2311.14910v1 [math.DS] 25 Nov 2023

.
.

arxiv

INTRODUCTION

A latent linear model for nonlinear coupled oscillators on graphs

Agam Goyal, 12 ® Zhaoxing Wu,3 ® Richard P. Yim,# Binhao Chen,® Zihong Xu,? and Hanbaek Lyu?
D Department of Computer Science, University of Wisconsin - Madison, WI 53706

D Department of Mathematics, University of Wisconsin - Madison, WI 53706

3 Department of Statistics, University of Washington, Seattle, WA 98195

9 Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143

) Department of Computer Science, Brown University, Providence, RI 02912

A system of coupled oscillators on an arbitrary graph is locally driven by the tendency to mutual synchronization be-
tween nearby oscillators, but can and often exhibit nonlinear behavior on the whole graph. Understanding such nonlin-
ear behavior has been a key challenge in predicting whether all oscillators in such a system will eventually synchronize.
In this paper, we demonstrate that, surprisingly, such nonlinear behavior of coupled oscillators can be effectively lin-
earized in certain latent dynamic spaces. The key insight is that there is a small number of ‘latent dynamics filters’,
each with a specific association with synchronizing and non-synchronizing dynamics on subgraphs so that any observed
dynamics on subgraphs can be approximated by a suitable linear combination of such elementary dynamic patterns.
Taking an ensemble of subgraph-level predictions provides an interpretable predictor for whether the system on the
whole graph reaches global synchronization. We propose algorithms based on supervised matrix factorization to learn
such latent dynamics filters. We demonstrate that our method performs competitively in synchronization prediction
tasks against baselines and black-box classification algorithms, despite its simple and interpretable architecture.

If a group of people is given local clocks with arbitrar-
ily set times, and there is no global reference (for example,
GPS), is it possible for the group to synchronize all clocks
by only communicating with nearby members? In order for
a distributed system to be able to perform high-level tasks
that may go beyond the capability of an individual agent, the
system must first solve a “clock synchronization” problem
to establish a shared notion of time. The study of synchro-
nization of coupled oscillators has been an important subject
of research in mathematics and various areas of science for
decades!?, with fruitful applications in many areas, including
wireless sensor networks, wildfire monitoring, electric power
networks, robotic vehicle networks, and large-scale informa-
tion fusion®~>.

A system of coupled oscillators is said to be (globally) syn-
chronized if all oscillators are at a consensus in terms of their
phase or oscillation frequency. In this work, we consider os-
cillators of identical frequencies and only phase synchroniza-
tion. Such a global state may or may not emerge depending
on how the oscillators interact along the edges of the graph,
how such local interaction leads to larger-scale interactions,
and so on. In spite of several sufficient conditions on model
parameters (e.g., large coupling strength®) or initial config-
uration (e.g., phase concentration’ within an open semicir-
cle), it is usually analytically intractable to predict whether a
given system of coupled oscillators with arbitrary underlying
graph structures will eventually synchronize, more so when
the underlying graph is heterogeneous and the initial phase
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configuration is not confined in a small arc of the phase space.
Furthermore, the interplay between the nonlinear dynamics
and network topology can often give rise to highly nonlinear
phenomena®®, which makes it intriguingly hard to study and
understand their properties.

With the revolutionary success of machine learning meth-
ods in various tasks such as image classification and natu-
ral language processing, there has been a surge of interest
in employing these methods to study scientific problems that
have been previously believed to be extremely difficult'-!2.
This is also the case for the problem of synchronization pre-
diction, where a number of tools in machine learning have
been applied to study the properties of coupled oscillator
systems'313.  The recent work of Bassi et al.'® in par-
ticular demonstrated that after a proper reformulation, the
synchronization prediction problem on randomly generated
graphs can be effectively solved by training binary classifica-
tion algorithms on a large dataset of synchronizing and non-
synchronizing examples, in the sense that the resulting pre-
diction accuracy significantly outperforms a baseline predic-
tor that uses the concentration principle in coupled oscillator
theory”-1718.

However, a key question that remains unanswered is
whether we can actually gain any scientific insight into cou-
pled oscillator systems from the advantages of analyzing a
massive amount of data using machine learning methods.
For instance, we would like to understand ‘how’ a well-
performing model is able to make these predictions on cou-
pled oscillator systems and what features in graphs or dynam-
ics it considers most important for this task. Toward this goal,
in this paper, we propose an interpretable model for synchro-
nization prediction that we call the Latent Linear Dynamics
Model (LLDM). The logic behind the model is very simple:
Given an observed dynamics on a subgraph, first compute
‘proximity scores’ for how much a set of prescribed patterns



we observe there, and then use the proximity scores for those
patterns as an input to a logistic classifier.

The key challenge in our approach is to figure out what
fundamental patterns of dynamics on subgraphs we seek
to observe for the purpose of synchronization prediction.
For example, if the underlying graph is very dense, then it
will be likely that the dynamics will eventually synchronize.
Also, if the observed phase configuration is confined in an
open semicircle, then we know the system will eventually
synchronize. If the graph is sparse and contains a long cycle,
then it would be hard to see eventual synchronization. While
such ‘patterned behaviors’ are informed by the existing
knowledge on coupled oscillators, our novel approach here is
to learn such ‘critical patterns for synchronization’ directly
from the data.

We summarize our key contributions through this work:

1. We propose a novel and interpretable framework for
the prediction of synchronization in coupled oscillators,
leveraging the feature learning capabilities of matrix
factorization techniques to learn latent linear represen-
tations of underlying network dynamics.

2. We propose various ways of approaching the synchro-
nization prediction problem using LLDM, by the use
of data-informed and computationally efficient, theory-
informed approaches, in addition to using both super-
vised and unsupervised matrix factorization techniques.

3. We propose a compute-efficient and novel method for
the prediction of dynamics synchronization on large-
scale graphs by the use of LLDM on a set of subgraphs
sampled by motif sampling techniques, followed by re-
cursive averaging of predicted probabilities.

To the best of our knowledge, this is the first work to study
the synchronization of small and large-scale coupled oscillator
dynamical systems on graphs through the lens of representa-
tion learning techniques that also focus on interpretability— a
critical aspect of modeling dynamical systems.

A. Related Works
1. Machine Learning for Synchronization Prediction

There has been a surge in studies that have approached the
study the dynamic oscillator systems by using machine learn-
ing techniques. Some studies such as Thiem et al.'® used Feed
Forward Neural Networks?® (FFNNs) to analyze Kuramoto
dynamics in specific, while Hefny et al.>! use LASSO regres-
sion for modeling independent subsystems of dynamical sys-
tems. Itabashi et al.”> use features derived from early-stage
topological dynamics to classify Kuramoto oscillator dynam-
ics. Furthermore, Bassi et al.!® show that various classical
machine learning algorithms can be used for the synchroniza-
tion prediction problem by training them on a large dataset of

synchronizing and non-synchronizing coupled oscillator sys-
tems on randomly generated graphs. Their method was ap-
plied to the Kuramoto oscillators as well as discrete oscil-
lator models such as the Firefly Cellular Automata (FCA??)
and Greenberg-Hastings Model (GHM?*). Recently, Chen et
al.>> proposed to use reinforcement learning to find an op-
timal pulse-interaction mechanism that optimizes the proba-
bility of synchronization of pulse-coupled oscillators, while
Mahlow et al.?® proposed to utilize k-nearest neighbor regres-
sor to predict the emergence of environment-induced sponta-
neous quantum synchronization in an open system setting.

Despite the increasing interest in utilizing these methods
to study dynamical systems, there remains a gap in under-
standing what features are crucial for these models to make
predictions. We aim to bridge this gap in our work, where
we leverage feature-representation learning techniques like
non-negative matrix factorization’’ and supervised matrix
factorization’®2? (See Appendices C and D for details) to pro-
vide an interpretable framework for synchronization predic-
tion.

2. Matrix Factorization Techniques and interpretable feature
extraction

Matrix factorization techniques have proven to be power-
ful tools for describing various latent features of data of in-
terest in terms of a ‘linear combination’ of atomic elements.
This problem has been studied for many decades and has been
used in various scientific fields**°. More generally, low-
dimensional feature extraction techniques have been used ex-
tensively in the last few decades for complex tasks that involve
studying the local interactions of elements in various fields.
Highly accurate and precise reconstruction of billions of pro-
tein structures!?; OTT media recommendation systems decod-
ing users’ item-response patterns'!; the innovation in novel
TPU architectures to allow efficient matrix factorization!?;
and dating back to the PageRank>’ search algorithm for rank-
ing internet websites and web pages; these are all some of
the most well-known and important applications of such tech-
niques.

