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Abstract. We investigate two discrete models of excitable media on a one-dimensional integer

lattice Z: the κ-color Cyclic Cellular Automaton (CCA) and the κ-color Firefly Cellular Automa-

ton (FCA). In both models, sites are assigned uniformly random colors from Z/κZ. Neighboring
sites with colors within a specified interaction range r tend to synchronize their colors upon a

particular local event of ’excitation’. We establish that there are three phases of CCA/FCA on Z
as we vary the interaction range r. First, if r is too small (undercoupled), there are too many
non-interacting pairs of colors, and the whole graph Z will be partitioned into non-interacting

intervals of sites with no excitation within each interval. If r is within a sweet spot (critical),

then we show the system clusters into ever-growing monochromatic intervals. For the critical
interaction range r = ⌊κ/2⌋, we show the density of edges of differing colors at time t is ∼ ct−1/2

and each site excites about t1/2 times up to time t. Lastly, if r is too large (overcoupled), then

neighboring sites can excite each other and such ’defects’ will generate waves of excitation at a
constant rate so that each site will get excited at least at a linear rate. For the special case of

FCA with r = ⌊2/κ⌋+ 1, we show that every site will become (κ+ 1)-periodic eventually.

1. Introduction

An excitable medium is a network of coupled dynamic units whose states get excited upon a
particular local event. It has the capacity to propagate waves of excitation, which often self-organize
into spiral patterns. Examples of such systems in nature include neural networks, Belousov-
Zhabotinsky reaction, as well as coupled oscillators such as fireflies and pacemaker cells. In
a discrete setting, excitable media can be modeled using the framework of generalized cellular
automaton (GCA). Given a simple connected graph G = (V,E) and a fixed integer κ ≥ 2, the
microstate of the system at a given discrete time t ≥ 0 is given by a κ-coloring of vertices
Xt : V → Zκ = Z/κZ. A given initial coloring X0 evolves in discrete time via iterating a fixed
deterministic transition map τ : Xt 7→ Xt+1, which depends only on local information at each time
step. That is, for each v ∈ V , Xt+1(v) is determined by Xt restricted on N(v) ∪ {v}, where N(v)
is the set of neighbors of v in G. This generates a trajectory (Xt)t≥0, and its limiting behavior in
relation to the topology of G and structure of τ is of our interest.

Greenberg-Hastings Model (GHM) and Cyclic cellular automaton (CCA) are two particular
discrete excitable media which have been studied extensively since the 90s. GHM was introduced
by Greenberg and Hastings [GH78] to capture the phenomenological essence of neural networks in
a discrete setting, whereas CCA was introduced by Bramson and Griffeath [BG89] as a discrete
time analogue of the cyclic particle systems. In GHM, think of each vertex of a given graph as
a κ-state neuron. An excited neuron (i.e., one in state 1) excites neighboring neurons at rest (in
state 0) and then needs to wait for a refractory period of time (modeled by the remaining κ− 2
states) to become rested again. In CCA, each vertex of the graph is inhabited by one of κ different
species in a cyclic food chain. Species of color i are eaten (and thus replaced) by species of color
(i+ 1) mod κ in their neighborhood at each time step. More precisely, denoting the κ-color CCA
by ηt, its time evolution is given by

(1.1) ηt+1(v) =

{
ηt(v) + 1 (mod κ) if ∃u ∈ N(v) s.t. ηt(u) = ηt(v) + 1 (mod κ)

ηt(v) otherwise
.
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In [Lyu15], the second author proposed a discrete model for coupled oscillators, and studied
criteria for synchronization on some classes of finite graphs. The basic setup is the same as CCA or
GHM. Fix an integer κ ≥ 3 and let Zκ = Z/κZ with linear ordering 0 < 1 < 2 < · · · < κ− 1 be the
color space. Consider each vertex as a κ-state firefly, which blinks whenever it has color 0. During
each iteration, post-blinking fireflies (whose color is in {1, . . . , ⌊κ/2⌋}) with a blinking neighbor (a
neighbor of color 0) stay at the same color, and all others increase their colors by 1 modulo κ. The
discrete dynamical system (Xt)t≥0 generated by the iteration of the above transition map is called
the κ-color firefly cellular automaton (FCA) on G. More precisely, denoting by Xt the κ-color FCA,
its time evolution is given by

Xt+1(x) =

{
Xt(x) if ∃w ∈ N(x) with Xt(w) = 0 and Xt(x) ∈ [1, ⌊κ/2⌋]
Xt(x) + 1(mod κ) otherwise

Both CCA and GHM dynamics have been extensively studied on integer lattices G = Zd using
probabilistic methods, where one takes the initial configuration X0 as a random κ-coloring on sites

according to the uniform product probability measure P on (Zκ)
Zd

. We introduce some terminology
for FCA to describe its behavior, which may be defined for CCA and GHM similarly. We say that
Xt fixates if every site is excited only finitely many times P-a.s., and synchronizes if for every two
vertices x, y ∈ V , there exists N = N(x, y) ∈ N such that Xt(x) = Xt(y) for all t ≥ N P-a.s.. It is
not hard to see that fixation and synchronization are equivalent notions if and only if any initial
coloring on the complete graph with two vertices synchronize, which is the case for GHM and FCA
for all κ ≥ 3 and CCA only for κ = 3: CCA for κ ≥ 4 has a pair of distinct but non-interacting
colors, resulting in fixation without synchronization.

In this paper, we study an extended family of CCA and FCA on Z where the ‘interaction range’,
denoted by an integer parameter r, is also a variable. Namely, in CCA, note that only nearby
colors in the color wheel Zκ interact; in FCA, only colors within distance ≤ ⌊κ/2⌋ can interact.
Thus, CCA and FCA are now parameterized by the total number κ of available colors and the
range r of interaction. The extended models read as follows:

(CCA) ηt+1(x) =

{
ηt(x) + 1 (mod κ) if ∃w ∈ N(x) s.t. ηt(w) ∈ {ηt(x) + 1, . . . , ηt(x) + r}
ηt(x) otherwise

(1.2)

(FCA) Xt+1(x) =

{
Xt(x) if ∃w ∈ N(x) s.t. Xt(w) = 0 and Xt(x) ∈ [1, r]

Xt(x) + 1 (mod κ) otherwise

In this paper, we will use ζt to denote any one of the two models above on the one-dimensional
integer lattice Z with the initial configuration ξ0 distributed according to the uniform product
measure on the set (ZZ

κ) of all possible κ-colorings of Z.
The central notion in the dynamics of the above three discrete models for excitable media is

excitation. We say a site x is excited at time t if its internal dynamics are affected by its neighbors
at time t. That is, if ηt+1(x) = ηt(x) + 1(modκ), or if Xt+1(x) = Xt(x) for FCA. Note that
excitation always comes from local disagreements and the sites excite their neighbors to remedy
the current disagreement. It is the non-linear aggregation of this mutual effort to synchronize with
neighbors that makes studying the global dynamics of excitable media interesting. In particular,
one of the main questions in the study of excitable media is if such local efforts for synchronization
would actually lead into larger-scale synchronization of the phases. To capture such a phenomenon,
we say the system clusters if it is overwhelmingly likely to see a single color on any finite subset of
sites after a long time, that is,

lim
t→∞

P(ξt(x) ̸= ξt(y)) = 0(1.3)
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for any two sites x and y. By union bound, clustering implies that all sites in any finite subset of
sites have the same color in probability as t→∞. It is known that clustering occurs for the 3-color
GHM [DS91] as well as the 3-color critical CCA [Fis92] and FCA [LS17].

However, not all excitable media cluster. In fact, we find that clustering is a feature that
characterizes ‘critical excitable media’ for which the interaction range r is not too small and not too
large. That is, if r is too small, then initially there are too many edges with non-interacting colors
at their ends (i.e., color differences > r), a positive fraction of which persists and prevent clustering.
The classical example for excitable media that does not cluster is the original CCA with r = 1 for
κ ≥ 5. These systems are known to ‘fixate’, where each site excites only finitely many times and
hence converges to some limiting color [Fis90a]. More precisely, for each site x and time t, define

(1.4) Et(x) :=
t∑

s=1

1(x is excited at time s),

which is the number of times that a site x excites through time t. Since the process ζt is translation
invariant, the distribution of the random variable above does not depend on x. The basic dichotomy
of the system is given by the asymptotic behavior of the such excitation counting function. Namely,
we say the system ζt fixates if Et(0) is finite a.s., i.e. each the origin is only excited only finitely
many times with probability 1 and fluctuates otherwise.
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Figure 1. Simulation of CCA and FCA with κ = 5 and r ∈ {1, 2, 3, 4} on 500 nodes
in Z with 50 and 250 iterations, respectively. Time goes from top to bottom. For CCA
configurations at every iteration are shown, while for FCA only the ones at times κt are
shown.

Clustering may also not occur when r is too large. In this case, two neighboring sites can excite
each other back and forth, and such ‘defects’ will generate waves of excitation at a constant rate.
The whole graph Z will then be partitioned into ‘cells’ that are under the influence of each defect,
and each site will get excited at least at a linear rate. This phenomenon was observed for CCA in
two-dimension [FGG91]. There, a closed loop where each node initially is next to a neighbor of one
color larger appear with a positive density at time zero. Each such object, called a stable periodic
object (SPO), act as a defect and each constituent site gets excited at a maximal rate (i.e., every
single time) and hence it is stable as it cannot be perturbed by any external configuration. SPOs
drive the entire graph Z2 into disjoint cells of linear excitation. We find a pair of adjacent sites can



4 A. AGUIRRE, H. LYU, AND D. SIVAKOFF

CCA with = 6, r = 1 FCA with = 6, r = 1

0

1

2

3

4

5

CCA with = 6, r = 2 FCA with = 6, r = 2

0

1

2

3

4

5

CCA with = 6, r = 3 FCA with = 6, r = 3

0

1

2

3

4

5

CCA with = 6, r = 4 FCA with = 6, r = 4

0

1

2

3

4

5

CCA with = 6, r = 5 FCA with = 6, r = 5

0

1

2

3

4

5

Figure 2. Simulation of CCA and FCA with κ = 6 and r ∈ {1, 2, 3, 4, 5} on 500 nodes
in Z with 50 and 250 iterations, respectively. Time goes from top to bottom. For CCA
configurations at every iteration are shown, while for FCA only the ones at times κt are
shown.

act as as SPO in the one-dimensional lattice when r is too large. It is evident that such defects can
prevent the system from clustering.

Our main result in this paper makes the three-phase picture we discussed above rigorous. That
is, we establish that there are three phases of CCA/FCA on Z as we vary the interaction range r.
First, if r is too small (‘undercoupled regime’), then there are too many non-interacting pairs of
colors and the whole graph Z will be partitioned into non-interacting intervals of sites and there
will be no excitation in each intervals (fixation). If r is too large (‘overcoupled regime’), then two
neighboring sites can excite each other, and such ‘defects’ will generate waves of excitation at a
constant rate. The whole graph Z will then be partitioned into ‘cells’ that are under the influence
of each defect, and each site will get excited at least at a linear rate. Lastly, if r is somewhere
in the ‘sweet spot’, including the critical value ⌊κ/2⌋, local efforts of resolving immediate phase
disagreements can be resolved globally and the system will cluster. Theorem 1 below summarizes
these results.

Theorem 1 (Phase transition of CCA/FCA in interaction range). Let ξt denote the κ-color CCA
or FCA with interaction range r on the one-dimensional integer lattice Z for κ ≥ 3, where the
initial configuration ξ0 is drawn from the uniform product measure P on ZZ

κ. The following holds:

(i) (Undercoupled regime) For r < ⌊( 2−
√
2

4 )κ⌋, every site fixates and clustering does not occur.

(ii) (Critical regime) Suppose r = ⌊κ−1
2 ⌋ for CCA and r = ⌊κ/2⌋ for FCA. Then ξt fluctuates and

clusters. Furthermore, if r = ⌊κ/2⌋ except the case of CCA with κ even,

(Clustering rate) P(ξt(0) ̸= ξt(1)) = Θ(t−1/2).(1.5)
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(iii) (Overcoupled regime) If ⌊k/2⌋ < r < κ − 1, then ξt fluctuates and lim inft→∞
1
t Et(0) > 0.

Furthermore,
(a) For CCA, for all (κ, r) such that either ⌊k/2⌋ < r ≤ κ − 1 or (κ, r) = (even, ⌊κ/2⌋),

every site eventually excites at every iteration.

(b) For FCA, there exists a positive density of sites that are eventually (κ+1)-periodic and
no sites can be eventually κ- or (κ+2)-periodic. Moreover, if κ ≥ 5 and r = ⌊k/2⌋+1,
then every site is eventually (κ+ 1)-periodic.

Next, we obtain asymptotics for the excitation count Et(0) for some critical CCA and FCA. We
show that it scales as

√
t and identify bounds on its scaling limit. Our result is sharp for the three

color systems.

Theorem 2 (Excitation rate in critical CCA/FCA). Let ξt denote one of the following critical
systems on Z: FCA with r = ⌊κ/2⌋ for both κ even and odd; and CCA with κ even and r = κ/2.
Assume that the initial configuration ξ0 is drawn from the uniform product measure P on ZZ

κ. Then
the following hold:

(i) The expected excitation count satisfies

E[Et(0)] = Θ(t1/2).(1.6)

(ii) Let M denote a nonnegative random variable satisfying P(M ≥ s) = 4P(Z ≥ s)P(Z ≤ s) for
s ≥ 0, where Z ∼ N(0, 1) is a standard normal random variable. Then there exist explicit
constants c, C > 0 such that (⪯ denoting stochastic domination)

(1.7) c M ⪯ lim inf
t→∞

Et(x)√
t
≤ lim sup

t→∞

Et(x)√
t
⪯ C M.

Furthermore, suppose κ = 3 and let σ :=
√

2
3 for CCA and

√
8
81 for FCA. Then

(1.8) lim
t→∞

Et(x)
σ
√
t

d
= M.

The clustering results in Theorem 1 for the three-color critical regime (κ = 3 and r = 1) is
known due to Fisch [Fis92] for CCA and Lyu and Sivakoff [LS17] for FCA. All other results are
new to this work. Especially, our analysis for FCA in the critical and overcoupled regimes brings
several new technical innovations to the literature.

1.1. Related work and discussion. Here we briefly summarize known results for discrete excitable
media (namely, GHM, CCA, and FCA) in 1-dimension, and some of the main proof techniques.
We then discuss our new analysis techniques developed in this work.

1.1.1. Fixation vs. Fluctuation. Most results on 1-dimensional models rely on a particle systems
analogy where we place “edge particles” on the boundaries between distinctly colored regions and
consider their time evolution. By counting “live edge” particles against “blockade” particles and
with some careful arguments, Fisch [Fis90b] showed that κ-color CCA on Z fixates if and only if
κ ≥ 5. We use a similar technique to establish the undercoupled regime (Theorem 1 (i)).

1.1.2. Clustering and persistence of particle counting walks. In 1992, Fisch [Fis92] showed that the
critical 3-color CCA on Z clusters with an exact asymptotic on the clustering rate

(1.9) P(ξt(x) ̸= ξt(x+ 1)) ∼
√

2

3π
t−1/2.

Using an embedded particle system, Fisch related the probability of local disagreement at time t as
the probability of a certain associated particle counting random walk staying nonnegative for 2t
steps. Sharp asymptotics for such ‘persistence probability’ of random walks are well known in the
literature (see, e.g., Sparre Anderson [And53] and Feller [Fel71, Thm. XII.7.1]).
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The embedded particle system description of the 3-color CCA is as follows. At time 0, place a
right or left arrow on each edge independently with probability 1/3. Right arrows move to right
with constant unit speed and left arrows behave similarly; if opposing particles ever collide or have
to occupy the same edge, they annihilate each other and disappear. Now if there is a right arrow
on the edge (0, 1) at time t, this particle must have been on the edge (−t,−t+ 1) at time 0 and
must travel distance t without being annihilated by an opposing particle. This event is determined
by the net counts of right versus left arrows at time 0 starting from the edge (−t,−t + 1) and
moving rightward. Namely, the excess number of right arrows on successive intervals [−t,−t+ s],
1 ≤ s ≤ 2t+ 1, form a random walk. The right arrow moves as long as this random walk survives
(stays at positive height), which is an event of probability Θ(t−1/2). A similar technique was
incorporated by Durrett and Steif in [DS91] to show similar clustering results for GHM on Z for

κ = 3: The same asymptotic (1.9) with the constant
√

2/(3π) replaced with
√
2/(27π). Later this

result was extended to arbitrary κ ≥ 3 by Fisch and Gravner in [FG95]. Clustering for the 4-color
critical (r = 1) CCA was only recently shown by Hellouin de Menibus and Borgne [HdMLB21] in
2021. However, the exact clustering rate is still unknown and simulation indicates that the mean
cluster size of such system grows at a rate different from t1/2 as in the 3-color systems [Fis92].
This is due to the existence of ‘blockades’ (i.e., edges of non-interacting colors), which can flip the
direction of arrows upon collision. (See ‘stack flipping’ in Section 2 for more details).

