the RS correspondence scale as y/n. In Theorem 2.1, we
show that for the random Young diagram constructed via BBS, the columns scale as y/n but
the rows scale as n. Namely,

n 2\/n
pr(n) ~ WE+ 1) Ak(n) ~ NS

While the row lengths in RS-constructed Young diagram are related to the longest increasing
subsequences, we show that the row lengths in the BBS-constructed Young diagram are related
to the number of ascents (Lemma 3.5). This will show that the majority of solitons have a
length of order O(1). Hence the row and column scalings in (2) are consistent.

(2)
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In the indepenﬁence model, which we denote £™P, the colors of the [ltes in the interval [1,n]
are independ@ethputlitplwn from a fixed distribution p = (po, p1,-- -, 1),.9\)1 o Zy+1. Recently, Lyu
and Kuniba obtained sharp asymptotics for the row lengths as well as their large deviations
princinle in this indenendence model [KT.20l. Tn Theorems 2.4-2.7. we establish a sharp
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scalil i>1,j > 2 fixed pi(n) A () 4 (n) in Table 1
and - | pcritical phase (p < 1/2) o(m) 0(logn) O(ogn ) maximum
posit — p; = p* for
i—1 Critical phase (p = 1/2) 0(n) e(vn) e(vn)

Supercritical phase (p > 1/2) o(n) 0(logn) o(n) g loggn +

(r — 1) logg logn 4+ (1), where 6 = p/po.

e In the critical regime (pg = p*), n='/2A;(n) converges weakly to the maximum L;-
norm of a k-dimensional semimartingale reflecting Brownian motion (SRBM).

e In the supercritical regime (po-<p*), Ai(n) = (p* — po)n + OV thew all
sybreggns 1205130mrE1 2520092490008 2; 1 - ="2,thameyLotlL 1 v/n.

e The fluctuatioff of A\;(n) depends explicitly on a x-dimensional [[RBM, which arises
as the diffusiyggscpling lpnit ghthe associated carrier process.

M)
i>1,j=2fixed pi(n) YAD) ‘ A;(n)
Subcritical phase Simple (p* = p, for unique £) . @(\/1_1) clogn +6(1)

" <po) Non-simple (p* = p, for multiple £) ' clogn + c¢'loglogn + 0(1)
Critical phase (p* = py) agn+ @(\/ﬁ) DVn + o(vn) G)(\/ﬁ)
- Simple (p* = p, for unique ¢) O(logn)

hSuperciltlcal cn+ @(\/ﬁ) cnt @(\/ﬁ)

phase (" > Po) | Non-simple (p* = p, for multiple #) 0(vn)

=

)&C(A%Ljfolﬁ. ﬁénip} 16? (;S(baB%g ‘(‘)f the ith row length p; X{%‘gni“i 5t hiuiu chilgﬁ%(n)
j for 't 0,

¢’ indepéndence model with ball density p = 1, - {1kbx) and p* =
max(py,- -+ , p,g). The asymptotic soliton lengths undergo a similas! ‘double-jump’
phase 1RHALTRUARPRIRHIREBE Pt — py as in the kK = 1 case established in [LLP20],
but the scaling inside the subcritical and supercritical regimes depenlc;s on the multi-
plicity of the maximum positive color p*. Sharp asymptotics for the row lengths have
been obtained in [KL.20]. ¢;’s arg,constants depending on p angj; Constats ¢, ¢’ do

not depend on j; D % ﬁnﬂoﬁryg _}_Vﬁ)and non—deg&néfa)te'ry:udmn—mvzbk Y 'k le.

We establish a similar ‘double-jump’ phase transition for the x = 1 case established by
Levine, Lyu, and Pike [LLP20]. We find that in the multicolor (k > 2) case, the maximum
positive ball density p* = max(p1,---,px) compared to the zero density py dictates gen-
eral phase transition structure. However, we find that the scaling inside the subcritical and
supercritical regimes depends on the multiplicity r of the maximum positive color p*. Further-
more, the fluctuation of the top soliton length A1(n) about its mean behavior is described by
a k-dimensional semimartingale reflecting Brownian motion (SRBM) lurking behind, whose
covariance matrix depends on p explicitly. Such SRBM arises as the diffusive scaling limit of
the associated carrier process.
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A large part of our analysis is devoted to studying the associated carrier process, which
is a Markov chain on the k-dimensional nonnegative integer orthant, whose excursions and
running maxima are closely related to soliton lengths (see Lemmas 3.1-3.2). We establish its
sharp scaling of ruin probabilities, strong law of large numbers, and weak diffusive scaling
limit to an SRBM with explicit parameters (Theorems 2.3-2.5). We also establish and utilize
alternative descriptions of the soliton lengths and numbers in terms of the modified Greene-
Kleitman invariants for the box-ball systems (Lemma 3.5) and associated circular exclusion
processes.

1.3. Background and related works. The k-color BBS was introduced in [Tak93|, gener-
alizing the original x = 1 BBS first invented by Takahashi and Satsuma in 1990 [TS90]. In
the most general form of the BBS, each site accommodates a semistandard tableau of rect-
angular shape with letters from {0,1,--- ,x} and the time evolution is defined by successive
application of the combinatorial R (cf. [FYO00, HHIT01, KOST06, [KT12]). For a friendly
introduction to the combinatorial R, see [I[<1.20, Sec. 3|. The k-color BBS treated in this
paper corresponds to the case where the tableau shape is a single box, which was called the
basic k-color BBS in [K1.20, Kon20]. The BBS is known to arise both from the quantum and
classical integrable systems by the procedures called crystallization and ultradiscretization,
respectively. This double origin of the integrability of BBS lies behind its deep connections
to quantum groups, crystal base theory, solvable lattice models, the Bethe ansatz, soliton
equations, ultradiscretization of the Korteweg-de Vries equation, tropical geometry, and so
forth; see for example the review [[I<T'12] and the references therein.

BBS with random initial configuration is an emerging topic in the probability literature
and has gained considerable attention with a number of recent works [LL.P20, CKST18, K120,
FG18, KL20, CS19a, CS19b]. There are roughly two central questions that the researchers
are aiming to answer: 1) If the random initial configuration is one-sided, what is the limiting
shape of the invariant random Young diagram as the system size tends to infinity? 2) If
one considers the two-sided BBS (where the initial configuration is a bi-directional array
of balls), what are the two-sided random initial configurations that are invariant under the
BBS dynamics? Some of these questions have been addressed for the basic 1-color BBS
[LLP20, FNRW18, FG18, CKST18] as well as for the multicolor case [[K1.20, KLO18, Kon20].
More recently, invariant measures of the discrete KdV and Toda-type systems have been
investigated [CS520].

Three important works are strongly related to this paper. In [LLP20], Levine, Lyu, and
Pike studied various soliton statistics of the basic 1-color BBS when the system is initialized
according to a Bernoulli product measure with ball density p on the first n boxes. One of
their main results is that the length of the longest soliton is of order logn for p < 1/2, order
v/n for p = 1/2; and order n for p > 1/2. Additionally, there is a condensation toward the
longest soliton in the supercritical p > 1/2 regime in the sense that, for each fixed j > 1,
the top j soliton lengths have the same order as the longest for p < 1/2, whereas all but the
longest have order logn for p > 1/2. Their analysis is based on geometric mappings from
the associated simple random walks to the invariant Young diagrams, which enable a robust
analysis of the scaling limit of the invariant Young diagram. However, this connection is not
apparent in the general x > 1 case. In fact, one of the main difficulties in analyzing the soliton
lengths in the multicolor BBS is that within a single regime, there is a mixture of behaviors
that we see from different regimes in the single-color case.
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The row lengths in the multicolor BBS are well-understood due to recent works by Kuniba,
Lyu, and Okado [K.O18] and Kuniba and Lyu [[X[.20]. The central observation is that, when
the initial configuration is given by a product measure, then the sum of row lengths can be
computed via some additive functional (called ‘energy’) of carrier processes of various shapes,
which are finite-state Markov chains whose time evolution is given by combinatorial R. In
[KLO18], the ‘stationary shape’ of the Young diagram for the most general type of BBS is
identified by the logarithmic derivative of a deformed character of the KR modules (or Schur
polynomials in the basic case). In [[K1.20], for the (basic) k-color BBS that we consider in
the present paper, it was shown that the row lengths satisfy a large deviations principle and
hence the Young diagram converges to the stationary shape at an exponential rate, in the
sense of row scaling.

The central subject of this paper is the column lengths of the Young diagram for the basic
k-color BBS. We develop two main tools for our analysis, which are a modified version of
Greene-Kleitman invariants for BBS (Section 3.3) and the carrier process (see Def. 2.2).
For the independence model, we obtain the scaling limit of the carrier process as an SRBM
[Wil95] and it plays a central role in our analysis. For the permutation model, the carrier
process gives rise to a ‘circular exclusion process’, which can be regarded as a circular version
of the well-known Totally Asymmetric Simple Exclusion Process (TASEP) on a line (see, e.g.,
[F718, BEPS07, BES08]). For its rough description, consider the following process on the unit
circle S, Starting from some finite number of points, at each time, a new point is added to
S1 independently from a fixed distribution, which then deletes the nearest counterclockwise
point already on the circle. Equivalently, one can think of each point in the circle trying to
jump in the clockwise direction. It turns out that this process is crucial in analyzing the
permutation model (Section 4.2), whereas for the independence model, the relevant circular
exclusion process is defined on the integer ring Z,1 where points can stack up at the same
location (Section 3.1). Interestingly, a cylindric version of Schur functions has been used to
study rigged configurations and BBS [LPS14].

1.4. Organization. In Section 2, we define the carrier process, state the permutation and
the independence model for the k-color BBS, and state our main results. We also provide
numerical simulation to validate our results empirically. In Section 3, we introduce infinite
and finite capacity carrier processes for the k-color BBS and state the three key combinatorial
lemmas (Lemmas 3.1, 3.3, 3.5). In Section 4, we prove our main result for the permutation
model (Theorem 2.1) by using the modified GK invariants for BBS (Lemma 3.5) and analyzing
the associated circular exclusion process. In Section 5, we prove Theorem 2.3 (i) about the
stationary behavior of the subcritical carrier process. Next, in Section 6, we introduce the
‘decoupled carrier process’ and develop the ‘Skorokhod decomposition’ of the carrier process.
These will play critical roles in the analysis in the following sections. In Section 7, we analyze
the decoupled carrier process over the i.i.d. ball configuration. In Section 8, we prove Theorem
2.3 (ii) and Theorem 2.4. In Sections 9 and 10, we establish a linear and diffusive scaling
limit of the carrier process, which is stated in Theorem 2.5. Background on SRBM and
an invariance principle for SRBM are also provided in Section 10. In Section 11, we prove
Theorems 2.6 and 2.7. Lastly, in Section 12 we provide postponed proofs for the combinatorial
lemmas stated in Section 3.
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1.5. Notation. We use the convention that summation and product over the empty index
set equal zero and one, respectively. For any probability space (2, F,P) and any event A € F,
we let 1(A) denote the indicator variable of A. Let C¢(0,00) denote the space of continuous
functions f : [0,00) — R? endowed with the topology of uniform convergence on compact
intervals. We let tridiagonal,(a, b, ¢) denote the d x d matrix which has a on its subdiagonal,
b on its diagonal, and ¢ on its superdiagonal entries, and zeros elsewhere.

We adopt the notations RT = [0,00), N = {1,2,3,...}, and Z>¢ = NU{0} throughout. For
a sequence of events (Ay,)n>1, we say A, occurs with high probability if P(A,) — 1 as n — oo.
We employ the Landau notations O(-), ©(-), ©(-) in the sense of stochastic boundedness.
That is, given {a,}22,; C R" and a sequence {W,,}°°, of nonnegative random variables, we
say that W,, = O(ay,) with high probability if for each £ > 0, there is a constant C € (0, 00)
such that P(W,, < Ca,) > 1 — ¢ for all sufficiently large n. We say that W,, = Q(a,) if for
each £ > 0, there is a ¢ € (0,00) such that P(W,, > ca,) > 1 — ¢ for all sufficiently large n,
and we say W,, = ©(ay,) with high probability if W,, = O(a,,) and W,, = Q(a,,) both with
high probability. In all of these Landau notations, we require that the constants ¢, C' do not
depend on n.

2. STATEMENT OF RESULTS

Our main results concern the asymptotic behavior of top soliton lengths associated with
the k-color BBS trajectory for two models of random initial configuration &: (1) K = n and
¢[1,n] is a random uniform permutation of length n; (2) x is fixed and &, = i independently
with a fixed probability p;, i € Z,41 for each x € [1,n].

2.1. The permutation model. For the permutation model, let (Uz)z>1 be a sequence of
i.i.d. Uniform([0, 1]) random variables. For each integer n > 1, we denote by V1., < Va,, <

- < Vp.n the order statistics of Uy, Us, -+ ,U,. Then it is easy to see that the random
permutation ¥" on [n]| such that V;,, = Usn(y for all 1 <@ < n is uniformly distributed
among all permutations on [n]. Define

& =Y"x)-1(1 <z <n). (3)

We now state our main result for the permutation model. We obtain a precise first-order
asymptotic for the largest k rows and columns, as stated in the following theorem.

Theorem 2.1 (The permutation model). Let £ be the permutation model as above. For each
k > 1, denote pr(n) = pr(€") and Ag(n) = A\p(E™). Then for each fixred k > 1, almost surely,

. 1 ) 2
lim 2™ py(n) = WET 1) Jim P Ak(n) = T i Tk

Our proof of Theorem 2.1 proceed as follows. We first establish a combinatorial lemma
(Lem. 3.5) that associates the soliton lengths and numbers with a modified version of Greene-
Kleitman invariants for BBS. We then utilize the tail bounds on longest increasing subse-
quences in uniformly random permutations in Baik, Deift, and Johansson [BDJ99] for es-
tablishing the scaling limit for the lengths of the columns. For the row lengths, we use the
characterization of soliton numbers as an additive functional of finite-capacity carrier processes
[[KXL.20]. Such a process becomes an exclusion process on the unit circle for the permutation
model.



i >1,j = 2 fixed p;(n)
8 J Subcritical phase (p* < py) O(n)
2.2. The indep ang x
Let p = (po.p1, Critical phase (p* = py) O(n)
sequence (&z)zeN . . ]
Supercritical phase Simple (p” = p, for unique £) o(n)
For each integer (" > Ppo) Non-simple (p* = p, for multiple £)

&P =& - 11 <z <n)

We may further assume, without loss of generality, that p; > 0 for all 1 < ¢ < k. Indeed,
if p; = 0 for some ¢, then we can omit the color ¢ entirely and consider the system as a
(k — 1)-color BBS by shifting the colors {i + 1,--- ,x} to {i,--- ,k — 1}.

Through various combinatorial lemmas (see Section 3), we will establish that the soliton
lengths A;j(n) of for the i.i.d. model are closely related to the extreme behavior of a Markov
chain (W;)zen defined on the nonnegative integer orthant Z%,, which we call the ‘x-color
carrier process’. Denote e; € Z" whose coordinates are all zero except the ith coordinate
being 1.

# color 2 balls |~

P1 # color 1 balls

FIGURE 1. State space diagram for the carrier process W, for kK = 2. Red arrows
illustrate the transition kernel at the ‘interior’ (gray) and ‘boundary’ (green) points
in the state space. A single excursion (starting and ending at the origin) of ‘height’
8 is shown in a blue path with arrows.

Definition 2.2 (k-color carrier process). Let £ := (£;)zen be k-color ball configuration. The
(k-color) carrier process over § is a process (Wy)zen on the state space Q := Z%, defined by
the following evolution rule: Denoting i := £,41 if {441 € {1,...,k} and i := k+1if £ =0,

e —1(ix £0)e;, if1<i<k

4
—1(i, #0)e;,  ifi=r+1, 4)

Wx+1 - W, = {

where i, := sup{l < j < i : Wy(j) > 1} with the convention sup® = 0. Unless otherwise
mentioned, we take W = 0 and & = £P with density p = (po, .- ., Px)-
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In words, at location x, the carrier holds W (i) balls of color i for i = 1,..., k. When a new
ball of color 1 < &,11 < & is inserted into the carrier W, then a ball of the largest available
color that is smaller than &, is excluded from W,; if there is no such ball in W, then no ball
is excluded. If £, 11 = 0, then no new ball is inserted, and a ball of the largest available color
that is smaller than &, is excluded from W,. The resulting state of the carrier is W,41. We
call the transition rule (4) as the ‘circular exclusion’ (since a ball in the carrier’s possession is
excluded from the carrier upon the insertion of a new ball according to the circular ordering).
One can also view the carrier process as a multi-type queuing system, where W, denotes the
state of the queue and W, (i) is the number of jobs of ‘cyclic hierarchy’ i to be processed.

A large portion of this paper will be devoted to analyzing scaling limits of the carrier
process W, over the i.i.d. configuration £P. In this case, W, is a Markov chain on the state
space of the nonnegative integer orthant €). See Figure 1 for an illustration.

Theorem 2.3 states the behavior of the carrier process in the subcritical regime py >
max(p1,- - ,px). Define a function 7 : Q@ — R by

wmns, - m) = [ (1-2) ()" (5)

i=1

This is a valid probability distribution on € when py > max(p1,--- ,px) since

00 o] K ; ni s . o
;0...n§::0g<m> :E<1_m> e (0,00).

Note that 7 is the the product of geometric distributions of means p;/(po — p;) > 0 for
1=1,...,K.

Theorem 2.3 (The carrier process at the subcritical regime). Let p* := max(p1,--- ,px) and

suppose pg > p*. Let r denote the multiplicity of p* (i.e., number of i’s in {1,...,Kk} s.t.

pi =p*).

(i) (Convergence) The carrier process W, is an irreducible, aperiodic, and positive recurrent
Markov chain on Z%, with m in (5) as its unique stationary distribution. Thus, writing
dry for the total variation distance and denoting the distribution of W, by ., then

lim dpy (g, m) = 0.
T—00

(i) (Multi-dimensional Gambler’s ruin) Let Ty denote the first return time of W, to the origin
and let hy = maxo<z<7 [|[Wyl|[1. Then for all N > 1, there exists a constant § > 0
such that

(UG s (IR e

. K—T
where C =1 ifr =k and C = (p*fp(2>) if 1 < K with p®) being the second largest

value among p1, ..., Dx-

By using Theorem 2.3, we establish sharp scaling limit of soliton lengths for the indepen-
dence model in the subcritical regime, which is stated in Theorem 2.4 below. (See Section 1.5
for a precise definition of Landau notations.)
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Theorem 2.4 (The independence model — Subcritical regime). Fiz x > 1 and let £™P be
as the i.i.d. model above. Denote \j(n) = X\;(§™P), p* = maxi<ij<xpi, and r := {1 < i <
K p; =p*}. Suppose pg > p* and denote 0 := p*/py. Then for each fized j > 1,

Aj(n) =loggn + (r — 1)logylogn + ©(1). (7)

Furthermore, denote v, = (1 + d,)logg (on/(r —1)!), where o = [[;, (1 — ﬂ) and

Po
Op = (r= 1)l°g1°%géiz//((: %,Hlog(r_l)!. Then for all x € R,

exp(—06~") < liminf P (Aj(n) <z + vyp) (8)

n—oo

n—00 (T

C Jj—1 g—H(—1)
<limsupP (\j(n) <z +vy,) < exp <_ (z— 1>Z
=0

where 6 > 0, C' > 1 are constants in Theorem 2.3.

Next, we turn our attention to the critical and the supercritical regime, where py <
max(p1,--- ,px). In this regime, the carrier process does not have a stationary distribu-
tion and we are interested in identifying the limit of the carrier process in the linear and
diffusive scales. A natural candidate for the diffusive scaling limit (if it exists) would be the
semimartingale reflecting Brownian motion (SRBM) [Wil95|, whose definition we recall in
Section 10. Roughly speaking, an SRBM on a domain S C R” is a stochastic process W that
admits a Skorokhod-type decomposition

W=X+RY,

where X is a k-dimensional Brownian motion with drift 6, covariance matrix >, and initial
distribution v. The ‘interior process’ X gives the behavior of W in the interior of S. When
it is at the boundary of S, it is pushed instantaneously toward the interior of S along the
direction specified by the ‘reflection matrix’ R and an associated ‘pushing process’ Y. We say
such W a SRBM associated with (S,6,3, R,v). If R =1 — @ for some nonnegative matrix @
with spectral radius less than one, then such W is unique (pathwise) for possibly degenerate %
when S = R, [HR&1]. If ¥ is non-degenerate and S is a polyhedron, a necessary and sufficient
condition for the existence and uniqueness of such SRBM is that R is ‘completely-S’ (see Def.
10.2) [Wil95, KW07].

A crucial observation for analyzing the carrier process in the critical and supercritical
regimes is the following. Of all the k coordinates of W, some have a negative drift and some
others do not. We call an integer 1 < i < k an unstable color if p; > max(piy1,--+ ,Pw,D0)
and a stable color otherwise. Since balls of color ¢ can only be excluded by balls of colors in
{i+1,...,k,0}, then the coordinate W,(7) is likely to diminish if the color 7 is stable but not
if 7 1is unstable. Denote the set of all unstable colors by C, = {a1, -+ ,a,} with a; < -+ < a
and let C¥ :={0,1,--- ,xk}\ CE denote the set of stable colors. (See Figure 8 for illustration.)
By definition, we have

Pay > Pas > 2 DPa, > Pa,411 ‘= Po- (9)

Now, we will construct a new process X,, which we call the ‘decoupled carrier process’ (see
Section 6.1), that mimics the behavior of W, but the values of X, on the unstable colors are
unconstrained and thus can be negative. Since W, is confined in the nonnegative orthant
75, but X, is not, we need to add some correction process to X, that ‘pushes’ it toward the
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orthant Z%, whenever X, has some of its coordinates going to negative. More precisely, in

Lemma 6.3, we identify a ‘reflection matrix’ R € R*** and a ‘pushing process’ Y, on Z" such
that

W, =X, + RY, forz>0,

where Yy = 0 and for each i € {1,...,k}, the ith coordinate of Y, is non-decreasing in x
and can only increase when W, (i) = 0. We call the above as a Skorokhod decomposition of
the carrier process (Our definition is motivated by the Skorokhod problem, see Def. 10.3.)
This and the classical invariance principle for SRBM [RWE&8] is the key to establishing the
following result on the scaling limit of the carrier process.

p =(4/11, 4/11, 3/11) p=1(1/3,1/3,1/3) p=(4/11, 3/11,4/11)

T T T T T T T T T T T T T T T T T
0.0 0.1 0.2 03 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8 0.00 0.02 0.04 0.06 0.08

FIGURE 2. Simulation of the carrier process W, in diffusive scaling for k = 2, n =
2 x 10%, at three critical ball densities (left) p = (4/11,4/11,3/11), (middle) p =
(1/3,1/3,1/3) , and (right) p = (4/11,3/11,4/11). In all cases, the process converges
weakly to a semimartingale Reflecting Brownian motion on R2, whose covariance
matrix is non-degenerate in the middle and degenerate in the other two cases.

Theorem 2.5 (Linear and diffusive scaling limit of the carrier process). Suppose py <

max(py, - ,px). Let g < -+ <, as before and define
T
n= (/ula ce HU%) = Zea]‘ (pOlj - paj+1)7 (10)
j=1

where we let pa,., = po-
(1) (Linear scaling) Almost surely,
lim z7'W, = lim z~! (max Wi(i);i=1,.. .,/4;) = .