Despite enjoying fruitful applications in the aforemen-
tioned areas, the potential of these techniques has not been
harnessed widely in the context of coupled oscillators. Re-
cently, Luo®® proposed to decompose network dynamics into
a composite of weighted principal components, and subse-
quently learn the governing differential equations using sparse
regression. In this work, we make use of matrix factorization-
based approaches in conjunction with a Markov-chain Monte-
Carlo subgraph sampling algorithm? to learn underlying fea-
tures from the data and make predictions regarding the syn-
chronization of oscillator dynamic systems.

Il. STATEMENT OF THE PROBLEM

A graph G = (V,E) consists of sets V and E, node set
and edge set, respectively. Let Q denote the phase space of
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FIG. 1. (Panels a-c) Scheme of the Latent Dynamicsﬁ;{[@il_gd@{\@( Qfigation prediction. Input dynamics on a k-node graph
observed for T iterations is represented as a k x k x T tensor. Taking convolution of the input dynamics with R (4 in the figure), latent dynamics
filters (nonnegative tensors of shape k x k x T') give proximity scores for R patterns, which are combined into one scalar for a final score for
the predictive probability of eventual synchronization. The predictive probability of synchronization is proportional to the exponential of the
final score. (Panels d-e) A uniformly randomly sampled 20-path (with red edges) and additional edges on the induced subgraph (in blue) with
the corresponding adjacency matrix on the top left. We recursively compute the predictive probabilities of synchronization using dynamics
on such sampled subgraphs, and the average value converges to the predictive probability of synchronization of the whole graph, which is the
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expectation of the predictive probabilities over subgraphs induced on k-paths.

each node, which may be taken to be the unit circle R/27Z
for continuous-state oscillators and the discrete circle Z/xZ,
k € N for finite-state oscillators. We call amap X : V — Q
a phase configuration, and say it is synchronized if it takes a
constant value across nodes (i.e., X (v) = Const. for allv € V).
A coupling is a function ¥ that maps each pair (G,Xp) of
graph and initial configuration Xp : V — Q deterministically
to a trajectory (X;);>o of phase configurations X; : V — Q. In
this paper, we consider ¢’ to be the time evolution rule for Ku-
ramoto model*’, Firefly Cellular Automoata (FCA)>**!, and
Greenberg-Hastings Model?*. We use a discretization of Ku-
ramoto model (see (A2) in the appendix) and an ‘iteration’ of
Kuramoto dynamics refers to applying one step of the differ-
ence equation. See Appendix A for details on each of these
coupled oscillator models.

The main problem we investigate in this work is to pre-
dict the synchronization of coupled oscillators on a large-scale
graph G using subgraph-level information. This means that
we observe some subgraphs of fixed size k (potentially much
smaller than the number of nodes in G) and the dynamics in G
are restricted on these subgraphs. In order to make this setting
precise, we formulate the following sampling oracle:

Subgraph Sampling Oracle. Given a graph G and a fixed

integer k > 0, we can sample a k-node connected subgraph
H of G and observe dynamics on G restricted on H up to a
fixed number of iterations Ty. However, we cannot observe
dynamics on larger subgraphs and more than Ty iterations.

We can now formulate the main problem we aim to address
in this work: Large-scale synchronization prediction by local
dynamics decomposition:

Problem IL.1 Let (X,);>0 be a coupled oscillator dynamics on
a (possibly large) connected graph G governed by a coupling
€. Suppose that we have a sampling oracle for subgraph size
k and time horizon Ty.

(i) (Dynamics decomposition) Observed dynamics on sub-
graphs can be approximately decomposed into a linear com-
bination of some key dynamics patterns.

(i) (Synchronization prediction) Using the decomposition in
(i), one can predict the following indicator variable:

1(X; on G is eventually synchronized). (1

Our goal is to use SMF to learn low-rank latent fac-
tors that offer interpretable, data-reconstructive, and class-



discriminative features, addressing the challenges posed by
high-dimensional data.

Our approach has two components. First, we will develop
an interpretable model to predict the synchronization indica-
tor at the k-node subgraph level. Second, we apply the trained
subgraph-level model to a randomly sampled k-node along
with the observed dynamics. The expectation of the predicted
probability over random k-node subgraphs will be the predic-
tive probability for the parent graph to eventually synchronize.

Ill. MODEL DESCRIPTION

At a high level, our model predicts the eventual synchro-
nization on the whole graph G by averaging the predictions
on many suitably chosen subgraphs of F. Below, we first de-
scribe how we make synchronization prediction using a sin-
gle subgraph and then discuss how to efficiently combine
subgraph-level prediction with our particular choice of the
subgraph sampling oracle.

A. Latent linear dynamics model on a single subgraph

Suppose that we have a system of coupled oscillators on a
connected graph G = (V,E). The goal of LLDM is to model
the predictive probability that the system will eventually syn-
chronize based on the observation of dynamics up to 7 itera-
tions restricted on a k-node subgraph of G, say F. (Here we
assume k < |V| and allow F = G.) Since observing dynam-
ics on a subgraph during a fixed time period only gives partial
information on the long-term dynamics on the whole graph
G, we model the indicator variable that the dynamics on G
will eventually synchronize given this partial information as a
Bernoulli random variable with unknown success probability.

For a precise formulation, let (X;)o<;<7, X; : V — Z/KZ
denote the dynamics on G that is assumed to have evolved
according to some coupled oscillator model (e.g., FCA, Ku-
ramoto, or GHM). Let X;[F] denote the restriction of X; on the
node set of F. Our basic modeling assumption is the follow-
ing:

1(X; synchronizes as t — oo | F, (X;[F|)o<i<T)
~ Bernoulli(pr(F)), 2

where pr(F) is the unknown probability of eventual synchro-
nization of the dynamics on G given the partial observation.

Next, we introduce the key modeling assumption for
LLDM that pr(F) above depends on a certain R-dimensional
proximity score vector h that is computed as follows. First, we
represent the pair (F, (X;[F])o<;<7) of input data by a nonneg-
ative tensor .2~ of shape k x k x T, where each slice 27[:,:,]
represents the graph topology F decorated by the phase con-
figuration X; defined as

Z'[i, j,t] = A;ymin{(X; (i) — X;(j)(mod x),
X (j) —X:(i)(mod x))},. 3)

Network Plot

Color-coded Adjacency Tensor

FIG. 2. Example of a k x k x T colored adjacency tensor (CAT) and
the top slice as a graph network plot

Here, A = (A;;) is the adjacency matrix of F defined by
Aij :=1({i,j}) € E(F)). We call the tensor 2 the colored
adjacency tensor (CAT) for (F,(X;[F])i<i<r) (see Figure 2).
In Appendix E, we demonstrate that the use of various en-
coding methods of graph topology of F, as simple as the ad-
jacency matrix or as advanced as modern graph embedding
methods such as DeepWalk*?, graph2vec*?, provides little to
no improvement in prediction accuracy for the synchroniza-
tion problem at hand.

Second, a key notion we introduce in this work is the
‘dictionary’ of latent dynamics filters, which is an R—tuple
9 =[%,...,Fg] of nonnegative tensors .%; € R’;ﬁk” of unit
Frobenius norm. Here R is an integer parameter called the
‘size’ of the dictionary &. Each filter .%; represents an ele-
mentary pattern of coupled oscillator dynamics on a general
k-node graph for T iterations. We denote by (-,-) the inner
product between two tensors of the same shape, which is the
sum of the products of all corresponding entries. Since both
the input tensor 2~ and the filter .%; are assumed to be non-
negative, their inner product (%#;, ") can be interpreted as the
proximity score of the input dynamics 2~ with respect to the
dynamics pattern represented by the filter .%;. Since there are
R filters, we can compress a single tensor data element, 2",
into an R-dimensional vector of proximity scores

h:=MAT(2)" VEC(Z')
:(<j1a‘%>»"'v<yR7%>)Tv 4

where MAT(-) and VEC(-) are the matricization and the vec-
torization operators—fixing the lexicographic ordering of en-
tries. (Note that MAT(2) € RET*" and VEC(2') € RFT so
that MAT(2)T VEC(.2") € R".) The ith coordinate of h mea-
sures how similar the observed dynamics on the subgraph F,
encoded in the tensor 27, to the particular dynamics and net-
works encoded in the ith latent dynamic filter .%;.

Now we suppose the probability pr(F) of eventual syn-
chronization given data 2~ € R¥**T s modeled as follows:

<o (3T
pr(F)= oxp (7h)

; _aT
= Trexp(3Th) or logit(pr(F))=08"h, (5)

where 3 = (Bi,...,Br)T € R" is a vector of regression coef-
ficients and logit(p) := 1%{). Thus, LLDM for fixed subgraph



size k is parameterized by (Z,3). From the above represen-
tation, we see that LLDM is a linear model on the latent space
of features measured by the proximity score matrix.