1.1.3. Particle flipping and random speeds. FCA shares a similar embedded annihilating particle
system structure, but with additional arrow flipping phenomena at time 0 without blockades. The
initial site coloring at time 0 induces a canonical assignment of edge particles. In the FCA dynamics,
the system takes a finite amount of “burn-in” period, during which particles may flip their directions
and thereafter they stabilize and move in only one direction with annihilation upon collision. This
finite burn-in period introduces dependencies between edge particles, so the associated random
walk has correlated increments. For example, consider a 3-configuration · · · 012 · · · on Z, which
corresponds to two consecutive right arrows. Applying the 3-color FCA rule, it evolves to · · · 110 · · · ,
which has one left particle between 1 and 0, as if the right arrow between 0 to 1 flips the right
arrow to its right between 1 and 2. A similar phenomenon occurs for all κ ≥ 3, so an associated
random walk has correlated increments. Thus, in order to obtain sharp clustering rate for such
systems, one needs to know the sharp asymptotics of the probability that partial sums of correlated
increments staying nonnegative. With this motivation, Lyu and Sivakoff [LS17] established such a
result for Markov additive functionals, which are partial sums where the increments are functionals
of an underlying Markov chain. This setting is flexible enough to be applied to the analysis of
embedded particle systems for one-dimensional cellular automata, including the critical FCA. Using
this general result, Lyu and Sivakoff showed that 3-color critical FCA clusters with rate given by
(1.9), now with the constant

√
2/(3π) replaced by

√
8/(9π).

Clustering rate for general critical FCA for κ ≥ 3 was not known before. The main issue there
was the for larger κ, there could be multiple arrows on each edge, and depending on that, a given
arrow may move with random speed. The same issue occurs with critical CCA with large κ (see
Figure 4). It is relatively easy to uniformly upper and lower bound on the speed of a given particle.
However, then due to the ambiguity of particle speed, there could be at least order t many different
edges that can potentially send an arrow that is on the edge (0, 1) at time t, and using union bound
on all such candidate edges will ruin the sharp asymptotic on the clustering rate. In this work, we
circumvent this issue by using the mass transport principle (Prop. 4.5). This allows us to convert
the event of having an arrow at an edge at time t to the event that a given particle survives until
time t, thereby removing the need to use a union bound. Mass transport principle has been used
by Lyu and Junge to analyize ballistic annihilation [JL18] to relate the probabilities of different
collision events.
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1.1.4. Excitation counts and tournamant expansion. In Theorem 2, we obtain asymptotics for the
excitation count Et(0) for some critical CCA (κ odd and r = ⌊κ/2⌋) and FCA (r = ⌊κ/2⌋). The
analysis of the excitation count is quite different from the analysis of clustering rate, since one
needs to know how many excitation that the origin will get during a time period instead of an
arrow surviving for an extended period of time.

For this purpose, we take a novel approach of constructing a monotone comparison process,
which was first developed by Gravner, Lyu, and Sivakoff [GLS16] to study the 3-color CCA and
GHM on arbitrary graphs. We develop a similar technique for critical CCA and FCA on Z with
arbitrary κ, by which we are able relate the maximum of an associated particle-counting walk
to the number of excitations of the origin. We then apply the sharp asymptotic of the expected
maxima of Markov additive functionals in [LS17] and a functional central limit theorem for Markov
additive functionals [MT12, Ch. 17] to deduce Theorem 2.

1.1.5. Quasi-Stable Periodic Objects in the overcoupled regime. In the overcoupled regimes, to sites
can excite each other back and forth, so there might be an ‘echo chamber’ of excitation that persist
and keep influencing nearby sites. Hence, we expect a roughly linear scaling for the excitation
count Et(0). It is also worth presenting a more fine-grained view of the behaviour around criticality,
where every site starts to become influenced by its neighbors infinitely often.

For the overcoupled CCA, indeed, any two sites on an edge with color difference > ⌊κ/2⌋ excite
each other indefinitely, and such local dynamics with internally supported maximal excitation
cannot be perturbed by any external dynamics. This is an example of Stable Periodic Orbits
(SPOs), which was first used by Fisch, Gravner, and Griffeath to analyze two-dimensional CCA
[FGG91]. From this, it is easy to deduce that every site will get excited every iteration eventually.

However, the analysis of overcoupled FCA is significantly more delicate. Since in FCA each site
excites its neighbors only when in color 0, such SPOs cannot exist. In FCA on Z, each site can
have at most two excitation between consecutive returns to 0, so the lengths between consecutive 0
can be any of κ, κ+ 1, and κ+ 2. In principle, such ‘blinking gaps’ can occur in any combination,
so the dynamics of overcoupled FCA can still be very complicated.

Our analysis of overcoupled FCA proceeds as follows. We first identify a small configuration
(color string rrr0rrr) of length 7 and show that the dynamics of the internal sites is (κ + 1)-
periodic and cannot be perturbed by external configuration, whereas the boundary sites can still be
perturbed. While this could be one of many such quasi-SPOs — a periodic object surrounded by
some protective layers — their existence is enough to deduce that a positive density of sites will be
(κ+ 1)-periodic in overcoupled FCA. We then show that every single site must become eventually
(κ+ 1)-periodic when the system is ‘barely overcoupled’ with r = ⌊κ/2⌋+ 1. The main idea is to
analyze ‘defects’, which are edges with large color difference that cannot be created spontaneously.
We classify all possible local dynamics of such defects (similar local analysis was used to analyze
FCA on finite trees [Lyu16]), and show that defects can be recurrent only if the sites in them are
eventually (κ+ 1)-periodic. These recurrent defects generate one arrow every κ+ 1 iterations, and
they travel into intervals of non-defect edges without flipping and collide with opposing arrows.
From this we deduce (κ+ 1)-periodicity spreads into such intervals of non-defect edges.

1.2. Organization. In Section 2, we present a dual description for the time evolution of CCA/FCA
through their so-called arrow dynamics. Section 3 discusses the undercoupled regime (r < ⌊κ2 ⌋) for
both models and contains the proof of Theorem 1 (i). Section 4 is devoted to the critical regime.
We prove the clustering of Theorem 1 (ii). In there, we also study clustering (Section 4.2) and
excitation rates at criticality and thus have the proof of Theorem 2 (Section 4.3). In Section 5, we
deal with the overcoupled regime and the proof of Theorem 1 (iii). For the FCA in the generic
overcoupled case, the existence of persistent quasi-stable-periodic-objects ensures the excitation
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rate of all other sites is linear albeit random (Section 5.1). In the particular, weakly overcoupled,
case (r = ⌈κ2 ⌉ + 1), we are indeed able to show all lattice sites are eventually (κ + 1)-periodic
(Section 5.2).

2. Arrow Dynamics for undercoupled and critical CCA/FCA

In this section, we introduce embedded arrow dynamics for undercoupled and critical CCA/FCA.
That is, we will only consider FCA with r ≤ ⌊κ/2⌋ and CCA with r < ⌊κ/2⌋ or κ odd and r = ⌊κ/2⌋.
In these cases, there is no spontaneous emergence of excitation so the flow of excitation can be
understood via certain annihilating particle system. For the overcoupled systems, there could be
‘echo chambers’ of excitation. See Section 5 for more discussion.

2.1. Arrow dynamics for the 3-color critical CCA/FCA. One of the classical approaches
to the analysis of discrete excitable media in one dimension is to study certain embedded particle
systems, where particles keep track of boundaries between intervals of distinct colors [Fis90b,
FGG91, DS91]. This technique can be best seen for the 3-color critical CCA (r = 1), whose sample
dynamics is shown in Figure 3. Since colors ‘eat’ nearby colors of one less modulo 3, one can place
a ‘right particle’ (resp., ‘left particle’) at edges of colors (i+ 1, i) (resp., (i, i+ 1)) mod 3, which
points at the direction of excitation. From each 3-coloring ξt, we may denote such edge particle
assignment as dξt, where ξt(x) = +1 if there is a right (resp., left) particle on the edge (x, x+ 1)
at time t. The CCA time evolution ξt 7→ ξt+1 induces ‘arrow dynamics’ dξt 7→ dξt+1 for the edge
configurations through the following commutative diagram:

ξt
CCA/FCA //

d

��

ξt+1

d

��
dξt

arrow dynamics // dξt+1

(2.1)

For the critical 3-color CCA, the induced arrow dynamics is extremely simple. All right and left
particles move to the nearest edge that they are pointing at simultaneously; If any two opposing
particles must cross or occupy the same edge, then they annihilate each other and are removed
from the system. One can clearly see that the boundaries between monochromatic regions in the
3-color CCA dynamics in Figure 3 behave in such a way.

CCA with = 3, r = 1 FCA with = 3, r = 1

Figure 3. Simulation of 3-color critical CCA and FCA (r = 1) on 50 nodes in Z with
20 iterations. Time goes from top to bottom where configurations at every iteration are
shown for both systems.

Next, we move our attention to the 3-color critical FCA. Clustering for this system with exact
asymptotic rate was established in [LS17] by using a similar embedded edge particle systems. One
can see that, due to the nature of FCA where excitation can only be initiated by sites with blinking
color (i.e., 0), boundaries between differently colored region do not move every iteration as in the
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CCA case; rather, one can see in Figure 3 that they move in either three or four steps. Nonetheless,
it is evident that right and left particles move ballistically and annihilate upon collision.

Following [LS17], the construction of edge configuration dξt from a 3-coloring ξt for the 3-
color critical FCA is the same as the 3-color critical CCA. For instance, the configuration ξ0 =
(· · · 00122 · · · ) is assigned with two right particles on the edges of colors (0, 1) and (1, 2). The
particles move in one step following their direction whenever their tail site has color zero, where
opposing particles that cross or coincide mutually annihilate. In [LS17], it was shown that this
arrow dynamics commutes with the FCA dynamics for all times t ≥ 1. The reason that we need
to forbid the very first iteration ξ0 7→ ξ1 is that initial particles can flip their direction. For
instance, the initial configuration ξ0 = (· · · 00122 · · · ) evolves to ξ1 = (· · · 11100 · · · ), which now
has a single left particle on the edge between colors (1, 0). Such ‘particle flipping’ only occurs for
every triple of colors (0, 1, 2) and (2, 1, 0). By a simple back-tracking argument, one can show that
such configurations cannot occur for all times t ≥ 1 (for instance, (0, 1, 2) must have been (2, 0, ∗)
with ∗ = 1 one iteration ago, but ∗ = 1 is pulled by 0 so it does not evolve to 2 in one iteration, a
contradiction).

2.2. Arrow dynamics for general CCA and FCA. For κ ≥ 4, edges may have large color
differences. A natural way to interpret the dynamics of the boundaries between monochromatic
regions is to think of stacks of right or left particles moving ballistically, annihilating each other
when opposing particles meet. See Figure 4 for examples of 9-color CCA and FCA.

CCA with = 9, r = 4 FCA with = 9, r = 4

Figure 4. Simulation of 9-color critical CCA and FCA (r = 4) on 50 nodes in Z with 20
iterations. Time goes from top to bottom. For CCA configurations at every iteration are
shown, while for FCA only the ones at times 9t are shown.

2.2.1. Arrow dynamics for CCA. We now define the edge configuration dη : Z→ [−⌊κ/2⌋, ⌊κ/2⌋]
corresponding to a κ-coloring η : Z→ Zκ for CCA as

dη(x) := η(x)− η(x+ 1) (mod κ)(2.2)

where we identify each edge (x, x+ 1) with the left site x. In particular, if κ = 3, then dη assigns
−1, 0, 1 on the edges of Z, where +1 (resp. −1) corresponds to right (resp., left) particles on edges
where the colors decrease (increase) by one mod 3; 0 is assigned on edges with the same color. For
general κ, we will think of |dη(x)| particles of the same direction indicated by the sign of dη(x)
stacked on the edge (x, x + 1), provided |dη(x)| < κ/2. If κ is even and |dη(x)| = κ/2, then we
assign κ/2 bidirectional arrows on the edge (x, x+ 1).

Given CCA dynamics (ηt)t≥0, (2.2) induces a sequence of edge configurations (dηt)t≥0. It is
possible to evolve these edge configurations directly via certain ‘arrow dynamics’ without evolving
the κ-coloring using CCA dynamics (see the commutative diagram ξt = ηt). The detailed arrow
dynamics are described below.

(i) Labeling: Arrows are labeled in a pseudo-lexicographic ordering as follows. Labels increase
along the lattice bonds from left to right. On a given edge, a stack of right-pointing and
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bidirectional arrows is labeled in increasing order from the bottom up, and vice-versa for
left-pointing stacks.

(ii) Release: Nonzero stacks with ≤ r arrows are active. Stacks with > r arrows are inactive
and we refer to them as bloackades. For all active stacks, top arrows (that is, right (resp.,
left) arrows with maximum (resp., minimum) labels) are released simultaneously. Released
arrows try to jump to the next edge in the direction it is pointing.

(iii) Collisions: If two released opposing arrows need to cross each other or occupy the same edge,
they mutually annihilate. If a released arrow attempts to jump onto an inactive stack of
< κ/2 opposing arrows, it annihilates the opposing arrow with the closest label.

If a released arrow attempts to jump onto an inactive stack of κ/2 bidirectional arrows
for κ even and if there is another left arrow jumping onto the same stack, then each of the
jumping arrows annihilates with a bidirectional arrow in the stack with the closest label.

If a released arrow attempts to jump onto an inactive stack of < ⌊κ/2⌋ arrows of the
same direction (including empty stacks), it is added to the stack and no annihilation occurs.
Note that the pseudo-lexicographic ordering is preserved after every collision event.

(iv) Stack flipping: Suppose κ is odd and there is an inactive stack of ⌊κ/2⌋ right (resp., left)
arrows and another right (resp., left) arrow with label ℓ attempts to jump on it. Suppose
that there is no left (resp., right) arrow jumping onto the same inactive stack at the same
time. Then the entire stack flips to a stack of left (resp., right) arrows, including a left
(resp., right) arrow of label ℓ. In the flipped stack, there are ⌊κ/2⌋ left (resp., right) arrows.
In this interaction, one right arrow in the stack with labels closest to ℓ are annihilated.

Suppose κ is even and there is an inactive stack of κ/2 bidirectional arrows and a right
arrow with label ℓ attempts to jump on it and there is no left arrow jumping onto the
same stack. Then the bidirectional arrows become (κ/2)− 1 left arrows, including one with
label ℓ. In this interaction, two bidirectional arrows in the stack with labels closest to ℓ are
annihilated. See Figure 6.

We remark that stack flipping for CCA may occur only if r < ⌊κ/2⌋, since otherwise stacks of
size ⌊κ/2⌋ is always active.

Below we show that the arrow dynamics for CCA is indeed compatible with the CCA dynamics.

Proposition 2.1. Suppose r < ⌊κ/2⌋ or κ is odd and r = ⌊κ/2⌋. Then The diagram in (2.1)
commutes for CCA with the arrow dynamics described above.

Proof. Consider the edge (0, 1) at time t. Suppose dηt(0) = a ∈ {−⌊κ/2⌋, ⌊κ/2⌋}. By symmetry,
without loss of generality, we may assume a > 0, ηt(0) = 0 and ηt(1) = −a. In terms of the arrow
dynamics, there is a stack of a right arrow on the edge (0, 1). We need to show the value of dηt+1(0)
computed using the arrow dynamics coincides with the value computed by first evolving the coloring
by the CCA dynamics one iteration and then computing the edge configuration.

We first consider the case a ≤ r so that the stack on the edge (0, 1) is active at time t, so a single
right arrow from this stack is released to the edge (1, 2). Since a ≤ r, the stack on the edge (0, 1)
does not flip, so we should have a or a− 1 right arrows on the edge (0, 1) at time t+ 1 depending
on whether another right arrow jumps from the edge (−1, 0) or not. In terms of CCA dynamics,
note that 1 excites 0 (since dηt(0) > 0) so that ηt+1(0) = 1. If 0 is also excited (necessarily by
−1), then ηt+1(0) = 1 and hence dηt+1(0) = a; otherwise ηt+1(0) = 0 and dηt+1(0, 1) = a. We have
shown that

(# of right arrows on the edge (0, 1) at time t+ 1)

= (a− 1) + 1(a right arrow jumps from the edge (−1, 0) at time t)

= (a− 1) + 1(0 is excited by −1 at time t)

= dηt+1(0),
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Figure 5. Arrow collisions for CCA with κ = 11 and r = 4. Pseudo-Lexicographic
labeling of arrows ensures proper monotonic ordering.