T—00 T—00 0<t<zx

(i) (Diffusive scaling) Let (Wy)ier-~, denote the linear interpolation of (Wy — xp)zen. Then
asn — oo, -
(VW 0<t<1) = W in C([0,1]),

where W is an SRBM associated with data (S,0,%, R,00) (see Def. 10.1) with S :=
{(z1,...,2x) € RF : x; > 0if p; =0}, ¥ the limiting covariance matriz (possibly
degenerate) in (49), R := tridiag, (0,1, —1), and dg the point mass at 0.
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W (2))
ow the
». The
ariance

We(2)

nerates

critical
19 > 0,
ownian

motion In dittusive scaling. II either [ Or fo equals zero, then the diftusive scaling limit is
an SRBM on R>p x R or R x R>¢, which is the domain S in the statement of Theorem 2.5
(ii). For instance, for p = (3/11,6/11,2/11) as in Figure 3 (d), the SRBM is on domain
S = R xR>q and has a degenerate covariance matrix, since W,(2) is subcritical and vanishes
in the diffusive scale.

p=(311,4/11,4/11)

p=

(3/11,5/11,3/11) p=(211,511,4/11)

p=(3/11,6/11,211)
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P =(2/11,5/11, 4/11) (centered)

30 40 o 20 40 60 80

p =(3/11,6/11, 2/11) (centered)

100 120

0.6

0.4

024

0.1

00

0.6 4 =0.1
02 003

0.4
03 002

024
041 0.01 1

0.04 054 0.00

0.00 0.25 0.50 0.75 100 125 *l)‘ 4 4(;2 Dll] l]i2 074 U:b DYB fl‘ 5 *l’.ﬂ 0.5 0.0 ‘(;2 0.0 02 0:4 0"6 Uts 1.0
(@) (b) (©) (d)
F1GURE 3. Simulation of the carrier process W, in diffusive scaling for k = 2,

n = 2 x 10°, at four supercritical ball densities (a) p = (3/11,4/11,4/11), (b)
p = (3/11,5/11,3/11), (¢) p = (2/11,5/11,4/11), and (d) p = (3/11,6/11,2/11).
The processes grow linearly at least in one dimension (the top row shows uncentered
processes in diffusive scaling). As shown in the second row, after centering by the
mean drift p, the processes converge weakly to semimartingale Reflecting Brownian
motion on domains (a) R>g X R, (b) R x Rxg, (¢) R? (no reflection), and (d) R x R>
(with a degenerate covariance matrix).

Using the linear and the diffusive scaling limit of the carrier process in Theorem 2.5, we
obtain a sharp scaling limit of soliton lengths for the independence model in the critical and
subcritical regimes. These results are stated in Theorems 2.6 and 2.7 below.
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Theorem 2.6 (The independence model — Critical regime). Suppose p* = pg. Then for each
fized j > 1, N\j(n) = ©(y/n). Furthermore, let ¥ be a k X k covariance matriz defined explicitly
in (49) and R = tridiag,..,.(0,1, —1). Let W be a semimartingale reflecting Brownian motion
assoctated with data (R%,0,%, R,00) (see Def. 10.1). Then as n — oo,

n~ 12\ (n) = sup |[W |1, (11)
where = denotes weak convergence.

Theorem 2.7 (The independence model — Supercritical regime). Suppose p* > py.
(i) (Top soliton length in the supercritical regime) It holds that

lim n~tA\(n) € p* —po and A (n) = (p* — po)n + O(V/n).

n—oo

More precisely, let a; < --- < a, denote the unstable colors and let a,,41 := 0. Let
= (1., ) be asin (10) and J := {i : p; > 0}. Let W = (W1 ... , W*) denote
the SRBM in Theorem 2.5 (ii). Then

G .. Ai(n) = (ps —po)n
‘(1) <1 f 12
2 W) St = (12

< limsup 211 = (2~ po)n

n—oo \/ﬁ

<> B(1)+ Wi(v),

S B s 3, W)

JjeJ je{1,...c\J

where =< denotes stochastic dominance and B = (B, ..., B¥) is a Brownian motion
in R with zero drift and the same covariance matriz with WW.

(ii) (Subsequent soliton lengths in the simple supercritical regime) Suppose r = 1. Then for
any fized j > 2, Aj(n) = ©(logn) with high probability.

(iii) (Subsequent soliton lengths in the non-simple supercritical regime) Suppose r > 2. Then
for any fized j > 2, X\j(n) = ©(y/n) with high probability, that is, for each ¢ > 0, there
exists constants c1,ca > 0 such that iminf P(\;(n)/\/n € [c1,¢2]) > 1 — €.

n—oo

Multiple remarks on Theorems 2.4-2.7 are in order. These results extend the ‘double-jump’
phase transition on soliton lengths for the kK = 1 case established by Levine, Lyu, and Pike
[LLP20] to the multicolor case. As in the kK = 1 case, we find that there exists three regimes
— subcritical (A1(n) = ©(logn)), critical (A1(n) = ©(y/n)), and supercritical (A1(n) = O(n))
— depending whether the maximum ball density p* = max(pi,...,px) exceeds the empty box
density pg. However, we find that the scaling behavior of the soliton lengths inside each regime
is significantly more nuanced in the multicolor case than in the single-color case.

In the subcritical regime p* < pg, we find all top soliton lengths A;(n) for j > 1 is concen-
trated around logy n+ (r — 1) logy log n, where 8 = p* /pg and r denotes the multiplicity of the
maximum positive color p*, and the tail of A\,(n) has a Gumbel-type tail distribution. While
this scaling coincides with that in the x = 1 case for » = 1, if » > 2, then the top solitons
are an asymptotically ‘a tad’ longer by (r — 1)logg log n, which is caused by the competition
between multiple maximal colors.
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In the critical regime p* = pg, we find that A\j(n)/\/n = D, where the distirbution of the
non-degenerate random variable D depends on a SRBM on the orthant R%, with zero drift
and an explicit covariance matrix ¥. This is the same SRBM to which the entire carrier
process converges weakly in diffusive scaling as in Theorem 2.5. For instance, if p* is uniquely
achieved, then the SRBM W is degenerate in all but one dimension. In particular, for kK = 1,
our result recovers the corresponding result in [LLP20]. In general, ¥ can depend on the
entire p, capturing the intertwined interaction between balls of all colors in the multicolor
case.

In the supercritical regime p* > pg, Theorem 2.7 shows that Ai(n)/n — p* — po almost
surely and the fluctuation of A;(n) about its mean is of order y/n. While a central limit
theorem (CLT) for A\;(n) in the supercritical regime was shown in [LLP20] for the k = 1 case,
we find in the multicolor case that the distribution of the fluctuation of A\j(n) does not always
satisfy CLT. More precisely, the following corollary shows that CLT holds for A;(n) if and
only if the ball density is strictly decreasing on the unstable colors. (Recall (9).)

Corollary 2.8. (Fluctuation of A1 in the supercritical regime) Keep the same setting as in
Theorem 2./. Suppose supercritical regime p* > pg. Let ap < --- < a,. denote the unstable
colors.

(i) Further assume pa, > -+ > Da,, Then Ai(n) satisfies the following central limit theorem
A1(n) — (p« — po)n
vn

where the limiting distribution is the normal distribution with mean zero and variance
|21 for X the covariance matriz in Theorem 2.5.

= N(0, [IE]]1),

(i) If pa; = pa, 4 for some 1 < j <r—1, then
E |[liminf A1(n) = (P« = po)n

n—o0o \/ﬁ

In particular, A1(n) does not satisfy the central limit theorem.

|0

Indeed, suppose po, > -+ > pq, as in Corollary 2.8 (i). Then Theorem 2.5 states that
x~1/2(W, — px) converges weakly to the (non-reflecting) Brownian motion in R* with covari-
ance matrix . Hence in this case Theorem 2.7 (i) immediately implies that

A1(n) = (ps — po)n - i
Vi = ;B (1),

where B = (B!,..., B®) is a Brownian motion in R* with zero drift and covariance matrix
¥ in Theorem 2.5. Since B(1) is a standard normal vector with mean zero and covariance
matrix X, the result in Corollary 2.8 (i) follows.

If we are in the situation as in Corollary 2.8 (ii), then some of the consecutive unstable
colors have the same ball density, i.e., pa; = pa,,,- For every such «j, the corresponding
coordinate has to remain nonnegative in the limiting SRBM. So in this case, the fluctuation
of A1 about its mean in the diffusive scaling has a positive expectation. As an example,
consider the case p = (po,p1,p2) with py > pa = po (see Figure 3 (b)). In this case, the
limiting SRBM W = (W', W?) is on the domain R x R, so the lower bound W (1) +W?(1)
on the fluctuation in (12) has a positive expectation. This can be understood for the following
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reasons. Since p; > max(pg, p2), the number of color 1 balls in the carrier grows linearly and
makes the dominant contribution (of order n) to A;(n). However, the number of color 2 balls
in the carrier still contributes to Aj(n) by order \/n since ps = pyo. While the fluctuation of
the number of color 1 balls around its mean (p; — pp)n has mean zero, the contribution of
color 2 balls of order y/n is only visible in the diffusive scaling and it is almost always of a
positive amount.

Another interesting behavior of the multicolor BBS is the order of subsequent soliton
lengths, Aj(n) for j > 2, in the supercritical regime, which depends drastically on the multi-
plicity r of the maximal ball density p*. That is, A;(n) for all j > 2 is of order logn if r =1,
but they are of order /n if r > 2. The former case agrees with the results for the k = 1
case in [LLP20]. There, it was shown that A2(n) comes from the subexcursions of the carrier
process below its running maximum. The height of such subexcursions has exponential tails,
so we have order log(n) as the order of the maximum of n subexponential random variables.
However, if 7 > 2 in the multicolor case, the discrepancy between the number of balls of two
maximal colors is of order /n and contributes to A2(n) (see the proof of Theorem 2.7 (iii)).
We remark that a duality between the subcritical and the supercritical regimes for k = 1
established in [LLP20], in the sense that ;i in the superciritcal regime corresponds to \;
in the subcritical regime for 57 > 1. Our results confirm a similar correspondence still holds
asymptotically for the simple (r = 1) supercritical regime; but ;1 in the non-simple (r > 2)
supercirital regime, corresponds to A; in the critical regime.

3. KEY COMBINATORIAL LEMMAS

3.1. Infinite capacity carrier process and soliton lengths. The definition of k-color BBS
dynamics we gave in the introduction involves the non-local movement of balls. It can instead
be defined using a ‘carrier’, which gives a localized characterization of the process and reveals
a number of important invariants that fully determine the resulting solitons. For the simplest
case k = 1, imagine a carrier of infinite capacity sweeps through the time-t configuration £®)
from the left, picking up each ball it encounters and depositing a ball into each empty box
whenever it can. We will see that after we run this carrier over €®) the resulting configuration
is in fact £t1). Moreover, the maximum number of balls in the carrier during the sweep is
in fact the first soliton length A;.

Now we introduce the infinite-capacity carrier process and the carrier version of the x-color
BBS dynamic. Denote

Boo = {x €{0,1,---, &} | x is non-increasing and has finite support} ,

which is the set of ‘reversed’ semi-standard Young tableaux of shape 1 x co and letters from
{0,...,k}. Namely, an element in this set is an infinite string of letters consisting of finitely
many non-increasing nonzero letters followed by an infinite string of zeros. An element x in
Bso describes the state of the infinite-capacity carrier. If the carrier at state x encounters a
new ball of color y, it produces a new carrier state x’ and a new ball color 3’ according to
the ‘circular exclusion rule’: Inserting y into x, y' is the largest letter in x with vy <y, and
x' is obtained by replacing the leftmost letter y' in x with y. More precisely, define a map
U: By x{0,1,--- ,k} = {0,1,-++ |k} X B, (X,y) — (¢, Xx') by

(i) Suppose y > 1 and denote ¢* = min{i > 1 | x(i) < y}. Then ' = x(i*) and

x'(1) = x(4)1(i # i*) + y1(i = i) Vi > 1.
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where m;(I';) denotes the number of balls of color (letter) ¢ in I'y for i =1,..., k.

Lemma 3.1 below states that the first soliton length A; equals the maximum number of
balls of positive colors in the associated carrier process.

Lemma 3.1. Suppose the initial k-color BBS configuration £ has finite support. Let (Wy)z>0
and (I'z)z>0 be as before. Then

A1(€) = max |W,|[1 = max (# of positive letters in I'y) .
>0 >0

For k = 1, it is possible to precisely characterize all subsequent soliton lengths Aa, A3, ... by
applying the ‘excursion operator’ to the carrier process multiple times and taking maximum
[LLP20]. Roughly speaking, given the 1-dimensional carrier process W = (W),>o for k = 1,
which starts at 0 and takes value 0 for all large x, let £(IV) denote the new lattice path that
describes the excursion heights above the record minimum of W away from the rightmost
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global maximizer of W. Then Ay = max(£(W)), and A\3 = max(E3(W)), and so on. We
currently do not have a similar k-dimensional excursion operator for exactly describing the
subsequent soliton lengths for the general multicolor case. However, we provide a lower bound
on A; in terms of the jth largest ‘excursion height’ of the carrier process, which is enough to
obtain sharp asymptotics for A; in the subcritical regime.

We introduce some notation. Let 0 = (0,0,---,0) € (Z>()" denote the origin, and write
n
M, :=> 1(W, =0) (14)
r=1

for the number of visits of W, to 0 during [1,n]. For each k > 1, let T}, denote the time of
the kth visit of W, to 0 and set Ty = 0. We say that the trajectory of W, restricted to the
time intervals [T}_1, Tx] between consecutive visits to 0 are its ezcursions. Also note that M,
defined at (14) equals the number of complete excursions of the carrier process during [1,n].
We will define the height of the carrier at site x by

Welle = Wa(1) + - -+ + Wa(r), (15)

which equals the number of balls of positive color that the carrier possesses at site x. Define
the kth excursion height hy and height of the final meander r, by

hiy = max ||[W.|, rn = max [|[W,]. (16)
Ty 1 <t<T} Tar, <t<n
Denote by hi(n) > ha(n) > --- > hy, (n) the order statistics of the excursion heights
hi,--- ,hpr,,. We then have the following lemma.

Lemma 3.2. Soliton decomposition of £ is obtained as the union of the soliton decomposition

of the support of each excursion of the carrier process over €. In particular, for j,n > 1,
Aj(n) = hy(n).

Proofs of Lemmas 3.1 and 3.2 are relagated to Section 12.
3.2. Finite capacity carrier processes and soliton numbers. In [K1.20], it is shown that
the row lengths of the invariant Young diagram of any x-BBS trajectory can be extracted by
running carrier processes of finite capacities, as we will summarize in this subsection. This

will provide one of the key combinatorial lemmas in the present paper.
First, fix an integer parameter ¢ > 1 that we call capacity. Denote

Bc:{[l'l,"',ZL‘C]G{O,L"',K}C|$1Z---Z$C},

which can also be identified as the set of all (1 x ¢) semistandard tableaux with letters from
{0,1,--- ,k}. Define a map ¥.: B, x{0,1,--- ,k} — {0,1,--- ,k} x Be, ([x1, - ,2c,y) —
(v, 2}, ,2.]) by the following ‘circular exclusion rule’:

(i) Suppose y > x. and denote i* = min{i > 1 | z; < y}. Then y' = x;+ and
[x,b T 7'%/0} = [xla T =1, Y ikl 7x6]'
(ii) Suppose z. > y. Then 3y’ = x1 and

[xllvx/%"' 7x/c] = [x%' i 7$Cuy]-
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FIGURE 5. Time evolution of the capacity-3 carrier process (I'y),>0 over the 7-color
initial configuration £, with new configuration £’ consisting of exiting ball colors. For
instance, & = 2, T's = [2,0,0], and &, = 5. Notice that while £ is the same as in the
example in Figure 4, the new 7-color BBS configuration £’ is different. In this case,
the map & — &’ does not agree with the 7-color BBS time evolution.

The following lemma, which is proven in [[X1.20], gives a closed-form expression of the row
sums of the invariant Young diagram:

Lemma 3.3. Let (f(t))tz() be a k-color BBS trajectory such that €9 has finite support. For
each ¢ > 1, let (U'y.c)z>0 denote the capacity-c carrier process over §(t). Then for all k > 1
and t > 0, we have

MG ETEE A EZl 3% >minly_1.),
=1

where minI'; 1., denotes the smallest letter in I'y_q.p.

Proof. See eq. (13) and Prop. 4.5 in [KL20]. We also provide a self-contained proof in
Section 12.2. O

Remark 3.4. It is well-known that, if the capacity ¢ > 1 is large enough compared to the
number of balls of color > 1 in the system, then the induced update map & — &' agrees
with the k-color BBS time evolution (see, e.g., [HIXT01]). Also, once the capacity c is large
enough, the capacity-c carrier process is equivalent to the infinite capacity carrier process in
the sense that they always contain the same number of each positive letter. Hence it follows
that the map & — & defined in (13) coincides with the k-color BBS time evolution defined
in the introduction. In other words, the k-color BBS dynamic can be equivalently defined
by repeatedly applying the infinite-capacity carrier process to the current ball configuration,
analogously as in the k = 1 case in [LLP20].
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3.3. Modified Greene-Kleitman invariants for BBS. One natural way to associate a
Young diagram with a given permutation is to use the celebrated Robinson-Schensted cor-
respondence (see [SagOl, Ch. 3.1]), which gives a bijection between permutations and pairs
of standard Young tableaux of the same shape. For each permutation o, record the common
shape of the Young tableaux as Ars(c). Let pRS(c) and )\?S(U) denote its ith row length
and its jth column lengths, respectively. According to Greene’s theorem |[Gre82|, the sum of
the lengths of the first k& columns (resp. rows) of Arg(o) is equal to the length of the longest
subsequence in o that can be obtained by taking the union of k decreasing (resp. increasing)
subsequences. That is, for each k > 1,

P5(0) + -+ pR5(0)) = max (“_l k increasing subsequences of JD ,
AMB(0) + - + AR5 (0)) = max (“_| k decreasing subsequences of O'D .

The quantities on the right-hand sides are called the Greene-Kleitman invariants.

If we consider the r-color BBS trajectory started at £ = ¢1([1,7n]), then we obtain
another Young diagram A(c) := A(£®)), whose j® column length equals the j%* longest
soliton length. Then a natural question arises: Do the sums of the first k£ rows and columns
of A(o) relate to some type of Greene-Kleitman invariants? For the rows, we find that the
correct modification is to localize the length of an increasing sequence into the number of
ascents in a subsequence. On the other hand, for the columns, it turns out that we just need
to impose that the k decreasing subsequences be non-interlacing. In fact, in Lemma 3.5,
we establish these modified Greene-Kleitman invariants for BBS in the more general setting
when ¢ is an arbitrary k-color BBS configuration with finite support, where having 0’s and
repetitions are both allowed.

Let £ : N — {0,1,--- ,k} be a k-color BBS configuration with finite support. For subsets
A, B C N, denote A < B if max(A) < min(B). We say A, B are non-interlacing if A < B or
B < A. We say ¢ is non-increasing on A C N if £, > &,, for all a;,as € A such that a1 < as.
Denoting the elements of A by a1 < ag < ---, define the number of ascents of £ in A by

]
NA(A &) =14 1, <)
=2

Moreover, define the penalized length of A with respect to £ by

max A
L(A¢) = ||A] — Z 1(& = 0)| 1(€ is non-increasing on A). (17)

i=min A

Note that the summation in (17) is over the interval [min A, max A] N Z, which may contain
A properly.

Lemma 3.5. Let (§(t))t20 be a k-color BBS trajectory such that £©) has finite support. Then
for each k,t > 0, we have

k

) 1 ... ) = , €0
pE) 4t (€) = | max INA(Aui ):

1=
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k
)y ... )y = ¢
A(€0) 4+ Ak(e )-Aﬁ,r;lg;;@;L(Auf )

The proof of Lemma 3.5 may be found in Section 12.2.

4. PROOF OF THEOREM 2.1

In this subsection, we prove our first main result, Theorem 2.1. Let ™ be a uniformly
chosen random permutation of the set {1,2,--- ,n}, and let £” = ¥£"1([1,n]) be the random
n-color BBS configuration induced from ¥". Let A\x(n) = A\;(€") denote the length of the k™
longest soliton in £".

4.1. Proof of Theorem 2.1 for the columns. Our proof of Theorem 2.1 for the columns
relies on Lemma 3.5 and the sharp asymptotic of longest decreasing subsequence of a uniform
random permutation due to Baik, Deift, and Johansson [BD.J99].

Proof of Theorem 2.1 for the columns. Fix an integer k > 1. It suffices to show that,
almost surely,

n—o0

k
lim n~'/? Z)\z(n) = 2Vk.
i=1

For each integer k > 1, let L(k) denote the length of the longest increasing subsequence in a
uniformly random permutation of k letters. By Lemma 3.5, recall that

k
A(n) 4+ Mp(n) = maX{ZL(Ai,ﬁn) |Ap < - < A C [1,n]} .
i=1

We view a random permutation as a ranking among n i.i.d. Uniform(][0, 1]) random variables
Uy, - ,U,. If A C{1,---,n}, then the ranking of U; for i € A gives a uniform random
permutation of A, which we call a random permutation of [n] restricted on A. Moreover, one
can also see that if we restrict a random permutation on multiple disjoint subsets, then these
smaller permutations are independent. Hence, if Ay < -+ < Ay are non-interlacing subsets of
[0, n], then the permutations restricted on these subsets are independent. Moreover, since the
random permutation model £ does not assign color 0 on any site in [0, n], for any increasing
subsequence A C [0,n] and its supporting interval I = [min A, max A],

n ny d
L(A,¢") = [A] < |I| = L(I,£") = L(|1]).
It follows that

k k
Z Ai(n) 2 max {Z L(n;)
i=1 i=1

Baik, Deift, and Johansson [BD.J99] proved the following tail bounds for L(n) (see also
equations (1.7) and (1.8) in [BDJ99] or p. 149 in [Rom15]): There exist positive constants
M, c, C such that for all m > 1,

(Lower tail): P (m™"/%(L(m) — 2v/m) < ~t) < Cexp(—ct®) for all t € [M, 2m"/%);

k
Z n; =n, L(ny),...,L(ng) are indepenent} . (18)
1=1

(Upper tail): P (m_l/G(L(m) —2y/m) > t) < Cexp(—ct®/?) for all t € [M, mP/6 — 2m1/3].
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Taking ¢t = (logm)?, we obtain
P <|L(m) —2y/m| > (log m)2m1/6> < 2C exp(—c(logm)®/?).
Fix € > 0. Note that if m > y/n, then for any fixed d > 0,
i (\L(m) —2y/m| > (log m)2m1/6> = O(n~9). (19)

Now, denote the random variable in the right-hand side of (18) by X. We write X =
max(Y, Z), where
Y = max{L(ni) + -+ L(ns
Z =max{L(n1)+---+ L

Ying+ - +ng =n,n; >ey/n for all i},
(ng) :m1+ - +ng =n,n; < ey/n for at least one i }.

Denote A := {(n1,...,nk) : n1 + -+ +np = n,n; > ey/nforalli}. For each n =
(n1,...,n,) € A, denote Yy, := L(n1) +-- -+ L(ng) and M, := 2(y/n1 +---+ /ng). Then by
a union bound and (19),

P(|Y, — M,| > k(logm)*m*/%) = O(n~9).

Note that ¥ = max;,c4Y; and since there are at most n¥* partitions of [n] into k intervals,
|A| < nF. So by a union bound we have

P(hzqgﬁkqo5;%;P0n-ﬁmﬂzkmgmfmﬂﬂ::Omﬂ%

for any fixed d > 0. The deterministic optimization problem

maﬁcMT7 =max{2y/ny + -+ 2N Ny + -+ ng =n,n; >e/n Vi)
ne

achieves its maximum when Zle |n; — (n/k)| is minimized, in which case we have |n; —

(n/k)] <1 for all 1 <i < k. Denoting the maximizer as ny,--- ,nyg, it follows that, for all
1<i<k,
1 1
lvni —v/n/k| < < .
' Vi ++/n/k " 2y/(n/k)—1

So this yields, for all sufficiently large n > 1,
P (|Y — 2V kn| > 2k(log n)2n1/6> (20)
k
<P|(|Y —2Vkn| > k(logn)*n'/ + ———— | = 0(n~%
(n/k) -1

for any fixed d > 0.
Next, if n; < ey/n, then we use the trivial upper bound L(n;) < n; < ey/n, otherwise if
n; > €y/n, we continue to use the tail bound for |L(n;) — 2,/n;| in (19). Hence

P (Z > 2y/(k — Dn + 2k(log n)?n/6 + keﬁ) — O(n~%), (21)

where the first term bounds the contribution from at most k — 1 intervals of size > £y/n, the
second term is given by the BDJ tail bound in (19), and the last term gives a trivial bound
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for intervals of size < ey/n. Hence if we choose ¢ < 2/k(vk — 1 + V/k), then (20) and (21)

give us

P(Z>Y)<P (Y < 2vkn + 2k(log n)2n1/6> (22)

“m - 9k (loen)2nl/6 4 2V
+P<Z>2\/(k 1)n + 2k(log n) +\/kj+ﬁ>

=0(n™ 9
for each fixed d > 0. Now note that, for each ¢ > 0,

k
() oo

> t) :P(ymax(y, Z) — 2vkn| > tﬁ)
<P(|y —2vkn| > tvn) +B(Z > V).