Our general scheme of predicting synchronization of cou-
pled oscillators using LLDM is depicted in Figure 1. Figure
lc depicts eight observed FCA dynamics on subgraphs of NWS
(see Table I) in the rows (“Test Examples”) and eight latent
dynamics filters with their corresponding regression coeffi-
cients in the columns (‘“Dictionary Atoms”). Each of them
is k x k x T tensors for k = 20 and T = 50, and three snap-
shots at times 0,25, 50 are shown with arrows indicating time
evolution. The proximity scores are shown in the heat map
(in grayscale) and the corresponding predictive probabilities
(see (5)) are shown in the last column. “Ex1” in Figure lc is
a synchronizing test example, which has the largest proxim-
ity score with the first latent dynamic filter (with regression
coefficient 0.521), and has a large predictive probability of
0.917 for eventual synchronization. Also, “Ex7” is a non-
synchronizing test example that has large proximity scores
with the fifth (—0.122) and the seventh (—0.321) latent dy-
namic filter and has a small predictive probability of 0.078 for
eventual non-synchronization.

B. Choosing the sampling oracle: k-path motif sampling

In the previous section, we introduced LLDM with param-
eters 2 and 3, without any assumption on the subgraph F
on which we observe the dynamics on G. In order for this
model to be effective, especially when G is large and sparse,
we may need to restrict the class of ‘appropriate’ k-node sub-
graphs in G sampled by our sampling oracle. For instance,
if we consider all induced subgraphs obtained by sampling &
nodes uniformly at random from G, then when G is sparse,
most of such subgraphs will be disconnected and have a few
edges, so the dynamics observed on such subgraphs will not
be informative of the dynamics on the whole graph G. Fur-
thermore, LLDM assumes that the observed subgraphs come
with prescribed node ordering so that their adjacency matrix,
and in turn their CAT. Thus it is computationally beneficial to
restrict ourselves to consider k-node connected subgraphs that
have canonical node ordering.

We propose to consider k-node connected subgraphs that
are obtained by first uniformly randomly sampling a ‘k-path’
in the graph G and then taking the induced subgraph on the
sampled paths (i.e., including all edges between the sampled
nodes in G). See Figure ld for an illustration. Here a k-
walk is a sequence X = (x1,...,x;) of k nodes (which may
or may not be distinct), such that x; and x;,; are adjacent
for all j € {1,...,k—1}. A k-walk is a k-parh if all nodes
in the walk are distinct. This sampling method has two no-
table advantages. First, it guarantees that the sampled k-node
induced subgraph is connected with the minimum number of
imposed edges. Second, it induces a canonical node ordering
of the sampled subgraphs. In order for efficient sampling of a
large number of k-paths approximately uniformly at random,
we use the k-walk motif-sampling algorithm in Lyu et al.®
(which is a Markov chain Monte Carlo (MCMC) algorithm) in

conjunction with rejection sampling. This subgraph sampling
oracle has been recently used in Lyu et al.** for mesoscale
network reconstruction.

C. Averaging subgraph-level predictions over many
subgraphs

Using the k-path motif sampling method introduced in the
previous section, we propose the following simple proce-
dure to improve LLDM by averaging over many subgraphs.
Namely, instead of using a single k-node subgraph F and the
dynamics observed on it to predict the synchronization indi-
cator on G, we use many such subgraphs F' and average the
corresponding predictive probabilities. This effectively com-
bines subgraph-level predictions over many subgraphs. Ac-
cordingly, we define

Pr(G) :=Er[pr(F)], (6)

where F is a random k-node connected subgraph in G induced
on a uniformly random k-path in G, and pr(H) is the predic-
tive probability (using LLDM, see (5)) of G being eventually
synchronized given the information on F. The quantity py(G)
above is the averaged predictive probability that G will even-
tually synchronize.

In order to effectively compute the expectation in (6), we
use the Monte Carlo approximation along an MCMC trajec-
tory of k-paths. That is, our sampling oracle generates a
sequence of k-paths (X;)s>0 in G that forms an irreducible
Markov chain. By Lyu et al.>* (Thm. 2.3), we have that almost
surely,

N
7r(G) = im (PT;N(G) =5 ZpT<F[xs]>> @
s=1

where F[x,] denotes the subgraph of G induced on the nodes
in the sth k-path x;. The above sample average in the right-
hand side of (7) can be computed recursively without stor-
ing all past samples. This gives us the following recursive al-
gorithm for computing the approximate predictive probability
pris(G) forall s > 1:

Zs < CAT on subgraph F[x;]

p + o(BTMAT(2)T VEC(Z,)) (8)
pT;s(G) <~ (1 - %) pT;sfl(G) + };p(s)7

where o (x) = liel; (px()x) and (Z,0) is a given hyperparameter
for LLDM. The recursion (8) can be executed over arbitrarily
many MCMC samples efficiently.

Furthermore, by Lyu et al.3® (Thm. 2.23), the recursive av-
eraging (8) is guaranteed to converge to the population mean
(6) exponentially fast in N. That is, for each 6 > 0 and for all
N2>1,

—28°N
P(1pr(6) - pra(G)] > &) <2exp () ©)

Tmix



where 7, is the mixing time of the standard lazy simple sym-
metric random walk on G, which depends on the size and
topology of G. In practice, we observe that pr.y (G) converges
quickly to pr(G) in many problem instances, see Figure 4a.

IV. LEARNING HYPERPARAMETERS

In this section, we discuss how to learn the model hyperpa-
rameters, the regression coefficient vector 3, and the dictio-
nary of latent dynamics filters 2.

A. Generating the training data set

Suppose we have 2m observed coupled oscillator dynamics

(Kuramoto, FCA, or GHM) (X,(j >)0§t<T for j=1,...,2mon
the whole graph G, and let y; € {0,1} denote the indicator

that X,(] ) synchronizes as T — oo. We assume half the dynam-
ics are synchronizing (y1,...,y» = 1) and the other half are
non-synchronizing (¥i41,...,y2m = 0). Sample k-node sub-
graphs Fi,...,Fy, in G (we use k € {10,15,20,25,30}) are
sampled through our subgraph sampling oracle described in
Section III B. We then restrict the first dynamics (Xl(l))()§[<7‘
on the subgraphs Fy,...,Fy,. This gives Ny training exam-
ples (Z1,51),--.,(Zn,,¥1), where each 2 is the CATSs of

shape k x k x T encoding (Xt(l) )o<:<T restricted on Fy. Next,

we restrict the second dynamics (Xl(z) )o<t<T on the subgraphs
and obtain training examples (Zny+1,¥2),- .-, (Zan,,¥2), and
so on. In total, this creates a training data set consisting of
pairs (£7,y;), j=1,...,N (N = mNy), where each Z; is the
k x kx T CAT of an observed dynamics on subgraph F; and
and y; is the corresponding synchronization indicator of the
dynamics on the whole graph G.

We also propose an alternative way to generate a training
data set when the whole graph G is not available. Suppose
we have the same k-node subgraphs F7,..., Fy, in G sampled
through our subgraph sampling oracle described in Section
III B, but assume that generating many instances of the cou-
pled oscillator dynamics on the whole graph G is computa-
tionally prohibitive. In this case, we can simply run the 2m
dynamics on the sampled subgraphs F; and record whether the
subgraph dynamics synchronize or not with the indicator vari-
able Jpu(i-1)4j. Denoting by Z5,,;_1)4; the k X k x T CAT
of the jth dynamics solely run on Fj, this gives us the training
examples (27,3,) for £ =1,...,N(= mNy).

B. How to learn 3 given &

Once we have &, we can estimate the regression coeffi-
cients in B from a set of training examples by solving the
standard logistic regression optimization problem. Namely,
using the latent dynamics filters in &, we can form the N x r
proximity score matrix H, whose (i, j) coefficient is given by

H[i, j] == (2, ;). (10)

Note that the ith column of H gives the proximity score vector
for the ith observation X;. Then joint log-likelihood of observ-
ing (y1,...,yn) under LLDM is

10gL(y1, -, Yn| 21,.... Zu) = Y logP(Y = y;|H) (1)
i=1

=

M=

{yilogm;+ (1 —y;)log(1 — )}, (12)

1

where 7; is the predictive probability for Z; under the re-
gression parameter 3 and the known latent dynamics filters
in 2. We can then estimate the corresponding regression co-
efficients, ﬁ, from the above joint log-likelihood function with
maximum likelihood estimation (MLE) as

N
,Beargr%ax Y yilogmi+ (1 —y;)log(1 —m). (13)
BeR" =1

The above is an unconstrained convex optimization problem,
which can be solved by standard first-order optimization al-
gorithms such as gradient descent*>. When the two classes
(i.e., synchronizing and non-synchronizing) are sufficiently
balanced in the training data set, then one can employ faster
second-order methods such as Newton-Raphson with numer-
ical stability*°.