Figure 6. Arrow flipping rule for CCA with (a) κ = 7, r = 2 and (b) κ = 8, r = 2. One
arrow is lost if κ is odd and two if κ is even. Note also the labels of the deleted arrows.
Stacks of κ

2
arrows are bidirectional.

which is the desired conclusion.
Second, consider the case a > r so that the stack on the edge (0, 1) is inactive and hence is a

blockade at time t. We will consider two cases depending on whether this stack flips or not. First,
suppose it does not flip. Then note that

(# of right arrows on the edge (0, 1) at time t+ 1)

= a+ 1(a right arrow jumps from the edge (−1, 0) at time t)

− 1(a left arrow jumps from the edge (1, 2) at time t)

= a+ 1(0 is excited by −1 at time t)− 1(1 is excited by 2 at time t)

= dηt+1(0),
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as desired. Lastly, suppose the inactive stack on the edge (0, 1) flips. Under the assumption that
ηt(0) = 0 and ηt(1) = −a < 0, this is precisely when a = ⌊κ/2⌋ > r and the larger color of ηt(0)
and ηt(1) increments by one, so ηt+1(0) = 1 and ηt+1(1) = −a. It follows that

dηt+1(0) = −⌊
κ− 1

2
⌋.(2.3)

The arrow dynamics for stack flipping accounts precisely the above. □

2.2.2. Arrow dynamics for FCA. For FCA, we define the edge configuration corresponding to a
κ-coloring X : Z→ Zκ as a map dX : Z→ [−m,m] for m := ⌊κ/2⌋, where

dX(x) =


X(x+ 1)−X(x) (mod κ)

m if κ = 2m, |X(x+ 1)−X(x)| = m, and X(x) ∈ [r + 1, κ]

−m if κ = 2m, |X(x+ 1)−X(x)| = m, and X(x+ 1) ∈ [r + 1, κ].

(2.4)

If κ is odd, the definition of edge configuration dX is similar to that for CCA except the sign is
the opposite, since excitation goes from smaller colors (in fact, only from the blinking color 0) to
larger ones in FCA but the other way around in CCA. When κ is even, there could be edges with
maximum color difference m, and care has to be taken to assign the direction of the particles on
such edges. For CCA, we assigned a stack of m bidirectional arrows on such edges. For FCA, we
do not need to introduce bidirectional edges. Recalling that excitation in FCA goes from color 0 to
colors in [1, r], we assign the direction of the particles according to which of the two sites on the
edge (x, x+ 1) becomes the blinking color 0 first. Since colors in [r + 1, κ] advance to color zero
without interruption, x achieves color 0 before x+ 1 given dX(x) = m if and only if x currently
has a color in [r + 1, κ].

Given FCA dynamics (Xt)t≥0, (2.4) induces a sequence of edge configurations (dXt)t≥0, which
we can interpret as an embedded dynamical system with stacks of arrows. Unlike CCA, it would be
convenient to use the FCA dynamics (Xt)t≥0 to define such embedded arrow dynamics since only
arrows starting from sites with color 0 are ‘active’ in the arrow dynamics. For each edge (x, x+ 1)
with dXt(x) = k > 0, we imagine a stack of k unit particles residing on the edge (x, x+ 1) at time
t, which we will represent with arrows, directed from x to x+ 1. Similarly, negative values of dXt

correspond to stacks of arrows moving left. Note also that ∥dXt∥∞ ≤ ⌊κ/2⌋, so the height of the
stacks on the edges is uniformly bounded by ⌊κ/2⌋. The arrow dynamics for FCA is almost identical
to that of FCA, but it crucially differs in that stacks on the edges where arrows are pointing away
from color 0 are active, and particles on such active stacks are released. Hence, unlike in the arrow
dynamics for CCA, stacks with < r arrows can be inactive unless the site at ‘tail’ have the blinking
color 0.

(i) Labeling: Same as in CCA but note that there are no bidirectional arrows for FCA.

(ii) Release: Nonzero stacks with ≤ r arrows on edges where the sites toward the tails of the
arrows have color 0 are called active; stacks of > r arrows are called blockades; all other
stacks with nonzero arrows are inactive. For all active stacks, top arrows (that is, right
(resp., left) arrows with maximum (resp., minimum) labels) are released simultaneously.
The released arrows try to jump to the next edge in the direction it is pointing.

(iii) Collisions: Same as in CCA.

(iv) Stack Flips: Suppose there is an inactive stack of ⌊κ−1
2 ⌋ right (resp., left) arrows and another

right (resp., left) arrow with label ℓ attempts to jump on it. Then the entire stack flips to
a stack of ⌊κ/2⌋ left (resp., right) arrows, including a left (resp., right) arrow of label ℓ.
Note that when κ is odd, then one arrow in the inactive stack with the closest label to ℓ is
annihilated during flipping. When κ is even, no annihilation occurs due to flipping. See
Figure 8 for illustration.
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Figure 7. Queuing and annihilation rules for the particle system expansion of the 6-color FCA

on Z with r = 3. We denote particle (i, r) by →i and similarly for left arrows. ∗ ∈ Z6 \ {0}. Note
deleted arrows.

To motivate the above construction of the arrow dynamics for FCA, we walk through some
examples when κ = 6 and r = 3. Recall that 0 is the blinking color and there are three post-blinking
colors 1, 2 and 3 whose update to the next color is inhibited when in contact with color 0. Suppose
Xt(x) = 0 and Xt(x+1) = 2 so that there are two r particle on the edge (x, x+1) and site x blinks
at time t. Suppose that the edge (x+ 1, x+ 2) is vacant and site x+ 3 does not blink at time t; so
Xt(x+2) = 2 and Xt(x+3) = ∗ ≠ 0 (see Figure 7 (a)). Then at time t+1 sites x, x+1, and x+2
have colors 1, 2, and 3 respectively, so there is a single r particle on each of the edges (x, x+ 1) and
(x+ 1, x+ 2) at time t+ 1. We view this as the bottom r particle on the edge (x, x+ 1) having
moved onto the vacant edge (x+ 1, x+ 2). If Xt(x+ 3) = 0, then both the bottom particles on
edges (x, x+ 1) and (x+ 2, x+ 3) try to move into the vacant edge (x+ 1, x+ 2), resulting in their
annihilation at time t+ 1 (see Figure 7 (b)). Similar annihilation occurs when these particles are
closer to each other, i.e., the edge (x+ 1, x+ 2) also has an l particle (see Figure 7 (c)). Lastly,
consider the case when there are right particles on two consecutive edges, namely, (x, x+ 1) and
(x+ 1, x+ 2), and suppose site x blinks at time t. If dXt(x+ 1) = 1, then the bottom r particle on
the edge (x, x+ 1) migrates to the top of the queue on the edge (x+ 1, x+ 2) (see Figure 7 (d)).

Figure 8. Examples of arrow dynamics for κ-color FCA with (a) κ = 5 and (b), (c) κ = 6

with r = 2 for all three cases. (a) and (b) show instances of stack flipping but (c) is the usual
arrow-arrow annihilation.

Below we show that the arrow dynamics for FCA is indeed compatible with the FCA dynamics.
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Proposition 2.2. Suppose r ≤ ⌊κ/2⌋. Then The diagram in (2.1) commutes for FCA with the
arrow dynamics described above.

Proof. The argument is similar to that for the proof of Prop. 2.1. Details are omitted. □

3. CCA and FCA in the undercoupled regime

Without loss of generality, we shall prove that the origin fixates. If it didn’t, it would need to
change colors infinitely often. However, each color change corresponds to an arrow crossing the
origin. The following lemma shows that if there are infinitely many crossings of the origin then
arrows must eventually have an arbitrarily large label (i.e. they come from arbitrarily far away).

Lemma 3.1. Assume that as t→∞, there are infinitely many arrow-crossings of the origin and
denote by At the set of arrows that have crossed the origin at time t. Then as t→∞ we have that
|At| → ∞.

Proof. Suppose that |A∞| is finite. Then there would be at least one arrow that crosses the origin
infinitely many times and therefore switches directions infinitely often. Without loss of generality
suppose this arrow is initially to the left of the origin. Let k be the minimal label of such arrow.
Observe that for k to cross the origin infinitely many times, it must switch directions from right to
left at locations to the right of the origin infinitely many times. In each direction flip, k must be
involved in an arrow interaction of the form stack flipping, which means that at these times the
location of k is entered by an arrow from the left that has strictly smaller label than k and which
therefore also started to the left of the origin and passed the origin. Let us keep track of the set
of arrows that induce the direction flips in k by naming the arrow involved in the m-th direction
flip km. Denote K = ∪∞i=1ki and observe that K ⊂ A∞. Since K is finite and arrows cannot cross,
then there must be another arrow k′ ∈ K that also crosses the origin infinitely many times. This
contradicts the minimality of k. □

Thus, by Lemma 3.1, if the origin is crossed by arrows infinitely many times, then there are
infinitely many distinct labels of all arrows that cross the origin, and hence, for every n there exists
a site z with |z| > n such that the arrow located at, say (z − 1, z), crosses the origin. To proceed
with the argument, we introduce the edge elimination function φ. This is effectively a book-keeping
device to count the net number of live arrows vs blockades in an interval. Here we give an edge
elimination function that suffices for our purposes but we remark that it may be improved for a
more optimal result. For a κ-coloring ξ : Z→ Zκ for CCA or FCA,

(3.1) φ (dξ(x)) =

{
−|dξ(x)| if 0 ≤ |dξ(x)| ≤ r

|dξ(x)| − 2r if r ≤ |dξ(x)| ≤ ⌊κ2 ⌋.
The function φ above gives a conservative estimate of the total blockade capacities that all arrows
on the edge (x, x+ 1) can reduce, if CCA or FCA is initialized with ξ. It is conservative in that we
do not consider the effect of arrows annihilating each other and always counted against blockade
capacities. It is possible, however, to consider such finite-time effects (e.g., arrow-arrow annihilation,
immediate blockade formation) to improve the resulting sufficient condition on fixation as done by
Fisch [FGG91] for κ-color CCA with r = 1.

Lemma 3.2 below gives a necessary condition for an arrow to eventually reach the origin in terms
of φ. For any z ∈ Z define the first time T (z) from time that size z influences the origin:

T (z) = inf

{
t

∣∣∣∣ time that there is an arrow visiting the origin at time t,
which initially was at an edge containing z

}
.(3.2)

Lemma 3.2. Let ξt denote the κ-color CCA or FCA on Z with r < ⌊κ/2⌋. The following two
statements combined give us sufficient conditions for fixation:

(i) ξt fixates if limn→∞ P(T (z) <∞ for some z < −n) = 0.



ONE-DIMENSIONAL EXCITABLE MEDIA WITH VARIABLE INTERACTION RANGE 15

(ii) For an arrow coming from z ∈ Z− to reach the origin we must have an interval I containing
[z, 0] such that

∑
I φ(dξ0(x)) < 0. More precisely, we have the following event inclusion

{T (z) <∞ for some z < −n} ⊂

{∑
I

φ(dξ0(x)) < 0

}
.

Proof. See Appendix A (adapted from [BG89, Fis90b]). □

We are now ready to prove of Theorem 1 (i).

Proof of Theorem 1 (i). To conclude the argument, all we need, by Lemma 3.2, is to compute
the asymptotics of the following expectation

E

[
n∑
−n

φ(dξ0(x))

]
(3.3)

in terms of κ(r). When this expectation is non-positive, the two parts of Lemma 3.2 give us the
required vanishing probability for fixation. Without loss of generality, we consider we are in the
case of odd κ (terms don’t change much when κ is even). Then using (3.1) and the translational
symmetry of the original random configuration one has:

(3.3) =

r∑
m=1

−2m

κ
+

⌊κ
2 ⌋∑

m=r+1

2(m− 2r)

κ

=
−r(r + 1)

κ
+

1

κ

(
⌊κ
2
⌋
(
⌊κ
2
⌋+ 1

)
− (r + 1)(r + 2)

)
− 4r

κ

(
⌊κ
2
⌋ − (r + 1)

)
(3.4)

Asymptotically in large κ, this gives us:

RHS(3.4) ≈ −r2

κ
+

κ

4
− r2

κ
− 2r +

4r2

κ
.

Combining like terms, for large enough κ, one has:

lim
n→∞

E

(
n∑

x=−n

φ(dη(x))

)
−→ 2r2

κ
− 2r +

κ

4
.(3.5)

Hence, we have fixation if r < 2−
√
2

4 κ. (≈ 0.14644κ) □

4. Critical CCA and FCA

In this section, we prove Theorem 1 (ii) concerning CCA and FCA in the critical regime. Suppose
r = ⌊κ−1

2 ⌋ for CCA and r = ⌊κ/2⌋ for FCA. We will first show clustering for these systems using
a soft ergodic argument. Then, we will prove the asymptotic rate of clustering in (1.5) when
r = ⌊κ/2⌋ except even κ for CCA.

4.1. Proof of clustering with an ergodic argument. Here we show that CCA and FCA in
the critical regime clusters using an ergodic argument. We first show that there is no spontaneous
blockade formation.

Lemma 4.1 (No spontaneous emergence of blockades). Suppose κ = 2m for some integer m ≥ 2
and let r = m − 1. For each site x ∈ Z, if |dξt(x)| = m for some t ≥ m, then |dξs(x)| = m for
some 0 ≤ s < t. In particular, blockades are not created spontaneously after time m.
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Proof. Suppose |dξt(x)| = m for some times t ≥ m. Further assume that |dξs(x)| < m for all
t−m ≤ s < t. We will show that there is a contradiction by backtracking the dynamics κ steps
backward in time. First, consider the CCA dynamics. By symmetry, suppose ξt(x) = 0 and
ξt(x+ 1) = m so that there is a blockade dξt(x) = m at time t on the edge (x, x+ 1). Then there
is the last time s before time t that there is no blockade on the edge (x, x+ 1), i.e., dξs(x) < m.
By symmetry, we may assume ξs(x) = 0 and ξs(x+ 1) = m− 1. Then x must be excited at time s
so that ξs+1(x+ 1) = m. However, we must also have ξt+1(x) = 1 since x is excited by x+ 1 at
time s for dξs(x) = m− 1 = r (see (4.1)). This is a contradiction.

time : t t− 1
x+ 2 : ≥ m
x+ 1 : m m . . . m m− 1
x : 0 0 . . . 0 0

(4.1)

Next, consider the FCA dynamics. Suppose there is a blockade at time t ≥ κ at edge (x, x+ 1)
but there is not at times in {t− κ, . . . , t− 2, t− 1}. By symmetry, assume ξt(x) = a ∈ {0, 1, . . . ,m}
and ξt(x+ 1) = a+m. Then either of the following holds: (1) ξt−a(x) = 0 and x is not excited
during time interval [t− a, t); or (2) ξt−a−1(x) = 0 and x is excited exactly once (by x− 1) during
time interval [t− a, t). There are no other cases since x cannot be excited more than once during
this period (since x− 1 is the only neighbor of x that can excite it during this period and every
node in FCA returns to zero at most once in every κ iterations).

First consider the case (1). Note that x + 1 has colors in {m,m + 1, . . . , κ − 1} during time
interval [t − a, t) so it cannot get excitation during this period. Thus the colors of x and x + 1
decrease by one when we backtrack the dynamics from time t to t− a+1, giving ξt−a+1(x) = 1 and
ξt−a+1(x+ 1) = m+ 1. Then ξt−a(x) = 0 and ξt−a(x+ 1) ∈ {m,m+ 1}, but we get contradiction,
for if ξt−a(x+ 1) = m, then x+ 1 is excited at time t− a by x so that ξt−a+1(x+ 1) = m contrary
to ξt−a+1(x + 1) = m, and if ξt−a(x + 1) = m + 1 > r, then x + 1 is not excited at time t so
ξt−a(x+ 1) = m+ 2, again contrary to ξt−a+1(x+ 1) = m. See (4.2).

time : t t− 1 t− a+ 1 t− a
x+ 1 : a+m a+m− 1 a+m− 2 · · · m+ 1 m
x : a a− 1 a− 2 · · · 1 0

(4.2)

Lastly, consider the case (2). In this case, ξt−a(x + 1) = m as before, but ξt−a(x) = 1 and
ξt−a−1(x) = 0 since x is excited by x− 1 at some time between t− a− 1 and t− 1. Below in (4.3),
we depict such a situation where x is excited by x− 1 at time t− 1 for illustration purpose.

time : t t− 1 t− a+ 1 t− a t− a− 1
x+ 1 : a+m a+m− 1 a+m− 2 · · · m+ 1 m m
x : a a a− 1 · · · 1 0

x− 1 : 1 0

(4.3)

Since t ≥ m, t − a − 1 ≥ 0. Since ξt−a−1(x) = 0 and ξt−a(x + 1) = m = r − 1, we cannot have
ξt−a−1(x+1) = m− 1 since then x+1 is excited by x at time t− a− 1 so that ξt−a(x+1) = m− 1,
contrary to ξt−a(x+ 1) = m. Thus we must have ξt−a−1(x+ 1) = m. But then we have a blockade
on the edge (x, x+ 1) at time t− a− 1 ≥ 0, contrary to the hypothesis that there was no blockade
on this edge at prior times. This finishes the proof. □

In the following proposition, we show that critical CCA and FCA must either fixate or cluster.
We include the case of FCA with κ even and r = κ/2 in the statement, which seems to cluster
according to simulation (see Figures 1, 2, and 9) but is excluded from Theorem 1 (ii) since our
current argument does not rule out the possibility of fixation into non-interacting colors.
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Proposition 4.2. Let ξt denote κ-color CCA or FCA, where r ∈ {⌊κ/2⌋ − 1, ⌊κ/2⌋} except the
case of CCA with κ even and r = κ/2. Then either the system clusters or a positive density of
blockades persists.