Hence by choosing t = 1/logn, for any fixed d > 0, (20) and (22) yield

1 & 1 B
P (‘(\/ﬁ;)\i(n)> —2VE| > logn) = O(n™%).

Then the assertion follows from the Borel-Cantelli lemma. O

4.2. Circular exclusion process and the row lengths. In this subsection, we prove The-
orem 2.1 for the rows. By Lemma 3.3, this can be done by analyzing the carrier process over
the uniform random permutation £". Let X := (U;)z>1 be a sequence of i.i.d. Uniform(]0, 1])
random variables. For each capacity k > 1, we may define the carrier process (I'y)z>0 over X
using the same ‘circular exclusion rule’ we used to define the map ¥ in Section 3.2. More pre-
cisely, denote C, = {(x1,--- ,xx) € [0,1]¥ | 21 > --- > x1}. Define a map ¢ : Cy x [0,1] — Cg,
(T2, 2k, y) = (2, 2] by

(i) If y > x, then denote * = min{i > 1 | z; < y} and let

[xll? 7‘%‘2} = [xla'” y Lix—1,Y, Li*x41, - ,.’L’k].

(ii) If zp > y, then [2], -, z}] = @2, -+ , 2}, Y.

Then the k-point circular exclusion process (I'z)z>0 over X is defined recursively by

Fx—i—l = ¢(Fx) Ux—i—l)-

See Figure 6 for an illustration. Note that (I';);>0 forms a Markov chain on state space Cy.
When I'y = [0,0,--- ,0], we call (I'y)z>0 the carrier process over X with capacity k.

In the following lemma, which will be proved in Section 4.3, we show that the k-point cir-
cular exclusion process converges to its unique stationary measure 7, which is the distribution
of the order statistics from & i.i.d. Uniform([0, 1]) variables.

Lemma 4.1. Fiz an integer k > 1 and let (I'y)z>0 denote the k-point circular exclusion
process with an arbitrary initial configuration.

(1) Let w denote the distribution of the order statistics from k i.i.d. uniform random variables
on [0,1]. Then m is the unique stationary distribution for the Markov chain (I'z)z>0.
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)

(I'z)z>0 be the capacity-k carrier process
for each 1 < x < n, we have

1(£"(x) >minly_;) = 1(Uy > minT'y_).

Thus according to Lemma 3.3, almost surely,

over £" as definéd in Section 3.2 By construction,

B (1€ 4t ppl€) = S AU, > minTy ).

r=1
By Lemma 4.1 and Markov chain ergodic theorem, almost surely,

. _ n . . .
nh_)rgon Lo (€) + -+ pp(€) =P (Upyr > min(Uy, - - -, Uy)) = T
Then the assertion follows. -

4.3. Stationarity and convergence of the circular exclusion process. We prove Lemma
4.1 in this subsection. We will assume the stationarity of the circular exclusion process as
asserted in the following proposition, which will be proved at the end of this section.

Proposition 4.2. Fiz an integer k > 1 and let m denote the distribution of the order statistics
from k i.i.d. uniform random variables on [0,1]. Then m is a stationary distribution of the
k-point circular exclusion process.

Proof of Lemma /.1. For convergence, we use a standard coupling argument. Namely, fix
arbitrary distributions my and 7y on C; and let X = (U)z>1 denote a sequence of i.i.d.
Uniform([0, 1]) variables. Let (I';)z>0 be k-point circular exclusion processes over X with ini-
tial distribution 7o and let (T'),>0 be k-point circular exclusion processes over X with initial

Y3

-
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distribution 7g. These two processes are naturally coupled since they evolve simultaneously
over the same environment X. Let 7 = inf{x > 0| T, = T';} denote the first meeting time
of the two chains (see Figure 7). By the coupling, I's = I's and s < z imply T, = T';. A
standard argument shows

dry (e, Tp) < P(Ty #Ty) = P(1 > 1),

where 7, and 7, denote the distributions of I', and T'. We claim that

. N
]P)(T > t) < P(FQ #+ Fo) <1 — WW) . (23)

According to Proposition 4.2, this will imply Lemma 4.1 by choosing 79 = .

To bound the tail probability of meeting time 7, we will show that two circular exclusion
processes ‘synchronize’ after k steps with probability at least 1/k!, in the sense that
_ 1
Then the claim (23) follows since

P(t > Nk) = P(Cny # T | To # To)P(Tg # To)

N
P(To # To) [ [ P(Ti # Tt | Ti—1y # Tia—1yi)

=1

_ 1 N
P(Ty # To) (1 — W) .

We begin with the following simple observation for a sufficient condition of meeting. Let
X = (U)e>1 be a sequence of ii.d. Uniform([0,1]) variables. Fix t > 1 and let T'; =
[x1,--- ,z%] and Ty = [Z1,---, 7] be arbitrary elements of C. Superpose the two k-point
configurations into a one 2k-point configuration 0 < y; < yo < --+ < g9 < 1. For a special
case, suppose yor < 1. Observe that on the event {yor, < Uprg < -+ < Upy1 < 1}, we have

Lotk = [Ut1,Uts2, -+ Upik] = Tor,

as all of the k points in I';, and I';, will be successively annihilated from the largest to the
smallest by inserting U41, - -, Uptk.

For the general case, regard each U, as a uniformly chosen point from the unit circle S*.
Then the 2k points y1, - - - , yor will divide ST into disjoint arcs of lengths, say, £1,-- - , £y, for
some 2 < m < 2k. If the points Uy41, - - - , Uy4k are strictly decreasing in the counterclockwise
order within one of the m arcs, then by circular symmetry and a similar observation, we will
have I'y,; = Ty x. Noting that

Uir1,- -+, Ugyr are strictly decreasing in the _ ﬁ
counterclockwise order within an arc of length ¢/ — kI

and ¢ + --- 4+ ¢, = 1, Holder’s inequality yields
P(Cpir = fork | Ty = [w1, -+ 2], Do = [Z1, -+, Tk))

L (b4 +4,)" 1 - 1
Z k!~ k:‘ mk—1 omklED T (2k)E1E
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represent points that are shared (resp., ot shared) in both processes. The two chains

meef after the fifth transition.
This sh@ssertio@ @ Q OJ

Lastly in this section, we prove Proposition 4.2.

Proof of Proposition 4.2. We show 7 is a stationary distribution for the Markov chain
(Ts)s>0. Let X(1) < X9y < --+ < X(p) be the order statistics from & ii.d. uniform RVs
on [0,1]. Let Y be an independent Uniform([0, 1]) random variable. After a new point Y is
inserted to the preexisting list of k points X(;) < X(g) < -+ < Xy, the updated list of points
will be

where I € {1,2,---,k} is the random index such that Y € (X1, X(741)). For I = k, the
interval (X (), X(x+1)) denotes the union of (0, X (1)) and (X(), 1). In this case, the point Xy
is deleted and Y is added as the smallest or largest point depending on which sub-intervals it
falls.

We claim that (24) is still the order statistics from k i.i.d. uniforms on [0, 1], which would
prove that the distribution of k i.i.d. uniform points remains invariant under the transition
rule. To show this, take a bounded test function f : [0,1]* — R. First, we write

E [f(X(1)7 T aX(I—l)aKX(I—&-l)’ T 7X(k))]

e
=3 E[f(Xa), - Xo1), Yy X1y, s X)) Lye(X oy X))
=1

k—1 1
= E k'/ f(Zlv'“ y Zi—15 Y5 Zid1, 0 azk)dzl"'dzkdy
=1 VA< <z <Y<z < <zk

1
+ il f(z1, - s ze—1,y) dz1 - - - dzpdy
C < <2<y
1
+ fly, 21, 2z1—1) dz1 - - - dzpdy.

|
k! y<z1<--<zg
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Integrating out z; and denoting zp := 0,

k—1
1
= E E f(zla"' s Ri—15Y, Zi41, " 7Zk)(y_zi—1)
i=1 C 2 < <21 <Y<zZip1 < <2

dz1 -+ 2i—1Ziy1 - dzpdy

1
+H f(zlv"' aZk—lvy)(y_Zk—l)le"'dzk—ldy
c 2 < <21 <Yy
1
+t 5 sz, 2e-1) (1 — 2p-1) d2y -+ - dzg—ady,
° Y<z1<-<Zp—1

We then rename y as z; for the first integral above and as zj; for the second integral above.
For the last integral, we rename y as 21 and z; as z;41 for i =1,...,k — 1. This gives

k—1
1
= T flzg, - ,Zk) [(1 — Zk) + (Z Zi — Zi_1> + (2 — 2x—1)| dz1---dzp
Iz < <2k i=1
=E[f(Xay - Xa-1: X, X1y, Xwy)] -
This shows the assertion. ]

5. PROOF OF THEOREM 2.3 (1)

We prove Theorem 2.3 (i) in this section. Recall the probability distribution 7 in (5). We
assume pg > p* := max(py,...,px) in the following proof.

Proof of Theorem 2.3 (i). We first show the irreducibility and aperiodicity of the chain
W,. For its irreducibility, fix x,y € By and write y = [y1,y2, - -]|. Since all elements of B
have finite support, there exists an integer m > 1 such that x(i) = 0 and y(i¢) = 0 for all
7 > m. Then note that

Plzyom =y | 'z = x)
>P(EP(z+1) =0, ,&Px+m)=0,P(x+m+1) =y, - ,EP(z +2m) = yn)
= Po Py " Pym > 0.

Since x,y € B, were arbitrary, this shows the Markov chain W, is also irreducible. Then for
its aperiodicity, it is enough to observe that

P(Czg1=1[0,0,-+-]| To =[0,0,---]) = po > 0.

Next, we show that 7 is a stationary distribution for (W, );>0. The uniqueness of stationary
distribution and convergence in total variation distance will then follow from general results
of countable state space Markov chain theory (see, e.g., [LP17, Thm. 21.13 and Thm. 21.16]).

We work with the original carrier process I',. For each x € By, and ¢ € {0,1,--- ,k}, denote
D mi(x)
exp(wt0) = [T (2) . ettt =
=1

Recall the definition of the map ¥ : B, x {0,1,--- ,k} — {0,1,--- K} X By given in Section
3.1. Note that for each pair (x,y) € Boo X {0,1,--- ,k} and (v/,x’) € {0,1,--- , K} X B such
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that ¥U(x,y) = (v, %), ¥ = ¢/ (x,y), we have

exp(wt(x)) exp(wt(y)) = pypg ™ Illnpmxx)

= pypy Hp:-”*" ) = exp(wt(y/')) exp(wt(x')).

Indeed, the total number of each letter 1 < i < k in both pairs (x,y) and (y/,x’) is the same.
So if 4/ > 1, then some ball of positive color in x is replaced by a ball of positive color 7/, so
Ix|l1 = ||x'[|1 and the above identity holds; If 3/ = 0 and y > 1, then x’ has one more ball
of color y than x does so the above identity holds; If 3’ = y = 0, then both x’ and x do not
contain any ball of positive color so the above identity holds.

Now, observe that for each fixed x' € By, ¥ gives a bijection between {0,1,--- ,k} x {x'}
and its inverse image under W. If we denote the second coordinate of W by Ws, then this
yields

> exp(wt(x)) exp(wt(y)) = > exp(wt(y/(x, y))) exp(wt(x'))

(x,y)EBx x{0,1,- ,k} (x,y)EBx x{0,1, ,k}
Wy (x,y)=x' Wy (x,y)=x'
=exp(wt(x)) Y exp(wt(y'))
y'€{0,1,-- ,x}
= exp(wt(x')).

Dividing both sides by

> eotneo)= 3 S II(2) =T (1-2) >0

K
XEBoo n1=0 ne=01=1 =1

we get

> m(ma(x), -+ me(x))pi = m(m (X)), -+ mp(x)).
(%,)EBo x{0,1,+ ,k}
Wo(x,i)=x'

This shows that 7 is a stationary distribution of the Markov chain (W;).>0, as desired.

Lastly, positive recurrence follows from the irreducibility and the existence of stationary
distribution [LP17, Thm. 21.13|. Convergence of the distribution of W, to the stationary
distribution in total variation distance then follows from the irreducibility, aperiodicity, and
positive recurrence (see [LP17, Thm. 21.16]). O

Remark 5.1. The statement and the proof of Theorem 2.3 (i) are reminiscent of [[X1.20,
Thm. 1], where the authors show that for all p = (po,- -, px), the (finite) capacity-c carrier
process over £P is irreducible with unique stationary distribution

1 o
g 7 Hp;nZ(X), X E Boo,
¢i=0

where Z. denotes the partition function. In fact, their result applies to more general finite-

capacity carriers whose state space is the set Bga)(/@) of all semistandard tableaux of rectan-
gular shape (¢ x a) with letters from {0,1,--- ,x}. In this general case, the partition function
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Ze = §“>(n, p) is identified with the Schur polynomial associated with the (a x ¢) Young
tableau with constant entries ¢ and parameters pg, p1,- - , Dx-

6. THE SKOROHKOD DECOMPOSITION OF THE CARRIER PROCESS

In this section, we develop the Skorohkod decomposition of the carrier process, which we
briefly mentioned in the introduction. The idea is to write the carrier process, which is
confined in the nonnegative integer orthant Z%,, as the sum of a less confined process and
a boundary correction. Namely, let (W,).>q be the carrier process over an arbitrary ball
configuration £ as in (4). seek for the folld®10)81eléeerdposition
5,17 |3 0_+610 34 3%)1"3% %4 34 (o)
where 52| 35| 3s| 34| 34| 34| 212 34| 34| 211 24| 211] 211) 419| 520|520
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R and the pushing process (Y:Z)mZO and verify the Skorohkod decomposition (252)2 in Lemma
6.3. All results in this section are for 3 deterministic ball configuration &.
2

6.1. Definition of the decoupled carrier process. In this section, we introduce a ‘decou-
pled version’ of the carrier process W, in (4), which will be critical in proving Theorem 2.3

(ii) as well as Theorems 2.6-2.7.
0.2
V o 0.1
0.1 ay 0.15
\ 4

0
0.1

FIGURE 8. Tllustration of the original circular exclusion rule (left) and its decoupled
version (right) for x = 7 and ball density p = (.1, .1, .25, .05, .15, .2, .1, .05). We
take the set of exceptional colors C. to be the set of unstable colors C? = {2,5,6}.
For instance, in the decoupled carrier process, inserting new balls of color 5 into the

To ilfifdtIEEE r%lp{ee)lc&&(}egoeﬁ%%l&g t]?%l%gr(fg%ofjgrgcés%n%' with k = 2 as in Figure 1. While
the transition kernel for this Markov chain depends on whether it is in the interior or at the
boundary of the state space ZQ>O, we may consider a similar Markov chain on the entire integer
lattice Z? that only uses the kernel in the interior, by allowing the counts of color 1 and 2
balls in W, to be negative. In the general construction of decoupled carrier processes, we will
allow the freedom to choose positive colors a1 < -+ < a, in {1,...,k} whose count can be
negative. Recall that inserting a ball of color ¢ to the carrier W, will exclude the largest color



SCALING LIMIT OF SOLITON LENGTHS IN A MULTICOLOR BOX-BALL SYSTEM 29

i, in W, that is less than ¢. In the decoupled carrier process, the color wheel Z; is divided
into intervals [0, a1], [on, 2], ..., [ar, K], and inserting a color ¢ in (¢, aj+1] can only exclude
a color in the interval [o, aj+1]. Hence, the interaction between colors in distinct intervals is
‘decoupled’. See Figure 8 for an illustration.

Definition 6.1 (Decoupled carrier process). Let £ := (§;)zen be k-color ball configuration
and fix a set C. C {1,...,K} of ‘exceptional colors’. Let

Q:={(r1,...,25) €Z" : ; > 0if i ¢ C.}.

The decoupled carrier process over £ associated with C. is a process (X;)zen on the state
space 2 defined as follows. If C, = (), the we take X, = W,, where W, the carrier process in
(4). Suppose C. = {ai,...,a,} for some r > 1 with ay < --+ < a;. Denote ay41 := k + 1.
Having defined X7,...,X,, denote i := &1 if &1 € {1,...,k} and i :== kK + 1 if 41 = 0.
Then

ei—l(i*;«éO)ei* iflSiSOq

X;v—l—l — XI =4 € —ey if o <t <K (26)
—e; ifi=r-+1,
where i, :=sup{j : 1 <j <i, X;(j) > 1} (with the convention sup () = 0) and
y a; foaj<i<ajpand Xp(oj)=--=X,(1—1)<0
i =
g ifoj<g<i<ajand Xz(q)>1, Xp(g+1)=---=X,(i—1)=0.

Unless otherwise mentioned, we take Xy = 0 and £ = &P with density p = (po, - .., Px)-

It is helpful to compare the recursion (26) for the decoupled carrier process to that of
the carrier process in (4). Notice that in (4), inserting 7 into W, can decrease by one at
coordiante 7, only when W,(i,) > 1. Hence W, is confined in the nonnegative orthant Z%,.
In comparison, when a ball of color i is inserted to the decoupled carrier X, it decreases
by one at coordinate, say ¢ € {i',i.}. If £ ¢ C., then the above construction ensures that
Xz(¢) > 1. From this, one can observe that X, (j) > 0 for all x > 0 whenever j ¢ C.. In
contrast, if £ € Ce, then X,1;(¢) = X (¢) — 1 regardless of whether X,(¢) > 1. Hence X, can
take negative values on the exceptional colors. We call the recursion in (26) as the ‘decoupled
circular exclusion’.

In the proposition below, we establish a basic coupling result between the carrier and the
decouple carrier processes. For its proof, we will introduce the following notation. Define the
following function fy : Z%, x {0,...,k} = {0,...,K} as

0 if[Wop=wand & =y = Wi —Wy=e

27
Jg ifWo=wand § =y = W1 —-Wy=e, —e;or —¢l 27)

fW(W7y) = {
Roughly speaking, if fyy(w,y) = j, then j is the color of the ball that is excluded when
a ball of color y is inserted into the carrier of state w. The circular exclusion rule says
fww,y) =sup{i : 1 <i <y, w(i) > 1} with the convention x +1 = 0 and sup® = 0.
Similarly, define a function fx : Q x {0,...,k} = {0,..., Kk} as

= {0 w6y = ool

28
j if[Xo=wand & =y = X1—X0=ey—ej0r_ej]- 28)



30 JOEL LEWIS, HANBAEK LYU, PAVLO PYLYAVSKYY, AND ARNAB SEN

Intuitively, if fx(w,y) = j, then j is the color of the ball that is excluded when a ball of color
y is inserted into the decoupled carrier of state w.
For each x € N, define X, € Z%, by
X,01) = X, (i) — Juin X(i) foralli=1,.. k. (29)
Note that X, (i) > max(0, X, (i)) for all i by definition and Xy = 0. Also, X, (i) = X,(i) for
all i ¢ C, since X, (i) > 0 for all z € N and all i ¢ Ce.

Proposition 6.2 (Basic coupling between the carrier and the decoupled carrier processes).
Let (Wy)z>0 be the carrier process in (4) and let (Xg)z>0 be the decoupled carrier process in
(26) associated with Ce = {aq,...,a,} for some r > 1. Suppose these two processes evolve
over the same ball configuration & and Wy = Xog = 0 € Z&,. Then the following hold.

(1) Wi(i) = Xz (2) for all ap < i < Kk and x > 0. Furthermore,
Wm(ar) :Xx(ar) if Xl(ar),---aXxfl(ar) > 1.

(ii) Wo(i) < X.(i) for all 1 < i < k and x > 0. Furthermore, for each x > 0, denoting
y:=E&41 if o1 €{1,... k) andy =K+ 1 if {1 =0,
fw(Wa, &at1) < fx(Xo, &op1) <y (30)

Proof. In this proof, we denote yx = fx(Xz,&+1) and yw = fw(W,,y). Note that
yw,yx € [0,&x+1) (recall that sup ) = 0).

The second part of (i) follows from the first part of (i) and definition. Now we show
the first part of (i) by induction on z > 0. For x = 0 we have Wy = Xy = 0. Denote
¢ := a, and suppose Wy(i) = X;(i) for all £ < i < k for some x > 0. If y < ¢, then
inserting a ball of color y into the carrier W, and the decoupled carrier X, does not affect
their state for colors strictly larger than ¢. Hence Wyi1(i) = Wy(i) = X5(i) = Xpt1(9)
for all £ < i < k. So suppose y > . In this case, y = sup{l < j <y : W,(j) > 1}
and yx = max{/,sup{l < j <y : X,(j) > 1}}. Note that W, is obtained from W, by
increasing its value on color y by one and decreasing its value on color yy by one. If yyr > ¢,
then by the induction hypthesis, yw = yx, so X;41 is obtained from Xg|s, = Wal(ex by
the same way, 50 Xy11|(¢,4) = Wat1l(e,x)- Otherwise, suppose yy < ¢. Then X, is obtained
from Xz|(47,§] = Wx|(e’,€] by increasing its value on color y by one and decreasing its value on
color £ by one. Hence Wit 1|(x) = Xu+1l(e,x], as desired.

Now we prove (ii) by an induction on > 0. The base step when = = 0 follows by definition
Wy = Xo =X =0and 0 = yw < yx < y). For the induction step, suppose W, < X,
coordinatewise for some z > 0. We first show that yy < yx < y. That yx < y follows from
the definition (26). To show yw < yx, we assume yp > 1 since otherwise the claim holds
trivially. Since a ball of color yyr > 1 is excluded from the carrier W,, we have W, (yw ) > 1.
If yw ¢ Ce, then by the induction hypothesis, 1 < W, (yw) < Xz(yw), so it follows that
yw < yx. Otherwise, suppose yy € C.. Then since yx is at least the largest exceptional
color that is < y, it follows that yy < yx, as desired.

It remains to show W1 < Xerl coordinatewise. First suppose yy = 0. Then W, (1) =
e =We(ly—1) =0, 80 Wepi(1) = -+ = Wopa(y — 1) = 0 and Wy — W, = e,. Hence
Wes1(i) = 0 < Xpp1(y) for all 1 < i < y. Noting that X,11(y) = X,(y) + 1, by definition
we have Xx+1(y) = Xz(y) + 1. Then by the induction hypothesis, we have W, 11(y) =
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Wa(y) +1 < Xo(y) +1 = Xpy1(y). Furthermore, Woy1(i) = Wa(i) < Xp(i) = Xpy1(i) for
all y < i < K, where the middle inequality is from the induction hypothesis and the equalities
are from the definition. Thus we have shown that W, < XxH coordinatewise.

Lastly, we suppose yyw > 1 and show W, < X$+1 coordinatewise. Then 1 <y < yx <
Y, Wog1 — Wy = ey — ey, and X, 1 — X; = e, — e,,. By the induction hypothesis and the
definition, we only need to verify W, 11 (yx) < Xx+1(yx)~ This holds when yy = yx since
then Woi1(yx) = Wa(yx) — 1 < Xx(yx) -1< Xxﬂ(yx). So we may assume yw < yx.

By definition of yw, we have Wy(yw +1) = -+ = Wy(y — 1) = 0 and so Wopi(yw + 1) =
- = Wg41(y — 1) = 0. Then by definition W,11(yx) = 0 < X;41(yx). This completes the
induction. O

6.2. Proof of the Skorokhod decomposition of the carrier process. Now we give
an explicit construction of the Skorokhod decomposition of (Wy)z>o. First, let R be the
k X kK tridiagonal matrix with 0 on the subdiagonal, 1 on the main diagonal, and -1 on the
superdiagonal entries: _ -

1 -1 0
0 1 -10

R := tridiag, (0,1, —1) = |: =1-Q, (31)
0 -~ 0 1 -1
0 -0 1

where [ is the k X x identity matrix and ) = I — R. Notice that the spectral radius of @
is zero for all k > 2 being an upper triangular matrix with zero diagonal entries. The above
reflection matrix also has the property of being ‘completely-S’, see Def. 10.2 and the proof of
Theorem 2.5 for justification.

Next, we define the pushing process (Y;)z>0 on Z%, recursively as follows: Set Yy = 0.
Having defined Y,, denoting yiw := fir(Wa,&xr1) (see (27)) and yx := fx(Xz,&rr1) (see
(28)), define

0 if yw = yx

: (32)
ey 1+ Fey ifyw <yx.

Yz+1 — Ym = {
Note that (32) covers all cases since yy < yx due to Proposition 6.2. From the definition, it

is clear that every coordinate of Y, is non-decreasing. Also, clearly, Y, is determined by the
first « ball colors &1, ..., &,.