As in generalized linear model theory, we have asymptotic
normality of the MLE B estimated from independent random
samples (h;,Y;) fori=1,...,N as N — co. Namely, we assume
that for a true model parameter 3%,

logit(E[Y; [hi]) = (8", h;) + &, (14)

where h; denotes the ith row of H and &;s are i.i.d. normal
random variables with a constant variance 62 > 0%/,

The MLE 3 is known to converge to 8* with asymptotically
normal fluctuation as the sample size tends to infinity. More
precisely,

éﬁ(ﬁ—ﬁ*) 2N, (15)

given that the sample covariance matrix %HTH converges to
a limiting covariance matrix £ as N — o*®. This provides
a statistically powerful mechanism for determining important
covariates, or features, that affect the response according to
the LLDM, which we demonstrate in Section V E. In the fol-
lowing sections, we propose how to compute the dictionary &
of latent dynamics filters.

A detailed section about the training data can be found in
Appendix B.

C. How to learn 2 from observed dynamics 27,..., 2y

We now know how to learn 3 given &. In this subsec-
tion, we propose some methodologies to learn the dictionary
9 =[S, ..., Fg) of latent dynamics filters from the observed
dynamics in the form of CATs 27,..., ZN.



A naive choice of Z is the set of all observed CATs Z;
for i =1,...,N. This means that we regard every single ob-
served dynamic becomes a latent dynamics filter. This choice
of & is undesirable since it is computationally expensive to
use a very large number N of filters in our model and also it
does not provide any reduced-dimensional representation of
the observed dynamics, which hinders the interpretability of
our method. Instead, we employ a matrix factorization-based
approach (See Appendix C) to learn a small set of bases filters
of size R, where R < N (typically R € {2,8,25,100}). Prin-
cipal component analysis (PCA) is a popular tool for extract-
ing key features and reducing the dimensionality of the data
set, but it is not suitable for our purpose since we desire non-
negative basis elements for the CAT's so that we can interpret
the basis elements (filters) as representing latent dynamics on
latent subgraphs. Hence, we employ non-negative matrix fac-
torization (NMF) (with vectorizing the tensor input) to extract
nonnegative latent k X k x T latent dynamic filters .#, ..., Zg.
See Section C for background and details on NMF.

(i) Feature extraction from observed dynamics: Use non-
negative matrix factorization (NMF) to extract R nonnega-
tive basis tensors #1,...,.%g from 21,..., Zy.

This approach is especially useful when we may not have
much prior knowledge about the underlying graph and dy-
namical system to meaningfully distill out parts of the training
data.

There are a number of sufficient conditions on coupled os-
cillator systems that are guaranteed to lead to global synchro-
nization or non-synchronization (see Sec. V B). In scenarios
like ours, where one has some existing knowledge about the
dynamical system at hand and might want to emphasize higher
and finer-detailed interpretability of the learned filters, one can
‘distill out’ a certain portion of training data before we apply
NMF for interpretable feature extraction. This suggests the
following variant of the previous method (i) of learning &
from the observed dynamics:

(ii) Feature extraction from observed dynamics after dis-

tillation: Subsample the ‘most relevant’ observed dynamics
Zi,»- .., i, using knowledge from coupled oscillator sys-
tems, for e.g., dense/sparse underlying graphs and concen-
trated initial configuration (see Section V B) and then apply

NMF as in (i).

Note that (ii) is an example of utilizing the tight interplay be-
tween knowledge of these coupled oscillators that originates
from the literature along with machine learning-based knowl-
edge.

D. How to learn 2 and B jointly

Combining the procedures in the previous two sections, we
can first learn a dictionary of learn latent dynamics filters &
from the observed dynamics 27, ..., Zy without using the
synchronization indicators yi,...,yy and then learn the re-
gression coefficients in 3 using the learned & with synchro-
nization indicators yy,...,yy. However, it is also possible to

learn (2,(3) jointly from the training examples (2;,y;) for
i=1,...,N, and we argue that such joint learning is beneficial
for our goal of addressing Problem II.1. Recall that the latent
dynamics filters %, ..., % in Z should ultimately satisfy the
following two objectives: (1) ( data reconstruction) They rep-
resent patterns in dynamics on subgraphs that are rich enough
so that any observed dynamics on a subgraph can be approxi-
mately reconstructed by a (nonnegative) linear combination of
them; and (2) ( class-discrimination) they represent patterns in
dynamics on subgraphs that are the most effective in discrim-
inating eventual synchronization and non-synchronization on
G. If we learn Z only from the observed dynamics as in Sec-
tion IV C, it may satisfy (1), but not necessarily (2).

From this perspective, we also propose to use supervised
matrix factorization (SMF)?**° to learn low-rank latent dy-
namic factors that offer interpretable, data-reconstructive, and
class-discriminative features, addressing the challenge of sat-
isfying the two objectives (1) and (2) simultaneously. SMF
is similar to NMF in that it extracts a set number of latent
features from the observed data set for interpretable dimen-
sion reduction, but the matrix factorization process is super-
vised by the class labels so that the latent features can also
be class-discriminative. For this, we formulate a non-convex
constrained optimization problem to jointly learn 8 and &
and solve that problem iteratively via block-coordinate de-
scent type methods (see Appendices B and D).

Note that this approach entails a setup for LLDM that is
similar to that of a two-layer neural network>*! with one in-
put, one hidden, and one output layer (See Figure 1a). Hence,
it is possible to use backpropagation instead of an SMF-
based approach to jointly learn the parameters that represent
our filters Z1, ..., %g and regression coefficients 8 by using
21,...,Zy as our input layer elements which aim to pre-
dict the synchronization indicators yy,...,yy. However, using
traditional backpropagation for training a feedforward neural
network would result in filters with significantly degraded in-
terpretability, due to the loss of the nonnegativity constraint.
Bassi et al.!® showed that complicated training regimes in-
volving deep feedforward neural networks (FFNN) and long-
term recurrent convolutional networks (LRCNs)*? perform
quite similarly to other simple algorithms like random forest,
gradient boost, and logistic regression on the task of predict-
ing synchronization. We further demonstrate that in Section
V, where the simple and interpretable architecture of LLDM
manages to match or outperform the performance of a multi-
layer neural network architecture that is much more complex
in comparison, while also maintaining the interpretability of
the learned filters.

V. RESULTS

We now report on the performance of LLDM for synchro-
nization prediction tasks. We consider two cases, where (1)
one seeks to predict the synchronization indicator on small
subgraphs using the dynamics on the subgraphs observed dur-
ing a short time period; and (2) one seeks to predict the syn-
chronization indicator on the whole (parent) graph using the



dynamics restricted on several subgraphs observed during a
short time period. We also discuss the goodness-of-fit of our
model, as well as the interpretability of the learned filters. Ex-
perimental details, hyperparameter choices, and model archi-
tectures can be found in Appendix B.

A. Networks

In our experiments, we take the large-scale graph G to be
one of the following three types of networks, (1) UCLA, (2)
CaLTECH, and (3) networks generated from the Newmann-
Watts-Strogatz (NWS) model. UCLA and CALTECH networks are
part of the FACEBOOK100 dataset>, where the nodes repre-
sent users in the respective Facebook networks, and the edges
encode Facebook ‘friendships’ between these accounts. Fur-
thermore, for our third large network, we generate a single
connected graph using the Newman—Watts—Strogatz (NWS)>*
small-world network model with n = 20000 nodes, £k = 1000
nearest neighbors in the circulant initial graph, and each non-
adjacent pair of nodes gets a new edge independently with
probability p = 0.5. Lastly, we also generate 500 instances of
NWS networks with n = 300 nodes, k = 12 nearest neighbors,
and shortcut edge probability p = 0.4. The basic summary
statistics of all these three networks can be found in Table I.

TABLEI. Basic Graph Statistics of the Large-scale Graph Networks.

Networks | UCLA  CaLTECH  NWS NWS’

# of graphs 1 1 1 500

# of nodes 20467 769 20000 300

# of edges 747613 16656 1.49e+7 2.52e+3 +19.4
Edge density| 0.0036 0.0564 0.0750 0.0562

B. Sufficient conditions for synchronization

Some properties of the underlying graphs or dynamics
themselves are well known to be critical for the synchroniza-
tion behavior of a system of coupled oscillators. We state
some of these well-known properties below, which come from
the traditional literature on coupled oscillator systems. These
conditions will be the basis of our baseline predictor, whose
performance gives a sense of how easy or difficult a given
synchronization prediction problem is.

It is well-known that coupled oscillator systems on dense
graphs are relatively easier to synchronize compared to sys-
tems on sparse graphs. For example, Kassabov, Strogatz,
and Townsend recently showed that Kuramoto oscillators with
identical natural frequency on a connected graph where each
node is connected to at least 3/4™ of all nodes are globally syn-
chronizing for almost all initial configurations®. Moreover, a
more intricate analysis of Kuramoto oscillators on networks
shows that it is possible to generate dense circulant networks
that are just able to prevent global synchronization, and sparse

circulant networks which tend to globally synchronize.

For FCA, it is known that the dynamics synchronize on a
path for a k—coloring configuration if Kk > 3 and further that
for finite trees with maximum degree A, FCA dynamics do not
synchronize if A > x and synchronize if A < k¥ < 62357, Also,
GHM tends to not synchronize on complete or highly dense
graphs.'® also showed that GHM synchronizes on paths.