Proof. By symmetry, the finite time densities of right and left arrows must always be equal. We
first consider the case when κ is odd for both CCA and FCA or κ is even with r = ⌊κ/2⌋ for FCA.
In this case, there are no blockades for all times. Suppose that fixation occurs. Then we claim that
that all sites synchronize eventually, and hence the system clusters. To see this, suppose a site x
fixates. Then x is not excited after some time, say t0. If x+ 1 does not have the same color as
x at time t0, then we must have dξt0(x) < 0 since otherwise x is excited by x + 1 at time t0, a
contradiction. Then x+ 1 becomes the same color as x after a finite time getting excited by x and
possibly by x+ 2 as well. Once x+ 1 is synchronized with x, x+ 1 cannot get any more excitation
since otherwise x will also get excited. This shows that x+ 1 fixates as well and will eventually
be synchronized with x. By induction, it follows that all sites fixate and synchronize with x, as
desired.

Next, keep the assumption that κ is odd and suppose fluctuation occurs. Then by symmetry,
the density of right and left arrows are always the same and positive (if it ever equals zero, we have
fixated and it goes back to the previous case). Then every arrow must eventually be destroyed,
since it will eventually encounter an opposing arrow and arrows do not cross each other without
mutual annihilation. Thus arrow densities tend to zero and we deduce clustering.

Lastly, we assume κ = 2m for some integer m ≥ 2 and r = m− 1 for CCA and FCA. This case
requires more care since there could be blockades, which are precisely the edges with color difference
m in this case. Note that in the arrow dynamics in both systems, blockades turn into stacks of
m− 1 opposing arrows when collided with a released arrow. By Lemma 4.1 there is no spontaneous
formation of blockades after time κ/2, meaning that once a blockade at an edge is destroyed at time
time ≥ m, then that edge will never have a blockade thereafter. See the simulation in Figure 9.

CCA with = 4, r = 1 FCA with = 4, r = 1

Figure 9. Simulation of critical 4-color critical CCA and FCA (r = 1) on 50 nodes in Z
with 20 iterations. Blockades (edges with color difference 2) reflect arrows and disappear
upon collision. Time goes from top to bottom. For CCA configurations at every iteration
are shown, while for FCA only the ones at times 4t are shown.

It suffices to show that, assuming blockades are almost surely annihilated, that arrows are also
almost surely annihilated. Suppose for contradiction that there is a positive density of arrows
surviving forever. By ergodicity, there exist infinitely many arrows that survive forever. There
are two cases: Suppose some of the surviving arrows hit finitely many blockades (hence flip their
direction finitely many times). By ergodicity, then, there is a positive density of these and equal
densities of those that eventually move right and eventually move left. But then there must be
some opposing pair that meet, a contradiction. Therefore, any arrow that survives forever must hit
infinitely many blockades.

Consider two consecutive arrows that survive forever and hit infinitely many blockades. After
some long finite time, all of the blockades between them will be removed. If the arrows are pointing
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away from each other, wait until the next time one of them turns around. Now they are pointing
in the same direction or towards each other. If they are headed in the same direction, there
are no blockades between them, so the next time the other arrow hits a blockade they will be
pointing towards each other. Their next interaction is annihilation, a contradiction. Therefore, all
arrows should be destroyed. This argument assumes that arrows never cross each other without
annihilation and that an arrow keeps its identity when it is flipped after colliding with a blockade.
The arrow dynamics for CCA was constructed to guarantee these properties. □

We now deduce Theorem 1 (ii) from the result above.

Proof of clustering for critical CCA and FCA; Theorem 1. By Proposition 4.2 it suffices
to show that all blockades are eliminated eventually. The only case that there could be blockades
in the statement is when κ is even, r = (κ/2)− 1, and the dynamics is CCA.

We first show that the system must fluctuate. Suppose for a contradiction that the system fixates.
We first consider CCA. Then the system must fixate into any set {a, a +m} of non-interacting
colors for a = 0, 1, . . . ,m− 1. By symmetry under color shift, these fixation events have the same
probability and they are also invariant under spatial shift. Using the fact that initial colors of
sites are independent, by Kolmogorov’s 0-1 law, we can deduce that these fixation events have
probability 0 or 1 simultaneously. It follows that they must all have probability zero, so fluctuation
follows. (The same argument does not rule out fixation for FCA as the system is not invariant
under color shift.)

It remains to show that the blockade density must tend to zero. Indeed, if there exists a positive
blockade density in the limit, then there are infinitely many blockades that survive forever by
ergodicity. The arrows in between these forever-surviving blockades must eventually all be eliminated
since otherwise a surviving arrow will eventually kill such surviving blockade, a contradiction. Thus
arrows are annihilated almost surely but blockades survive with a positive probability, implying
fixation. This contradicts that the system must fluctuate, as we have just established above. □

We remark on a particular consequence of the clustering result above. It shows that the 4-color
CCA with r = 1 clusters:

Corollary 4.3. 4-color CCA with r = 1 clusters.

The original 4-color CCA with r = 1 was known to fluctuate by Fisch [Fis90a] in 1991 and was
conjectured to cluster. Surprisingly, this result was proven only in 2021 by Hellouin de Menibus and
Borgne [HdMLB21], where the authors characterized the limiting measure with general product
initial measure (not necessarily uniform). Analogous system with asynchronous update, known as
the 4-color cyclic particle system, was conjectured to cluster by Bramson and Griffeath in 1989
[BG89]. This was confirmed affirmatively by Foxall and Lyu [FL18] in 2018.

4.2. Transience of flipping and rate of clustering. In the remainder of this section, we consider
one of the three critical systems: FCA with r = ⌊κ/2⌋ for both κ even and odd; and CCA with κ
even and r = κ/2. In these cases, we would like to establish the clustering rate

P(ξt(0) ̸= ξt(1)) = Θ(t−1/2).(4.4)

We use two different arguments to establish the upper and lower bounds of the asymptotic above.
In this section, we establish the upper bound by relating it to the persistence probability of a
random walk with correlated increments.

First, we show that stack flipping is a transient phenomenon that does not occur after time 5κ.
This is stated in Proposition 4.4 below.

Proposition 4.4. Let ξt denote one of the three critical systems: FCA with r = ⌊κ/2⌋ for both
κ even and odd; and CCA with κ even and r = κ/2. Suppose ξ0 is arbitrary. Then there exists
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0 ≤ t0 ≤ 5κ such that there is no stack flipping after time t0. In particular, we can take t0 = 0 for
CCA.

Proof. Suppose κ = 2m+ 1 for some m ∈ N. Note that r = m by the hypothesis. The assertion (i)
holds trivially for CCA since for κ odd and r = ⌊κ/2⌋, there is no stack flipping. To show (i) for
the FCA, suppose for the sake of contradiction that the stack at an edge (x, x+ 1) flips at time
t ≥ m. We may assume without loss of generality that dξt(x) = m and x is excited at time t. This
requires ξt(x) = a for some a ∈ [1, r] and x has another neighbor x − 1 such that ξt(x − 1) = 0.
Backtracking a steps, and noting the fact that x cannot get excited by from either side from
times t− a+ 1 through t− 1, we deduce ξt−a+1(x+ 1) = m+ 1 and ξt−a(x) = 0. It follows that
ξt−a(x+1) = m or m+1, but both choices are impossible; If ξt−a(x+1) = m, then x+1 is excited
by x at time t− a (recall m = r) so that ξt−a+1(x+ 1) = m, contradicting ξt−a+1(x+ 1) = m+ 1;
If ξt−a(x+ 1) = m+ 1, then ξt−a(x+ 1) = m+ 2 ̸= m+ 1, a contradiction. See (4.5) below.

time : t t− 1 t− a+ 1 t− a
x+ 1 : a+m a+m− 1 a+m− 2 · · · m+ 1 b
x : a a− 1 a− 2 · · · 1 0

x− 1 : 0 κ− 1 · · ·

(4.5)

Now suppose κ = 2m for some integer m ≥ 2. Recall that r = m is the interaction range in
this case. Suppose, for the sake of contradiction, that we have the stack at the edge (x, x + 1)
flips at time t = N for some integer N > 10m. Then |dξt(x)| = m − 1. We first claim that
{ξt1(x), ξt1(x+ 1)} = {0,m} for some t1 ≥ 9m.

Without loss of generality, we may assume dξN (x) = m−1 and x is excited by a blinking neighbor
x− 1 at time t = N . So ξN (x− 1) = 0, ξN (x) = a for some a ∈ [1,m], and ξN (x+ 1) = a+m− 1.
As before, none of x ± 1 blink during time interval (N − a,N ], so backtracking a − 1 iterations
gives ξN−(a−1)(x) = 1 and ξN−(a−1)(x+ 1) = m. This yields ξN−a(x) = 0 and ξN−a(x+ 1) = m
since x excites x+ 1 at time t1 := N − a. This shows the claim.

Next, we show that as we further backtrack the dynamics, the same “opposite” local configuration
{ξt(x), ξt(x+ 1)} = {0,m} appears with period m+ 1. Since t1 ≥ 9m ≥ 6(m+ 1), this yields that
the same pattern appears at least seven times during [0, t1]. We will then obtain a contradiction.
For simplicity, we work with κ = 6 (so m = 3) case but generalizing to any even κ is immediate.

In the following backtracking tables, time increases from right to left and each column gives
a local configuration on sites x − 1, x, x + 1, x + 2. The first column shows the opposite local
configuration at t = t1:

(4.6)

time : t1 t1 − 3
x+ 2 : b1 b2 b3 b4
x+ 1 : 3 ∗
x : 0 5 4 3

x− 1 : a1 a2 a3 a4

Observe that ∗ = 0 in the above table contradicts the transition rule since 3 = m = r. Hence we
can further backtrack the dynamics as follows:

(4.7)

time : t1 t1 − 4 t1 − 7
x+ 2 : b1 b2 b3 b4 b5 b6 b7 b8
x+ 1 : 3 0 5 4 3
x : 0 5 4 3 3

x− 1 : a1 a2 a3 a4 a5 a6 a7 a8

with 0 ∈ {b2, b3, b4}. But note that b2 ̸= 0 since otherwise we have b4 = 4 and b5 = 3, which
contradict the transition rule since then ξ2 would excite ξ3 at the column containing b5 so that
b4 = 3. Notice that the column containing a5 is identical to the first one with the role of ξ1 and ξ2
exchanged. Hence the opposite local configuration appears with period 4 = m+ 1.
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Since t1 ≥ 6(m+ 1), we further extend our backtracking table as follow:

(4.8)

time : t1 t1 − 4 t1 − 8 t1 − 12
x+ 2 : b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13
x+ 1 : 3 0 5 4 3 3 2
x : 0 5 4 3 3 0 5 4 3 3

x− 1 : a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

where 0 ∈ {b3, b4} and 0 ∈ {b11, b12} by repeating the same argument. In fact, none of the four
combinations is possible. Suppose b3 = 0. Then b5 = 4, so ξ2 does not excite ξ3 at the column
containing b5. But then by the degree condition, ξ3 must have been excited by at most once during
the transition b3 ← b11, which is impossible as this transition requires two excitations. Thus b4 = 0.
Since we have enough history to apply the same argument to b11 and b12, we conclude b12 = 0.
But then by a similar argument the transition 0 = b4 ← b12 = 0 is impossible. This shows the
assertion. □

Recall the classical mass transport principle.

Proposition 4.5 (Mass transport principle). Define a non-negative random variable Z(a, b) for
integers a, b ∈ Z such that its distribution is diagonally invariant under translation, i.e., for any
integer d, Z(a+ d, b+ d) has the same distribution as Z(a, b). Then for each a ∈ Z,

(4.9) E

[∑
b∈Z

Z(a, b)

]
= E

[∑
b∈Z

Z(b, a)

]
.

Proof. Using linearity of expectation and translation invariance of E[Z(a, b)], we get

E

[∑
b∈Z

Z(a, b)

]
=
∑
b∈Z

E[Z(a, b)] =
∑
b∈Z

E[Z(2a− b, a)] =
∑
b∈Z

E[Z(b, a)] = E

[∑
b∈Z

Z(b, a)

]
.

□

Let t0 be as in Proposition 4.4, the time after which there is no stack flipping. In terms of the
arrow process, dξt0+τ (x) > 0 for some τ ≥ 0 means that there is a right arrow at time t0 + τ on
the edge (x, x+ 1). Since there is no spontaneous creation of arrows and each arrow maintains its
identity until annihilation, there must be some arrow at a prior time t0 somewhere that made it to
the edge (x, x+ 1) at time t0 + τ . In this way, we can relate the probability of local disagreement
with the survival probability of arrows at time t0. We make this precise in Lemma 4.6 below.

Lemma 4.6 (Local disagreement and particle survival). Let (ξt)t≥0 and 0 ≤ t0 ≤ 5κ be as in

Proposition 4.4. Let N⃗t0(τ) denote the number of right arrows on the edge (0, 1) at time t0 that are
alive at time t0 + τ . Then for any τ ≥ 0,

2

⌊κ/2⌋
E
[
N⃗t0(τ)

]
≤ P (ξt0+τ (0) ̸= ξt0+τ (1)) ≤ 2E

[
N⃗t0(τ)

]
.(4.10)

Proof. For each integers a, b ∈ Z and t ≥ 0, define a nonnegative random variable Z(a, b) as

Zt(a, b) := #

(
right arrows on the edge (a, a + 1) at time t0

that are on (b, b+ 1) at time t0 + τ

)
.(4.11)

By the translation invariance of the edge particle system with initial particles given by dξt0 ,
Zt(a+ c, b+ c) has the same distribution as Zt(a, b) for any integer c. Hence by Proposition 4.5,
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we have

E
[
N⃗t0(τ)

]
= E

[∑
b∈Z

Zτ (0, b)

]
= E

[∑
b∈Z

Zτ (b, 0)

]
= E [# (right arrows on (0, 1) at time t0 + τ)]

≥ P (∃ an right arrow on (0, 1) at time t0 + τ)

= P (|dξt0+τ (0, 1)| > 0) /2,

where the third equality uses the fact that there is no stack flipping after time t0 (Prop. 4.4). This
establishes the second inequality in (4.10). For its first inequality, simply note that

E [# (right arrows on (0, 1) at time t0 + τ)]

≤ ⌊κ/2⌋P (∃ an right arrow on (0, 1) at time t0 + τ)

=
⌊κ/2⌋
2

P (|dξt0+τ (0, 1)| > 0) ,

where the inequality follows since every stack can hold at most ⌊κ/2⌋ arrows. This is enough to
conclude. □

To proceed further, we define the associated additive process {Sn}n≥0 for the critical excitable
media we consider in this section by S0 = 0 and

Sn =
n−1∑
i=0

dξt0(i, i+ 1).(4.12)

Note that Sn counts the number of right arrows at time t0 in the interval [0, n] against the number
of left arrows at time t0 in the same interval. As we will prove

The following lemma translates the temporal event of seeing a particle on a particular edge at
time t into the spatial event of having positive partial sums at prior times; this is analogous to a
duality relation in the graphical construction of an interacting particle system, in which one tracks
the origin of a particle backwards in time.

Lemma 4.7 (Particle survival and persistence of partial sums). Let (ξt)t≥0 and 0 ≤ t0 ≤ 5κ
be as in Proposition 4.4. Let {Sn}n≥0 be as in (4.12). For CCA (resp., FCA), every released
arrow moves in its prescribed direction until annihilation with speed between v− = 1/⌊κ/2⌋ (resp.,
1/⌊κ/2⌋(κ+ 1)) and v+ = 1 (resp., 1/κ). Furthermore, suppose a right arrow is on the edge (0, 1)
at time t = t0 and it is alive at time t0 + τ for some τ ≥ 0. Then

Sz ≥ −⌊κ/2⌋+ 2 for all 1 ≤ z ≤ 2⌊τv−⌋.(4.13)

Conversely, if

Sz ≥ 1 for all 1 ≤ z ≤ 2⌈τv+⌉,(4.14)

then all right arrows on the edge (0, 1) at time t0 are alive at time t0 + τ .

Proof. We first consider the critical CCA. Note that in the arrow dynamics for the CCA with odd κ
and r = ⌊κ/2⌋, there is no blockade (and hence no stack flipping) and every nonzero stack of arrows
is active at all times. The size of the stacks is at most ⌊κ/2⌋. Thus each right arrow is released
again at least once in every ⌊κ/2⌋ iterations at at most once every iteration. This shows that each
right particle moves ballistically to the right until annihilation with speed between 1/⌊κ/2⌋ and 1.