Lemma 6.3 (Skorokhod decomposition of the carrier process). Let W,, X,, R, and Y, as
before. Then

(i) W, = X, + RY, for all x > 0;

(ii) Yo = 0 and for each i € {1,...,k}, the ith coordinate of Y, is non-decreasing in x and
can only increase when Wy (i) = 0, d.e., Y o 1(Wa(i) > 1)(Yat1(2) — Yz(i)) = 0.

Proof. Let y:= &1 €1 A0 and y:= k+11if £,11 = 0. Also let yy = fiw (Wi, &241) and
yx = fx(Xz, &xq1) (see (27) and (28)). We first show (ii). According to (30) in Proposition
6.2, we have yy < yx < y. Also, by the definition of yy/, we have Wy(yw +1) = --- =
Wy(y — 1) = 0. Hence if Y;41(¢) — Yz(i) > 0, then ¢ € {yw + 1,...,y — 1} and hence
Wy (i) = 0. This shows (ii).
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Next, we show (i) by induction on x > 0. It holds trivially when x = 0, so suppose for the
induction step that it holds for some x > 0. We wish to show that

Wis1 = Xpp1 + RY 4. (33)
From (27)-(28), note that
0 if yw = yx
(Wx-i-l — Wx) — (Xx—i-l — Xx) = €yx — €y if 1 < yw < Yx (34)
€yy if 0 =yw < yx.

If yw = yx, then R(Y,4+1 —Y;) = 0 so (33) holds by the induction hypothesis. Next, suppose
1 <yw < yx. Note that
R(Yw-l-l - YI) = R(eyw-i-l R eyx)
= (eyw-i-l - eyw) + (eyw+2 - eyw-i-l) +o (eyx - eyx—l)
= Cyx — Gy -
Lastly, suppose 0 = yi < yx. Then
R(Yx+1 - Y:r) = R(el +--- eyX)

=e; +(ex—ej)+(e3—ex)+ -+ (eyy —€yy—1) = €yy.

Hence in all cases, the induction step holds by the induction hypothesis, (34), and (32). O

7. PROBABILISTIC ANALYSIS OF THE DECOUPLED CARRIER PROCESS

In the previous section, we defined the decoupled carrier process (X;)z>0 associated with
an arbitrary set C. = {a1,...,a,} C {1,...,k} of exceptional colors over a deterministic ball
configuration £. In this section, we establish various important probabilistic results for the
decoupled carrier process (X;)z>0 over the i.i.d. ball configuration {P with a particular choice
of the associated set C. of exceptional colors.

7.1. Decomposition of the decoupled carrier process. Let p = (po,...,px) be the ball
density at each site. We choose the set of exceptional colors C, so that it satisfies the following
‘stability condition’:

Forall 1 <j <r, max{p; : a; <i<aji1} < paj, (35)

where we set &g = 0 = a,41. Since balls of a non-exceptional color ¢ in (o, @j4+1) can be
excluded by balls of color a;41 in the decoupled carrier, the above condition ensures that
(X.(7))z>0 do not blow up. A canonical choice of such C, is the set of unstable colors C that
we defined above the statement of Theorem 2.5.

Define the following processes

X, := The decoupled carrier process over £ = &P associated with C, satisfying (35)
X:=1(1¢Ce) Xz(i);i=1,...,K) (> The ‘stable part’ of X;) (36)
Xy =1 €Ce)Xa(i);i=1,...,K) (> The ‘unstable part’ of X).
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Namely, X2 (resp., X¥) agrees with X, on the non-exceptional (resp., exceptional) colors but
its coordinates on exceptional (resp., non-exceptional) colors are zero. Clearly, we have the
following decomposition

X =X+ X, for all x > 0.

In Lemma 7.1, we will show that (X3);>0 defines an irreducible Markov chain whose em-
pirical distribution converges to its unique stationary distribution 7° defined as

Ws(nl,...,nn):HI(nj:O)ﬁ I1 (1— bi )( bi >n . (37

jecy J=0 | a;<i<ajt1 Dajiq Doy

where we set ag = 0 = 1. Hence the expression in the bracket above is a non-degenerate
geometric distribution. Thus the above is the product of kK —r geometric distributions, so it is
indeed a probability distribution on °. Comparing (37) with (5), we see that the exceptional
color aj41 plays the role of color 0 for the non-exceptional colors in the interval (o, ..., oj41).

Lemma 7.1. Let (X3),>0 be the process defined in (36). Then it is an aperiodic Markov
chain on the state space Z5, and has a unique communicating class with unique stationary
distribution ©° defined in (37). Furthermore, if we denote the distribution of X3 by w5, then

xl;ngo dpy (73, 7%) = 0. (38)

Proof. First we show (XJ);>0 defines a Markov chain. Clearly the full decoupled carrier
process (Xz)z>0 over & = EP defines a Markov chain on Z". Hence it is enough to show that
X1 is determined from X3 and £;41 for each z > 0. Fix z > 0 and denote y := £, 11. Fix
a non-exceptional color 4. Let j be such that a; < i < ajy1. If y € [i,;11], then X7 (i) =
X3(i). If y =i, then X7 (i) = X5(i) + 1. If y € (4, aj41), then X3, (i) — X5(i) = —1 if
X;() > 1and X5(i+1) = --- = X3 (ajy1 — 1) = 0; otherwise X7 (i) — X;(7) = 0. In all
cases, X7 (i) is determined by X3 and y. Since ¢ was an arbitrary non-exceptional color,
this verifies that (X7);>0 is a Markov chain.

Next, let {2° denote the subset of ZZ, consisting of all points whose coordinates on ex-
ceptional colors are zeroed out. Clearly (X2).>0 lives in Q°. We show the irreducibility of
the chain (X3)z>0 on Q°. Aperiodicity will follow from irreducibility by noting that 0 € Q°
is aperiodic. Observe that X visits every state eventually in 2® with positive probabil-
ity starting from the initial state 0. Hence it suffices to show the converse transition. Fix
x = (x1,...,2x) € Q°. Denote ny = x1 + -+ - + x4, -1, which is the number of balls of color in
[1,1). Observe that inserting n; balls of color «; into the decoupled carrier X, removes all
balls of colors in [1, 1) and leaves with x,, +n; balls of color a;;. Next, we insert x4, +n1+n2
balls of color ap into the decoupled carrier, where ny = x4, 41+ -+ Zq,—1. This will remove
all remaining balls of colors in [1, a2) and leave x4, + (4, + n1 + n2) balls of color as. Re-
peating this process, we can remove all balls of stable colors in the decoupled carrier, so X3
visits 0 with a positive probability.

Next, we can verify that 7° is a stationary distribution of (X?);>0 by using a similar
argument as in the proof of Theorem 2.3 (i). The key idea is the following: The evolution
of balls of colors in (a;, aj41) in the decoupled carrier X, depends only on balls of colors in
(o, aj+1] and inserting balls of color a1 can exclude any color in that interval. Moreover,
the ‘stable component’ X3 of X, does not count the number of balls of color a;;1 and recall
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the ‘stability condition’ (35). So one can treat a;y; as color 0 in the subcritical carrier. We
omit the details.

Lastly, the convergence of the empirical distribution in (38) follows from the same soft
argument given at the end of the proof of Theorem 2.3 (i). O

Next, we introduce a representation of the decoupled carrier process as a (truncated) partial
sums process. By Lemma 7.1, (X3, & +1)2>0 defines an aperiodic Markov chain on Z%, x
{0,...,x} with unique stationary distribution 7% ® p. For each £ € {1,...,x}, define a
functional g : Z* x {0,...,k} — Z by

1 ifi=14
if j < <i<ajy for some j€{0,...,r —1}
g'(w,i): =4 andw(l+1)=---=w(i—1)=0 (39)
-1 ifa, <l i=0,andw(l+1)=---=w(i—1)=0
0 otherwise,

where we denoted g := 0. It is easy to verify that, for each £ € {1,...,k} and = > 0,

Xx(g) + gK(X;CS, €x+1) if £ € Ce

max(0, X, (0) + g* (X3, &41)) if £ ¢ Ce. (40)

Xot+1 (E) = {

In words, the random variable ¢*(X$,&,41) gives the increment of X, 1(f) for exceptional
Z; for non-exceptional ¢, the same holds but with additional truncation at 0 to ensure the
value of X, (/) stays nonnegative. In particular, we can view X, (¢) for non-exceptional ¢ as a
Lindley process in queuing theory.

Another consequence of the observation in (40) is that the decoupled carrier process XY on

the exceptional colors (the unstable component of X, ) can be written as an additive function
of the Markov chain (X7, &z4+1)2>0:

X =3 Y XL en (41)

z=1/te{a,...,ar}

This representation will be used critically in Sections 7, 9, and 10.
In the following proposition, we compute the stationary expectation of the increments

9° (X3, €ot1) in (40).

Proposition 7.2 (Bias of the decoupled carrier). Let g° be the function in (39). Then
Erseplg’ (X5, €ot1)] = pr — pos

where £ is the smallest exceptional color strictly larger than £. (If £ > «., then take £ =0.)

Proof. Fix j € {0,...,r} and and aj < ¢ < ay1. Denote €1 := a1, where we take g = 0
and ;41 = Kk + 1 =0(mod x + 1). Denote {, := g*(X2, &,41). It is clear from the definition
that

]P)ﬂs®p (C:E = 1) = Pe.

It remains to show

IP>7r5®p (Cx = _1) = Do+
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To this end, observe that
o+

Proop(Ce = —1) =per1+ > Pre(X5(0+1) =+ = X3(i — 1) =0) p;. (42)
i=0+2

Since X is distributed as the stationary distribution 7* for all z > 0,

E,s Z X5,,(0) - Z X3(i)| =0. (43)

(<i<lt (<i<et

Let T denote the random variable in the expectation above. Then

Progp(T=-1) = | 1=Pr | > X3@0)=0| | pss,

(<i<tt
-1
Progp(T=1) =pep1 + Y Pee(X3(+ 1) =-- = X33 —1) = 0) pi.
=042
Since T' € {—1,0, 1} and (43) holds, this yields
Van
Per =pesr+ Y Pe(X(U+1) = = X3(i—1) =0)pi.
=042
Note that the right-hand side equals Pzgp(¢; = —1) in (42), as desired. This shows the
assertion. O

7.2. Finite moments of return times of the decoupled carrier process. The main
goal of this section is to prove Theorem 7.3 below, which shows that the first return time to
the origin of the stable part of the decoupled carrier process (X3);>0 has finite moments of
all orders. In fact, we prove this result in a more general setting that includes the excursions
of X;(i) under the past maximum for exceptional colors i with a positive drift. (Handling
such a general setting will be useful in the proof of Proposition 9.2.) Define a new process
(Xz)z>0 on ZE, by

X (4) if i ¢ Ce
Xz (1) ==  maxo<i<e Xi'(i) — X3H(i) if i = a; € C. for some j and pa; > pa,,, (44)
0 otherwise.

Notice that (X;)z>0 defines a Markov chain on the nonnegative orthant Z%,,.

Theorem 7.3. Let (X;)z>0 be the Markov chain on Z%, in (44). Assume (36) holds. Let
T denote its first return time to the origin. Then T has finite moments of all orders. Fur-

thermore, (Xz)z>0 is irreducible, aperiodic, positive recurrent and has a unique stationary
distribution.

We recall the following geometric ergodic theorem for Markov chains on a countable state
space. It is an important tool for showing finite exponential moments of return times.
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Theorem 7.4 (Geometric Ergodic theorem; Special case of Thm. 15.0.1 in [MT12]). Let
(Xt)t>0 be a Markov chain on a countable state space Q0 with transition kernel P, which is
irreducible and aperiodic. Then the following conditions are equivalent:

(i) There exists a state x € Q such that the return time of the chain to x has a finite expo-
nential moment;

(ii) The chain is geometrically ergodic, that is, there exists a function V : Q — [1,00),
constant € € (0,1), and a finite set C such that

PV(z) <(1—¢)V(z) foralzeQ\C.

In order to prove Theorem 7.3, we will establish a general lemma on the first return time of
Markov chains defined on the nonnegative integer orthant that abstracts important structure
of the subcritical carrier process W,. Its proof is relegated to the end of this section.

Lemma 7.5. Let Z, = (Z;(1),...,Zx(d)) be an aperiodic and irreducible Markov chain on
Zgo, Suppose Zy = 0 and assume the following three properties:

(A1) (Geometric ergodicity of top coordinate) The return time of Zy(d) to zero has a finite
exponential moment.

(A2) (Hierarchical dependence) There is a sequence of i.i.d. random variables (&;)zen with
distribution p and functions f; : Z4771 x R — {—1,0,1} such that

Zyi1(i) = max(0, Z, (i) + f:(Z7%, €441)) forallz € Nand i€ {0,...,d— 1},

where Z7" = (Zy(i + 1), ..., Zy(d)). Furthermore, Z* has a unique stationary dis-
tribution, say A>°.
(A3) (Coordinatewise negative drift) For alli =0,...,d—1,

E)\>i®p [fz<Zl,>Z, §$+1)] < 0.

Now fiz i € {0,...,d —1}. For each j > 1, let 7 be the jth return time of (Z7%)z>0 to the
origin. Then 11 has finite moments of all orders. Furthermore, denote R; := Z; (i) for j > 0.
Then (Rj)j>1 is a Markov chain on Z>q such that there exists constants ¢, K > 0 for which

sup E[R; — Ro| Ry = m] < —c. (45)
m>K

In addition, (R;)j>1 is geometrically ergodic (see Theorem 7.4).

We now deduce Theorem 7.3 assuming Lemma 7.5.

Proof of Theorem 7.3. Let Ci, denote the set of unstable colors, which is empty in the
subcritical regime pg > max(pi,...,px) and non-empty in the critical and the supercritical
regimes po < max(pi,...,px). In the latter case, we let a3 < --- < «, denote the unstable

colors. For each > 0, we write X, = (Y3(0), Yz(1),...,Yy(r)), where
V2 (0) := (Xp(1),- -+, Xe(on — 1)),
and for each j € {1,...,r} (setting pa,., = po),

Y(]) o (X:c(aj)7 Xx(aj+1)7"' 7Xz(aj+1_1)) ifpaj =Pajn
X T .
(maxi<s<z Xs(aj) = Xalag), Xo(aj +1), -+, Xa(ajer — 1)) if pa; > pajy,
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We will show that for each j, the return time to the origin of (Y(j))z>0 has finite moments
of all orders. Then by an inductive argument (see the proof of Lemma 7.5), it follows that

the return time of ()?1')9320 also has finite moments of all orders.

Denote R, := Y,(j). Note that R, is a Markov chain on Zg>+0_g with £ = a;. We wish to
show that the return time to the origin of R, has finite moments of all orders. We will only
show this for the case of pa; > pa,,,, as a similar and simpler argument will show the desired
statement for the case Da; = Dajiq-

First, consider a partial sums process S, = > p_; 1k, So = 0, where the increments 7,
take values from {—1,0,1} and they are not necessarily i.i.d.. Consider the new process
Spn = maxj <<y Sk — Sn, which measures the height of the excursion of (Sy)1<k<, below the
running maximum. Note that S, satisfies the following recursion:

< < —Np i n, =—1or gn—l > 1,
Sp—Sp-1 = g
0 if Sp,—1 =0 and n, € {0,1}.

Equivalently, we have
Sp =max(0,S,_1 — 7).

Now suppose £ = £+ —1 so that R, := maxj<s<; Xs(¢) — X, (£). In this case, X, (¢) a simple
random walk on Z with positive drift py — py+ > 0, so R, is a birth-deatch chain on Z>( with
negative drift pp+ —py < 0. In this case, the claim follows immediately. Hence we may assume
¢ < ¢t —1. Notice that (X,(¢t —1))zen is a birth-deach chain on Z>( which moves to the
right with probability p,+_; and to the left with probability py+. Since £ < £+ — 1, by the
choice of £ and ¢*, we have py+ _; < py+. Hence X, (¢T —1) has negative drift py+_; —ppr < 0
on Zsg. Thus the return time to the origin of X, (/T — 1) has a finite exponential moment.
This verifies the hypothesis (A1) in Lemma 7.5; (A2) follows from the observation in the
previous paragraph and (40); (A3) follows from Proposition 7.2. Therefore, by Lemma 7.5
we deduce that the return time to the origin of R, has finite moments of all orders.

One can easily check the irreducibility of X, by using a similar argument as in the proof
of Lemma 7.1. Aperiodicity is clear, as one can stay at the origin in one step when a color
0 is encountered. We have established that the return time to the origin of X, has finite
moments of all orders. This implies that the chain is positive recurrent. Hence the chain has
a stationary distribution [LLP20, Thm. 21.13], and it is unique from the irreducibility and
Kac’s theorem [LLP20, Lem. 21.12]. O

We now prove Lemma 7.5. The argument is soft and inductive in nature.

Proof of Lemma 7.5. We first claim the following:

For each i € {0,...,d — 1}, the first return time of (Z;%),>0
to some state x has a finite exponential moment.
We show the (46) by induction on i =d —1,...,0. Fix ¢ € {0,...,d — 1}. The base step for
i = d — 1 is given by the hypothesis (A1). For the induction step, suppose the first return
time of (Z7%);>0 to some state x’ has a finite exponential moment. Let 7; denote the jth
return time of (Z.%),>¢ to x’. Consider a new process

Q42 X') = (Z3,(0), 20, (i + 1), s, ().
By the strong Markov property, this defines a Markov chain (Q;);>1 on Zx>o.

(46)



38 JOEL LEWIS, HANBAEK LYU, PAVLO PYLYAVSKYY, AND ARNAB SEN
Step 1. (45) holds for (Q;);>1. We would like to show

sup E[Q1 — Qo| Qo =m] < —¢ (47)
m>K

for some constants ¢, K > 0. Instead of Z,(i), we consider its ‘untruncated version’

j .
Z fz(Zx>l7 £Z+1)

(=1
with Zy(i) = 0. (Note that Z,(0) = Z,(0) by the hypothesis.) Since (Z;%),>¢ is a Markov
chain by the hypothesis (A2), by the strong Markov property, excursions from x for the
recurrent chain Z7* are ii.d.. Hence Q; := Z.,(i) for j > 1 forms a random walk, whose

N
8
—~

~.
N—

Il

increments are i.i.d. and has the same distribution as @;. We claim that this random walk
has a negative drift:

E[@,] <0. (48)

To see this, first, note that

N T ;
Jim = 7,() = Exeigp (257, 60)] = 0 <0
by the hypothesis (A3). Since 7,79 — 71,73 — T2, ... are i.i.d. by the strong Markov property
and since 71 has a finite exponential moment by the induction hypothesis, 7; — oo almost
surely. So Z,,/7; — a < 0 almost surely. Also, to the strong law of large numbers and the
previous results,
_ Q. Zr T
E[Q,] = lim @ _ lim 227 = 4Er] < 0.
J—o0 J J—00 Tj ]
This shows the claim.
Now note that

ElQ1 — Qo [ Wo = m] = E[Z, (i) — Zo(2) | Zo(i) = m]
= E[(Z, (1) = Z0(i)) 1 <m | Zo(i) = m]
+ E[(Z7, (1) = Zo(i) 1y 5m | Zo(i) = m]

= E[Z, 15, <m] + E[(Z7, (1) — Zo(i)) 1ry>m | Zo(i) = m]

=E[Z] = E[Zr1r5m] + El(Z7, (i) = Zo(i))1r,5m | Zo(i) = m).

For the third equality, we have used the fact that 7 < m and Zg(i) = m in conjunction with
the hypothesis imply Z,(i) > 0 for all 0 < < 7. Note that |Z:| <71 and 71 has a finite

expectation by the induction hypothesis, so E[Z,, 1, >mn] — 0 as m — oo by the dominated
convergence theorem. Also,

E[(Zr, (1) = Zo()Lri>m | Zo(i) = m] < E[(m1 —m) " 1rom),

so again by the dominated convergence theorem, the above tends to zero as m — oo. Since

E[Z+,] < 0 by (48), we have shown (47).
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Step 2. (Qj);j>1 is geometrically ergodic.  Next, we show that the Markov chain
(Qj)j>0 on Z> is geometrically ergodic. To this end, first note that |Qj+1 — Q;| < Tj41 — 75,
so it has finite exponential moment by the hypothesis. By the dominated convergence theorem,

hm E eXp(B(Q]‘i‘l

ANO B
Let ¢, K > 0 be the constants in (47). Then by choosing sufficiently small 8 > 0, we can find
€ > 0 such that

\Q] ]:E[@j+1—czjczj:m].

Elexp(B(Qj41 - Q) | Qj=m]<1-¢  Vm=>K.

So, by taking V(x) = exp(Bz), we have PV (z) < (1 — )V (z) for all z outside the finite set
{0,1,--- , K}, verifying the geometric ergodicity condition for the chain @Q;.

Step 3. Completing the induction step. By the geometric ergodic theorem (Theorem
7.4), the first return time o of the geometrically ergodic chain (Q;);>1 to some sate ' € Z>
has a finite exponential moment. Denote x = (2/,x’) € Z‘%i. We now show that the first
return time S of the chain (ZZ%),>¢ to the state x has a finite exponential moment. Note
that S = 7,. Since o has a finite exponential moment, there exists a constant ¢ > 0 such that
P(oc =1) < e~ for all £ > 1. Also, by the induction hypothesis, 71 has a finite exponential
moment. Hence there exists A > 1 such that E[A™] < co. By choosing A sufficiently close
to 1, and applying dominated convergence, we can assume E[A?™] < e¢/2. Now by Cauchy-
Schwarz,

E[A%] = E[A™] = i [A71,-] < Z VE[A2"]\/P(c

=1

8

E[AQn]l /P(U _ l) < Zecl/4efcl/2 _ Zefcl/él < 00.
=1 — —

This shows that S has a finite exponential moment, as desired. Thus far, we have shown (46).

Step 4. Concluding for the return time to the origin. Fix i € {0,1,...,d —1}. By
(46), there exists a state x € Zio such that the first return time 7 of (Z;*%);>0 to x has a
finite exponential moment. Thus, 7; has finite moments of all orders. It is well-known that,
for any recurrent and irreducible Markov chain on a countable state space, if for any state 4
the first moment of the first return time is finite, then this also applies to any other state.
This generalizes to moments all orders of the first return time [[HJR53]. Therefore, we can
conclude that the first return time of (Z.%),>¢ to the origin has finite moments of all orders.

Lastly, let oj denote the jth return time of (Z;%);>0 to the origin and denote R; := Z7;(0)
for j > 1. We know that o; has finite moments of all orders. We can repeat Steps 1-2
above for the chain (R;);j>1 to conclude (45) and its geometric ergodicity. This completes the
proof. O

Remark 7.6. In [ADOSI11]|, Aurzada, Doring, Ortgiese, and Scheutzow show that having a
finite exponential moment for first return times is actually not a class property. Hence in the
proof of Lemma 7.5, knowing that the first return time to some state x has a finite exponential
moment does not necessarily imply that the first return time to the origin also has a finite
exponential moment.
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7.3. Linear and diffusive scaling limit of the decoupled carrier process. In this
section, we establish linear and diffusive scaling limits of the decoupled carrier process. We
start with an illustrating example.

Example 7.7. Suppose C. = {1,...,k} so that all positive colors are exceptional. Denote
N = Xy — Xp—1 for £ > 1. Then (ny)g>1 are i.i.d. random vectors in Z" with the following
distribution:

P(ni:—eﬁ):pg, ]P’(m:el):pl, ]P’(m:ej—ej_l):pj fOI‘jZQ,...,I{.

Then note that

K
—poex + p1e1 + Z(e]‘ —ej_1)p;

p = E[n] =
j=2
=ei(p1 —p2) +ex(p2 —p3) + - +e(ps — Do),
K
S :=E [nm] ] = eqelpo+eielpi+> (ej—ej1)(e; —e;1)p;
j=2
[p1+p2 —p2 0 1
—p2  p2+p3  —Dp3 0
- 0 —p3  Dp3+psa
0 —Pk
L —Dr Pxt+ Do |

In this case, the decoupled carrier process (Xg)z>0 is a Markov chain on Z* with the mean and
the covariance matrix of the increments 7, are given as above. Then the linear interpolation

of the linear interpolation of the d-dimensional process (ﬁ(Xn — np)pen converges weakly

to the d-dimensional Brownian motion with covariance matrix ¥ (see, e.g., [DMR94, Thm.
1] and the following remark). Note that g =0 if po =p; = -+ =p, = 1/(k + 1), which is a
special case of the critical regime for the multicolor BBS (i.e., pg = max(p1,...,px)). See the
simulation in Figure 2 for k = 2 and uniform ball density. A.