The next sufficient condition is the concentration prin-
ciple, which is a fundamental observation in coupled os-
cillators and has been widely used in the clock synchro-
nization literature”!”-'® as well as multi-agent consensus
problems®°. This principle, stated below, follows from the
fact that the phase difference between any two nodes, when
isolated from the rest, monotonically decreases to zero, as-
suming an identical oscillation frequency.

Concentration Principle Consider an arbitrarily connected
graph G. For Firefly Cellular Automata (FCA), as well as the
Kuramoto Model (KM) with identical intrinsic frequency, the
given dynamics on G synchronize if all phases at any given
time are confined in an open half-circle in the phase space
Q. Furthermore, if all states used in the configuration X;
are confined in an open half-circle for any t > 1, then the
trajectory on G will eventually synchronize.

An open half-circle refers to any arc of length < = for
the continuous phase space Q = R/2x7Z and any interval of
< k/2 consecutive integers (mod k) for the discrete phase
space Q = Z/xZ. This confinement in an open half-circle is
what we define a phase configuration as being ‘concentrated’.
Further, since the concentration principle does not hold for
the Greenberg-Hastings model, we define a phase configura-
tion for GHM to be ‘concentrated’ if it is synchronized. The
baseline predictor we use for our experimental validation in
Section V is based on the concentration principle: Predict syn-
chronization is the phase configuration at any time during the
observed dynamics is concentrated; otherwise flip a fair coin.
See Appendix B for details.

We take advantage of some of these sufficient conditions
when we formulate a theory-informed data distillation ap-
proach in Section IV C to learn latent dynamic filters for
LLDM.

C. Model validation I: Subgraph level

Here we discuss the performance of the latent linear dynam-
ics model (LLDM) at the subgraph level for synchronization
prediction. We discuss the results of synchronization predic-
tion using LLDM based on joint-optimization using SMF (la-
beled “LLDM” in Table II) as well as the theory-informed data
distillation approach (see Sec. IV C (ii)) (labeled “LLDM-T”
in Table II). We consider the case of 10-, 20-, and 30-node
subgraphs sampled using the subgraph sampling oracle in Sec.
IIIB from the 20000-node NWS parent graph (in Table I). We
generated training and testing data sets by running Kuramoto,
FCA, and the GHM dynamics on the sampled subgraphs. See
Appendix B for more details on generating data sets for the
experiments.



TABLE II. Prediction accuracy of various methods for FCA and
Kuramoto dynamics on subgraphs with £ number of nodes where
k € {10,20,30} sampled from a large-connected NWS parent graph.
All accuracy values are an average of 5 seeds. The highest accuracy
for each setting is indicated in bold font.

FCA Kuramoto

k=10 k=20 k=30k=10 k=20 k=30
Baseline 80.2 69.6 694 | 56.5 66.1 64.3
LogReg 927 948 764 | 83.5 80.1 80.2
FFNN 922 954 828 | 84.2 83.4 79.2
LLDM-T (R=2)| 82.7 813 759 | 74.3 76.0 80.1
LLDM-T (R=8)| 86.5 819 757 | 75.2 77.1 80.3
LLDM (R=2) | 91.5 932 772 | 814 717.5 78.3
LLDM (R=8) | 93.0 942 84.8 | 82.1 78.4 78.4

We used extremely low-rank LLDM with R € {2,8} and
compared the prediction accuracy with that of the baseline
predictor, logistic regression, and feedforward neural net-
work. A subset of our experimental results is reported in Ta-
ble II. For a detailed set of results on different subgraph sizes,
parent networks, and dynamics models, see Appendix F.

Consider the performance of LLDM using SMF on FCA
and Kuramoto dynamics in Table II. We observe that LLDM
outperforms the baseline in all settings. We also observe that
LLDM performs well across all three subgraph sizes for both
the Kuramoto and FCA dynamics. In some cases, our method
outperforms logistic regression as well as FFNN, while in
other cases, LLDM is still quite close to the prediction ac-
curacies of black-box methods.

Additionally, there seems to be a trade-off between choos-
ing the number R of dictionary atoms to learn from our data.
Generally, a higher rank parameter R leads to a higher accu-
racy as more atoms can effectively capture more fine-grained
features of the data. Furthermore, it can be seen that for the
problem instances we created, it is easier to predict the syn-
chronization of the FCA dynamics than for Kuramoto dynam-
ics. Furthermore, the prediction task becomes harder as the
subgraph size increases, as perhaps the synchronization in-
dicator on a larger subgraph depends on more complex pat-
terns in dynamics. We also observe that the theory-informed
LLDM-T in most settings performs worse compared to the
SMF-based LLDM, but the accuracies are in general still com-
parable. This shows the potential of harnessing a theory-
informed approach if we have appropriate knowledge about
the dynamical systems, especially in settings where we have a
large number of noisy observations.

D. Model validation |l: Global level

Next, we use LLDM to predict synchronization on a large
graph using information only at the subgraph level. Here, we
take G to be one of the 500 instances of the 300-node graphs
in the dataset NWS’ in Table I. We run the FCA and Kuramoto
dynamics on G for T’ = 50 and 100 iterations, respectively,
and let yg be the indicator of whether the system on G is
globally synchronized at time 7’. Half of them globally syn-

chronize at time 7’ (so yg = 1) and the other half do not (so
vy = 0), which are split into 80% training set and 20% test-
ing set. From each G, we sample a single trajectory of 50
iterations of the MCMC k-path (k € {10,20,30}) motif sam-
pling algorithm (see Section III B), which gives a sequence
of k-node subgraphs Fi, ..., F5o. We then restrict the dynam-
ics on G on the sampled subgraphs, thereby creating pairs
(Z21,56),---,(Z50,y6) of k x k x T CATs and (global) syn-
chronization indicator, where T is varied between 10 and 100.
In this way, we create a total of 500*50 pairs of observed sub-
graph dynamics and synchronization indicators.

We use a block-minimization algorithm for SMF?® on the
training set to jointly learn the dictionary of latent dynamic
filters 2 and the vector of regression coefficients 3, where we
used three rank parameters R € {4,25,100}. We can then use
the trained LLDM on the testing data set and approximately
compute the predictive probability pr(G) that the dynamics
on G will eventually synchronize with the sample average in
(7) and (8). For more details of the experimental setup, see
Appendix B. The experimental results for predicting the syn-
chronization on G from the subgraph dynamics are shown in
Figure 3.

It is important to note that our method of aggregating
subgraph-level predictions to form a single global-level pre-
diction, as we proposed in Section III C, is a general proce-
dure that can be applied to any subgraph-level predictor. That
is, if we have a model that computes a predictive probability
pr(F) of global synchronization on G based on a T -iterations
of dynamics observed on a subgraph F, then we can com-
pute the predictive probability for many subgraphs F and take
their mean to be the predictive probability of global synchro-
nization as in (6). We compare the performance of LLDM for
rank R € {4,25,100} against the baseline predictor, logistic
regression, and FFNN, where we use the same local-global
aggregation (6) for all methods for a fair comparison.

We first observe that all three methods, logistic regression,
FFNN, and LLDM outperform the baseline for both dynam-
ics models on almost all subgraph sizes. Furthermore, it holds
consistent from the subgraph-level experiments that predic-
tion of synchronization on FCA is in general easier than that
of Kuramoto, as we see that most methods can perfectly pre-
dict the emergent properties of the parent graph when shown
all 50 iterations of the evolution of dynamics, while for Ku-
ramoto the accuracy peaks at around 90% when the model is
shown 100 iterations of dynamics evolution.

Second, the global-level prediction task here becomes eas-
ier if we increase the subgraph size, contrary to the subgraph-
level prediction task in Section V C, as more information on
the global dynamics is revealed by observing dynamics on
larger subgraphs.

Third, observe that LLDM with ranks R = 25 and R =
100 consistently matches or outperforms all other methods.
LLDM with R = 4 seems to lag behind LLDM with higher
ranks and other methods, but still provides a competitive pre-
diction accuracy, indicating that even with just 4 latent dy-
namics filters extracted from the vast amount of data, we can
predict reasonably and in some cases even match LLDM with
much higher ranks and other methods.



Performance Comparison of Various Methods vs. LLDM
on 300-Node NWS Parent Graph
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FIG. 3. Prediction accuracy of various methods on large 300-node
NWS graphs by using subgraphs of sizes 10, 20, and 30. The predic-
tion accuracies and the standard deviation error shades are shown for
varying levels of iterations of dynamics data shown in these models.