Furthermore, suppose a right arrow with label ℓ is on the edge (0, 1) at time t = t0 and it is alive
at time t0 + τ for some τ ≥ 0. Since this arrow moves to the right with speed at least 1/⌊κ/2⌋, it
must be on the edge (x, x+ 1) at time t0 + τ for some x ≥ τ/⌊κ/2⌋. If the right arrow with label ℓ
is at height 0 in the stack on the edge (0, 1) at time t0, then in order for it to survive until time
t0 + τ , the number of right arrows in any interval [0, z] ⊂ [0, 2⌊τ/v−⌋] at time t0 must exceed that
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of the left arrows in the same interval at the same time, because otherwise the right arrow on the
edge (0, 1) at time t = t0 will be annihilated before time τ since left arrows also move with speed
at least v−, a contradiction. Thus the partial sums in (4.13) in this case must always be at least 1
for all 1 ≤ z ≤ 2⌊τ/v−⌋. In general, the height of the right arrow with label ℓ at time t0 is at most
⌊κ/2⌋, so the partial sums must be at least −⌊κ/2⌋ for all 1 ≤ z ≤ 2⌊τ/⌊κ/2⌋⌋.

Conversely, suppose (4.14) holds. Pick a right arrow on the edge (0, 1) at time t0 and let ℓ be its
label. Suppose for a contradiction that this right arrow is annihilated at time before t0 + τ . This
annihilation must occur on some edge (x, x + 1) for some x ∈ [⌊τv−⌋, ⌈τv+⌉] since right arrows
move with speed between v− and v+ without flipping. Since the same holds for the left arrows, the
unique left arrow that annihilates the right arrow with label ℓ must be on some edge (y, y + 1) for
some y ∈ [x+ ⌊τv−⌋, x+ ⌈τv+⌉] ⊂ [0, 2⌈τv+⌉]. Since arrows do not flip after time t0 and no two
arrows cross without mutual annihilation, it follows that Sy < 0, which contradicts (4.14). This
show the assertion for the critical CCA.

Next, we show the assertion for the critical FCA. Recall that we assume r = ⌊κ/2⌋ for critical
FCA. Suppose a right arrow with label ℓ is released from an edge (y, y + 1) at some time t and
eventually released again from the edge (y+1, y+2) without being annihilated. Note that the stack
on the edge (y + 1, y + 2) must have either no particles or some right arrows at time t. Suppose the
former. We then have ξt(y) = 0, ξt(y + 1) = ξt(y + 2) ∈ [1, r], and ξt+1(y + 1) = ξt(y) since y + 1 is
excited by y at time t. Hence the next time that y + 1 blinks (i.e., has color 0) is between t+ r + 2
and t+ κ. Since by Proposition 4.4 there is no stack flipping after time t0, there could be at most
⌊κ/2⌋− 1 right arrows on the edge (y+1, y+2) at time t. Note that y+1 can be excited only by y
until all right arrows on (y+1, y+2) have been released, so y+1 blinks at least once in every κ+1
iterations until then. Hence, it takes at most ⌊κ/2⌋(κ+ 1) iterations for (y+ 1, y+ 2) to release the
right particle with label ℓ. This shows that right particles travel ballistically with speed between
1/⌊κ/2⌋(κ+ 1) and 1/κ. The rest of the statement for the critical FCA can be shown similarly as
before. □

We are now ready to prove the clustering rate in Theorem 1 (ii). The key idea of the proof is
to view the additive process Sn in (4.12) as a ‘Markov additive process’ of a certain underlying
Markov chain. Namely, note that the increments dξt0(x) of Sn can be thought of as a functional of
an underlying spatial Markov chain, whose state at ‘site x’ is the color tuple

Y⃗x := (ξ0(y); y ∈ [x− q, x+ 1 + q]) ∈ Z2t0+2
κ .(4.15)

Note that (Y⃗x)x∈Z is ergodic, being irreducible on finite state space, and it has a finite correlation

length: Y⃗x and Y⃗y are independent as soon as |x − y| > 2t0 + 1. Then dξt0(x) = g(Y⃗x) for some
functional g, since dξt0(x) is determined by ξt0(x) and ξt0(x+ 1), which are in turn determined by

the initial colors in Y⃗x through t0 iterations of the CCA/FCA transition map. Partial sums with
increments of a functional of an underlying Markov chain are called Markov additive functional.
Hence the associated additive process Sn in (4.12) is indeed a Markov additive process with

underlying Markov chain (Y⃗x)x≥0.
A crucial quantity in the analysis of the Markov additive process Sn is the limiting variance γ2

g

defined by

γ2
g := Var(dξt0(0)) + 2

∞∑
j=1

Cov(dξt0(0), dξt0(j)).(4.16)

According to [MT12, Thm. 17.5.3], we can write it as

γ2
g = lim

n→∞
n−1E[S2

n].(4.17)
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Recalling that dξt0(x) and dξt0(y) are independent as soon as |x − y| > 2t0 + 1 and observing
that S2t0+1 has positive finite variance, it follows that γ2

g is also positive and finite. We denote

γg :=
√

γ2
g .

Proof of the clustering rate in Theorem 1 (ii). Let t0 be as in Proposition 4.4. Let v± be
as in Lemma 4.7. Then by Lemmas 4.6 and 4.7, we have

P (ξt(0) ̸= ξt(1)) ≤ 2⌊κ/2⌋P(dξt0(0) > 0)P
(
right arrow on (0, 1) at time t0

is alive at time t

∣∣∣∣ dξt0(0) > 0

)
≤ 2⌊κ/2⌋P(S1 ≥ −⌊κ/2⌋+ 2, . . . , S⌊t/v−⌋ ≥ −⌊κ/2⌋+ 2),

where the first inequality uses the fact that ∥dξ0∥∞ ≤ ⌊κ/2⌋. Similarly, we have

P (ξt(0) ̸= ξt(1)) ≥ 2P(dξt0(0) > 0)P
(
right arrow on (0, 1) at time t0

is alive at time t

∣∣∣∣ dξt0(0) > 0

)
≥ 2P(dξt0(0) > 0)P(S1 ≥ 1, . . . , S2⌈t/v+⌉ ≥ 1).

Thus for the desired asymptotic for the clustering rate, it suffices to show that

(4.18) P (S1 ≥ b, · · · , St ≥ b) = Θ(t−1/2)

for any fixed constant b ∈ R.
For the critical CCA (κ odd and r = ⌊κ/2⌋), we can take t0 = 0 in Proposition 4.4 so in this case

the increments (dξ0(x))x≥0 for the associated additive process Sn are i.i.d. with mean zero and
uniformly bounded values (by ⌊κ/2⌋). In this case, the probability in (4.18) is called a persistence
probability of a random walk (see, e.g., [BMS13]) and it is in fact known that

P (S1 ≥ b, · · · , St ≥ b) ∼ Ct−1/2(4.19)

for some constant C > 0. Such an exact asymptotics of persistence probabilities for simple random
walk was first obtained by Sparre Anderson [And53] in 1953 and later it was generalized by Feller
[Fel71, Thm. XII.7.1] to arbitrary random walks with i.i.d. increments satisfying some moment
conditions. In particular, this justifies the asymptotic in (4.18).

For the critical FCA, the situation is more delicate. Recall that in this case t0 is not necessarily
zero but can be taken to be at most 5κ (see Prop. 4.4). Hence now the increments (dξt0(x))x≥0 for
the associated random walk Sn are (still identically distributed due to the translation invariance
of the process but) are not independent, since dξt0(x) depends not only on the initial colors ξ0(x)
and ξ0(x+ 1), but also on all initial colors ξ0(y) for y ∈ [x− t0, x+ 1 + t0]. This is because during
the first t0 iterations of ‘burn-in’ period, sites interact with their neighbors to update their colors.
Thus classical results on random walk persistence probabilities cannot be used to deduce (4.18) for
the critical FCA.

Instead, we have noted above the proof that the increments dξt0(x) for the additive process Sn

can be thought of as a functional of underlying Markov chain (Y⃗x)x≥0. The asymptotics of the
persistence probabilities of Markov additive functionals are obtained by Lyu and Sivakoff [LS17].
In particular, [LS17, Thm. 2] yields∑

b∈Z:|b|≤⌊κ/2⌋

P (S1 ≥ b, · · · , St ≥ b) ∼ γg√
2π

t−1/2,(4.20)

where the quantity γ2
g is defined in (4.16). To conclude, note that the finitely many persistence

probabilities in (4.20) for various values of b’s satisfy linear relations which can be derived by
standard first-step analysis (see [LS17, Prop. 3.4]). Thus (4.20) implies (4.18), as desired. □
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4.3. Tournament expansion and the excitation rate. In this section, we establish the
√
t

excitation rate of the critical excitable media stated in Theorem 1 (ii) (1.5). While we were able to
use the the embedded arrow dynamics to obtain the clustering rate, we need a different technique
to analyze the excitation rate. To this effect, we introduce another comparison process for the
critical excitable media from a different perspective, which we call the tournament expansion.
This technique was originally developed by Gravner, Lyu, and Sivakoff [GLS16] in order to better
understand the 3-color CCA and GHM dynamics on arbitrary underlying graphs.

We begin with an instructive toy model called a tournament process. Instead of coloring nodes
of a graph G = (V,E) by using mod κ colors, consider a map Rk0 : V → Z called a ranking on G.
The transition map from time t to t+ 1 is given by

(4.21) Rkt+1(x) = max{Rkt(y) | y ∈ N(x) ∪ {x}}.

In words, in each transition Rkt 7→ Rkt+1, each node simultaneously copies the maximum rank
among it and its neighbors. Observe that if G is finite, then for any initial ranking Rk0 on G there
is a global maximum, and each node will eventually adopt the global maximum. In general, locally
maximum rank propagates with unit speed across the graph until it is overcome by a higher ranker.

The basic idea of relating a similar process to the FCA dynamics on Z is the following: we
construct an accompanying tournament-like system where each site increases its rank if and only if
it gets excited. To give a detailed construction, we denote

(4.22)

∫ y

x

dξt :=
∑

x≤z<y

dξt(z).

for sites x ≤ y in Z and times t ≥ 0. If x > y, then we define
∫ y

x
dξt = −

∫ x

y
dξt.

Let (ξt)t≥0 and 0 ≤ t0 ≤ 5κ be as in Proposition 4.4. We define its tournament expansion by a
sequence of rankings (rkt)t≥t0 defined as follows: set the rank of the origin at time t by

(4.23) rkt(0) = Et(0) =
t−1∑
s=0

1(0 is excited at time s)

for all t ≥ 0, and then extend to all sites by a path integral of −dξt:

(4.24) rkt(x)− rkt(0) = −
∫ x

0

dξt

The minus sign in front of the path integral reflects the fact that the direction of dξt agrees with
the direction of excitation, and ranking should increase whenever getting excited.

Our first observation about tournament expansion is that all sites indeed increment their rank
by 1 if and only if they get excited:

Proposition 4.8. Let (ξt)t≥0, 0 ≤ t0 ≤ 5κ, and (rkt)t≥0 be as before. For any x, y ∈ Z and t ≥ t0,
we have

(4.25)

∫ y

x

dξt+1 −
∫ y

x

dξt = 1(x is excited at time t)− 1(y is excited at time t).

Furthermore, we have

rkt+1(x)− rkt(x) = 1(x is excited at time t).

Proof. The second part of the assertion follows immediately from the first part, definition of rank
of the origin, and the following identity

rkt+1(x)− rkt(x) = [rkt+1(0)− rkt(0)]−
[∫ x

0

dξt+1 −
∫ x

0

dξt

]
.
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Now we show the first part. We may assume x < y since both sides in (4.25) are antisymmetric
under the exchange of x and y. Observe that it suffices to show the assertion for y = x+ 1, since
then

y−1∑
z=x

(dξt+1 − dξt)(z) =
k−1∑
i=0

1(z is excited at time t)− 1(z + 1 is excited at time t)

= 1(x is excited at time t)− 1(y is excited at time t),

where the left hand side equals that of (4.25). It remains to verify that for any x ∈ Z,

(4.26) (dξt+1 − dξt)(x) = 1(x is excited at time t)− 1(x+ 1 is excited at time t)

for any x ∈ Z. The argument is based on the arrow process; namely, the left hand side of (4.26)
equals the “flux” of particles, which we define it to be the net change in the number of right arrows
minus left arrows on edge (x, x+ 1) from time t to t+ 1.

First assume that x excites x+ 1 at time t, so x blinks at time t and is not excited at the same
time, so the right hand side of (4.26) equals −1. The assumption yields that edge (x, x+ 1) has
only right arrows, and its bottom right arrow is released at time t; since x is not excited at time
t, there is no right arrow released from (x − 1, x), so (x, x+ 1) loses one right arrow during the
transition ξt 7→ ξt+1. Then using the arrow dynamics, the left hand side of (4.26) also equals −1,
as desired. Second, suppose that x does not excite x + 1, but x + 1 is excited by x + 2 at time
t. If x is also excited by x− 1 at time t, then no particle leaves the edge (x, x+ 1), but there is
both an incoming left arrow from the right and an right arrow from the left, which annihilate each
other. Thus the flux is zero as asserted. Lastly, suppose that x+ 1 is excited by x+ 2 but x is
not excited by x− 1. Then x is not excited at time t, so the right hand side of (4.26) equals −1.
Indeed, no right arrow is released from (x− 1, x) and a left arrow is released from (x+ 1, x+ 2) at
time t, so either this incoming left arrow annihilates the bottom right arrow on (x, x+ 1) if any, or
occupies the empty queue at (x, x+ 1); in both cases, the flux on (x, x+ 1) is −1. This shows the
assertion. □

The previous observation immediately yields that the tournament expansion for the critical ex-
citable media does follow a tournament-like time evolution where local maxima subsume neighboring
sites.

Proposition 4.9. Let (ξt)t≥0, 0 ≤ t0 ≤ 5κ, and (rkt)t≥0 be as before. Fix t ≥ t0 and x ∈ Z. For
CCA, we have

(4.27) rkt+1(x) = rkt(x) + 1
(
rkt(x+ 1) > rkt(x) or rkt(x− 1) > rkt(x)

)
.

For FCA, we have

(4.28) rkt+1(x) =

{
rkt(x) + 1 if ∃y ∈ {x± 1} s.t. ξt(y) = 0 and rkt(y) > rkt(x)

rkt(x) otherwise

Proof. By construction (4.24),

rkt(x) = rkt(x− 1) + dξt(x− 1) = rkt(x+ 1)− dξt(x).(4.29)

In the CCA dynamics, recall that x is excited at time t if and only if either dξt(x − 1) > 0 or
dξt(x) < 0. Hence the assertion for CCA follows from the above. Also, for the FCA dynamics, note
that x is excited at time t if and only if there exists a blinking (of color 0) neighbor y of x with
dξt(y, x) > 0, where dξt(y, x) = dξt(x− 1) if y = x− 1 and dξt(y, x) = −dξt(x) if y = x+ 1. Hence
the assertion follows similarly. □

Now we are ready to prove the key lemma in this section. Recall that the quantity rkt(0) = Et(0)
is a “temporal” quantity in the sense that it depends on the history of trajectory (ξs)s≥0 up to time
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t− 1. Define a “spatial” quantity Mt(m) by the maximum rank at time t in the m-ball centered at
the origin, i.e.,

(4.30) Mt0(m) = max{rkt0(x) : |x| ≤ m}.

The next observation relates these two quantities.

Lemma 4.10. Let (ξt)t≥0, 0 ≤ t0 ≤ 5κ, and (rkt)t≥0 be as before. Then for each t ≥ 0, we have
that for CCA,

(4.31) Mt0(⌊t/⌊κ/2⌋⌋) ≤ Et+t0(0) ≤Mt0(t),

and for FCA,

(4.32) Mt0

(⌊
t

⌊κ/2⌋(κ+ 1)

⌋)
≤ Et+t0(0) ≤Mt0(⌊t/κ⌋).

Furthermore, for FCA with κ = 3, we have

(4.33) E3t+t0(0) = Mt0(t).

Proof. Recall that Et(0) = rkt(0) for all t ≥ 0 by construction. Let v+ = 1 for CCA and v+ = 1/κ
for FCA as in Lemma 4.7. By Proposition 4.9, each site increments its rank only when in contact
with neighbors with higher rank. This happens if and only if an arrow passes through each site.
By Lemma 4.7, the speed of particles are at most v+. Hence by time t0 + t, the origin can adopt
the highest rank within radius at most tv+, which is Mt0(tv

+). This gives the upper bounds on
Et+t0(0) in the inequalities (4.31) and (4.32).

To show the lower bounds, we first claim that for any t ≥ 0, x ∈ Z, we have

(4.34) rkt+⌊κ/2⌋(κ+1)(x) ≥ max{rkt(y) | y ∈ {x− 1, x, x+ 1}}.

In words, the rank of a site x exceeds the maximum rank in its 1-ball ⌊κ/2⌋(κ+ 1) iterations ago.
This gives a lower bound on the growth rate of ranks at all sites, and repeating this inequality for
the origin and making a change of variable in time, the lower bounds in (4.31) and (4.32) follow.