Next, we compute the mean and the variance of the increments of the unstable part of the
decoupled carrier process.

Proposition 7.8 (Mean and limiting covariance matrix). Let (Xg)z>0 be the decoupled carrier
process in (36). Denote (y := X% — X¥ | for x > 1. Then the following hold:

(i) We have

b= ErsgplCi] = €ay(Pay — Pas) + €4y (Pay — Pas) +++ + €a,. (Pa, — Pao),
pi
S el |nr ¥l (1-1)

te{ay,....ar} 0<q<et  €<j<q
) (1-

te{ar,.,ar_1}

Ersgp [G1¢] ]

T T
(ecef +eqel ) o ]
(<j<t+

Do+
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i1) Define the ‘limiting covariance matriz’ X € RF*F as
(i) Defi g

S = lm n 'Eregp [(XP — np)(XY —np)']. (49)

n
n—oo

Then X is well-defined, nonzero, symmetric, and positive semidefinite.

Proof. We first show (i). The stationary expectation of {; can be easily verified from Propo-
sition 7.2. Denote mq5)(X3) == > X3(1), which is set to zero if b < a + 1. From (41),
we can write

a<i<b

Cx = Z ey l(gx = K) — Z 1(5:}: = Q)l (m(é,q) (Xast—l) = 0)

te{an,...ar} CH1<q< et

Then it is straightforward to compute

GG = Y, el |Wa=0+ Y & =a)l(meyX;_)=0)

te{an,...,ar} L+1<q<tt

— Z (ege% + eg+e€T)1(§x = €+)1 (m(&gwt)(X;,l) = O) .
ee{ﬂél,---yarfl}

Thus by taking the stationary expectation of (¢! in conjunction with (37), we obtain the
second identity in (i).

Lastly, we show (ii). Assuming > is well-defined, that it is symmetric and positive semidef-
inite is clear from the definition. Next, we argue that ¥ is well-defined. Let (; := (; — E[(,].
For i > 0, let o; denote the number of steps that the Markov chain Z, takes until it returns to
the origin for the i+ 1st time, By strong Markov property, o;’s are i.i.d.. Furthermore, the ex-
cursions of Z, from the origin (that is, Z, restricted on the time intervals [0, o], [00,01], .. .)
are i.i.d.. Furthermore, by Theorem 7.3 and the fact that &.’s are i.i.d. with distribution
p = (po,---,Px), Po > 0 (in fact, we assume min(ps,...,ps) > 0), it follows that oo has finite
moments of all orders. Hence there exists some A > 0 such that E[A?°] < co. Moreover, by
Kac’s theorem [L1.P20, Lem. 21.12],

Jim Ejo1] =7° ®p(0,0) =7°(0) po,

where the stationary distribution 7% is explicitly given in (37).

Now consider decomposing the trajectory of Z, into excursions from the origin. Write

8; = Z;*;i_l (kC¢F. By the strong Markov property, si,s2,... are i.i.d. and also note that

E[s;] = 0. Denote ¥, := E [(X% — npu)(X" — nu)T|. Observe that
Y, =E [(X;’j" - Un“)(Xgn - UnH)T] =K [(51 +o ) (514 F Sn)T = n]E[slsF{].
So by the elementary renewal theorem, almost surely,

E[s1 sf]

n—00 oy, n—o0 oy, E[Jl]

= pom®(0) E[slslT].

To show the convergence holds along the whole sequence, let T'(n) denote the total number
of visits of Z, to the origin in the first n steps. Denote r, := ZZ:UTW Ckcg. Then since
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81,---,57(n), Tn are independent and Els;] = 0,
T T
¥n=E [(51 + - Fsrmy + ) (s14+ -+ 7y + ) } = Yopny T Elrary]. (50)

Denote A, :=E [3°7_,[|¢z¢E ||], which is non-decreasing in n. Then similar argument as before
shows that éAan converges a.s., and by the monotonicity of A,,, an elementary renewal theory
argument shows that n='A,, converges as n — co. Now by Jensen’s inequality,

IE[rnralll < An = Aoy, (51)

Since o7,y < n < oppy41 and E[o1] < oo, it follows that op(,)/n — 1 a.s. asn — co. Hence

deviding both sides of (51) by n and letting n — co shows that n=!||E[r,rL]|| — 0 as n — oo.
Then from (50), we deduce

o 1
lim 'Y, = lim T

Yo+ lim E[r,r!]

n—o0

T (n)

= lim o '2
noo v T Om

= po7*(0) E[s1s7 ]
=7 (0)poE[(C1+-+ )G+ + o)

Finally, since (,’s are uniformly bounded and o; has a finite expectation, the last expression
is a matrix with finite entries by Wald’s identity. From this formula, it is also easy to verify
that X is nonzero. O

Now we establish linear and diffusive scaling limits of the decoupled carrier process on
unstable colors. This is the main outcome of this section.

Proposition 7.9 (Limit theorems for the decoupled carrier process on unstable colors). Let
(X2)z>0 be the decoupled carrier process in (36). Denote (5 := X% — XY | forx > 1. Then
the following hold.

(i) (SLLN) Almost surely,
lim n~' X, = €a; (Pay = Pas) + €ay(Pas — Pag) + -+ + €a, (Pa, — Pag) = M-

n—oo

(if) (FCLT) Let (Xy)vers, denote the linear interpolation of the lattice path (X — zpt)zen-
Let B= (B; : 0 <t <1) denote the standard Brownian motion. Then as n — oo,

(VX 0<v < 1) = (Bi; 0<t < 1) in C([0,1]),

where B = (B, : 0 < v < 1) is the Brownian motion in R* with mean zero and
covariance matriz ¥ defined in (49). Here = denotes weak convergence in C([0,1]).

Proof. Recall the decomposition X, = X+ X;. From Lemma 7.1 and Theorem 7.3, we know
that X is a geometrically mixing Markov chain on a subset of Z%, with unique stationary

distribution 7* in (37). Hence n~!X? converges to zero almost surely. Also, the linear
interpolation of (X?),en in diffusive scaling converges almost surely to zero in C([0, 1]). Thus
it is enough to verify (i) and (ii) with X,, replaced by X}.

Recall the Markov additive function representation (41) of X¥, where the underlying
Markov chain (X7, &;)»>0 has the unique stationary distribution 7" ® p and is geometrically
ergodic (see Theorem 7.3). Thus (i) follows from the standard Markov chain ergodic theorem
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for positive Harris chains (see, e.g., [MT12, Thm. 17.1.7]). Recall that the limiting covariance

matrix 3 defined in (49) is well-defined and nontrivial by Proposition 7.8. Then (ii) follows

from the functional CLT for multivariate strongly mixing processes (see, e.g., [DMR94, Thm.

1] and the following remark). See also [RS10, Thm. 3.1]. For a functional central limit theo-

rem for additive functionals (univariate) of a positive Harris chain, see [MT12, Thm. 17.4.4

and eq. (17.38)]. O
8. PROOFS OF THEOREM 2.3 (I1I) AND THEOREM 2.4

We prove Theorem 2.3 (ii) and Theorem 2.4 in this section. Throughout this section, we
fix a probability distribution p = (po,p1,---,px) on {0,1,--- K}, and let (W3)z>0 be the
carrier process in (4) over the i.i.d. configuration & = &P.

8.1. Strong stability of the subcritical carrier process. In order to prove Theorem
2.3 (ii), we need stronger stability properties of the carrier process than what is stated in
Theorem 2.3. More specifically, (1) if Wy = 0, then its first return time to the origin has
finite moments of all orders; and (2) if Wy ~ 7 and conditional on ||Wy|l1 = N, it has a
uniformly positive probability to visit the origin before it visits ‘level’ N 4+ 1. These results
are established in the following proposition. In the remainder of this section, we will denote
Wz = (Wy(a),...,W(k)) and W% := (W,(1),...,Wz(a — 1)) and use similar notation
for X2 and X =% This is the content of Proposition 8.1 below, and proving this result is the
main goal of this section.

Proposition 8.1. Suppose py > p* := max(p1,--- ,px) and let (Wy)z>0 be the carrier process
over EP. The following hold.
(1) The first return time of W, to the origin has finite moments of all orders.

(ii) For each m € N, let 7, = inf{z > 1 : ||Wy||1 = m}. There exists constants Lo, Ng > 1
and cg > 0 such that

inf Pr (70 < min(ry, coN? + Lo) | [Wo|1 = N) > 0. (52)
N>Ng

We prove a series of lemmas in order to prepare for the proof of Proposition 8.1.

Lemma 8.2 (Birth-deach chain domination of excursions of the carrier). Let (W3)z>0 be the
carrier process in (4) and suppose py > p* := max(pi,...,px). Fix a € {1,...,k} and define
a birth-deach chain (Sz)z>0 on Z>o by So := Wy(a) and
1 if 11 =0a
Se41— Sz =491 if&1=0and S, >1
0 otherwise.

Note that (Sz)z>0 is a birth-death chain on Z>q with negative drift p, —po < 0. For all x > 0,
za| < if mi >
W= < S, if Olél%lx Wi(a) > 1. (53)

Proof. The proposition says that as long as the carrier has at least one ball of color a, then
the total load ||W2?||; is dominated by S,. This is easy to verify by induction. The inequality
could be violated when W (a) = 0, since then the total load can increase by inserting balls
of color > a while S, does not. O

In the statement and proofs below, we denote Px(-) = P(- | Wy = x).
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Lemma 8.3 (Quadratic first hitting time of the origin of the subcritical carrier). Let (Wy)z>0
be the carrier process in (4) and suppose po > p* := max(p1,...,px). There exists a constant
c > 0 such that

Py (W1 = 0 for some z < ¢|x||?) > 0.
0

inf
XELE
Proof. We prove the assertion by induction on k. If kK = 1, then the assertion follows easily
since W, then is a birth-deach chain on Z>o with negative bias p1 —pg < 0 (e.g., see Lemma
8.5). For the induction step, note that W22 behaves as the subcritical carrier process with
ball colors {0,2,3,...,x}. That is, it evolves by the circular exclusion restricted on colors
{0,2,...,x} while ignoring balls of color 1. Thus W22 is a lazy version of a carrier process
with subcritical ball density as max(pe,...,px) < po. Let 7; for i = 1,2,--- denote the ith
time that W22 returns to the origin. By the strong Markov property, 7,41 — 7; for i > 1
are i.i.d. and they have finite moments of all orders by Lemma 7.5. Also, by the induction
hypothesis, there exists a constant ¢; > 0 such that
inf Px(n < arllx|]) > 0. (54)

x€Z3,

Denote @Q; := W, (1) for ¢« > 1. Then (Q;)i>1 is a Markov chain on Z>g. Denote o :=
inf{i >1: Q; <L} where L > 1is a constant. Let M := ||Wy||1 and let co > 0 be a constant
to be determined. Introduce the following events:

By :={n < M?},

Ey = i1 — Ti M
5 {lgkrgngém 1741 — 7| < M},

Es = {Wﬁ(l) < 2M}7
E4 = {0’ S CQWTl(l)}.

These events depend on constants M, L, co > 0 that we will subsequently choose below. Note
that

o—1
Or =T1+ Z(Ti+1 — 7)) <71+ 0 max (111 — 7i),
po 1<i<o

so 0 < 2coM on E3N Ey. Hence 7, < (c1 + 2c0)M? on E := ﬂ?:l FE;. Also note that
IWrllh = Wr, (1) = Q, < L. Hence denoting ¢ := (¢1 + 2¢2) V 1,

{HWzHl < L for some z < cMQ} D F.
Moreover,
Py (||[We 1 = 0 for some & < cM? 4 L) > p& Py (||Wa|l1 < L for some z < cM?).
Furthermore, since ¢ > 1,

inf Py (||W,|l1 = 0 for some z < ¢||x||3 + L) > p.
lIx[l1 <M

Therefore, it suffices to show that for some constant My > 1,

inf inf Py(F)>0.
M=>Mo ||x||1=M
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Since E; has a uniformly positive probability by the induction hypothesis (54), it is enough
to show that Es, F3, F4 have high probaiblity to occur.

For Fjs, since 7;41 — 7 for 4 > 1 are i.i.d. and have finite moments of all orders, it follows
that E5 occurs with a high probability if M is sufficiently large. To see this, note that

E[(r2 — 71)%]
M2
For E3, by Lemma 8.2, on the event that W, (1) > 2M, a negatively biased birth-death
chain (Sg)z>0 on Z>o makes an up-crossing of height at least M in ¢; M 2 steps, so

50=0).

Since S, is a negatively biased simple random walk, the probability in the last expression is
exponentially small in M.
For E4, by Lemma 7.5 there are constants K, c3 > 0 such that

sup E[Q1 — Qo | Qo =m] < —cs.
m>K

[2¢c2 M |
IED(E2):<1—IP>(TQ—T1Z]W))LQCQMJ > <1— ) -1 as M — oo.

I—PX(E3)§P< max Sy;>M
0<z<|c1M?2]

By Lemma 8.5, 0 < ¢4Q1 = c4Wr, (1) occurs with probability at least 1 — 63%4 for some
constant ¢4 > 0. Hence by choosing L > K, co > ¢4, and letting ¢4 sufficiently large, Fy
occurs with a high probability. This shows the assertion. ([l

Lemma 8.4 (Growth of (sub-)critical carrier). Let (Wy)z>0 be the carrier process in (4) with
arbitrary initial state Wy and suppose pg > p* := max(pi,...,px). Then for each ¢ > 0,
almost surely,
limsup ! max |[W,|; < e.
n—00 0<z<n
Proof. Suppose Wy = (Wp(1),...,Wy(k)) is arbitrary and write M := ||[Wp|[;. We may
prepend to the ball configuration £ the following sequence:

(Ky..ovkyk—1,...,k—1,...,1,...,1)
—_— —————— ——
Wo (k) Wo(k—1) Wo (1)

and denote the extended configuration & = (51, &, €L 6, ). Let W denote the carrier
process with zero initial state run on §~ . Then after scanning the first M in the extended
configuration, the new carrier W attains exactly the same state Wy (i.e., WM = Wy) and
thereafter it undergoes the same dynamics as W (i.e., VNVHM = W, for all x > 0). Further-
more, maxo<g<n||Wal|1 < maXogzgn-i-MHWm”l; so it is enough to show the assertion for w.
For simplicity, below we will denote W and §~ as W and &, respectively, and assume that the
first M entries of £ may be deterministic.
Fix € > 0. By Lemmas 3.1 and 3.5,
opax [[Welly = A (n) = e L(A1,8),

where the right-hand side equals the penalized length of the longest non-increasing subse-
quence in &(n) := (§o,&1,--.,&n). Let Di(x1,22) denote the number of 4’s minus the number
of 0's in (&3, &u 41, -+, &xy)- If AMi(n) > en + M, then D;(x1,z2) > en/k for some i and
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M < x1 < x9 < n. Note that D;(x1,x2) is the sum of 9 — z; i.i.d. Bernoulli variables with
success probability p; — pg < 0. Hence by union bound and Hoeffding’s inequality,

PM(n) 2en+M) <Y Y P(Di(a1,23) > en/k)

=1 M<xi1<xo<n
< kn? exp(—cn)

for some constant ¢ > 0. By Borel-Cantelli lemma, it follows that limsup \;(n)/n < ¢ almost
n— o0
surely. Then the assertion follows. ]

We remark Theorem 2.5, which will be proved in Section 10, establishes the exact asymp-
totic maxg<z<n||Wa|1 ~ Cy/n for some constant C' > 0.

Lemma 8.5 (Drift and bound on hitting time). Let (Y;)i>0 be a Markov chain on Z>qo with
transition kernel P. Suppose E;[|Y:|]] < oo for all x,t > 0 and there exists constants ¢, L > 0
such that

E.[Y1 — 2] < —c for all z > L. (55)

Let 7 :=inf{t >0 : Y; <L}. Then
1
IP’z(TzCa:)S—C forall z > 0 and C > 0.
c
Proof. For any function g : Z>o — R, denote Pg(z) := >, g(y)P(z,y) and PY := Pid(Y).
Note that the condition (55) reads

Pr—x<—c forallz¢]|0,L] (56)
Define the compensator (K;):>0 of (Y3)i>0 as Ko = 0 and
n—1
K, =Y (PY; —Yp).
k=0

Then Y,,— K, is a martingale with respect to the natural filtration (F;)¢>0, Ft := (Yo, ..., Yz).
Also note that by (56), Knar < —c(n A T), for if K < n A7, then PY), — Y, < —c. Now using
the martingale condition,

xr = Ex[yb - KO} = ]EZL‘[Y’IZ/\T - Kn/\r] > CEm[n A T]-

Now if n > Cz, then {r > Cz} = {n A7 > Cz}. Hence by Markov’s inequality, by choosing
n > Cx, we can conclude as

Ez[n A 7] 1
Py(r > =P, > <———< —.
(tr > Cx) (nANT > Cz) O e

We now prove Proposition 8.1.

Proof of Proposition 8.1. Part (i) follows immediately from Theorem 7.3 with C, = 0.
Such choice of the set C,. of the exceptional colors satisfy the stability condition (35) in the
subcritical regime py > p*.
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Next, we show (ii). Suppose the maxium ball density p* is achieved at positive colors
i1 <o < --- <14, That is,

PO>Pi1:"':pir>maX{pj: 1<j<k,,j¢{ir,... ir}}
Denote C* := {i1,...,ir}. Fix A € (0,1) and define a set
Xom = {x=(21,...,00) €25 : |x[|1 = M, x5, > AM } . (57)

We will omit A from the subscript of the above sets unless otherwise mentioned. By Propo-

sition 8.6,
N+r—-1 A\
anonl:zv):@« (%) )
r—1 Po

Noting that

Pﬂ(WO S XN)
Pr(Wo € N | [|[Wolli = N) =
Pz ([[Woll1 = N)
P (|[Woll = N = [AN]) (p) AN
- P ([[Woll1 = N) Po
it follows that
]%[n>f1P7r(WO e Xy ‘ ||W0H1 = N) >ce >0 (58)

for some constant ¢, = c,(A) > 0.

For each x € Zgo, let Px denote the law of (W,)z>0 with Wy = x. We claim that there
exists constants Lo, My > 1 and A, ¢y > 0 such that

. . : 2
Mlgzio xg{fM Px (70 < min(maz41,,coM?)) > 0. (59)
Due to (58), this is enough to conclude (52). Indeed, since Wy € X implies |[Wylj1 = N,
(58) implies
Pr(-| |Wolh = N) > e.P- (- | Wp € Xn) > ¢ inf Pr(-).

XEXN

Also note that, for any integer Lg > 1,

Py (7'() < min(7y, cgN? + Lo)) > p(];JOIPy (To < min(TN+ L, C()NQ)) ,
where y € Xny_p, is the carrier state obtained by inserting Lo 0’s into the carrier with state
x. This yields

g}fv Pr (10 < min(7y, coN? 4+ Lo) | |[Woll1 = N)>c¢, in
Z4Vo

o inf Py (7’0 < min(TnN+ Ly, CON2)) ,

f
N>Ng XEXN,LO

where the right-hand side is positive due to (59) by choosing Ny = My + L.

For the rest of the proof, we will show (59). Let a := i1, p := inf{x > 0 : W,(i1) = 0},
and 7o := inf{z > 0 : ||W,||1 = 0}. According to Lemma 8.3, there exists a constant ¢y > 0
such that 79 < co||Wol|? with a positive probability. Denote M := |[Wp]|; and fix ¢, L > 0.
Define the following events

A1 = {7‘0 S C()M2},
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— 2a L
Ay = |WE §M+§—25x for all x € [0, p] ¢,

L
As = {||Wx<aH1 < 3 + ez for all x > 0} ,
Ay = A{||[Wyl|l1 < M for all x € [p, 9]} .
Note that

4
{|[Wy||1 hits 0 before it hits M + L for some < cgM?} D A := ﬂ A;.
i=1

Thus it suffices to show that, for M, L sufficiently large and £ > 0 sufficiently small,

inf inf Py (A) > 0.
M> My x€Xn;

To this effect, first note that A; occurs with a uniformly positive probability by Lemma
8.3. Next, we observe that As and As occur with high probability. For As, according to
Lemma 8.2, [|[W24||; < S, for all z € [0, p), where (S;)s>0 is a biased random walk on Z with
a negative drift p, — po < 0. Let p’ denote the first time that (S;)s>o hits the origin. Then
p < p' by the coupling, so

L
Py(A45) <P <5’m > Sy + 5~ 2ex for some x > 0> .

The right-hand side above is the probability that a biased simple random walk on Z with
mean increment p, — pp + 2¢ starts at zero and ever reaches height L/2. We choose € > 0
small so that pg, —po + 2¢ < 0. Then by gambler’s ruin for a negatively biased simple random
walk on Z, this probability is exponentially small in L. Thus by choosing L large and € > 0
small, we can make infy;>1 xex,, Px(A2) arbitrarily close to one.

For As, let X, denote the decoupled carrier process with exceptional colors C. = {a}.
Then by Proposition 6.2, [|[W=¢|; < [ X5%)1 = | X2 for all z > 0. Note that |[W;||; <
(1 —=X)M since Wy € Xps. Moreover, note that X% behaves exactly as the subcritical carrier
process with ball colors in {1,...,a} and balls of color a acting as the empty box. That is,
X evolves by the circular exclusion restricted on colors {1,...,a} while ignoring balls of
colors in {a+1,...,k,0}. Thus X% is a lazy version of a carrier process with subcritical ball

density as max(py,...,pi—1) < pi;- Thus by Lemma 8.4, lim sup maxo<z<pn 1| X501 < e
n—oo

almost surely. Hence A3 occurs with high probability for any fixed € > 0 if L is large enough.

Next, we show that ﬂj‘zl A; occur with a uniformly positive probability. By definition,
p < 79. By the definition of the set Xys in (57), we get Wy(a) > AM. Since W (a) can decrease
at most by one, it follows that p > AM almost surely. On Ay N A3, ||[W,|1 < M(1— Xe) + L.
Thus

A1NAsNAsN Ai
C {||W,||1 makes an up-crossing from M (1 — Xe) + L to M + L in coM? steps}

- U {W, (i) makes an up-crossing of length M\e/k in coM? steps}.
1<i<rk
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By the coupling (53) in Lemma 8.2, the last up-crossing probability is exponentially small in
M. This shows

4 3
Py <m Az> > Py <ﬂ Az> — 670(M).
=1 =1

Since A; has uniformly positive probability and As N A3 has a high probability, by union
bound the above is uniformly positive for M sufficiently large. This finishes the proof. O

8.2. Order statistics of the excursion heights and multi-dimensional Gambler’s
ruin. According to Theorem 2.3 (i), the carrier process (W3)z>0 in the subcritical regime
po > max(py,---,px) will visit the origin 0 := (0,0,---,0) € (Z>0)" infinitely often with
finite mean excursion time 7(0)~!. Namely, the number M, of visits of W, to 0 during [1,n]
(defined in (14)) satisfies

Mn a pi>
— = 7w(0) = 1—— a.s. asn — oo 60
", 7(0) U( e (60)

by Theorem 2.3 (i) and the Markov chain ergodic theorem.

According to Lemma 3.1, the first soliton length \;(n) is essentially the same as the maxi-
mum of the first M,, excursion heights of the carrier process. Roughly speaking, each excursion
height is O(1) with an exponential tail. Since there are M,, ~ 7(0)n i.i.d. excursions, their
maximum height behaves as O(logn).

To make this estimate more precise, we analyze the order statistics of the excursion heights
of the carrier process during [1,n]. For this, let hi.,, > hoyy > -+ > Ay denote the order
statistics of the first m excursion heights hi,--- , hy,. The strong Markov property ensures
that these excursion heights are i.i.d., so we have

7j—1
P{hjum < N} = (?)]P’(hl <N *P(hy > N), j=1,---,m. (61)
(=0

In the simplest case k = 1, the distribution function of the excursion height h; follows from
the standard gambler’s ruin probability and is given by

1—-2p
P(hy < N) = (1—9N+1_1> 1(N > 0),

where 0 = po/p1 (see [LLP20, Sec. 4]). In order to obtain sharp asymptotics for top soliton
lengths in the multicolor case, we need a similar result for a generalized gambler’s ruin prob-
lem. That is, we need an asymptotic expression of the probability that the subcritical carrier
process reaches ‘height’” N (see (15)) before coming back to the origin.