Fourth, the error bars in Figure 3 represent one standard de-
viation of the prediction accuracy computed over ten runs of
learning (2, 3) by SMF and the prediction of LLDM, where
the randomness comes from the random initialization of SMF
algorithm. From these error bars, we observe that LLDM
with rank R = 4 has a higher fluctuation of prediction accu-
racy compared to its higher-rank counterparts. This suggests
a potential trade-off that comes with selecting the appropriate
rank for such large-scale synchronization prediction. While
low-rank LLDM proves to be computationally efficient due to
being light-weight by learning fewer atoms in the dictionary,
this comes at the cost of a higher uncertainty in the predic-
tion due to not a large amount of variation of the data being
explained by just 4 atoms.

Lastly, we investigate how the overall prediction accuracy is
affected by the number N of subgraphs we average the predic-
tive probabilities over (by using (8)) to get an estimate of the
population average (6). Figure 4a verifies that the recursively
averaged predictive probabilities pr.y in (8) indeed converge
as we increase the sample size N. Figure 4b shows that the
overall prediction accuracy on the test set increases linearly as
N increases, saturating around N = 25 samples for FCA and
N = 35 samples for Kuramoto dynamics.
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FIG. 4. (Panel a) Examples of recursively averaged probability for
Kuramoto dynamics on 20-node subgraphs. We observe that the pre-
dicted probability tends to converge in the first 20-25 MCMC sam-
ples. (Panel b) Classification accuracy of a pre-trained rank-4 LLDM
dictionary on the test set.

Overall, these results strongly suggest that our approach
of utilizing subgraph-level predictions to extrapolate to the
parent graph level helps to tackle the prediction of complex
dynamics on large graphs very effectively and in a compute-
efficient manner with a simple framework.

E. Model Validation Ill: Goodness of Fit — Linearizing
Nonlinear Dynamics

Recall that LLDM seeks to model the synchronization indi-
cator of nonlinear dynamical systems via a linear representa-
tion of some latent dynamical patterns. The successful exper-
iments in the previous sections demonstrate that the synchro-
nization indicator may indeed be modeled as a linear function
of some latent features observed in nonlinear dynamics. In
this section, we provide further evidence for this claim by uti-
lizing statistical analysis for generalized linear models such as
goodness-of-fit and deviance residual plots.

We first discuss a visual heuristic for goodness-of-fit in lin-
ear regression. Let Y denote a univariate response variable and



X = [Xj,...,Xg] denote a vector of covariates. We assume the
conditional expectation y := E[Y | X] of Y given X as a linear
function § := B7 X, where 3 € RR is a vector of regression co-
efficients. However, there could be a higher order dependence
between y and the covariates. To see whether a linear model
has a goodness-of-fit, we investigate the residual 7 below as a
function of the covariates:

Pi=y—§=0(X"), (16)

where O(X?) denotes a higher-order, polynomial relationship
among the covariates in the data. We can plot the residual
7 by the estimate of the fitted values in regression, y, and in
practice, it is often the case that we will see a nonlinear pattern
before any model tuning or data transformation is performed
in linear regression.

The importance of observing the relationship between
residuals by their fitted values is that it serves as a heuristic
measure for the goodness-of-fit of a specified linear model. If
any nonlinearities were present substantially from this visual
heuristic, it would suggest to a practitioner that higher-order
interactions between covariates must be incorporated. For ex-
ample, a cubic residual plot would suggest incorporating cu-
bic order terms between covariates in a more complex model
to capture the cubic nonlinearities that may be missed in a
simpler linear model of purely first-order covariates.

In our setting for logistic regression, we utilize ‘deviance
residuals’®, which is the appropriate choice for modeling
residuals in logistic regression models that are as follows:

d; := sign(e;) [~2(yilog p; + (1 —y;) log(1 — pi))]'/?,
for data point i, with e; = y; — p;, where y; is the corresponding
label for observation i, and p; is the predicted response after
fitting a logistic regression model as in

.. _exp(BTX;,)
bi

Y 14exp(BTX;.)] an

where X; . is the ith row of X, corresponding to the ith obser-
vation.

We form a deviance residual plot with pairs of data points
between fitted values and deviance residuals, (p;,d;), and of a
smoothing spline approximating a residual curve of (p;,d;).
(This residual curve can be produced from various options
of smoothing spline algorithms.) Since we are interested in
modeling the residual data after fitting our LLDM, we utilize
a simple univariate spline algorithm®!. The resulting smooth-
ing spline represents the distribution of the deviance residu-
als away from y = 0 across possible fitted values such that a
more sporadic nonzero curve—especially at the tail ends—
would indicate poor model fit, and a flatter, more zero-valued
curve would mean sufficient linear fit as the deviance resid-
ual appears to be approximately zero across all possible fitted
values.

Figure 5 shows multiple goodness-of-fit plots of deviance
residuals by fitted values where we have smoothing mostly
flat spline curves. In particular, there is a good linear fit for
LLDM utilizing ranks 2, 4, 8, and 16 for FCA, Kuramoto, and
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FIG. 5. Goodness-of-fit with deviance residuals for LLDM on

subgraphs with & = 30 nodes sampled from CALTEcH, UCLA, and
NWS graphs with FCA, Kuramoto, and GHM models on rank R €
{2,4,8,16}. We generally observe that across all ranks R, our model
for 20-node subgraphs has a very good linear fit. The univariate
smoothing spline for each rank smooths and interpolates the (p;, d;)
points into a polynomial curve, where we can choose the degree of
the polynomial, k, as well as a smoothing factor, s. We choose k =3
and s = R — /2R as a common heuristic choice.

GHM on all three networks, UCLA, CALTECH and NWS for sub-
graphs of 30 nodes. More plots are given in the Appendix H
in Figure 14 for subgraphs of various sizes k = 10, 15, 25, and
30 (we see that there is goodness-of-fit for these models as
well). Therefore, LLDM not only performs well in predicting
the synchronization of coupled oscillator systems in terms of
accuracy but also in representing the synchronization indica-
tor in a latent linear form.

An important observation in Figure 5 is that for higher fil-
ter matrix ranks there is less linear LLDM fit. An intuitive
explanation for this behavior is that the LLDM does not ben-
efit from greater linear model complexity and that additional
covariates contribute noise to the model. We see cases where
arank 2 LLDM is more than sufficient to linearly capture the
synchronization indicator as a function of the proximity scores
of latent dynamic patterns.

F. Interpretability of the learned latent dynamics filters

Now that we have validated the performance of LLDM at
both the subgraph and global level using accuracy as well as
the goodness-of-fit for the coefficients, we now proceed to
discuss the interpretability of latent dynamics filters (‘filters’
hereafter), as seen in Figure 6, Figure 7, and in Appendix G.
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FIG. 6. The latent dynamics filters learned by rank-8 SMF for FCA and Kuramoto dynamics on 20-node CaLTECH, UCLA, and NWS networks.
Logistic regression coefficients associated with the latent dynamic filters are shown on top of each filter (+ = synchronization and — = non-
synchronization). Each latent dynamic filter is a tensor of shape k x k x T with k = 20, and we only show three temporal snapshots of such
tensor in each column. The colors on the edges range from blue (indicating a large phase difference) to red (indicating a small phase difference).
For instance, the leftmost latent dynamic filter for CALTECH subgraphs and FCA dynamics (bottom left) starts with densely connected blue
edges ending up with all red edges, indicating a dynamic pattern on densely connected subgraphs with large mutual phase differences leading

to synchrony.

Here, we consider rank R = 8 filters for LLDM learned by
SMF algorithm from the Kuramoto, FCA, and GHM dynam-
ics restricted on the 20-node subgraphs sampled from parent
networks of CALTECH, UCLA, and NWS in Table I. Similar plots
for subgraphs of size k € {10,15,25,30} can be found in Ap-
pendix G.

For each of the tile in both Figures 6 and 7, the eight fil-
ters are represented by eight columns. Recall that each filter
is a CAT of size k x k x T, representing latent dynamics on
k-node subgraphs. We only show three equally-spaced snap-
shots of such tensors as three k x k matrices in each column,
where the time evolution is indicated by the arrows. The col-
ors on the edges range from blue (indicating a large phase
difference) to red (indicating a small phase difference). For
instance, on the one hand, the leftmost filter for CALTECH sub-
graphs and FCA dynamics (bottom left) starts with densely
connected blue edges ending up with all red edges, indicating
a dynamic pattern on densely connected subgraphs with large
mutual phase differences leading to synchrony. On the other
hand, the rightmost filter for CALTECH and FCA dynamics

ends up with relatively sparse blue edges, indicating that the
corresponding subgraph is sparsely connected and the phase
differences along its edges are large at time 7. The filters are
in decreasing order for their corresponding logistic regression
coefficients (shown on top), where positive (resp. negative)
coefficients indicate positive association with eventual (resp.
non-)synchronization. So the filters to the left are more repre-
sentative of what kind of input dynamics and graphs are more
likely to synchronize and as we move to the right of the plots,
change to being more likely to not synchronize.