It remains to verify the claim. We may assume without loss of generality that y = x − 1. If
rkt(x) ≥ rkt(x− 1), then by the monotonicity of ranks in time we have

(4.35) rkt+⌊κ/2⌋(κ+1)(x) ≥ rkt(x− 1).

So we may assume rkt(x) < rkt(x− 1). On the one hand, by construction of the ranking rkt, the
rank difference between adjacent sites is upper bounded by ∥dξt∥∞ ≤ ⌊κ/2⌋, so we have

(4.36) 0 ≤ rkt(x− 1)− rkt(x) ≤ ⌊κ/2⌋.

On the other hand, by the monotonicty of ranks, rks(x− 1) ≥ rkt(x− 1) for all times s ≥ t. Hence
by Proposition 4.9, for CCA, the rank of x will increment by one at least until it catches up with
rkt(x− 1), which would take at most ⌊κ/2⌋ iterations since the rank difference is at most ⌊κ/2⌋.
Thus the rank of x will become at least rkt(x− 1) by time t+ ⌊κ/2⌋. Similarly, for FCA, x will
increment by one whenever x − 1 has color 0 at least until it catches up with rkt(x − 1). Note
that until this happens, x− 1 is not excited by x, so it returns to 0 at least once in every κ+ 1
iterations. Thus the rank of x will become at least rkt(x− 1) by time t+ ⌊κ/2⌋(κ+ 1). This shows
the assertion.

Lastly, we show (4.33). Consider FCA with κ = 3 and r = 1. For this, we only need to improve
the lower bound in (4.32). Fix t ≥ t0 and suppose rkt(x) < rkt(x− 1). Then since κ = 3, we have
rkt(x) = rkt(x−1)−1. For this, we need to have (ξt(x−1), ξt(x)) ∈ {(1, 2), (2, 0), (0, 1)}. If the color
pair is either (2, 0) or (0, 1), then x excites within two iterations and hence rkt+2(x) ≥ rkt(x− 1).
If the color pair is (1, 2), then x excites within three iterations unless ξt(x− 2) = 0 so that x− 1
excites at time t and hence ξt+1(x − 1) = 1. However, this corresponds to the stack flip event,
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which we have shown to never occur for all times t ≥ t0 in Proposition 4.4. Thus, in all cases,
rkt+3(x) ≥ rkt(x− 1). This shows

rkt+3(x) ≥ max{rkt(x− 1), rkt(x), rkt(x+ 1)}.(4.37)

Iterating the above inequality shows E3t+t0(0) ≥Mt0(t). This completes the proof. □

Now we give a proof to Theorem 2.

Proof of Theorem 2. Fix κ ≥ 3, and let (ξt)t≥0, t0 ∈ [0, 5κ], and (rkt)t≥t0 be as before. Recall
that Mt0(m) denotes the maximum rank at time t0 within distance m from the origin (see (4.30)).
Fix an integer s ∈ [t0 + 1, t] and write

Mt0(t) = rkt0(0) + max

{
max

−t≤x<−s

∫ x

−s

dξt0 , max
−s≤x≤s

∫ x

−s

dξt0 , max
s<x≤t

∫ x

s

dξt0

}
.(4.38)

Note that
∫ x

s
dξt0 = Sx − Ss. Bounding the maximum from above by the sum and from below by

one argument and it follows that

E
[
max
s<x≤t

Sx − Ss

]
≤ E[Mt0(t)] ≤ E

[
max

−s≤x≤s

∫ x

0

dξt0

]
+ 2E

[
max
s<x≤t

Sx − Ss

]
,(4.39)

where we have used that the first and the last integrals in (4.38) have the same distribution, which
follows from the distribution of dξt0 being symmetric about zero. Now using [LS17, Theorems 1
and 2], we have

E
[
max
s<x≤t

Sx

]
∼ γg

√
2t/π,(4.40)

where γ2
g ∈ (0,∞) denotes the limiting variance of the edge increments introduced in (4.16).

Combining this with (4.39), it follows that

γg
√
2/π ≤ lim inf

t→∞

E[Mt0(t)]√
t

≤ lim sup
t→∞

E[Mt0(t)]√
t

≤ 2γg
√
2/π.(4.41)

From this and Lemma 4.10, the Θ(
√
t) asymptotics of the expected excitation count Et(0) in (1.6)

follows immediately. This shows (i).
Next, in order to show (ii), we claim that as t→∞,

(4.42)
1

γg
√
t
Mt0(t)

d−→ max

{
max
0≤u≤1

Bu, max
0≤v≤1

B′
v

}
=: M,

where (Bu)0≤u≤1 and (Bv)0≤v≤1 are independent standard Brownian motions. Note that by the
reflection principle, for any s ≥ 0, we have

(4.43) P(M ≥ s) = 1− (1− 2P(Z ≥ s))2 = 4P(Z ≥ s)P(Z ≤ s)

where Z ∼ N(0, 1) is a standard normal random variable.

Note that our underlying Markov chain (Y⃗ (x))x∈Z (see (4.15)) is irreducible on a finite state
space. Since γ2

g ∈ (0,∞), the functional central limit theorem holds for the Markov additive process
Sn in (4.12) (e.g., see [MT12, Ch. 17]). Hence it follows that

1

γg
√
t
max
s≤x≤t

∫ x

s

dξt0
d−→ max

0≤u≤1
Bu,

Since the underlying chain (Y⃗x)x∈Z is reversible, this functional convergence holds for both directions
x→ ±∞. In particular, we have

(4.44) max

{
1

γg
√
t
max
s≤x≤t

∫ x

s

dξt0 ,
1

γg
√
t

max
−t≤x≤−s

∫ x

−s

dξt0

}
d−→ max

{
max
0≤u≤1

Bu, max
0≤v≤1

B′
v

}
= M
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as t→∞. Note that the two integrals above are independent by the finite correlation length and
s ≥ t0 + 1. Hence the limiting Brownian motions are independent. Finally, (4.38) yields that the
difference between Mt0(t) and γg

√
t times the left hand side of (4.44) is bounded. Hence Slutzky’s

theorem yields the desired diffusive limit of Mt0(t) as asserted in the claim.
Now the stochastic domination in (1.7) follows immediately from the claim (4.42) and Lemma

4.10. Next, suppose κ = 3. Then Lemma 4.10 yields

Et+t0(0) = Mt0(t) for CCA,

E3t+t0(0) = Mt0(t) for FCA.

Hence by (4.42), we deduce

1

γg
√
t
Et(0)

d−→

{
M for CCA
1√
3
M for FCA,

(4.45)

where for FCA we also used the monotonicity of Et(0) in t. To conclude, note that γ2
g = 2/3 for

CCA and 8/27 for FCA (see [LS17, Sec. 4]). This shows (1.8), as desired. This shows (ii). □

5. Overcoupled CCA and FCA

In this section, we prove the first part of Theorem 1 (iii) that every site gets excited at least at
a linear rate almost surely when r > ⌊κ/2⌋ for CCA and ⌊κ/2⌋ < r < κ− 1 for FCA.

5.1. Stable Periodic Objects and linear excitation rate. We first consider the overcoupled
CCA. For a concrete example, suppose κ = 6 and r = 3 (see Fig. 2). Suppose an edge (x, x+1) has
colors (0, 3). Then both sites excite each other simultaneously, so after one iteration, they become
colors (1, 4). The same holds indefinitely, and since the involved sites x and x + 1 are already
excited at a maximal rate, there is no way that their local dynamics can be affected by external
configurations. Thus, any edge with color difference 3 acts as a stable object, advancing its colors
by one every iteration. This is an example of Stable Periodic Orbits (SPOs), which was first used
by Fisch, Gravner, and Griffeath to analyze two-dimensional CCA [FGG91]. Our key observation
for overcoupled CCA is that, despite being in one dimension, over-coupling allows SPOs, which will
be the source of linear excitation of all sites. This is enough to show Theorem 1 (iii)(a).

Proof of Theorem 1 (iii)(a). Consider the overcoupled CCA. First assume that κ is even. In
the initial configuration, there is a positive density of edges with color difference κ/2. By the
ergodic theorem, there are infinitely many such edges almost surely. In the overcoupled regime,
edges with a color difference κ/2 maintains the same color difference, where sites in those edges
increment their colors by one at every iteration, regardless of configurations outside.

Next, we show that every site eventually increments its color by one every iteration. Let A be
the set of sites that are eventually increasing their colors by one at every iteration. Suppose for a
contradiction that Ac is nonempty. Consider a site v at the boundary of Ac and has a neighbor w
in A. Then there are infinitely many times that v does not increase its color by one but w increases
its color by one every iteration. It follows that there exist a time such that ξt(w) = ξt(v) + 1. This
in turn implies that ξt+1(v) = ξt(v) + 1 and ξt+1(w) = ξt(w) + 1 and, by induction, they remain
locked in phase, which shows v ∈ A, a contradiction.

The case of odd κ with r ≥ ⌈κ2 ⌉ is similarly dealt with by considering a SPO comprised by a site

in state 0 followed by κ−1
2 . The gap between these two sites remains fixed below r so they both

update at a maximal rate (every time step) and hence remain locked in phase.
Lastly, note that since every site eventually excites every iteration, we have

lim
t→∞

Et(0)
t

= 1.(5.1)
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This shows the assertion for the overcoupled CCA. □

Next, we consider the overcoupled FCA. Unlike in CCA, in FCA even with overcoupling, there is
no finite configuration that have maximal excitation internally and cannot be perturbed by external
configuration. To see this, note that in FCA each site can excite their neighbors (when color 0) at
most once in κ iterations, so on Z which has degree 2, every site can be excited at most twice in
every κ iterations. Hence for any configuration on a finite subset of sites Ω0, there will be a time
that a boundary site in Ω0 is not excited at some color in [1, r], and one can always place a 0 next
to it from outside of Ω0 so that we exert additional excitation that is not supported internally by
Ω0.

However, fortunately, the overcoupled FCA on Z admits a SPO-like object, where a (κ + 1)-
periodic ‘stable core’ is protected by ‘quasi-stable’ buffers. More specifically, length-7 color string
rrr0rrr is such an object. We establish its properties in the next lemma.

Lemma 5.1 (Quasi-SPO for over-coupled FCA). Consider FCA with r > ⌈κ/2⌉. Suppose the color
configuration on an interval [x− 3, x+ 3] at some time t is rrr0rrr. Then the configuration rr0rr
on [x− 2, x+ 2] is (κ+ 1)-periodic while the colors on sites x± 3 can switch between r and r+ 1 in
period κ+ 1.

Proof. For readability we denote color r in bold in this proof. Without loss of generality we
test color r on one edge and r+ 1 on the other. It will be manifest in the proof that the edges
{x− 3, x+ 3} are buffer sites and don’t interact with the rest of the pattern.

First we observe the evolution of the middle 5 sites. The main observation is they can never
get pulls from the edge sites {x − 3, x + 3} since the 0’s there occur when the middle 5 are not
”pullable”. Furthermore, {x− 1} get pulled exactly once at time t and otherwise all 5 advance at
maximal rate.

Next, we turn our attention to the buffer sites at the edges. For and edge with color r+ 1, say
we have Xt(x− 3) = r + 1, it advances at maximal rate up until time t+ (κ− r), when it is pulled
by {x− 2} so necessarily we will have Xt+(κ−r+1)(x− 3) = 1. In the r time steps to t+ (κ+ 1) it
might get a single pull or none whatsoever, since it cannot be coming from the inside neighbor,
arriving at colors r and r+ 1 respectively.

As for an edge with color r, say Xt(x+3) = r, there are two possibilities. In the first, showcased
below, Xt(x + 3) = r does not receive a pull at time t, so it would advance at maximal rate to
reach Xt+(κ−r+1)(x − 3) = 1. Then, as argued in the previous paragraph, it would reach colors
r/r+ 1 at time t+ (κ+ 1).

time : t t+ (κ− r + 1) t+ (κ+ 1)

x+ 3 : r r + 1 r + 2 . . . 0 1 ∗ ∗ ∗ ∗ r/r+ 1
x+ 2 : r r + 1 r + 2 . . . 0 1 1 2 . . . r − 1 r
x+ 1 : r r r + 1 . . . κ− 1 0 1 2 . . . r − 1 r
x : 0 1 2 . . . κ− r κ− r + 1 κ− r + 1 κ− r + 2 . . . κ− 1 0

x− 1 : r r r + 1 . . . κ− 1 0 1 2 . . . r − 1 r
x− 2 : r r + 1 r + 2 . . . 0 1 1 2 . . . r − 1 r
x− 3 : r+ 1 r + 2 r + 3 . . . 1 1 ∗ ∗ ∗ ∗ r/r+ 1

Otherwise, Xt(x + 3) = r does indeed get pulled at time t and advances at maximal rate
thereafter to reach Xt+(κ−r+1)(x+ 3) = 0. In the remaining r steps to t+ (κ+ 1) it must advance
at maximal rate since the next blinking state 0 at {x+ 4} must come at t+ (κ+ 1) at the earliest.
This is because {x+ 4} does receive at least one pull in that time interval, as it does so at time
t+ (κ− r + 1) since (κ− r + 1) ≤ r.
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time : t t+ (κ− r + 1) t+ (κ+ 1)

x+ 3 : r r r + 1 . . . κ− 1 0 1 2 · · · r − 1 r
x+ 2 : r r + 1 r + 2 . . . 0 1 1 2 . . . r − 1 r
x+ 1 : r r r + 1 . . . κ− 1 0 1 2 . . . r − 1 r
x : 0 1 2 . . . κ− r κ− r+ 1 κ− r + 1 κ− r + 2 . . . κ− 1 0

x− 1 : r r r + 1 . . . κ− 1 0 1 2 . . . r − 1 r
x− 2 : r r + 1 r + 2 . . . 0 1 1 2 . . . r − 1 r
x− 3 : r+ 1 r + 2 r + 3 . . . 1 1 ∗ ∗ ∗ ∗ r/r+ 1

□

Now we show the first part of Theorem 1 (iii)(b).

Proof of the first part of Theorem 1 (iii)(b). By the Borel-Cantelli lemma the rrr0rrr pat-
tern occurs infinitely often in the random initial configuration. Hence, by the Lemma 5.1 we have a
positive density of (κ+ 1) periodic sites.

Next, we would like to show that every site excites at a linear rate:

lim inf
t→∞

1

t
Et(0) > 0(5.2)

and that every site is not eventually κ- or (κ+ 2)-periodic. For this, we first argue that the origin
will eventually have periodic dynamics. If the origin belongs to an rrr0rrr string, then we know it
will be (κ+1) periodic. Otherwise, we can find the nearest such patterns in the initial configuration,
so there is an almost surely finite random interval [−N,M ] containing the origin, where at the
both ends of this interval we have rrr0rrr patterns initially. In Lemma 5.1, we have shown that
the dynamics in the interior of such patterns are determined regardless of configurations outside.
Thus, the dynamics on the interval (−N,M) is independent of the sites outside this interval. In
turn, FCA restricted on (−N,M) is a finite-state deterministic dynamical system, which must be
periodic. This shows that the origin must eventually have a periodic dynamics.

Now that we know the origin is eventually periodic, either it is eventually κ-periodic and excites
only finitely many times or it has larger period than κ and it gets excited at a linear rate. Thus
we can conclude (5.2) by showing that the origin cannot be κ-periodic. Suppose not. If its
neighbor, say site 1, is not already κ periodic eventually, then its phase will drift so that together
with the origin they are both in the blinking state, i.e. {ξt(0), ξt(1)} = {0, 0}. We have two
possibilities. If the origin’s neighbor blinks again after κ+ 1 steps they will arrive at configuration
{ξt+κ+1(0), ξt+κ+1(1)} = {1, 0}. The origin would get a pull at time κ + 1, contradicting κ
periodicity. Likewise if it takes κ+ 2 for the origin neighbor’s to blink. Since the origin updates at
maximal rate, they will arrive at configuration {ξt+κ+1(0), ξt+κ+1(1)} = {2, 0} contradicting the
origin’s κ-periodicity. Indeed, the origin would also get pulled in this case since, in this regime,
r > ⌈κ2 ⌉ ≥ 2 for all κ ≥ 3.