However, solving the ‘carrier’s ruin’ problem asymptotically for N — oo seems to be a
nontrivial problem. The essential issue is that the subcritical carrier process for kK > 2 may
have a positive drift on a boundary of its state space. For instance, consider the x = 2 carrier
process as in Figure 1. Assuming py > max(p1,p2), the carrier process has a drift toward the
origin in the interior and the right boundary of the state space ZQ>0, but this is not necessarily
true when there is no ball of color 1 (e.g., consider p = (0.4,0.3,0.3)). A standard martingale
argument for the gambler’s ruin problem for k = 1 does not seem to readily apply for the
general Kk > 2 dimensional case for this reason. Another standard approach is the one-step
analysis, which is computationally challenging since it involves inverting a large matrix (with
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blocks of expanding sizes) at every N, and one needs to obtain an asymptotic expression of
the solution of a N® x N* linear equation as N — oo.

Despite the technical difficulties we mentioned above, as stated in Theorem 2.3 (ii), we are
able to obtain exact asymptotic expression on the probability that an excursion reaches height
N as N — oo. Our analysis uses a novel idea of ‘stationary balancing’, which we believe to
be useful for solving other multi-dimensional ruin problems. A major technical component
we will use in the proof is Proposition 8.1(ii).

The following combinatorial observation will be used in the proof of Theorem 2.3 (ii)
below. It states that if we have k independent geometric random variables of parameters
P1/P0s - - - Pi/Po, and if we condition on their sum being N, then the total mass should be
concentrated on the most probable colors. We note that in the statement, the 1 — ;% terms

are omitted from the product since they are all between 1 — 5—2 and 1. The proof is given at
the end of this section.

Proposition 8.6. Let py > p* = max(p1,...,px). Let r denote the number of is in {1,...,k}
such that p; = p*. If py = -+ = pk, then
s I =) () ®
1 tae=Ni=1 PO po p—1
Suppose r < k and let p? denote the second largest value among p1, ..., px. Then
*\ NV . K N\ Ti x\ N N * K—T
) ()= 2 16 =) 7))
Po r— e i \Po Po r— p*—p
We are now ready to prove Theorem 2.3 (ii).

Proof of Theorem 2.3 (ii). Fix two disjoint subsets A, B C Z8y. Let 7; for i > 1 denote
the ith time that the Markov chain (W, );>0 hits the union AU B. Then by strong Markov

property, the subsequential process W; := W, for i > 1 is a Markov chain on the state space
AU B. Since (Wy)z>0 is irreducible and aperiodic, so is the restricted chain (Wz)121 So if
the restricted chain has a stationary distribution, it has to be unique. Note that that the
following probability distribution maup on AU B is a stationary distribution for (Wi)i213

maup(x) = m(x)/m(AU B) for x € AU B, (63)

where for each subset R C Z%, we denote m(R) := >  p7(y). Here 7 is the stationary
distribution for the subcritical carrier process defined in (5). This can be justified by using
the Markov chain ergodic theorem (see, e.g., [? , Sec. 2.7.1]).

Let (W])z>0 be a carrier process on the ball configuration &P but initialized as W ~ maup.
If we restrict this chain at hitting times of AU B, then the restricted chain is stationary with
distribution m4up. That is, if we denote the ith time that W} visits AU B as 7/, then W
and W;{ has the same distribution w4yp. The key idea is to treat the restricted stationary

process (W/,)i>o as if it is a two-state process on {A, B} and then derive a ‘balance equation’

for the mass transport between A and B.
By using (63),

B
P(Wé visits B before A) =P (W;_{ € B) = mauB(B) = &(U)B)
T
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This gives
TauB(B) =P (W, visits B before A)
=P (W, visits B before A, Wy € A) +P (W visits B before A, W} € B)
=P [ W] visits B before A ‘ W) € A) maup(A)

+P <W; visits B before A ‘ W € B) mauB(B).
Simplifying using (63), we obtain the following ‘balance equation’

P ((Wa/;)le visits B before A ‘ W) € A)
m(B)
m(4)

Now we specialize in the above result. Take A = {0} and B = {x € Z, : ||x|1 = N}.
Note that -

=P <(W;)x21 visits A before B ' Wy € B)

P ((W,)z>1 visits B before 0| Wy = 0) =P(hy > N).

Recalling the the formula for 7 in (5), it follows that

P(hy > N) =P (W, visits 0 before B| Wy € B) Y]] <p> , (64)
P1ttmn=Ni=1 PO

where the sum is over all integers x1,...,x,x > 0 that sum to N. The above along with
Proposition 8.6 is enough to deduce the upper bound in (6).

To obtain a lower bound of matching order, we need to show that the probability in the
right-hand side of (64) is uniformly positive for all sufficiently large N. This requires a
substantial analysis, which we have done in proving Proposition 8.1. By this result, there
exists a constant & > 0 such that

lim inf P ((W;)z>1 visits 0 before B| W € B) > 6 > 0. (65)
Then the assertion follows from (64), (65), and Proposition 8.6. O
Proof of Proposition 8.6. Suppose we have real numbers a1 = ag = -+ = a, > apy1 >

.-+ >aq, > 0. Note that

Tpiq T
x1 T N ary1\ " ag \""
a RN a _— N
1 K 1 a a
N 1 1

T1+F+xs=N T14+FT=

()T ()T ()

q=0 Trp1t++re=N—q
If a1 = --- = a,, then the above expression equals to a]lv (N:fl_l) Hence, if p1 = -+ - = p,, we

get (62).
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We now assume a1 = -+ = a, > ap41 > -+ > a, for some r € {1,...,x}. Then the last
expression in (66) is at most

N N—q
N qg+r—1 Grt1
@31 zN(al)
q

q=0 Trp1+Fre=N—
., i g+r—1\(N—q+r—r—1\ a1\ ¢
! por r—1 k—r—1 al
< N N+7’—1 Z n Ar41 n_(ﬁ_’r‘_l)
=M r—1 k—r—1 aq
n>0

Note that the sum in the bracket above equals

@ (k—r—1)
I S e € B e
Q41 >0 kK—r—1 al o Ar41 <1 B M)K_r - ar — arg1 )

ai

where we used the generating function ), -, (Dy" = # (with (}) = 0 for n < k).
Hence it follows that

> I <G) (G

r14-Fx=N i=1

For the lower bound, note that the last expression in (66) is at least

U O

$r+1+"‘+$N:N_q

. i\[: qg+r—1\(N—-q+r—r—1\ (ax qu>aN N+r—1
- r—1 k—r—1 ap =t r—1 )

Hence we get

T x\ N B

s UG =60 ()
r1+Fre=N1=1 Po r=

This shows the assertion. O

8.3. Proof of Theorem 2.4. Now that we have the asymptotic soliton to the ‘carrier’s ruin’
problem (Theorem 2.3(ii)), we are ready to obtain sharp scaling limit for the top soliton
lengths in the subcritical regime, as stated in Theorem 2.4. To do so, we first obtain the
following scaling limit of hj(n) using a similar argument to that developed in [LLP20|. For
instance, the maximum excursion height hj(n) of the subcritical carrier process during [0, n]
scales like (1 + o(1))logn, where its tail follows the Gumbel distribution up to a constant
shift. The tail cannot have a tight scaling limit due to a rounding error even in the k = 1
case, see [LLP20, Remark 5.5].
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Proposition 8.7. Suppose py > p* := max(p1,--- ,px). Let r denote the multiplicity of p*,
0 := po/p*, and o := w(0) > 0 (see (60)). Let vy, := (1 + 0y,)logy (on/(r — 1)!), where we set

5, = = l)loglofgé‘ﬁ//((: %Hlog(r*l)!. Fiz j > 1 and x € R. Then

| C - Jj—1 0 Lz
lim sup [exp(_(r_ (z— 1) (Zglr—l )

n—0o0

-1
(P{hj(n) <z +wvy}+o(1)) <1,

i~ p(a— -1
lim inf [exp ( - (5)9_(1_1)) < W)] (P{hj(n) <z +uvy,}+o0(1)) >1,

—1) l(r —1)!
n— 00 r 1! —0 E(’l“ 1)
where constants § > 0 and C > 1 are as in the Theorem 2.5 (ii).

Proof. Fix ¢ € (0,0) and let by, = [(¢ —e)n]|. As M,/n — o a.s. (see (60)), we have that
M, > b, for all sufficiently large n almost surely. Hence for each fixed = € R,

P(hj(n) <z +vy) <P(hjp, <x+1vp)+0(1). (67)
Furthermore, according to Theorem 2.3 (ii) and (61),
P(hjp, < x4 vy)

- Tt |+r— by, —4 atvy |+r— ¢
=~ ! 9|_J1+1/7LJ QLQH_,/”J
=(1- w " leb o C(Lxﬂ;ﬂi’-?’_l) ! (Lw—i_l;n,Jii_T_l)bn £
glz+vn]+1 glz+vn] gla+vn) .

Since vy, = (1 + d,) logy (on/(r — 1).), note that

o In
log ( o > = (7’ — 1) log(l + (571) + (7“ — 1) log loge (Jn/(r — 1)!) + ]Og<r _ 1>!

+ 9, (log(r — 1)! — log on)
=(r—1)log(l+d,) -0  asn — oo,
where the second equality uses the definition of §,, and the limit follows since d,, = o(1). Using

Stirling’s approximation, (N:ffl) = (14 0(1))N"™1/(r — 1)l as N — oo, we get

[+vn) (L=t \ b, (vl 4r-1
lim 0 log 1— M — — lim ( r—1 )
n—oco  Qvn glz+vn] o Qvn
r—1 r—1
= — lim 1 Lﬂf + VnJ anVn
n—oo (1 — 1)! Up, Gvn
__ca-5
(r—1"°

Similarly,

el G S LN )
nboo G gl (r— 1)
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Writing 0, = (x + v) — [+ vp] € [0,1), since 6 > 1,

fvn
bn

Also note that lim,, 0 b, e( 4) = %. From the above computations, we deduce

bn
C €\ pozil o(lrtmlirty
)<1‘;>9 )(“emm =1

lim sup exp ((
( ) (|_ac+unj+r—1)bn

n—o0

r—1
0\_£U+V7LJ -

lim sup
n—oo 1 - =

Then we obtain
. C wn) [ ¢t \ ]
fim sup lexp <_ 1) (1-- ) (Z o) (1) A — 1)1
P (hjp,

<1

Therefore letting € N\, 0 and using (67) give the limsup in the statement. A similar argument
using b, = [(o + ¢)n] shows the liminf in the statement. O

Now we are ready to establish sharp scaling for the top soliton lengths in the subcritical
regime.

Proof of Theorem 2./. Let v, be as in Theorem 2.4. Note that
v =loggn + (r — 1) logylogn + ¢+ o(1)

for some constant c. Hence the asymptotic (7) for A;(n) follows from (8).
Now we derive (8). Fix j > 1 and x € R. Then by Proposition 8.7,

liminf P (hy(n) <z + vy,) > exp (—6077) , (68)
n—oo
C 2 kD
1i P (h < ) < _ —(z—1) I
P ) <) <o (0 S0 00 S @)

Moreover, recall the quantities M,, and 7, in (14) and (16), respectively. By Lemma 3.1,
hi(n) = max{hy, - ,ha, } < Mi(n) <max{hy, -, hnr,+1}-
Also, note that
0 <Phi(n) <z+wv,)—Pmax{hi, -, hr,+1} <z +vy) <P(hp,4+1 > hi(n)) = o(1).
It follows that
P(Ai(n) <z+v,) =Pi(n) <z+wv,)+o(l).
Moreover, since Ai(n) > Aj(n) > h;(n) by Lemma 3.1,
PA(n) <z+4+v,) <P\j(n) <z+wv,) <Phj(n) <z +wy).
Then (68)-(69) show (8), as desired. O
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9. THE LINEAR SCALING LIMIT OF THE CARRIER PROCESS

In this section, we prove Theorem 2.5 (i), concerning the linear scaling limit of the carrier
process W in (4).

Throughout this section, we assume py < p* = max(pi,...,px). In this case the set C¥ of
unstable colors (defined above the statement of Theorem 2.5) is nonempty. Let o < -+ <
denote the unstable colors. Let (X;),>0 be the decoupled carrier process in (36) with C. = C5,.
Recall the process (X, )z>0 in (29).

We first show that the coordinate X,(¢) for ¢ an unstable color of supercritical density
behaves like a random walk with a positive drift.

Proposition 9.1. Fiz j € {1,...,r} and denote { := ay, 0 = ajy1. If pr > pe+, then
M = —infreny Xk (€) has a finite exponential moment.

Proof. Recall that (X, (£))s>0 is a Markov additive functional with increments g*(X3, &,41)
(see (40)). Under the hypothesis, it has a positive bias Ersgp[gf (X2, &x41)] = a i= pr—ppr >
0 (see Proposition 7.2). Hence one can expect that X, (¢) will essentially behave as a simple
random walk on Z with a positive bias. Since M measures the height of the excursion of
X (¢) below the z-axis, it should have a finite exponential moment. Below we give a rigorous
justification.

Consider the Markov chain

Y= (Xp(0+1),--, Xo(0F = 1)).

Let 7j := j for j > 0 if £+ 1 = ¢T; Otherwise, let 7; be the jth return time of (XQE(E +
1), -, X (0t — 1)) to the origin. By strong Markov property, 71,70 — 71, T3 — T2, . . . are i.i.d.,
and they have finite moments of all orders by Lemma 7.5. Let R; := X, ({) for j > 1. Then
(Rj) j>1 is a random walk. Let 7; := R; — R;_1 denote the increments. It has a positive drift
as
E[m] = lim & = lim Mﬁ =aE[n] >0,
Jj—oo ) J—00 T ki ¥i

where the first two equalities use the strong law of large numbers and the Markov chain
ergodic theorem.

Next, we claim that X,(¢) returns to the origin only finitely many times almost surely.
First note that by the strong law of large numbers n~'R,, — « > 0 almost surely. Hence
n 'R, > «/2 infinitely often almost surely. Note that for each j > 1, since 741 — 75 is
independent from R; and has the same distribution as 71, by Chebyshev’s inequality,

P (X, (¢) = 0 for some z € [75,7j4+1)) < P(R; < 7j11 — 75) (70)
S E[P(7j41 — 75 = R | Ry)]
< E[R;*E[r{]]
< Elrf] ((aj/2)72 + cP(R; < (a/2)5)),

where the last inequality follows by partitioning on two cases depending on R; < («/2)j or
R; > (a/2)j. If we denote 7; := E[n;] — n;, then 7;’s are mean zero i.i.d., so, noting that
E[R,] = an,

P(R, < (a/2)n) < P(E[R,] — Ry > (a/2)n)
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P (Z =7 2 (a/2)n>
P (2 —m) > (a/2)'n’

i=1

IN

IN

- C(E[7]? 2+ E[71)

for some constant C' > (0. Note that for the last inequality, we have used Chebyshev’s
inequality along with the fact that only the O(n?) terms of the form ﬁ?ﬁ? for i # j and 7}
have nonzero expectations. Sincet || < 71 has a finite moments of all orders, so does 7.
Thus (70) implies

Z]P’(Zx(o) = 0 for some x € [1,7j41)) < o0.
j>1

By the Borel-Cantelli lemma, it follows that X, (¢) visits the origin only finitely many times
almost surely. This shows the claim.

Now we conclude that M has a finite exponential moment. For this, we use the general
result by Hansen [Han06] about the running maximum of a random walk with negative drift,
that if the running maximum is uniformly bounded almost surely, then the supremum of the
running maximum has a finite exponential moment. We apply this result to the random
walk (—Rj)j>1. According to the claim, it follows that sup,~q—X,({) = —inf;>0 X, (¢) is
almost surely finite. Hence sup;>; —R; is almost surely finite, so by [Han06, Thm. 2.1},
sup;>; —Rj = —inf;>1 R; has a finite exponential moment. Since the increments of R; have
finite exponential moments, we can conclude that —inf,>o X, (¢) also has a finite exponential
moment. U

Proposition 9.2. Let j € {1,...,r} be arbitrary with { := «;, {1 := aji1, and py > pe+.
Then for each integer d > 1, there exists a constant ¢ > 0 such that for alln > 1 and s > 0,

P (max X (0) — Xn(l) > s> < exp(—cs), (71)

0<t<n
(

Proof. Consider the following Markov chain

0<t<n -

max X;(0) — Xn(é)‘ > g> < exp(—cs).

Y, = ( max X,(0) — X5(0), Xp(€+1),---, Xo({T —1))

1<s<z

on ZZ;O_[. Note that Yy = 0. Let 7 denote the first return time of Y, to the origin. In Theorem
7.3, we have shown that 7 has finite moments of all orders. Let Lq, Lo, ... denote the lengths
of excursions of Y, to the origin. Since Ly > 1 for all k > 1, M,, < n. Let hq, hg,--- denote its
subsequent excursion heights of Y,. Since hy < L1 = 7 and using the elementary inequality

1—(1—a)"<na forac(0,1), (72)
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for each s > 0,

P (| X0 - X,(0)] 2 5) < PN 2 9
< P (max(hi,...,hnr,) > 8)
< P(max(hi,...,hyn) > s)
<1—(1-=P(hy >s))"
<nP(hy > s)
<nP(1t>5s)

Note that P(7 > s) is exponentially small in s. Hence the first inequality in (71) follows.
Next, we show the second inequality in (71). By definition of X, we have

P ( > ) =P (| (300 - i X00)) - x00) > 5)

0<s<z 0<t<s
<P < max Xs(¢) — Xz(¢) > 8/2>

0<s<z

max X(¢) — X, (¢)

1<s<z

+ 7 (oo (- uin x0) > 572).

0<s<z 0<t<s

The second term in the last expression is exponentially small in s due to Proposition 9.1.
Hence the second inequality in (71) follows from the above and the first equality in (71). O

The following lemma shows half of Theorem 2.5 (i).
Lemma 9.3. Let = (p1,. .., 1y) := Z;Zl ea; (Pa; —Paj ). Fori=1,... K, almost surely,

i -1 ) ) < i
hisolipn <0I£%)% Wt(z)> < 1 (73)
Proof. By Proposition 6.2,
) < (i) i=1,...
[nax W (i) < [nax X (i) i=1,...,k, (74)

where X, (i) = X,(i) — ming<s<, Xs(i). Let 70 := 0 and let 7; for j > 1 denote the jth return
time of X to the origin, and let h; denote the maximum value of || X;||; during the interval
[Tj—1,7;]. By the strong Markov property, h;’s are i.i.d.. By Lemma 7.1, (X3).>0 is a Markov
chain on Z%, with a unique stationary distribution and its return time to the origin, say 7,
has finite moments of all order by Theorem 7.3.

Now note that, for each s > 0,

P <max I X7 > s> < P(max(hi,...,hp) >s)=1—(1—=P(hy >9))"

0<t<n
<nP(h; >s) <nP(r > s).

Now choosing s = n'/4, it follows that P (n_1/2 maxo<t<n|| X1 > n_1/4) is summable, so by
the Borel-Cantelli lemma,

lim 7~ "/? max || X, =0 as..
n—00 0<t<n
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Combining with (74) and recalling X, (i) = X,(i) for i € C?, we deduce (73) for all i € CP.

By the argument in the previous paragraph, we may assume the set Cf of unstable colors
is nonempty and it remains to show the statement for unstable colors. Fix j € {1,...,r} and
let £ = o, £t = a1 (with a1 = 0). Since ¢ is an unstable color, py > py+. First, suppose
p¢ > pg+. Then Propositions 9.2 and 7.9 imply

: -1 o T -1 o
g Al = g Xnl8) = e~ pe

almost surely. Then the assertion follows from (74).

It remains to consider the case py = py+. In this case, we wish to show

n—00 0<t<n

limsupn ! (max Wt(€)> =0.
Rewrite (74) as

< — mi < — .
[nax Wy (0) < ax (Xt(ﬂ) oDin Xk(€)> < max Xi(0) + Or%l%cx( X (£))

Hence it suffices to show

li -1 X:(0)) =1 -1 —X;(0) ) = 0.
s (g X00) < mspn ! (s ~00)

First assume ¢ + 1 = ¢*. In this case X,(¢) is a lazy simple random walk on Z. Hence by
the reflection principle,

a2
P (s (-X(0) 2 0) < 2F (-X,(0 2 0) < exp(-),
The right-hand side is exponentially small in a by the bounded difference inequality. So
taking a = n?/® and applying the Borel-Cantelli lemma show that n ! maxo<¢<n(—X¢(0))
converges to zero almost surely. By a symmetric argument, the same conclusion holds for
n~! maxo<i<n, X¢(¢). Hence this verifies the assertion.

Lastly, suppose £ + 1 < ¢*. In this case, X,(¢) is not a random walk. Instead, from (40),
we can write it as a Markov additive functional:

Xo(0) = ¢"(X¢, &),

t=0
Moreover, the increment ge(th, &1+1) does not depend on the whole X/, but only on
Y= (Xt(é + 1)7 o Xt(g—i_ - 1))

Let 9 = 0 and 7; for ¢ > 1 denote the ith return time of Y, to the origin. According to
Theorem 7.3, 71 (and hence all 7;’s) have a finite moments of all orders.
Consider the process R; := —X,,(¢). By the strong Markov property, the sequence R; for
1 > 1 is a random walk. Denote its increment n; := R; — R;_1. Then 7; has finite moments of
all orders since each 7; — 7;_1 does so and X, (¢) changes at most by one in x. Moreover, by
the strong law of large numbers and the Markov chain ergodic theorem,
Efp] = lim 2% — lim T (TXn0) E[r1) Ereoplg’ (X2, €251)] = 0.

n—oo N n—oo m, Tn

Hence R; is a mean-zero random walk.
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Denote M := max(7, T2 — T1,...,Tn — Tn—1). Since this is the maximum of i.i.d. random
variables of finite moments of all orders, union bound and Chebyshev’s inequality and (72)
give

P(M>a)=1—-(1-P(r; >a))" <nP(ry >a)=0(mna %
for any integer d > 1. Also, since the increments X 1(¢) — Xs(¢) are bounded by 1,
max Rg > max —Xs(¢) — M > max —X(¢) — M.
<n

0<s<n T 0<s<Tp, 0<s<

Hence combining the above inequalities and using Kolmogorov’s maximal inequality, for any

b>1/y/n,
P <n1 max —X,(f) > b) <P ( max Rs(¢) > nb — M)

0<s<n 0<s<n

gIP(max RS(K)an—\/ﬁ)+IP(M>\/ﬁ)

0<s<n

n Var(i) 2
=—F==5+4+0 :
b~y O
Then taking b = n~1/% and denoting T, := maxo<s<n —Xs(£), we get
_ _ c

P <n 7, > n 1/3) <% (75)
for some constant ¢ > 0. Notice that T, is non-decreasing in n. By Borel-Cantelli Lemma
and (75), we have that n=2T,,> — 0 almost surely. Fix k& > 1 and let n = n(k) denote the
largest inetger such that n? < k < (n + 1)2. Then using monotonicity,

n® Ty < T Tinsry2 (n+1)°

m+1)2n2 — k — (n+1)2 n2
Taking k — oo, we deduce that k=T, — 0 almost surely as k — oco. Therefore, it follows
that n™! maxo<i<n(—X¢(¢)) converges to zero almost surely. By a symmetric argument, the

same conclusion holds for n~! maxg<;<, X;(¢). This completes the proof. O

Now we are ready to prove Theorem 2.5 (i).

Proof of Theorem 2.5 (i). We wish to show that

lim n W, =p  as. (76)
n—oo
Note that by Lemma 9.3,
limsupn W, < p  as., (77)
n—o0

where we interpret the inequality componentwise. Recall the Skorokhod decomposition W, =
Xz + RY, in Lemma 6.3. We first consider the case when x > 3. Then writing R = — Q
with Q = tridiag,(0,0,1) and using the identity (I — Q)(I + Q + Q*+...) = I, we see that
R~ is the following upper diagonal matrix whose nonzero entries equal to one:
R'=I4+Q+---+Q" .
Write
n Y, =R ' (nT' W, —n71X,).
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Then by using (77) and the fact that lim, .o n~'X,, = @ a.s. (see Prop. 7.9),
a:=limsup(n W, —n"1X,) <0, (78)

n—oo
where we applied limsup as well as inequality componentwise. It is crucial to note that R~
has nonnegative entries. Hence
limsupn~ 'Y, = R 'a < 0.
n— o0
But since each Y;, is a nonnegative vector by definition, it follows that lim, oo n ™'Y, = 0
almost surely. Then using the Skorokhod decomposition once more, we get
lim n~'W,, = pu+ R lim n~lY, = u
n—oo n—oo
almost surely, as desired.
It remains to verify (76) for the case when x = 1,2. Denote y := limsupn~'Y,,. Suppose

n—oo
k = 2. Then the Skorokhod decomposition and (78) yield

1 -1
{0 1}y—a§0.