We now examine some specific details that can be observed
from Figure 6, where we consider the case of the FCA and
Kuramoto dynamics on CALTECH as the underlying graph on
the last row of tiles in the figure. We see that for both dynam-
ics, the leftmost filters indicating patterns for synchronization
have the densest edges, and almost the entire graph tends to
synchronize as time goes on as almost all edges become red.
Moving along the columns to the right, we see that almost
all filters that have positive or very small negative coefficients
tend to have graphs that are either densely connected or are
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FIG. 7. The latent dynamics filters learned by rank-8 SMF for GHM
dynamics on 20-node CALTECH, UCLA, and NWS networks.

mostly dense with short paths that go out of a community (a
densely connected subset of nodes) structure. Moreover, for
such cases, we again observe that the communities that we
observe tend to synchronize by the end of the training itera-
tion T but the nodes on the short extending paths do not. We
further move right to observe filters that are more likely to not
synchronize, observing most of the weakly non-synchronizing
filters have a small community structure that weakly synchro-
nizes (see partially communities consisting of red edges) at
later times. However, there is a large extending path or cycle
that is non-synchronizing.

Lastly, observe that the filters associated with the most
negative coefficients show that the graph structures are very
sparse and do not contain any substantial communities. More-
over, almost the entire graph remains not synchronized at
the end of the training iteration 7. Therefore, the latent dy-
namic patterns captured by these filters with the associated
regression coefficients are consistent with the existing knowl-
edge of sufficient conditions for synchronization and non-
synchronization. A similar observation holds for the filters
learned from the dynamics on subgraphs of NWS.

Next, we discuss filters learned from oscillator dynamics on
subgraphs of UCLA. Recall that UCLA is an order of magnitude
sparser than other networks CALTECH and NWS (see Table I),
so the filters learned from the subgraphs of UCLA show sparser
edge density than the ones learned from subgraphs of the other
networks. As before, the regression coefficients for Kuramoto
dynamics tend to be positively correlated with edge density in
the filters, indicating that Kuramoto dynamics on dense sub-
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graphs tend to be synchronizing. The filter with the largest
regression coefficient is dense on the whole, and the ones
that show weak synchronization are weakly dense yet seem
to have a loose community structure and no long-extending
paths. Similarly, for the non-synchronizing filters, we observe
a very loose to no community structure along with long paths
and cycles. However, we see different trends for the filters for
the FCA dynamics. There, the regression coefficient seems
to depend on the specific topology of the subgraphs and the
dynamics on them, rather than just the edge density of the
subgraphs we observe the dynamics on.

Finally, we move on to discuss Figure 7 where we look at
the rank R = 8 filters learned for the GHM dynamics on sub-
graphs of the three networks. The filters, in this case, look
quite similar to each other, unlike the Kuramoto and FCA dy-
namics in Figure 6, which suggests that for GHM dynamics,
fewer than R = 8 filters would suffice to fit our LLDM. In-
deed, we obtain similar prediction accuracy for GHM dynam-
ics with R =2 as with R = §, see Table F in Appendix F.

Furthermore, we observe that most of the filters with a pos-
itive association with synchronization seem to be dense over-
all, and the edges in the filters tend to become red (synchro-
nized) overall within the first half of the training iterations
T. On the other hand, the filters that correspond to non-
synchronization (rightmost columns in Fig. 7) seem to be rel-
atively sparser or have a path-like structure. There we observe
synchronized edges (in red) developing within the filters in
time, but most edges remain non-synchronized (in blue).

VI. CONCLUSION

In this paper, we propose a latent linear model that
effectively linearizes highly nonlinear dynamics resulting
from coupled oscillators interacting on graphs. A fun-
damental concept we introduce is ‘latent dynamic filters’,
which encode some key dynamical patterns associated with
synchronization/non-synchronization of the system, which
enable subgraph-level synchronization prediction by using a
latent linear model. These filters are directly learned from
the data by incorporating supervised matrix factorization tech-
niques. The predictive probability of global synchronization
is computed by averaging many subgraph-level predictions
along an MCMC subgraph sampling trajectory.

Our framework has the benefit of being simple and
lightweight, and we carried out an extensive study to show
that it matches or outperforms traditional black-box methods
on the prediction of synchronization of the coupled oscillator
dynamics on large graphs. We provide an efficient recursive
averaging algorithm to combine many subgraph-level predic-
tions, whose convergence is both theoretically and experimen-
tally justified. A statistical validation of our model was also
provided. Finally, we provide a computational framework
to extract key patterns responsible for synchronization/non-
synchronization from many instances of observed coupled os-
cillator dynamics. This provides added interpretability of our
method for a better understanding of rich nonlinear dynam-
ics of coupled oscillators. We hope that our work will inspire



a new line of research harnessing the potential of our simple
and interpretable computational framework to help better un-
derstand various complex dynamics systems beyond coupled
oscillators.

VIl. MATERIALS

The code for the algorithms and simulations used in
this work is provided in https://github.com/zwu363/
Interpretable-ML-Sync.
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Appendix A: Models of Coupled Oscillators

Systems of coupled oscillators have been studied over mul-
tiple decades'~°. In this work, we consider three popular mod-
els of coupled oscillators to study their synchronization be-
havior, described below.

1. Kuramoto model

The Kuramoto model'? of coupled oscillators is perhaps

one of the most well-studied models in the dynamical system
community. Consider a graph G = (V,E) and a continuous
phase space Q = R/2n7Z. The evolution of the phase dynam-
ics of the initial phase configuration Xy : V — Q governed by
the Kuramoto model of coupled oscillators is determined by
the following system of ordinary differential equations in (A1)

ix,(v) =o,+K Y sin(Xu)-X(v) VveV, (Al)
di ueN (v)

where .4 (v) represents the set of neighboring nodes of v in
G, o, denotes the intrinsic frequency of node v, and K denotes
the coupling strength of the model. We discretize the ordinary
differential equation in (A1) so that each ‘step’ in Kuramoto
dynamics is given by the following difference equation:

XHh(v)—X,(v):h( y Ksin(X,(u)—X,(v))), (A2)

uc N (v)

where we choose a step size of 4 =0.05and K = 1.

In this paper, we assume the intrinsic frequency of all the
nodes in G are identical, or equivalently zero, by using a rotat-
ing frame of dynamics without loss of generality. We further
assume the coupling strength to be unity. Note that synchro-
nization is an absorbing state, in the sense that if X; is constant
(e.g., synchronized), then X; is constant for all # > 7. See Fig-
ure 8 for an example of the Kuramoto dynamics evolving on
an 8 x 8 grid.

t=0 t=65

FIG. 8. Evolution of Kuramoto dynamics. Representation of the
evolution of the Kuramoto dynamics on an 8 x 8 2D-grid graph with
snapshots at time iterations t =0, t = 65, and ¢ = 130.

t=130 -

2. The Firefly Cellular Automata

The Firefly Cellular Automata (FCA)>*»’ is a model to
study discrete pulse-coupled oscillators. Consider a graph
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G = (V,E) and K > 3 to define Q = Z/x7Z with an ordering
0<1<...<k—1. The evolution of the phase dynamics of
the initial phase configuration is governed by Xy : V — Q and
we further define b(k) = | 5] to be the blinking color of
the configuration. The time evolution of this k-colored FCA
dynamics is dictated by the update mapping X — X’ in (A3)

X(v) if X (v) > b(x) and v € A (V') such that
X'(v) = v € V has blinking state b(k)
X(v)+1 otherwise

(A3)

For all experiments in this work, we use the FCA model with
K = 5. See Figure 9 for an example of 5-color FCA dynamics

evolving on an 8 x 8 grid.

-.IE . i‘l

FIG. 9. Evolution of FCA dynamics. Representation of the evolu-
tion of the FCA dynamics on an 8 x 8 2D-grid graph with snapshots
at time iterations t = 0, t = 65, and ¢ = 130.

3. The Greenberg-Hastings model

The Greenberg-Hastings model (GHM)?* is a popular
model for studying discrete patterns of diffusion in excitable
media. Consider a graph G = (V,E) and define Q = Z/xZ
with an ordering 0 < 1 < ... < Kk — 1. The evolution of the
phase dynamics of the initial phase configuration with GHM is
governed by X : V — Q. The time evolution of this x-colored
GHM dynamics is dictated by the mapping X — X’ in (A4)

0 ifX(v)=0and X(v') £1 Vv € A (V)
X' =141 g()vf/gvi N 0and 3V € A (v) st
X(v)+1 otherwise
(A4)

For all experiments in this work, we use the GHM model with
K = 6. See Figure 10 for an example of 6-color GHM dynam-
ics evolving on an 8 x 8 grid.