It remains to show that the origin cannot be eventually (κ+2)-periodic. This argument proceeds
similarly by showing that a (κ+ 2)-periodic site must have both neighbors also (κ+ 2)-periodic.
Suppose the origin is (κ + 2)-periodic. If the site to its right is not eventually (κ + 2)-periodic,
then it’s phase must drift backwards (relative to the origin) by 1 or 2 steps in each interblinking
cycle. Therefore, there must be a time at which {Xt(0), Xt(1)} = {0, 0}. Looking at the next
interblinking period, we have two possibilities:

(1) Case 1: Right neighbor blinks in κ steps: For the origin to have an interblinking
period of κ+ 2 it must receive an excitation from the right neighbor. By the assumption,
this can only happen at time t+ κ. But by then the origin has been excited at most once
from the left so either ξt+κ(0) = 0 or ξt+κ(0) = κ−1. The former case obviously contradicts
(κ+ 2) periodicity. In the latter observe that, since r < κ− 1 the origin updates at time
t+ κ and blinks at time t+ (κ1) also contradicting κ+ 2 periodicity.
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time : t+ (κ+ 2) t+ κ t
1 : ∗ 1 0 · · · 1 0
0 : 1 0 κ− 1 · · · 1 0

(2) Case 2: Right neighbor blinks in κ+1 steps: This gives a similar contradiction. Since
Xt(1) doesn’t blink until Xt(0) = κ− 1 and r < κ− 1, the origin receives no pull from the
right. So it can be pulled at most once from the left, contradicting κ+ 2 periodicity.

time : t+ (κ+ 2) t+ (κ+ 1) t
1 : 1 0 κ− 1 · · · 1 0
0 : 0 κ− 1 κ− 2 · · · 1 0

Therefore, any neighbor of the origin would eventually have be κ or κ+ 2-periodic respectively. By
induction, all vertices are eventually κ-periodic (resp. κ+2-periodic), but this contradicts existence
of a positive density of (κ+ 1)-periodic sites we established before. □

5.2. (κ + 1)-periodicity of the weakly overcoupled FCA. In this section, we consider the
overcoupled FCA in the particular case r = ⌈κ2 ⌉ + 1 and prove the second part of Theorem 1
(iii)(b). We show that all lattice sites are eventually κ+ 1 periodic. The cases of even and odd κ
differ slightly. As usual, we let ξt : Z → Z/κZ denote the color configuration at time t. We will
require the following definition.

Definition 5.2 (Defects). We say there is a defect at time t on the edge (x, x+ 1) if:

• For odd κ: {ξt(x), ξt(x+ 1)} = {0, r − 1} or {0, r}.
• For even κ: {ξt(x), ξt(x+ 1)} = {0, r − 2}, {0, r − 1} or {0, r}.

A crucial feature of defects in the ‘weakly overcoupled FCA’ is that they cannot be created
spontaneously. Defects present at the current time must have been preceded by defects at some
prior times on the same edges. We establish this fact and characterize all possible ways that defects
can arise. Note that the classification depends on the parity of κ.

Proposition 5.3. Suppose there is a defect at time t on edge (x, x+ 1) for t ≥ r + 1. Then there
must be a defect on edge (x, x+ 1) at time either t− (r − 1), t− r or t− (r + 1). More precisely,
without loss of generality, suppose ξt(x) = 0. Then the dynamics on (x, x+ 1) during [t− (r + 1), t]
must be of the following. Bold columns signify defects.

(i) For the odd κ case we have the following 4:

time : t t− r
x : 0 κ− 1 κ− 2 · · · r r ∗

x− 1 : r− 1 ∗ ∗ · · · 1 0 ∗
(5.3)

time : t t− r
x : 0 κ− 1 κ− 2 · · · r r ∗

x− 1 : r r − 1 r − 2 · · · 1 0 ∗
(5.4)

time : t t− r − 1
x : 0 κ− 1 κ− 2 · · · r r r

x− 1 : r ∗ ∗ · · · 1 0
(5.5)

time : t t− r − 1
x : 0 κ− 1 κ− 2 · · · r r − 1 r− 1

x− 1 : r ∗ ∗ · · · 1 0
(5.6)
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(ii) For the even κ case we have the following 9:

time : t t− r + 1
x : 0 κ− 1 . . . r r ∗

x− 1 : r− 2 ∗ . . . 1 0 ∗
(5.7)

time : t t− r + 1
x : 0 κ− 1 . . . r r ∗

x− 1 : r− 1 r − 2 . . . 1 0 ∗
(5.8)

time : t t− r
x : 0 κ− 1 . . . r − 1 r− 1 ∗

x− 1 : r− 1 ∗ . . . 1 0 ∗
(5.9)

time : t t− r
x : 0 κ− 1 . . . r r r ∗

x− 1 : r− 1 ∗ . . . ∗ 1 0 ∗
(5.10)

time : t t− r
x : 0 κ− 1 κ− 2 . . . r − 1 r− 1 ∗

x− 1 : r r − 1 r − 2 . . . 1 0 ∗
(5.11)

time : t t− r
x : 0 κ− 1 κ− 2 . . . r r r ∗

x− 1 : r r − 1 r − 2 . . . 2 1 0 ∗
(5.12)

time : t t− r − 1
x : 0 κ− 1 κ− 2 . . . r − 1 r − 2 r− 2 ∗

x− 1 : r ∗ ∗ . . . ∗ 1 0 ∗
(5.13)

time : t t− r − 1
x : 0 κ− 1 κ− 2 . . . r − 1 r − 1 r− 1 ∗

x− 1 : r ∗ ∗ . . . ∗ 1 0 ∗
(5.14)

time : t t− r − 1
x : 0 κ− 1 κ− 2 . . . r r r − 1 r− 1 ∗

x− 1 : r ∗ ∗ . . . ∗ ∗ 1 0 ∗
(5.15)

Furthermore, there is no spontaneous birth of defects. Specifically, for each edge e = (x, x + 1),
either there is no defect on e for all times, or there are defects on e up to some finite time and then
there is no defect thereafter (‘transient defect’), or there are defects on e for infinitely many times
(’recurrent defect’).

Proof. It suffices to show the second part of the statement. We begin with the odd case. First
suppose that (ξt(x), ξt(x− 1)) = (0, r − 1). For the first sequence in (5.3) note that x cannot get
pulled by x− 1 so, backtracking, we should find the blinking state at time t− r or t− r + 1. Also
since κ− (r − 1) = r, we know this must be the color of site x− 1 at time t− (r − 1). If x pulls
x− 1 at that time we will have ξt−(r−2)(x− 1) = r which yields a backtracking contradiction. Thus
x blinks at time t− r yielding (5.3).

Next suppose that (ξt(x− 1), ξt(x)) = (0, r). Similarly, x does not get pulled by x− 1 during
times [t, t− r] so we should find the blinking state at time t− r or t− r − 1. In the former case,
again since κ− (r − 1) = r, we must have ξt−(r−1)(x− 1) = r resulting in (5.4), or else we have a
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backtracking contradiction as before. In the latter case, we have two options. We can arrive at
ξt−(r−1)(x) = r by having ξt−(r+1)(x) = r as in (5.5) or ξt−(r+1)(x) = r − 1 which yields (5.6) .

As for the even case, we begin by considering (ξt(x− 1), ξt(x)) = (0, r− 2). Since x− 1 does not
receive a pull from x during times [t− r, t] we have it must blink at times t− r + 2 or t− r + 1.
The former, argued as before, would result in a backtracking contradiction leaving us with (5.7).

Next suppose, (ξt(x − 1), ξt(x)) = (0, r − 1). With no pull from x, x − 1 must blink at times
t−r+1 or t−r. In the former case, we must have x−1 updates at a maximal rate and ξt−r+1(x) = r
yielding (5.8). In the latter case we have two options. We can have ξt−r(x) = r − 1 and x receives
one pull from x− 1 at time t− r as in (5.9) or we have ξt−r(x) = r and x receives consecutive pulls
from x− 1 and x+ 1, respectively, at times t− r and t− r + 1 yielding (5.10).

Finally, suppose (ξt(x− 1), ξt(x)) = (0, r), we have 5 possibilities. Once again, since x doesn’t
pull x− 1, the former must blink at times t− r or t− r − 1. If it blinks at time t− r we have two
possibilities. As before, we can have again that ξt−r(x) = r − 1 and x receives one pull from x− 1
at time t− r yielding (5.11) or that ξt−r(x) = r and x receives consecutive pulls from x− 1 and
x+ 1 respectively at times t− r and t− r + 1, which results in (5.12).

Otherwise, it blinks at time t− r − 1 and we have three possibilities. If ξt−r−1(x) = r − 2, then
x gets a pull at that time step and must update maximally from then on. This gives us sequence
(5.13). If ξt−r−1(x) = r − 1 we have two other possibilities since x must receive at least one pull
from x+ 1. This may happen at time t− r yielding (5.14). Otherwise, it happens at time t− r + 1
when ξt−r+1(x) = r resulting in (5.15). □

From Proposition 5.3, it seems that the combinatorics of defect dynamics is too complicated
to handle, since the different local dynamics can be concatenated in all possible ways to generate
long-term dynamics. Fortunately, if a recurrent defect is right next to an edge without a recurrent
defect, then there is only one type of dynamics possible for the recurrent defect. This is shown in
the proposition below. We relegate its proof to the following subsection.

Proposition 5.4. Suppose an edge (x− 1, x) has a recurrent defect and the next edge (x, x+ 1)
does not. Then the dynamics on (x− 1, x) must be as follows:

(1) For odd κ the composition of the sequence (5.4) only, that is,

x : · · · 0 κ− 1 κ− 2 · · · r r r − 1 r − 2 · · · 1 0 · · ·
x− 1 : · · · r r − 1 r − 2 . . . 1 0 κ− 1 κ− 2 . . . r r · · ·(5.16)

(2) For even κ the composition of sequences (5.8) and (5.11) that is,

x : · · · 0 κ− 1 κ− 2 · · · r − 1 r− 1 r − 1 r − 2 · · · 1 0 · · ·
x− 1 : · · · r r − 1 r − 2 . . . 1 0 κ− 1 κ− 2 . . . r r · · ·(5.17)

We now deduce the second part of Theorem 1(iii)(b).

Proof of the second part of Theorem 1 (iii)(b). Our goal now is to show that for the ‘weakly
ocercoupled’ FCA with r = ⌈κ/2⌉+ 1, almost surely, every site becomes (κ+ 1)-periodic.

First, we claim that there is a positive density of edges that have no defect for all times or
transient defects. To see this, there is a positive density of intervals in the initial configuration of
constant color. If this interval is long enough, then the middle edge will not have a defect from
time 0 through time r + 1. Then by Proposition 5.3, this middle edge will never have a defect for
all times. By translation invariance and the ergodic theorem, we can conclude the claim.

Second, note that there is a positive density of edges that have recurrent defects and both nodes
are eventually (κ+ 1)-periodic. Indeed recall that (κ+ 1)-periodicity of the interior of the rrr0rrr
configuration shown in Lemma 5.1.

Third, we show that every site in a recurrent defect must be eventually (κ+1)-periodic. Suppose
for contradiction that there exists a positive density of edges with recurrent defects and at least one
of the end points are not eventually κ+ 1 periodic. Then there is an edge (x− 1, x) which has a
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recurrent defect and either x− 1 or x is not eventually κ+1 periodic, and the edge (x, x+1) either
does not have a recurrent defect or it has recurrent defect such that both x and x+1 are eventually
κ + 1 periodic. We will get a contradiction from both cases. First, suppose (x, x + 1) is not a
recurrent defect. Then (x− 1, x) is eventually κ+1 periodic by Proposition 5.4, a contradiction. So
we may assume (x, x+ 1) is a recurrent defect and both x and x+ 1 are eventually (κ+ 1)-periodic.
Therefore, x− 1 must be eventually not (κ+ 1)-periodic. But by Proposition 5.3, the dynamics
on (x− 1, x) must be given by composition of (5.4). It follows that x− 1 is also eventually κ+ 1
periodic, a contradiction.

To summarize, we have shown that there is a positive density of (κ+1)-periodic recurrent defects
and all other edges are not recurrent defects. Consider a contiguous interval I of edges that are
not recurrent defects, which is surrounded by (κ+ 1)-periodic recurrent defects. We claim that
(κ+ 1)-periodicity will spread into the interval I. To see this, observe that the lack of defects on
I allows us to use arrow dynamics as we introduced in Section 2. Namely, defects correspond to
stacks of arrows that flip back and forth automatically, releasing one arrow every time it flips. Since
there is no defect on I after a finite amount of time, all stacks of arrows in I have size < ⌊κ−1

2 ⌋
for all sufficiently large times, so arrows in I move ballistically without flipping and annihilate
upon collisions. Hence, all arrows initially in I will have annihilated after a finite time and arrows
injected into I from the recurrent defects at both ends will keep colliding somewhere in the middle
of I (see Figure 1 for r = 3 and 2 for r = 4). Thus every site in I must be either (κ + 1)- or
(κ+ 2)-periodic, depending on the timing that it is hit by the arrows from both sides. However, we
have shown that it cannot be (κ+2)-periodic (first part of Thm. 1(iii)(b)) since (κ+2)-periodicity
spreads to neighboring sites. Thus every site in I must be eventually (κ + 1)-periodic. This is
enough to conclude. □

5.3. Proof of Proposition 5.4. In this section we prove Proposition 5.4. In order to simplify the
presentation, we will prove the statement for two concrete cases: κ = 5 and κ = 6. Generalization
to other cases will be straightforward.

Proof of Proposition 5.4 for κ = 5. Suppose an edge (x− 1, x) has a recurrent defect and the
next edge (x, x+ 1) does not. Suppose κ = 5 and r = 3. Then there are four defects according to
Proposition 5.3:

time : t t− 3
x : 0 4 3 3 ∗

x+ 1 : 2 ∗ 1 0 ∗
(5.18)

time : t t− 3
x : 0 4 3 3 ∗

x+ 1 : 3 2 1 0 ∗
(5.19)

time : t t− 4
x : 0 4 3 3 3

x+ 1 : 3 ∗ ∗ 1 0
(5.20)

time : t t− 4
x : 0 4 3 2 2

x+ 1 : 3 ∗ ∗ 1 0
(5.21)

Our goal is to show that the local dynamics on the edge (x− 1, x) with a recurrent defect must be
given by the concatenation of (5.19) with itself:

x : · · · 0 4 3 3 2 1 0 4 3 3 · · ·
x− 1 : · · · 3 2 1 0 4 3 3 2 1 0 · · ·(5.22)
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Suppose that there exists M > 0 such that there is no defect on the edge (x, x+ 1) for all times
t ≥M . We first rule out (5.21), which will also rule out (5.18), since (5.18) must be followed by
(5.21) according to Proposition 5.3.

Suppose (x− 1, x) has a defect at some time t ≥M + 12 and its dynamics backtracks as (5.21)
from time t. There are two cases to consider: (ξt(x − 1), ξt(x)) = (3, 0) or (0, 3). Suppose the
former. Then by Proposition 5.3, the local dynamics on (x− 1, x, x+ 1) during [t− 7, t+ 4] must
be one of the following two cases:

time : t t− 4 t− 7 t− 10
x+ 1 : a b c d
x : 0 4 3 2 2 ∗ 1 0 4 3 3 e f

x− 1 : 3 ∗ ∗ 1 0 4 3 3 2 1 0 4 3

(5.23)

time : t t− 4 t− 7 t− 11
x+ 1 : a b c
x : 0 4 3 2 2 ∗ 1 0 4 3 3 3 ∗

x− 1 : 3 ∗ ∗ 1 0 4 3 3 ∗ ∗ 1 0 4

(5.24)

time : t t− 4 t− 7 t− 11
x+ 1 : a b c d
x : 0 4 3 2 2 ∗ 1 0 4 3 2 2 e

x− 1 : 3 ∗ ∗ 1 0 4 3 3 ∗ ∗ 1 0 4

(5.25)

In all cases, a ̸= 0 since backtracking two steps yields a contradiction. Since x needs one pull during
[t − 6, t − 5] but x − 1 does not pull x during this period, it follows that b = 0. In case (5.23),
observe that x does not pull x+ 1 during [t− 12, t− 7], so x+ 1 is pulled at most once during this
interval by x+ 2. If x+ 1 is not pulled by x+ 2 during this interval, then c = 0; otherwise d = 0,
so 0 ∈ {c, d}. If c = 0, then e = 3, which is a contradiction with there being no defect on (x, x+ 1)
at time t− 11 ≥M . Likewise, if d = 0 we also arrive at a contradiction with there being no defect
on (x, x+ 1) at time t− 12 ≥M . In case (5.24), x must be pulled by x+ 1 at time t− 10, so c = 0,
which creates a defect on (x, x+ 1) and leads to a contradiction. In case (5.25), as in case (5.23),
x+1 is pulled at most once during [t− 12, t− 7], so either c = 0 or d = 0 and e = 2; either scenario
leads to a defect on (x, x+1) and a contradiction. This rules out the case (ξt(x− 1), ξt(x)) = (3, 0).