Note that y > 0 since Y,, > 0 for all n > 1. Then it is easy to see that y must equal 0. The
case for kK = 1 can be argued similarly. O

10. THE DIFFUSIVE SCALING LIMIT OF THE CARRIER PROCESS

In this section, we prove Theorem 2.5 (ii) on the diffusive scaling limit of the carrier process
in the critical and the supercritical regime. The definition of SRBM below is adapted from
[Wil9g, Def. 3.1].

Definition 10.1 (Semimartingale reflecting Brownian motion). Fix an integer £ > 1 and a
subset J C {1,...,k}. Let S:={(x1,...,24) € R® : z; > 0 for all i € J} and let B denotes
the Borel o-algebra on S, v is a probability measure on (S, B), 6 is a constant vector in R", 3
is a K X K covariance matrix (symmetric and positive semidefinite!), and R is a x x x matrix.
A semimartingale reflecting Brownian motion (SRBM) associated with the data (S, 6,3, R,v)
is an {F; }-adapted, xk-dimensional process W defined on some probability space (2, F,P) and
filtration {F;t > 0} (an increasing family of sub-o-algebras of F) such that

(i) W =X+ RY, P-as,;

(ii) P-a.s., W has continuous paths and W (t) € S for all ¢ > 0;

(iii) Under P,

(a) X is a k-dimensional Brownian motion with drift vector 6, covariance matrix ¥ and

X(0) ~ v;
(b) {X(t) — X(0) — 0t, Fy;t > 0} is a martingale;
(iv) Y is an {F;}-adapted, k-dimensional process such that P-a.s. for i = 1,...,k,
(a) Y3(0) =0;

(b) Y; is continuous and non-decreasing;
(a) Y; can increase only when W is on the face Fj := {z € S : 2; = 0}, i.e., [;° 1(Wi(s) >
0)dYi(s) = 0.

1We allow the covariance matrix to be degenerate.
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Roughly speaking, an SRBM W = X 4+ RY behaves like the Brownian motion X in the
interior of the domain S and it is confined to the domain by the instantaneous “reflection”
(or “pushing”) at the boundary, where the direction of such “reflection” on the ith face Fj is
given by the ith column of the reflection matriz R. Note that in Def. 10.1, the domain S
only requires coordinates in the set J be nonnegative, while it is standard to take S to be the
nonnegative orthant R ,. We take this slightly more general domain to analyze the diffusive
scaling limit of the centered carrier process W; in Theorem 2.5, which can take negative values
in coordinates corresponding to unstable colors.

A classical result of Reiman and Williams [RW&g] (see also [Wil98, Thm. 3.1]) shows that
an SRBM associated with (5,6, %, R,v) with § = R%, and ¥ non-degenerate uniquely exists
if and only if the reflection matrix R is completely-S (see Def. 10.2). Roughly speaking,
this condition means that at any boundary point of S, there exists a nonnegative linear
combination of the reflection directions (i.e., columns of R) that points to the interior of S.
When ¥ is degenerate, then SRBM still exists but may not be unique.

Definition 10.2 (Completely-S). A matrix R € R¥ is completely-S if for every principal
submatrix Ry of R, there is a nonnegative vector zg such that Rpxg has strictly positive
coordinates. Here a principal submatrix of R is a matrix obtained by deleting all rows and
columns of R with indices in some proper subset set Z C {1,...,d} (possibly empty).

It is critical to notice that the reflection matrix R in (31) that gives a Skorokhod decom-
position of the carrier process W, as in Lemma 6.3 has the following property: For x > 3,
R =1 — @Q where Q has a spectral radius less than one. In this case, we can say a lot about
SRBM with a more direct argument. The first step is to recall that the problem that defines
SRBM in Def. 10.1 is a particular instance of the classical Skorokhod problem stated below.

Definition 10.3 (Skorokod Problem). Fix asubset J C {1,...,x} andlet S := {(z1,...,z,) €

R* : x; > 0foralli € J}. Let Cs denote the subspace of C*(0,00) consisting of paths z

with 2(0) € S. Fix matrix R € R*** and z € Cg. A pair (z,y) € C*(0,00) x C*(0,00) is a

solution of the Skorohod problem for x w.r.t. R if the following conditions hold:

(1) 2(t) =x(t) + Ry(t) for all t > 0.

(ii) z(¢t) € S for all t > 0.

(iii) Fori=1,...,5, 4(0) = 0, y;(¢) is non-decreasing, and [;° 1(i € J)1(z;(t) > 0) dy;(t) =
0.

When the reflection matrix R can be written as R = I — () where @) is nonnegative and
has a spectral radius less than one, then there is a unique solution (z,y) to the Skorokhod
problem for each path z and the map x — (z,y) (the Skorohod map) is continuous. This
result is stated and proved in Theorem 10.4.

Theorem 10.4 (Harrison and Reiman '81). Let S = R? x R%;? and Cs be as in Def. 10.5.
Suppose the reflection matriz R can be written as R = I — QQ where Q 1is nonnegative and
has a spectral radius of less than one. Then for each path x € Cg, there exists a unique
pair of functions (z,y) € C*(0,00) x C*(0,00) that solves the Skorokhod problem in Def.
10.3. Furthermore, denoting z = ¢(x) and y = ¥(x), both ¢ and ¢ are continuous mappings
Cs — C*(0,00).

Proof. The original result [HR&1, Thm. 1| is stated for S = R%,, where in our setting we
allow S to be the intersection of axes-parallel half-spaces in R®. A minor modification of
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the proof of [HR81, Thm. 1] will show the minor extension as stated above. We sketch the
argument for completeness.

Without loss of generality, assume S = R x ]R’;Bd for some d € {0,...,x}. Denote
C = C*%(0,00) and fix z € Cs. Let Cp be the set of paths y € C such that y(0) = 0 and and
non-decreasing componentwise. Define a map 7 = 7, : Cp — Cj such that

ity = {0 ifi=1,....d
Y= SUPg<sc; [Y(8)Q —(s)]" ifi=d+1,... k.

Then one can check that (z,y) is a solution to the Skorokhod problem if and only if
yeCo, y=m(), z=z+I-Q. (79)
One can then argue that there is a unique solution y € Cy such that y = 7 (y).

To this end, for each square matrix @, we let ||@Q]|~ denote its maximum absolute row sum.
Since () is nonnegative and has spectral radius < 1, there exists a positive diagonal matrix A
such that Q := A~1QA satisfies [|Qlso < 1 [? , Lem. 3|. Observe that (z,y) satisfies (79) if
and only if (zA, yA) satisfies (79) with  and Q replaced by Az and Q. Thus, without loss of
generality, we may assume [|Q|/c < 1.

Now fix T > 0 and define Cy[0,T] and Cg[0,7T] in the obvious way. These are complete
metric spaces endowed with the norm

= max su ()],
Yl IS].SmﬁgTIZ/g()l

Then one can show that the map 7 is a contraction on Cp[0, T'):
I (y) = (I < 1Qlloo [y — ¢/l

Since ||Q|loo < 1, it follows that 7 is a contraction mapping, implying that there is a unique
fixed point y € Cy.

Now to show the continuity of the mapping = — ¢(z), we observe that ¢(x), being the
unique fixed point of y = m,(y) of the contraction mapping 7, can be explicitly constructed
as the limit of y"(x) := 7%(y") with y° = 0. Then note that for z,z’ € Cy[0, T,

ly" () = y" (@) < llz = 2"l + Qo ly™ (2) — y™ ().
By an induction and taking n — oo, we get ||[¢(x) — ¢(2)]| < mﬂx —a/||. Thus ¢ is
m—hpschitz continuous on Cy[0,T]. Since T' was arbitrary, this implies continuity of ¢
on Cp(0,00). Thus ¢ is continuous on C*(0,00) in the topology of uniform convergence on

compact intervals. The continuity of the mapping x — () is clear from the last identity in
(79). O

In the proof of Theorem 10.4, we have used the fact that of @ is a matrix of spectral
radius less than one, then there exists a positive diagonal matrix A such that A~'QA has
maximum absolute row sum strictly less than one, appealing to [? , Lem. 3|. In our case,
Q@ = tridiag, (0,0,1) and we can directly take A to have diagonal entries A(i,i) = Kk — i + 1
for ¢ =1,...,k, in which case the maximum absolute row sum equals % < 1.

Proof of Theorem 2.5 (ii). For this proof, we will appeal to the continuity of the Skorokod
map x > (y, z) we established in Theorem 10.4. Let J = {1,...,s}\{aj;j=1,...,7, pa, >
Paj1 ) and S = {(z1,...,7,) € R" : x; > Oforallie J}. Let p = (p1,... ) =
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Z;Zl €q;(Pa; — Pa,,). Then p is nonzero in its jth coordinate if and only if j € J. Recall
the Skorokhod decomposition of the carrier process W, in Lemma 6.3:

W, =X, +RY, forzeN, (80)

where we denoted W, = W, —zp and X, = X, — zpu. Since W, € R%,, we have W, e S for
all s € R>p. Note that (80) gives a Skorokhod decomposition of the centered carrier process
(W4)zen. Namely, for each i € J, Y, (i) can increase only if W, (i) = 0. This is because for
i€ J, Wg(i) = Wy(i), and by Lemma 6.3, we know that Y, (i) increases only if W, (i) = 0.
From (80), we deduce

W™(t) = X™(t) + RY"™(t) for t € Rsq, (81)
where W", X" and Y™ are the lincar interpolations of ﬁ(Wx —xp), ﬁ(Xx — xp), and
Yo

Since R = tridiag, (0,1, —1), we can write R = I — @ where @ = tridiag,(0,0,1), so Q
has spectral radius zero for all kK > 1 since Q" is zero. Denoting x — (¢(z),¢(x)) by the
Skorohod mapping as in Theorem 10.4, according to (81), for each n > 1, we have

HX") =W" and P»(X")=Y"

That is, the pair (V[N/”,};”) is the unique solution of the Skorokhod problem for X" with
respect to the reflection matrix R. Recall that by Proposition 7.9, X™ converges weakly to
the Brownian motion B in R* with zero drift and covariance matrix 3. By continuity of the
Skorohod mapping, it follows that

W" = lim ¢(X") = ¢(B),

n—oo
V" = lim ¢(X") = ¢(B).
n—oo
In particular, wr converges weakly to the SRBM associated with data (S,0,%, R,dg), as
desired. 0

11. PROOFS OF THEOREMS 2.7 AND 2.7

In this section, we establish scaling limits of the top soliton lengths for the i.i.d. model in
the critical and the supercritical regimes.
By now, it is easy to deduce Theorem 2.6.

Proof of Theorem 2.6. Suppose py = max(p1, -+ ,px). Then C§ ={0<i<k: p; =po}
and we may write C, = {ag, -+ ,a.} with 0 = a9 < a3 < -+ < «a,. Then the weak
convergence of the diffusively scaled first soliton length in (11) follows from Lemma 3.1,
Theorem 2.5, and the continuous mapping theorem.

Next, we justify that A;(n) = ©(n) with high probability for all j > 1. The upper bound
follows since Aj(n) < Ai(n) = O(y/n) with high probability. For the lower bound, we use
the fact that the carrier process in the critical regime converges weakly to an SRBM as in
Theorem 2.5. In particular, there are excursions of the carrier process of height (i.e., the
Li-norm) at least ¢y/n with high probability if ¢ > 0 is small enough. Then the lower bound
A1(n) = Q(y/n) with high probability follows from Lemma 3.2. O
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In the rest of this section, we prove Theorem 2.7. Throughout we will assume p* =
max(p1,- -+ ,pPx) > po. Let a1 < -+ < a, denote the unstable colors. Under the hypothesis it
holds that p,, = p*.

Proof of Theorem 2.7 (i). Let p = (pu1, ..., ux) be as in Theorem 2.5. By Lemma 3.1 and
Theorem 2.5, almost surely,

lim 7~ A () = Tim 0 [ Wl = |l

n—oo
= (Par = Paz) + (Pas — Pay) + - + (Pa, — Po) =P — po-

Next, recall the Skorokhod decomposition W, = X, + RY, in Lemma 6.3. Define t(n) :=
arg maxXg<;<,||Wt|1. Let J denote the set of indices i € {1,...,s} such that y; > 0. Then
w; =01if i ¢ J, so

K
Ar(n) —nllpll = Z Win)(3) — npu;
i=1

=D Wiy (i) = npui + max > Wi(i)

icJ i¢J
By Proposition 6.2, it follows that
3 Wt~ S )< 0+ s 3O
e i¢J icJ

Recall that the linear interpolation of n=%/ 2(W,, — nu) converges weakly to the SRBM with
specified data as in Theorem 2.5. Hence the lower bound in Theorem 2.7 (i) follows from
above. For the upper bound, we use Proposition 9.2 to note that, almost surely,

Jim 2D X 8) = X X 0) =

icJ icJ
Hence, almost surely,
limsupn —1/2 -n max Wi (i
n—00 ; Hi ) 0<t<n Z t
= limsupn~ /2 g i) —np;) + Jnax ZWt
n—0o0 <t<n
ieJ i¢J

Recall that by Proposition 7.9, the linear interpolation of n~'/ 2(X,, — np) converges to a
Brownian motion on R” with mean zero and an explicit covariance matrix . Also, by
Theorem 2.5 and the continuous mapping theorem,

n~Y? max ZWt( ) = sup ZW”

Ost<n PPy 0<v<1i7
where W = (W1 ... W¥) is the SRBM in Theorem 2.5. Thus the upper bound in (12)
follows by the continuous mapping theorem. ]

Next, we complete the proof of Theorem 2.7 (ii)-(iii). To this effect, it suffices to show the
following statement.

Theorem 11.1. Suppose p* > pg and fix j > 2. Then the following hold.
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(i) Suppose p; = p* for a unique 1 <i < k. Then \j(n) = O(logn) with high probability.
(ii) Suppose p; = p* at least two distinct colors 1 < i < k. Then \j(n) = ©(y/n) with high
probability.
We begin with the following definition. For 0 < 4,7 < k and a finite subset H C N, define
a random variable D; ;(H) by

Dij(H) =Y [1(EP(z) = i) — 1(P(x) = )],
reH
which equals the difference of the number of color ¢ and color j balls in H given by &P.

Proposition 11.2. Fiz 1 <i,j < k and suppose p; > p;. Fiz a finite subset H C N. Then
for any constant C' > 0,

P (D;i(H) > 2Clogn) < exp(—C(p; — p;)logn)
forallm > 1.

Proof. Let € = p; —pj > 0 and denote |H| = m. Note that E[D;;(H)] = —em. Since D;;(H)
is a sum of i.i.d. increments with absolute value at most one, by Hoeffding’s inequality,

P(Dji(H) — E[Dji(H)) 2 ) < e/
for any t > 0. Let t = em + 2C'logn. Then t/m > ¢, so
P(D;;(H) > 2Clogn) = P(D;;(H) — E[D;;(H)] > t) < e~ /2t < ==Clogn,
This shows the assertion. g

Proof of Theorem 11.1. Denote £ := £™P. Our argument is based on Lemma 3.5. In this
proof, for integers a < b, an ‘interval’ [a,b] will refer to the set {a,a + 1,...,b}. We say a
subset A C N is a non-increasing subsequence if £ is non-increasing on A. The ‘support’ of A
is the interval of integers [min(A), max(A)].
We first show the upper bounds in (i) and (ii). It suffices to obtain bounds on Ay(n) in
the corresponding regimes. Recall the formula for A;(n) 4+ A2(n) given by Lemma 3.5:
M)+ dofn) = | max LA +L(4n ). (52)
Let A; < As be an optimal choice of subsequences that achieves A\j(n) 4+ Aa(n) according to
(82). Let I = [a,b] and J = [c,d] denote the supporting intervals of A; and As, respectively.
We split A; into successive disjoint sub-subsequences A, A]._;,---, A} where in each A} we
only pick the balls of color ¢ in Ay. Let I; := [min Ag-, max A;] This gives a non-interlacing
partition of I = I, U --- 1 I;. We split As similarly and obtain a non-interlacing partition
J = J,U---UJ; similarly. This gives us a partition of the whole interval [1,n] into the
following collection of disjoint sub-intervals

H = {[170’ - 1]aIfi7L€—17 o 7117 [b+ 170_ 1]7JK7JK—17 o 7J1) [d+ 17”]}7 (83)

ordered from left to right. 4
For A1(n), we choose a sub-optimal non-increasing subsequence A® by choosing all balls
of color 4 in [1,n]. Then A\;(n) > L(A®, ¢) by Lemma 3.5, so (82) yields

Aa(n) < L(A1,€) + L(As,€) — L(AD, ¢). (84)



66 JOEL LEWIS, HANBAEK LYU, PAVLO PYLYAVSKYY, AND ARNAB SEN

Then breaking the right-hand side of (84) into sub-intervals given by the partition in (83), we
may write

L(A1,€) + L(Ag,8) —L(A®, &) = > f(H)

HeH
where if H =1 or J; (1 <j <k),
f(H) := (number of balls of color j in H — number of balls of color 0 in H)
— (number of balls of color ¢ in H — number of balls of color 0 in H)
= Dji(H),
elseif H=[1,a—1], [b+1,c—1] or [d+1,n],
f(H) := (number of balls of color 0 in H — number of balls of color i in H)
= Dy ;(H).

Now suppose that p; is the unique maximum among p1,--- ,p, and assume p; > pg. Note
that H contains 2k + 3 intervals. Noting that D;;(H) = 0, a union bound and Proposition
11.2 give

<Zf >22/{+3)C’logn> < Z Z (Dei([s,t]) > 2Clogn)

HeH [s,t]C[1,n] 0<l<k
04

<3n® Y exp(—Cl(p; — pe)logn)
0<(<k
04
for any fixed constant C' > 0. For sufficiently large constant C' > 0, the last expression tends
to zero as m — 00, so this shows Ao = O(logn) with high probability.

Next, suppose p; = p* at least two distinct colors 1 < ¢ < k. If we compare the number
of balls of color j in H € H minus the number of balls of color ¢ in H. By using a similar
argument, D;;(H) is O(logn) with high probability as long as p; < p*. If p; = p*, then by
the triangle inequality,

Dji(H) < | max |D;i([s, t])] < 2 max [D;([1, )] (85)
In this case Dj;;([1,t]) is a symmetric random walk with ¢ increments. Hence for some large
enough constant C' > 0, the right-hand side of (85) is at most C'y/n with probability at least
1—¢ by the functional central limit theorem. This shows that A2(n) = O(y/n) with probability
at least 1 —e.

Now we prove the lower bounds in (i) and (ii). Fix j > 2. Let Ay,..., A;_1 denote an
optimal choice of non-interlacing subsets of [1,n] such that

Ar(n) + - 4 Ay ZL (A, ).

Denote I; := [min A;, max A;] for ¢ = 1,...,r — 1, so that I1,...,I;_; are non-interlaving
supporting intervals for Ai,...,A;_1. For each interval J = [s,t], let No(J) denote the
maximum number of consecutive 0’s in the sequence &g, €541, - .., &. For each integer 1 < ¢ <
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K, let My(.J) denote the maximum number of £’s (not necessarily consecutive) in the sequence
&, €541, - -, & We will use these notations for the rest of the proof.

Fix a constant 0 < ¢; < 1/(3logpy ). We first show that P(\;(n)/logn > ¢1) = 1 — o(1).
To this end, we claim that

P(No(l;) > cilogn for somei=1,...,7—1) =1—o0(1). (86)

Note that if No(I;) > ¢1 logn, then we can split the non-increasing subsequence A; into two
non-increasing subsequences A, and A/ by removing the ¢;logn consecutive zeros in the
supporting interval I;. Then A; < ... A;—1 < A} < A < ... < A;_; is a non-interlacing
collection of non-increasing subsequences, whose total penalized length has now increased by
at least ¢ logn. Thus by Lemma 3.5, A\j(n) > ¢; logn with high probability if the claim (86)
holds.

Now we show (86). Fix a constant 0 < ¢z < p* — pg. Since L(A4;,&) < |14,

j-1
P (Z |I;] < czn> <PAi(n)+ -+ Aj—1(n) < can) <P(Ai(n) < can). (87)
=1

Since A1(n)/n — p* —pg > ¢ a.s. by Theorem 2.7 (i), the above probability is of order o(1).
Next, by using a union bound,

j—1
P (Z |I;| > con, No(I;) < cilogn foralli=1,...,5— 1)
i=1

j—1
<P Ji|l > can, No(J;) < cilognforalli=1,...,5—1
) g ) ]

J1—<--~-<Jj_1§[1,n] =1

j—1
<P U U {|Jz| 2 Tcz_n17 No(Ji) < c1 logn}
J1=<-<J;-1C[1,n] i=1
< (r—1)n2r=2 Z P (No(J) < e1logn)
JC[Ln, 1> 25

r—1

< (r =12 VP (No([1,7]) < ¢1logn), (88)
where J;s and J above denote deterministic intervals. We can subdivide the interval [1,n]
into consecutive subintervals Ki, K, ... of length [cilogn]. There are at least | 2]

such subintervals, and they can be fully occupied with balls of color 0 independently with
probability pgcl logn], Hence, recalling 0 < ¢; < 1/(3logp, b,

(No([l,n]) < 10gn) < (1 _p(c]l IOgn) 1 log
exp It n 1/3

Therefore, (88) is of order o(1). Now (86) follows by a union bound. In particular, this
completes the proof of (i).
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Finally, suppose pa, = Pa, = p* for some 1 < a; < ag < k. Fix ¢ > 0. We will show that
there exists a constant ¢ = ¢(e, j) > 0 such that

lim inf P <n71/2/\j(n) > c) >1—c.

n—oo
To this end, we split each A; into successive disjoint sub-subsequences A; ., -, A;2, A;1
where in each A;, we only pick the balls of color ¢ in A;. Denote I; y := [min A; ;, max A; ¢].

By (87) and a union bound,

21
1

C
P\ |Lis| > ———
<|’| k(j—1)

Fix 6 > 0. Partition [0, n] into intervals Jj := [kdn, (k + 1)on] of equal length [dn]. We can
choose ¢ small enough so that any fixed interval of length H(Cj?fl) in [1,n] contains Jj for some
1<k<|67Y.

For each 1 < ¢ < k, choose 4, € {i1,i2}\ {¢}. Fix a constant o > 0 and define the following
event

forsomelgigj—landlgﬂgl»ﬁ):1—0(1).

By = {?é%icn_lm | Dy, ([(k — 1)[6n], k|on] +1])| > a} :

Since D;;, on these disjoint intervals are i.i.d., by the functional central limit theorem, we
have
[1/6] & .
liminf P E >1—=
ﬂ ﬂ kL] = 2

n—00
k=1 ¢=1

as long as the constant a > 0 is small enough. By a union bound, for all n > 1 sufficiently
large,

P ({Ji C I;¢ for some k,i,0} N Ep ) > 1 —¢.
We now claim that
{Ji, C I; for some k,i,0} N Epe C {\;(n) > av/n},

which is enough to conclude the desired lower bound \;(n) = Q(y/n). To show this claim,
suppose the event on the left-hand side above holds. Denote I; ; = [e, f]. The maximum of
Dy, in the event Ej, occurs at site m in Jy, so we may split the interval [e, f] into [e, m]
and [m + 1, f]. Supppose Dy, (le,m]) > ay/n. Let A;, and A;’FE denote the subsequences
formed by picking up all £’s in [e,m] and all £,’s in [m + 1, f], respectively. Now define two
non-increasing subsequences A, A by

A; = [Aiﬁ, ceey Az"g_H, Ai_j’ A:Z]’ A;’ = [Ai,g_l, ... ,AZ’71] ifé >4,
A; = [Ai,/m ceey Ai,€+17 Ai_,Z]’ A{L/ = [A’Z_Z’ Ai,ﬁ—l; e ,Ai,l] if £ < E*
Together with the other j—2 subsequences Ay, ..., A;_1, Aiy1,..., Aj_1, these j non-interlacing

and non-increasing subsequences achieve total penalized lengths at least Ay (n)+---+Xj_1(n)+
ay/n. By Lemma 3.5, this implies Aj(n) > ay/n. If Dyy, ([e,m]) < —ay/n, then let A, and
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Asze denote the subsequences formed by picking up all £,’s in [e,m] and all £’s in [m + 1, f],
respectively, and define

A; = [Aiﬁ, ey AZ’7[+1, A;A, A;/ = [A;Q, Ai’g_l, ce 7Ai,l] if £ >4,
A; = [A,L"H, ceey Ai7g+1, Ai_,Z’ AZ_A, A;/ = [Ai’gfl, . ’Ai,l] ifl < g*

In this case, we can also conclude \;j(n) > ay/n similarly. This completes the proof. ]

12. PROOFS OF COMBINATORIAL LEMMAS

In this section, we establish various combinatorial statements about the k-color BBS dy-
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T'(c+1) =q. We also have S'(j) = S(j +1) for 1 <j < cand S'(c) = ¢. It follows that S’
is obtained by omitting the same entry r = T"(j, — 1) from T".