Next, suppose (ξt(x − 1), ξt(x)) = (0, 3). Then by Proposition 5.3, the local dynamics on
(x− 1, x, x+ 1) during [t− 11, t] must be one of the following two cases:

time : t t− 4 t− 7
x+ 1 : a b c d e f
x : 3 ∗ ∗ 1 0 4 3 3 2 1 0

x− 1 : 0 4 3 2 2 ∗ 1 0 4 3 ∗

(5.26)

time : t t− 4 t− 7
x+ 1 : a b c d e f
x : 3 ∗ ∗ 1 0 4 3 3 ∗ ∗ 1 0

x− 1 : 0 4 3 2 2 ∗ 1 0 4 3 ∗ ∗

(5.27)

In both cases, 0 ∈ {a, b, c}. Note that b ̸= 0 by two-step backtracking. Also, a ̸= 0 since otherwise
there is a defect on the edge (x, x+ 1) at time t− 1, contrary to the hypothesis. Thus we must
have c = 0. For case (5.26), 0 /∈ {d, e}, so we must have f = 0. This requires x+ 1 to be pulled
twice during [t− 10, t− 3], but it is not pulled by x during this period, a contradiction. For case
(5.27), d ̸= 0 since otherwise there is a defect on (x, x+ 1) at time t − 8, and e ̸= 0 by two-step
backtracking. So we must have f = 0, but then this gives the same contradiction as in the previous
case. This shows that (5.21) (and hence (5.18)) cannot appear on the edge (x− 1, x) after time
M + 8.
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Next, we rule out (5.20). Suppose for a contradiction that the dynamics on (x− 1, x) during
[t− 4, t] is given by (5.20). We consider two cases: (ξt(x− 1), ξt(x)) = (3, 0) or (0, 3). If it is the
former, the local dynamics on (x− 1, x, x+ 1) during [t− 4, t] is given as

time : t t− 4
x+ 1 : 0
x : 0 4 3 3 3

x− 1 : 3 ∗ ∗ 1 0

,(5.28)

which contradicts the hypothesis that there is no defect on the edge (x, x+ 1) after time M and
t ≥M + 7. Next, assume (ξt(x− 1), ξt(x)) = (0, 3). By Proposition 5.3, the sequence (5.5) can be
preceded by one of (5.19), (5.20), and (5.21). Since we have ruled out (5.21) and (5.28), the local
dynamics on (x− 1, x, x+ 1) during [t− 11, t] is given by one of the two cases below:

time : t t− 4 t− 10
x+ 1 : a b c d e
x : 3 ∗ ∗ 1 0 4 3 3 2 1 0

x− 1 : 0 4 3 3 3 2 1 0 4 3 3

(5.29)

time : t t− 4 t− 11
x+ 1 : a b c d e f
x : 3 ∗ ∗ 1 0 4 3 3 ∗ ∗ 1 0

x− 1 : 0 4 3 3 3 2 1 0 4 3 3 3

.(5.30)

For both cases, we must have 0 ∈ {a, b, c} and 0 /∈ {a, b} since that would create a defect on the
edge (x, x + 1) at times ≥ t − 3 ≥ M . So c = 0. Then for (5.29), 0 ∈ {d, e} since x + 1 is not
pulled by x during [t− 9, t]. But neither d nor e can be 0 for the assumed dynamics at x during
[t − 10, t − 7]. Hence (5.29) is impossible. For (5.30), 0 ∈ {d, e, f} but 0 /∈ {d, e} since that will
create a defect on the edge (x, x + 1) at times ≥ t − 9 ≥ M . So f = 0, but then x + 1 must be
pulled twice during [t− 9, t− 3], which is impossible since it is not pulled by x during this period.
This rules out (5.20).

At this point, we have shown that the sequences (5.18), (5.20) and (5.21) and their upside-down
versions, are transient on the edge (x− 1, x). Hence the only recurrent sequence among the four
types in Proposition 5.3 is (5.19). This shows the assertion. □

Proof of Proposition 5.4 for κ = 6. Suppose an edge (x− 1, x) has a recurrent defect and the
next edge (x, x+ 1) does not. Suppose κ = 6 and r = 4. Then there are nine defects according to
Proposition 5.3:

time : t t− 3
x : 0 5 4 4

x− 1 : 2 ∗ 1 0
(5.31)

time : t t− 3
x : 0 5 4 4

x− 1 : 3 2 1 0
(5.32)

time : t t− 4
x : 0 5 4 3 3

x− 1 : 3 ∗ ∗ 1 0
(5.33)

time : t t− 4
x : 0 5 4 4 4

x− 1 : 3 ∗ ∗ 1 0
(5.34)



ONE-DIMENSIONAL EXCITABLE MEDIA WITH VARIABLE INTERACTION RANGE 37

time : t t− 4
x : 0 5 4 3 3

x− 1 : 4 3 2 1 0
(5.35)

time : t t− 4
x : 0 5 4 4 4

x− 1 : 4 3 2 1 0
(5.36)

time : t t− 5
x : 0 5 4 3 3 3

x− 1 : 4 ∗ ∗ ∗ 1 0
(5.37)

time : t t− 5
x : 0 5 4 3 2 2

x− 1 : 4 ∗ ∗ ∗ 1 0
(5.38)

time : t t− 5
x : 0 5 4 4 3 3

x− 1 : 4 ∗ ∗ ∗ 1 0
(5.39)

Our goal is to show that the local dynamics on the edge (x− 1, x) with a recurrent defect should
be given by the concatenation of (5.32) and (5.35):

x : · · · 0 5 4 4 3 2 1 0 5 4 4 · · ·
x− 1 : · · · 3 2 1 0 5 4 3 3 2 1 0 · · ·(5.40)

We first exclude (5.38) which also excludes (5.31) since it would have to be preceded by it.

time : t t− 5 t− 8 t− 12
x+ 1 : a b c d
x : 0 5 4 3 2 2 ∗ 1 0 5 4 3 3 e f

x− 1 : 4 ∗ ∗ ∗ 1 0 5 4 4 3 2 1 0 5 4

(5.41)

time : t t− 5 t− 8 t− 12
x+ 1 : a b
x : 0 5 4 3 2 2 ∗ 1 0 5 4 4 4

x− 1 : 4 ∗ ∗ ∗ 1 0 5 4 4 3 2 1 0

(5.42)

time : t t− 5 t− 8 t− 13
x+ 1 : a b
x : 0 5 4 3 2 2 ∗ 1 0 5 4 3 3 3

x− 1 : 4 ∗ ∗ ∗ 1 0 5 4 4 ∗ ∗ ∗ 1 0

(5.43)

time : t t− 5 t− 8 t− 13
x+ 1 : a b c d
x : 0 5 4 3 2 2 ∗ 1 0 5 4 3 2 2 e f

x− 1 : 4 ∗ ∗ ∗ 1 0 5 4 4 ∗ ∗ ∗ 1 0 5 4

(5.44)

time : t t− 5 t− 8 t− 13
x+ 1 : a b
x : 0 5 4 3 2 2 ∗ 1 0 5 4 4 3 3

x− 1 : 4 ∗ ∗ ∗ 1 0 5 4 4 ∗ ∗ ∗ 1 0

(5.45)
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Note that in these 5 cases we must have b = 0 or else we get a backtracking contradiction at
time t− 8. Note that (5.42), (5.43) and (5.45) have apparent defects in edge (x, x+ 1). For (5.41)
since b = 0 we have 0 ∈ {c, d} and we get a defect in either case since {e, f} will have color 2 or 3.
For (5.44) similary 0 ∈ {c, d} and we have a defect of color gap 2 either way. Now we consider the
orientation reversed (or flipped) case of (5.38), that is when {Xt(x− 1), Xt(x)} = (0, 4). This will
take care of (5.38) and (5.31).

time : t t− 4 t− 7
x+ 1 : a b c d e f g h
x : 4 ∗ ∗ ∗ 1 0 5 4 4 3 2 1 0

x− 1 : 0 5 4 3 2 2 ∗ 1 0 5 4 ∗ ∗

(5.46)

time : t t− 4 t− 7
x+ 1 : a b c d e f g h
x : 4 ∗ ∗ ∗ 1 0 5 4 4 ∗ ∗ ∗ 1 0

x− 1 : 0 5 4 3 2 2 ∗ 1 0 5 4 ∗ ∗ ∗

(5.47)

For (5.46) note that 0 ∈ {a, b, c, d}. a = 0, b = 0 both yield defects on (x, x + 1), c = 0 gives
a backtracking contradiction so we have d = 0. But then we must have 0 ∈ {f, g}, f = 0 gives a
defect and g = 0 gives a backtracking contradiction. Similarly with (5.47) we have d = 0 and thus
0 ∈ {f, g} yielding a defect either way.

(5.34), (5.36), (5.37) and (5.39) have apparent defects, so we only need to consider their
orientation reversals. We are going to leave the reversed version of (5.36) until the very end since
we will use the fact that all remaining sequences (and their reversals) except (5.32) and (5.35) have
been excluded.

First we consider (5.34) reversed. Note that it takes us to (x, x + 1) = (4, 0) and hence it must
be followed by (5.35) (which leads us to (x, x+ 1) = (0, 3) and hence we have two options.

time : t t− 4 t− 8
x+ 1 : a b c e f g h
x : 3 ∗ ∗ 1 0 5 4 3 3 2 1 0

x− 1 : 0 5 4 4 4 3 2 1 0 5 4 ∗ ∗

(5.48)

time : t t− 4 t− 8
x+ 1 : a b c d e f g h
x : 3 ∗ ∗ 1 0 5 4 3 3 ∗ ∗ 1 0

x− 1 : 0 5 4 4 4 3 2 1 0 5 4 ∗ ∗

(5.49)

Note for both we must have that c = 0 or else 0 ∈ {a, b} which either leads to a defect or a
backtracking contradiction. Then since x doesn’t pull x+1 between times t− 10 and t− 4 we must
have 0 ∈ {f, g} which in the case of (5.48) leads to a backtracking contradiction and in the case of
(5.49) leads to a defect.

Next we deal with flipped (5.37). It has to be preceded by (5.32) then we have 3 options (5.35),
(5.36) and (5.37). We have:

time : t t− 5 t− 8
x+ 1 : a b c 0 d e
x : 4 ∗ ∗ ∗ 1 0 5 4 4 3 2 1 0

x− 1 : 0 5 4 3 3 3 2 1 0 5 4 3 3

(5.50)
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time : t t− 5 t− 8
x+ 1 : a b c 0 d e
x : 4 ∗ ∗ ∗ 1 0 5 4 4 3 2 1 0

x− 1 : 0 5 4 3 3 3 2 1 0 5 4 4 4

(5.51)

time : t t− 5 t− 8
x : 4 ∗ ∗ ∗ 1 0 5 4 4 ∗ ∗ ∗ 1 0

x− 1 : 0 5 4 3 3 3 2 1 0 5 4 3 2 2
x− 2 : 0 5 4 d e

(5.52)

Note in in (5.50) (5.51) 0 /∈ {a, b, c} or else we get the usual backtracking contradictions/defects.
So then 0 ∈ {d, e} resulting in a backtracking contradiction. Similarly in (5.52) we must have
ξt−4(x− 2) = 0 which implies 0 ∈ {d, e} resulting in a backtracking contradiction.

We now deal with the flipped (5.39). Note that it has to be preceded by (5.32) as we excluded
the other recurrent defect sequences with with (bold) 3’s. Then it we have ξt−3(x − 1) = 0 and
therefore 0 ∈ {c, d}, since there is one pull from x− 1. c = 0 will give a backtracking contradiction
so d = 4. This leaves two possibilities. Either (5.32) is preceded by (5.36) or (5.39). Note that
ξt−4(x+ 1) = 0 or else we get defects or backtracking contradictions as usual. Hence 0 ∈ {a, b}. In
the case of (5.39) this yields a defect. In the case of (5.36) a backtracking contradiction.

time : t t− 5 t− 8 t− 13
x+ 1 : 0 a b
x : 4 ∗ ∗ ∗ 1 0 5 4 4 ∗ ∗ ∗ 1 0

x− 1 : 0 5 4 4 3 3 2 1 0 5 4 4 3 3
x− 2 : 0 c d

(5.53)

time : t t− 5 t− 8 t− 12
x+ 1 : 0 a b
x : 4 ∗ ∗ ∗ 1 0 5 4 4 3 2 1 0

x− 1 : 0 5 4 4 3 3 2 1 0 5 4 4 4
x− 2 : 0 c d

(5.54)

Now we are left with tackling (5.33). Note that it can be preceded by (5.32), (5.33) and (5.34).
This last one, and its reversed version, have been shown to be transient so we must consider these
two possibilities.

time : t t− 4 t− 8 t− 12
x : 0 5 4 3 3 2 1 0 5 4 3 3

x− 1 : 3 ∗ ∗ 1 0 5 4 4 3 2 1 0 5 4 3 3
x− 2 : 0 a b

(5.55)

time : t t− 4 t− 7 t− 11
x+ 1 : a b c d
x : 0 5 4 3 3 ∗ ∗ 1 0 5 4 3 3 e f

x− 1 : 3 ∗ ∗ 1 0 5 4 3 3 ∗ ∗ 1 0 5 4

(5.56)

In (5.55) we have that (5.32) has to be preceded by (5.35) since the others with 4 have been
excluded. Note here b = 0 would give a backtracking contradiction. c = 0 would imply 0 ∈ {e, f}
which also yields a backtracking contradiction at x− 1 either way. a = 0 would imply 0 ∈ {d, e}
(note the pull from x− 1). This would also yield backtracking contradictions at x− 1.
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Note that in (5.56) a two step backtracking gives that b ̸= 0 or else we have a contradiction. So
a = 0 and we have a defect at time t− 8. By reflection symmetry, this takes care of the flipped
version too.

Finally, we can deal with the reversed (5.36). Note that, since everything else has been excluded
(including the non-reversed version of (5.36)), backtracking from {ξt−4(x − 1), ξt−4(x)} = {4, 0}
only has the option the recurrent defect obtained by the concatenation of (5.32) and (5.35) (which
will be indeed the desired configuration by elimination to be the one). (5.36) in fact acts as a
”orientation switch”:

time : t t− 4 t− 8
x : 4 3 2 1 0 5 4 4 3 2 1 0 5 4 3 3 2 1 0 5 4 3 3

x− 1 : 0 5 4 3 3 2 1 0 5 4 4 4 3 2 1 0 5 4 4 3 2 1 0

(5.57)

Its appearance forces the reversal of the concatenated pattern of (5.32) and (5.35) when evolving
forwards. See this illustrated above in (5.57). For it to be recurrent the color gap 4 defects must
alternate between {4, 0} and {0, 4} but this can only happen if the non-reversed (5.36) appears as
a switch in between two reversed (5.36). But it was already shown not to be recurrent. □
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Appendix A. Fisch’s Argument for Undercoupled Regimes

In this appendix, for the reader’s convenience, we provide the proof of Lemma 3.2 (restated in
Lemma A.1 below). Our argument follows [BG89] but differs in that we use the arrow dynamics
introduced in Section 2 in order to keep track of influence between sites.

Lemma A.1. The following two statements combined give us sufficient conditions for fixation.

(1) ξt fixates if

lim
n→∞

P(T (z) <∞ for some z < −n) = 0

(2) For an arrow coming from z ∈ Z− to reach the origin we must have an interval I containing
[z, 0] such that

∑
x∈I φ(x) < 0. More precisely, we have the following event inclusion

{T (z) <∞ for some z < −n} ⊂

{∑
x∈I

φ(x) < 0 for some I ⊃ [−n, 0]

}
Proof. We begin by showing (1). Define:

(1) τ(j) :=time of the j-th excitation at the origin

(2) α(j) = arrow label responsible for the j-th excitation at the origin. We set α(j) := ∞ if
τ(j) :=∞.

(3) A := {τ(j) <∞ ∀j ≥ 1}
(4) Gn := {|α(j)| < n ∀j ≥ 1}.
See proof Proposition 4.2 to argue that infinitely many excitations of the origin involve infinitely

many arrows. Thus the event A∩Gn has probability zero. Since the assumption of (1) and reflection
symmetry imply that Gn occurs for some n with probability 1 we have that

P(A) = P(A ∩ (∪nGn)) = P(∪n(A ∩Gn)) = 0

And since Ac = {Xt fixates}, we have fixation.
To prove (2) let us denote Hn := {T (z) < ∞ for some z < −n}. On Hn, let ρ be the first

time an active path from (−∞,−n)×{0} reaches the origin, and let m− < −n be its initial position.
If such a path exists, we define m+ ≥ 0 to be the rightmost source of an active path which reaches
the origin before time ρ. Otherwise we set m+ = 0. Now focus on the arrows at time 0 for locations
x ∈ I = (m−,m+]. On Hn, each blockade in I, must at some time before ρ be replaced by a live
edge, and these live edges originate in I since arrows do not cross.

By use of the edge elimination function we conclude

Hn ⊂ {# live edges ≥ ”blocakde mass” at time 0 on some interval I ⊃ [−n, 0]}

⊂

{∑
x∈I

φ(x) ≤ 0 for some interval I ⊃ [−n, 0]

}

⊂

{
m∑

x=−l

φ(x) ≤ 0 for some l ≥ n and m ≥ 0

}
(A.1)

To see these inclusions, suppose (WLOG) we have a right arrow on the leftmost edge (z, z + 1).
For it to reach the origin, all the blockade mass on I must be cleared. The first inclusion is
trivial since each blockade needs at least one arrow to be destroyed. As defined in (3.1), the edge
elimination function counts free arrows as negative (regardless of the direction they are pointing, a
conservative estimate). More precisely, the |dη| − 2r term accounts for the fact that each blockade
has ”capacity” |dη| − r and releases r arrows when destroyed. This explains the second inclusion.
The last one is trivial. □
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