Second, suppose that g exceeds the smallest entry of 7. so that 7" is computed from the
pair (T,q) using the reverse bumping. If ¢ replaces some entry of A or B in T to get T”,
then the same replacement occurs to compute S’ from the pair (9, ¢). Hence in this case S’ is
obtained by omitting r = T"(j,) from T”. Otherwise, g replaces r in T to get T” (see in Figure
9 right). Then g must replace the largest entry of A in S to get S’. Then S’ is obtained from
T’ by deleting the largest entry in A. This shows the assertion. ([l

Proof of Lemma 3.1. Fix a k-color BBS configuration £ : N — Z,,1. For each integer
¢ > 1, let (I'yic)e>0 denote the capacity-c carrier process over . Let (I';)z>0 denote the
infinite capacity carrier process over £&. We also write

M = max (# of nonzero entries in I';)
s>0

Note that from Lemma 3.3, we can deduce that for any 1 < j < p;(§),

M) = [ > 15 pi(€) > ] = max{k > 1]&(&) > By (©) +j}, (89)

where Ej(&) is defined in (91).
Let 7. be the first time ¢ that the carrier I';.. is completely full with nonzero entries and
Xo(z 4+ 1) > 0 does not exceed the smallest entry of I';... More precisely, let

Te := inf {:E > 0| 'y, contains all positive entries and 0 < ;41 < min Fm;c(:n)}.

We let 7. = oo if the set on the right-hand side is empty. Note that if we consider two carrier
processes I'y.c and I'y.c41, then 7,41 is the first time that they contain distinct sets of nonzero
entries. Moreover, I'; 4 1..+1 has ¢ + 1 nonzero entries. Hence if ¢ > M, then 7, = oo and the
two carrier processes have the same set of nonzero entries for all times. It follows that

E. = Const. Ve > M.

Hence A\1(€) < M by (89).

On the other hand, note that «* := 71 < 0o and &,+41 does not exceed the smallest
entry in I'y«.p7—1 by definition of 7p7—1. So 1(§z++1 > min'y=.ps—1) = 0. Also, since I'p+.pr—1
and I';«.ps share the same positive entries, I';+.ps is obtained from I'y«.p/—1 by augmenting 0
to its right. Since £;=41 > 0 by definition of 2*, we have 1(&;+41 > minIT';«.ps) = 1. Moreover,
by Proposition 12.1,

1(£z+1 > minrx;c) > 1(£x+1 > min Fx;c—l)

for all ¢ > 1 and z > 0. It follows that Epy > Ejr—q1+1. Hence by (89), we deduce A;(§) > M.
This shows A1 (§) = M, as desired. O

Proof of Lemma 3.2. Fix a k-color BBS configuration £ with finitely many balls of positive
colors. Let W := (W,)z>0 be the carrier process over . Let Tp := 0 and let T for k > 1
denote the kth site that the carrier returns to the origin. Define sub-configurations () :=
(0,61, 6 -1), €@ = (ér, €41, -, é1,-1), and so on. Let N denote the number of
nontrivial excursions of the carrier process W. Then ¢ is the concatenation of €1 ... ¢WV).
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We wish to show that the soliton decomposition of ¢ is the union of the soliton decomposition
of £@’s. Equivalently, we wish to show that

N
€)= ch(g(k)) for all ¢ > 1. (90)

To show the claim (90) above, let (I'z.c)z>0 denote the capacity-c carrier process over §.
By Proposition 12.1, we have I'ry .. = 0 for all £ > 0. In words, the capacity-c carrier resets to
empty at each site Tj,. Hence, if we let (Fg(glfg)Tk71§$<Tk denote the capacity-c carrier process
over £#) | then

(F(xl?C)Tk—ISw<Tk = (FI;C)Tk71Sx<Tk'
It follows that
N

N
Z 1(& > minl'y ) = Z Z 1(§§’“) > minI‘;k_)l;c).

z=1 k=1T)_1<x<Ty

By Lemma 3.3, the above yields

N
pr(€) + - F pe(§) =D p1(€F) + -+ pele™).
k=1

The above holds for all ¢ > 1. By using induction in ¢, one can then deduce (90).
The second part of the assertion that A\j(n) > hj(n) is immediate from the first part we
have just shown above and Lemma 3.1. O

12.2. Proof of Lemmas 3.3 and 3.5. Recall the notations introduced in Section 3.3. For
any k-color BBS configuration X : N — Z, 1 with finite support and integer k > 1, we denote

k
Ry, (5) = max NA(A27 g) Ly, (g) = max Z L Azag

A1u UAk ) A1'< '<AkCN

Lastly, we also denote

o
= 1(& > minTy_yy) (91)
s=1
where (I'y.;i)e>0 is the capacity-i carrier process over {. We set Ry(§) = Lo(§) = Eo(§) = 0 for
convenience. In this subsection, we will show with an elementary argument that the above
quantities associated with a k-color BBS configuration are invariant under time evolution.
This will lead to the proof of Lemmas 3.5 and 3.3.

We remark that the invariants Ej(€) are called the energy. They were first introduced
in [FYOO00] for the K = 1 BBS and were recently used to define an energy matriz for the
general x-color BBS that characterizes the full set of invariants. Time invariance of the
energy (and also the energy matrix) in the literature is usually shown by using the alternative
characterization of the BBS dynamics in terms of combinatorial R and connections to the
Yang-Baxter equation [FYOO00, [KT12, K120, KLOIg].

Recall the BBS evolution rule defined in the introduction: For ¢ = x,x —1,--- , 1, the balls
of color i each make one jump to the right, into the first available empty box (site with color
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0), with balls that start to the left jumping before balls that start to their right. (This is
the map K; defined in the introduction.) A single step of x-color BBS evolution X — X’ is
defined by

¢ :=KioKyo--0Kg§).

We propose two ways to simplify the x-color BBS dynamics. First, using the cyclic sym-
metry of the system, we can reformulate the update of a k-color BBS configuration in terms
of k applications of a single rule. Namely, let 7, denote the following update rule for BBS
configurations with finite support: all the balls of color x jump according to the rule K, and
we relabel each of them with color 1 and increase the positive colors of all other balls by 1.
Then we have

Kio Koo K(§) = (Tx)"(§)-

Second, we introduce “standardization” of BBS dynamics, which allows us to only consider
BBS configurations with no repeated use of any positive color. Namely, given a x-color BBS
configuration £ : N — Z, 1 of finite support, we define its standardization to be the following
map é : N — Z>p: For each 1 < i < K, let m; denote the number of balls in X of color
i. Then to produce f, we relabel first the color 1 balls from 1 to m; from right to left (so
that the leftmost ball that was previously colored 1 is now colored my), and then the original
color 2 balls are relabeled with colors m; + 1 to m1 + meo from right to left, and so on.
Thus, if N =Y | m; is the total number of balls of positive color then f is an N-color BBS
configuration with each color in {1,---, N} used for exactly one ball.

Proposition 12.2. Let & andé denote a k-color BBS configuration with finite support and
its standardization, respectively. Then the following hold.

(1) Standardization preserves the number of ascents, non-interlacing non-increasing sequences,
and their penalized lengths. In particular, for each k > 1,

A~ A~

Ri(§) = Ri(§),  Li(§) = Li(§).
(i) & and ¢ give the same soliton partition, i.e., A() = A(é)

Proof. By construction, standardization preserves ordering in the following sense: for y < z,
one has &, < &, if and only if £(y) < £(2). Thus, a given sequence of balls has an ascent in X
if and only if it has an ascent in é , and likewise, a given sequence of balls is non-increasing in
& if and only if it is non-increasing in é . Part (i) follows immediately.

To show (ii), denote by & and (é)’ the BBS configurations obtained by applying one step
of the BBS evolution rule to £ and é , respectively. Since standardization does not change the
location of balls, it suffices to show that standardization commutes with BBS time evolution

rules, i.e.,

¢=(&)" (92)
To see this, observe that for the evolution & — &', after all, balls of color x have jumped, they
return to the same left-right order as before: if some ball of color k, say in position z, jumped
over some other ball of color k, say in position y, to land in position z (so z < y < z), it
must be the case that sites between y and z were occupied. Therefore, when it is time for the
ball in position y to jump, it jumps over all sites in (y, z]. Hence in the first step, the balls
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of color k in the previous step are triggered one by one from left, and since they restore the
same left-right order, they will continue to be triggered in this order in all future steps. This
exactly agrees with the time evolution f — f This shows (92), as desired. U

In the following proposition, we show the time-invariance of the three quantities associated
with a given BBS configuration. This will show most of Lemma 3.5.

Proposition 12.3. Let & be an arbitrary k-color BBS configuration of finite support. Fix
j > 1. The following hold.

(1) E;(8) = E;(Tx(6))-

(i) R;(¢ )—Ej(ﬁ)'

(iif) L;(&) = L;(Tx(€))-

(iv) If (€®);>q denotes the k-color BBS trajectory with € = &, then for all t > 1,

B¢ =Ri(¢W)=E;j(6),  Lj¢") = L;(9).

We first derive Lemmas 3.5 and 3.3 assuming Proposition 12.3.

Proof of Lemma 3.3 and 3.5. Let (f(t))tz(] be a k-color BBS trajectory such that & has
finite support. We take T' > 1 large enough so that at time T the system decomposes into
non-interacting solitons whose lengths are non-decreasing from left. We can reformulate the
condition that a k-color BBS configuration has reached its soliton decomposition as follows:
Suppose two consecutive solitons are separated by g 0’s, where the left and right solitons have
length [ and r, where ‘length’ of a soliton is its number of balls of positive colors. Suppose
the gap is small, i.e., g < [. In order for the left soliton to be preserved during the update
f(T) — E(TH), all balls in the left soliton must be dropped by the carrier before any balls
in the right soliton are dropped. It follows that for each ¢ > 1, the following ‘separation
condition’ must hold at time 7"

The ith largest entry of the right soliton is strictly larger

than the 7 + gth largest entry of the left soliton. (93)

When « = 1, this simply asserts that each soliton of length [ must be followed by at least [
empty sites. This is not the case for k > 1, as illustrated in the example

--00433200431100 - - -

For each k > 1, let A\; denote the length of the kth-longest soliton and let p; denote the
number of solitons of length > k. They both form the same Young diagram, whose kth
column and row lengths are given by A and pg, respectively.

For each j > 1, let (I';;)s>0 denote the capacity-j carrier process on €W As the carrier
process over £®) runs over a soliton of length k, the carrier obtains min(k, j) contribution to
the energy. When the carrier was empty at the beginning of the soliton, this is clear, and
otherwise, it is still true due to the separation condition (93). Hence we have

Zmln My J) = Z

<.
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Then by Proposition 12.3, we deduce
J
Ri(€") = B;(¢") = B;(€T) = ;i
k=1

for all ¢ > 0, as desired. In the general case, the above equations hold due to the separation
condition (93). This shows Lemma 3.3 as well as the first equation in Lemma 3.5.

Similarly, for the second equation in Lemma 3.5, it suffices to show L; (ﬁ(T)) =M+-+
Aj. It is easy to see Lj(f(T)) > A + -+ + Aj by choosing the j longest non-increasing
sequences given by the top j solitons. It remains to show the converse inequality, choose
a collection of non-interlacing non-increasing subsequences on supports Aq, A, -+, A; that
achieves L;(€()). We may assume that [A;| + --- + |A;] is as small as possible, where | - |
means (non-penalized) cardinality. We claim that every A; is contained in the support of
a single soliton (where it has positive colors). Then clearly the maximum sum of penalized
lengths is achieved when A;’s are the support of the j longest non-increasing sequences given
by the solitons, which shows the assertion.

To show the claim, for each i > 1, let u; denote the maximal non-increasing subsequence
of positive colors in the ith longest soliton in &), Schematically, we can write £(7) as

€M iug0- - 0ug0- - 0ug00--- .

Let l; denote the number of 0’s between u; 41 and u;.

Suppose for contradiction that some Ay, intersects with two u;’s. Let ¢ be as small as possible
so that Ay intersects with u;411 and u;. We first suppose the case when the two solitons have
a sufficient gap, i.e., liz1 > Aip1. Let A = Ap \ wjp1. Then Ay, -+, Ap_1, AL, Apgr, - L A5
is a sequence of non-interlacing non-increasing subsequences in £¢® with a strictly smaller
total number of elements than the original sequence. Moreover, this new sequence achieves
the optimum L;(¢()) since

L(A}, D) > LAy, €D) — w4+ 1; > L(Ay, D).

Namely, omitting all elements of u;1 from Ay deletes at most |u;41| positive numbers but at
least I; > |u;y1| zeros. This contradicts the minimality of the original sequence Ay, --- , A;.
This shows the claim. Lastly, when the gap between the solitons is small, i.e., l;+1 < Ait1,
one can argue similarly by using the separation condition (93). This shows the claim, as
desired. O

Lastly in this subsection, we prove Proposition 12.3.

Proof of Proposition 12.3. (iv) immediately follows from (i)-(iii). According to Proposi-
tion 12.2, the assertion is valid for arbitrary BBS if and only if it is true for the standardized
system with initial configuration é , where each positive color is used exactly once. Hence,
without loss of generality, we may assume that each positive color in £ is used exactly once.
Furthermore, in proving (i)-(iii), we may assume that there is a ball of color x in &, since
otherwise the cyclic update rule 7, simply increases all positive colors by 1. Since all the in-
variants depend only on the relative ordering between ball colors, the assertion holds trivially.
We will also denote ¢ = T.(£). For any string u of integers in {0,1,...,x — 1}, we let u’
denote the string obtained by incrementing the positive integers in u by one.
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Consider running the capacity-j carrier over ¢ and 7.(§) and computing their
energies E;(§) and E;(¢'). Let the corresponding carrier processes be denoted by
I':= (T'y)e>0 and IV := ('} )>0, respectively. Observe that up to ‘time’ z — 1, the two
carriers go through the equivalent environments u and u’, so I’ _; can be obtained
from I';,_1 by adding 1 to all positive colors in the latter carrier. It follows that the
contributions to the energies of both carry up to this point are the same.

Next, [atter jmserting {;;=| x and f; =0 in&ol &nege carrlgrs WF get carrier states
I, =1k \ﬂ—ﬁ—ﬁi—arrllrd—lz’—#— A, 0---0] for some (possibly empty) positive decreasing
Sequeﬁi64 A (ee I{‘lgllure 10Bleft). |ThlS onlky Iaeildlslzll @@| tlhka energy f0r|the carrier I'. Also
note that, since x is the unique largest color in the system, it sits in the carrier I" and
does not interact with any other incoming balls thereafter. We can think of this as
the capacity of the carrier I' being decreased to j — 1 after time x. Then over the
interval (z,00), the carriers go through the input [vOw] and [v/1w'], respectively.

g [« 4 o~ of [<] 8 | B 4]
E—— —>

e [a Jowofo] [ m o] L& 4]

q+1

FIGURE 10. Two capacity-j carriers over £ and & = T.(£). They end up with the
same energy.

Ignoring k in the carrier I and shift by 1, they both have the same dynamics (and
hence the same contribution to the energy) until the first time z* that I';« is full and
a new ball of color &;+41 = q > minT'z«. In this case, ¢ + 1 replaces 0 in I",. but it
replaces x in I'y«. If such z* is not encountered up to the location y of 1 in &', then
at site y, 0 replaces the maximum entry in I'y but 1 replaces 0 in I y» SO this makes
up the energy gap of 1 between the two carriers. Otherwise, suppose there exists
such z* between x and y. Then we can write the carrier states as I'y« = [k, B] and
I'". = [B + 1,0] for some positive decreasing sequence B of length j — 1. Then since
&r++1 = ¢ > minT'y, inserting ¢ (resp., ¢ + 1) into I'y= (resp., I'..) replaces & (resp.,
0), only adding 1 to the energy for I'". Then I'y«y1 = [B,¢] and I, | = [B+1,q+1]
and all colors in I are at least 2, so inserting 0 and 1 at site y does not increment
energies of both carriers. Hence they end up with the same energy. This shows the
assertion.
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(ii) Let (I'y)z>0 denote the capacity-j carrier process over {. We will partition the sites that
contain balls of positive colors into j disjoint sets Aq,..., A; such that if x € A; and
the energy E; increases when inserting the ball £, into the carrier I';_1, then either
x is the rightmost (smallest) element of A; or there exists a unique y € A; such that
(y,z) counts as an ascent in A;. The existence of such subsets A1, ..., A; implies that

J
Ri(€) > > NA(A3€) > By(©).
=1

For this proof, we will consider sites with color zero as having a ball of color zero.
We will recursively construct sets Aq(z),...,Aj(z) for x > 0 as follows. Initially,
make all j sets to be empty. Consider the ball at site x with color &, (we may simply
call it the ‘ball &,’) is inserted into the carrier I';_1. There are j positions in I';_;
at which &, can be placed after the insersion, and let r(x) € {1,...,j} denote that
position. Note that r(z) < j if and only if £, > minT', if and only if E; increase by
one. Now define A;(z),..., A (x) as follows: For i =1,...,7,

Ai(x =) U{z} ifr(z)=1
Ai(x —1) if r(z) # 1,

Aifl(modj)(x_ 1)U{$} ifi=j
A (mod j) (1’ - 1) if i # 7,

That is, if the energy E; increases by inserting the ball &, into the carrier I';_1, which
occurs exaclty when r(z) < j, we append z to the set A;(z — 1) where the new ball
&, is placed at in I';_1. Otherwise, the new ball £, is inserted in position j, and all
the other balls are shifted to the left by one, while the ball at position 1 is dropped
out. In this case, we first shift the indices of all sets A;(z —1),...,4;(z —1) by —1
modulo 7, and then append z to the set with index j (previously of index 1).

Then clearly A;’s are disjoint and partitions N. Moreover, we claim that it has
the required properties. Indeed, suppose that the energy E); increases when inserting
the ball & into the carrier I';_1, i.e., { > minI';_;. Then &, replaces some ball §,
(possibly 0) in I'y—1. Then necessarily &, < &,. Moreover, if &, is inserted in the ith
position in I'; 1, then the ball §, it is replacing should also be in the ith position in
I'z—1. By construction, we have y,x € A;. So (y,x) is an ascent in A;, as desired.

For the other direction, suppose that R;(§) is achieved by a collection of disjoint
sets Af,--- ,A; that is different from the sets Ay,---,A; computed by the carrier
process. Find the first place that they differ, say that = belongs to A; but to AL for
1* # 4. Then perform the following surgery: let

If r(x) < j: Ai(x) = {

If r(z) = j: Ai(x) = {

(1L,z]NA) U ((z,00) NAL) if =1
A7 =< ([L,z] N Ap) U ((z,00) N AL if £ =4

A otherwise.
Then by construction, this new collection of sets A7, - - ,A;.’ has at least as many

ascents as the A’-sequences do, and the point of disagreement with the A’s is moved



SCALING LIMIT OF SOLITON LENGTHS IN A MULTICOLOR BOX-BALL SYSTEM 7

later. Therefore repeating this process eventually produces the sets Aq,--- , A, and
does not decrease the number of ascents. This shows R;(§) < E;(§), as desired.

(iii) Let L3V := L;(£'). We wish to show L; = L}*". We begin by showing that L; < L}v.
In the original system &, fix a set of k non-interlacing decreasing subsequences whose
sum of penalized lengths is the maximum value L;. We will produce a set of non-
interlacing decreasing subsequences in £’ that have the same sum of penalized lengths.
We call the unique ball of color x in & by simply . Suppose & is in position a, and
that positions a + 1,a + 2,...,b — 1 have balls in them, but that position b is empty;
let I ={a,---,b—1}. There are cases, depending on two different questions: whether
K is part of a decreasing subsequence, or is in the interval spanned by a decreasing
subsequence, or neither; and whether there is a decreasing subsequence whose interval
spans b, or one that ends in I with no other sequence that spans b, or neither.

If k belongs to a decreasing subsequence, it is the largest entry. Therefore removing
it decreases the length by 1 and does not add a penalty (because the gap created is
not in the interior of any remaining sequence). If x is in the interval spanned by a
decreasing subsequence but doesn’t belong to it, removing x introduces a gap and
so penalizes the length of that sequence by 1. If neither holds, removing s does not
change the penalized lengths of any subsequences. Adding 1 to every ball label does
not change the penalized lengths of any subsequences. If a sequence spans b then
inserting the new ball 1 removes a gap from that sequence, so increases its penalized
length by 1. If a sequence ends in I and no subsequence spans b, then the 1 inserted in
position b can be appended to this sequence; there are no gaps in I, so this increases
the penalized length by 1. And if neither holds, then inserting 1 does not change the
penalized lengths of any of the subsequences. Then, it is enough to observe that in
either of the cases that result in a decrease of 1, it is necessarily the case that some
sequence ends in I or spans b. Thus, L7V > L;, as claimed.

Finally, to show that actually L™ = Lj, we apply the “reverse-complement” oper-
ation, reversing the order of Z and the order of the labels. This preserves decreasing
subsequences, the non-interlacing relation between them, and their penalized lengths;
moreover, one time-step in the reverse-complement is exactly the reverse-complement
of one inverse time-step in the original. Thus also L;lew < L;. This shows L; = L;-‘ew,
as desired.

0

13. OPEN QUESTIONS AND FINAL REMARKS

In this section, we discuss some open problems and future directions.

Two-sided limiting shape of the Young diagrams. Many of the known results in scaling
limits of invariant Young diagrams of randomized BBS ([LLP20, K120, KLO18] and the
present paper) concern rescaling of the first finite rows or columns. Is it possible to jointly
scale the rows and columns and obtain the proper two-sided limiting shape of the Young
diagram as in the case of the Plancherel measure [[KIXR&8] [I002]? This question is not
entirely obvious since the top rows (soliton numbers) obey the laws of large numbers, whereas
the top columns (soliton lengths) obey extreme value statistics.
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Column length scaling of higher order invariant Young diagrams. The x-color BBS is
known to have k-tuple of invariant Young diagrams, where the ‘higher order’ Young diagrams
describe the internal degrees of the freedom of the solitons [KL.20]. It is our future work to
extend the methods and results in the present paper for the first-order Young diagram of the
k~-color BBS into higher-order Young diagrams.

Generalization to discrete KdV. One of the most well-known integrable nonlinear partial
differential equations is the Korteweg-de Vries (KdV) equation:

ug + 6uny + Uypypr = 0,

where u = u(x,t) is a function of two continuous parameters x and t, and the lower indexes
denote derivatives with respect to the specified variables. In 1981, Hirota [Hir81] introduced
the following discrete KdV (dKdV) equation that arises from KdV by discretizing space and
time:

1) 1)
Y+ = 77 T ?J;t:fl (94)
Yiv1 k
A further discretization of the continuous box state in dKdV leads to the ultradiscrete KdV
(udKdV) equation, which corresponds to the x = 1 BBS by Takahashi-Satsuma [T590]:

n—1
ot =i (101, 57 w0,

k=—0o0

where U} denotes the number of balls at time ¢ in box k.

The scaling limit of soliton numbers and lengths of various BBS with random initial con-
figuration has been studied extensively [L1.P20, K120, KLOI18], including the present paper.
Hence a natural open question is to generalize the similar program to the case of discrete KdV
(as opposed to ultradiscrete). For instance, suppose we initialize dKdV (94) so that the first
n box states are independent Exp(1) random variables and evolve the system until solitons
come out. What is the scaling limit of the soliton lengths and numbers as n — oco? Can we
at least obtain estimates on their expectation? These are much harder questions for dKdV
because not everything decomposes into solitons: just like in the usual KdV, there is chaotic
“radiation” left behind.
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