Appendix B: Training Data, Models, Hyperparameters, and
Experimental Details

Baseline Predictor The baseline predictor is based on the
concentration principle defined in Section V B, which pre-
dicts eventual synchronization of the evolving dynamics if
the phase configuration is concentrated at any time during
the observed dynamics, and flips an independent fair coin
for prediction otherwise.
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FIG. 10. Evolution of GHM dynamics. Representation of the evo-
lution of the GHM dynamics on an 8 x 8 2D-grid graph with snap-
shots at time iterations t = 0, t = 65, and ¢ = 130.
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Details for the subgraph-level experiments in Section V C.
The data set we use for the subgraph-level experiments in
Section V C is generated as follows. From one of the three
networks described in Table I, we sample k-node subgraphs
Fy,...,Fy with N = 10,000 using the subgraph sampling
oracle in Section III B, where k € {10,15,20,25,30}. On
the ith subgraph F;, we randomly initialize and run T’
iterations of Kuramoto, FCA, and GHM dynamics, where
T’ =200, 100, and 100, respectively. The data set consists
of pairs (£;,yi), i = 1,...,N, where y; is the indicator that
the system is synchronized at time 7/ and 2; is the k x k x T
CAT that encodes the dynamics on F; for the first T < T’
iterations, where T = 100, 50, and 8 iterations for the
Kuramoto, FCA and GHM dynamics, respectively. These
10,000 data points are then uniformly randomly divided
into training and testing sets, consisting of 80% and 20% of
the examples, respectively.

For LLDM-T in Table II, we distill the generated data based
on three observations from the literature as described in V B,
namely graph density and initial half-circle concentration.
In particular, we sample a set of subgraphs from our par-
ent graphs and then distill the top 10% densest and top 10%
sparsest, based on their edge density. In addition to these,
we also select certain configurations of dynamics-network
pairs where the dynamics follow the half-circle concentra-
tion, such that the total number of data points is 10,000
which we again split into train and test sets (80% and 20%).

For LLDM and LLDM-T in Table II, we used block
minimization-type iterative algorithms for supervised ma-
trix factorization” and nonnegative matrix factorization
algorithms®? for 250 iterations, respectively.

Details for the global-level experiments in Section V D.
For the global-level experiments, we take the parent graph
G to be one of the 500 instances of the 300-node graphs
in the dataset NWS’ in Table I. These graphs are generated
by the NWS model with the circulant graph with & = 12
nearest-neighbors and p = 0.4 probability of adding a
new edge independently between each non-adjacent pair
of nodes. On each G, we simulate the Kuramoto and the
5-color FCA dynamics with random initial configuration for
T’ = 50 and 100 iterations of FCA and Kuramoto dynamics,
respectively. This creates 500 pairs of dynamics on G and
indicator yg of whether the system on G is globally syn-
chronized at time T’'. We choose the initial configurations
randomly so that half of them globally synchronize at time
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T’ (so yg = 1) and the other half do not (so yg = 0). These
pairs are split into 80% training set and 20% testing set.
From each G, we sample a single trajectory of 50 iterations
of the MCMC k-path (k € {10,20,30}) motif sampling
algorithm (see Section IIIB), which gives a sequence of
k-node subgraphs Fi,...,F5y. We then restrict the dynamics
on G on the sampled subgraphs, thereby creating pairs
(Z21,56)s---,(Z50,y6) of k xkx T CATs and (global)
synchronization indicator, where T is varied between 10 and
100. In this way, we create a total of 500*50 pairs of ob-
served subgraph dynamics and synchronization indicators.
The block-coordinate descent algorithm for SMF*’ is run
for 250 iterations to jointly learn the dictionary & (for ranks
R =€ {4,25,100}) of latent dynamic filters and vector of
regression coefficients 3 from the training data set.

FFNN architecture. The FFNN architecture we use for the
experiments is one with four fully connected layers, where
each intermediate layer has 100 hidden nodes, batch normal-
ization, and uses the ReLU® activation function. Further,
we use a dropout® with p = 0.25 on each of our layers to
prevent model overfitting.

Supervision tuning parameter. For our Supervised Matrix
Factorization (SMF) based experiments (See Section V and
Appendix D), we report the best results on doing a grid
search on hyperparameter & (see (D3)) with choices & €
[0.1,0.5,1.0]. A higher value of & indicates that the model
will be penalized more for learning filters that do not recon-
struct the original data well, but not so much for wrong label
predictions, and vice-versa.

Appendix C: Background on Feature extraction by NMF

Suppose we are given with n labeled signals (x;,y;) for
i=1,...,n, where x; € R? is a p-dimensional signal and
yi € {0,1} is its binary label. Suppose p is large (e.g., high-
dimensional signals) and there is a small number R of la-
tent feature vectors wi,...,wg, forming a ‘dictionary’ ma-
trix W € RP*R such that each high-dimensional signal x; can
be approximated by some linear combination Wh; for some
h; € RR. In this way, the high-dimensional signal x; is com-
pressed into a low-dimensional signal h;. The problem of
finding suitable factor matrices W and H = [hy,... hg] can
be formulated by a matrix factorization problem X ~ WH.
That is, each column of the data matrix is approximated by
the linear combination of the columns of the dictionary ma-
trix W with coefficients given by the corresponding column of
the code matrix H (see Figure 11). Variants of matrix factor-
ization problems have been investigated under many names
over the decades, each with different assumptions and con-
straints: dictionary learning, factor analysis, topic modeling,
and component analysis. It has applications in text analy-
sis, image reconstruction, medical imaging, bioinformatics,
network dictionary learning, and many other scientific fields
more generally30-3644,

Along with Principal Component Analysis (PCA)®, non-
negative Matrix Factorization (NMF)?’ is a classical matrix

)65
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A consequence of the nonnegativity constralnt on the code
matrix is that one must represent the columns of the data
matrix only using nonnegative linear combinations of the
columns of the dictionary matrix W. Since the columns of
W are also constrained to be nonnegative, every feature cap-
tured in columns of W can only additively (rather than sub-
tractively) be combined to explain the data points (columns in
X). This allows one to interpret the columns of W as ‘parts’
of the data and the columns of H as their ‘contribution’ in
composing the columns of the data.

llS norm.
ure
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Appendix D: Background on Supervised Matrix Factorization
(SMF)

Note that the NMF formulation in (C1) does not incorporate
the labels yy, ..., y,. This means the dictionary matrix W is for
the best possible reconstruction of the data matrix X, but the
best reconstructive dictionary W may not be very effective for
the classification tasks.

In the supervised matrix factorization (SMF) literature
one desires a dictionary that is reconstructive as well as dzs-
criminative in that such a compressed representation of sig-
nals is adapted to predicting the class labels y;. In order to
learn a dictionary matrix W that is both data-reconstructive
and label-discriminative, we jointly model the pairs (x;,y;) of
high-dimensional signal x; and binary label y; as

28, 29

x; ~Wh; and y;|x; ~ Bernoulli(p;), (D1)

where W ¢ R’;ER is some unknown nonnegative dictionary
matrix and the p; is the predictive probability given by

e eXp((/Bawai>)
Pi= 1+exp({3,WTx;)

(D2)

18

for i = 1,...,n. Here we can interpret the product W”x; as
performing a convolution on the p-dimensional signal x; us-
ing the R columns in W. Since W is nonnegative, such con-
volution computes the proximity score of the pattern in each
column of W observed in observed signal x;. In this sense,
we view the columns of W as ‘filters’ that encode R particu-
lar patterns we seek to detect in x;. The vector WTx; € RR of
proximity scores is then used as input to the logistic classifier
with regression coefficients in 3. If the jth coordinate of 3 is
positive (resp., negative), then the proximity score (w;,X;) of
the signal x; with jth filter w; is positively (resp., negatively)
associated with y; being one (resp., zero).

We formulate the following joint optimization problem for
fitting nonnegative SMF model to the data-label pairs:

HllIl
W>0,H>0,8

(Zﬁ Vi (B, WIxi)) + & X — WH||F>, (D3)

where W ¢ R%R, Hc Rgé”, B € R, and the negative log-
likelihood function ¢ is defined by

0y, (B, W'x;)) =

with p; as in (D2). Here, the tuning parameter & > 0 controls
the trade-off between the two objectives of classification and
matrix factorization.

The objective function in (D3), say F(W,H, 3), is convex
in each of the three variables W, H, and 3 while the other
two variables are held fixed. Hence we can employ cyclic
block coordinate descent (BCD) algorithms®?. In particular,
the simplest cyclic block minimization algorithm for solving
(D3) reads as

—yilogp; — (1 —yi)log(1—p;) (D4)

Wi« argminy.o F(W,Hy, By)
H;.1 < argming, F(Wiy1, H, Br) (Ds)
Biy1 < argming F(Wii1,Hiy 1, B).

Each sub-problem in (D5) is a convex optimization problem,
which can be solved by using standard algorithms such as pro-
jected gradient descent®. See Lee, Lyu, and Yao*® for a more
detailed implementation of BCD for nonnegative SMF (D3)
and convergence guarantees.

Appendix E: Performance Comparison for Various Graph
Embedding Methods

In this section, we provide additional experiments in or-
der to demonstrate that the way we encode the topological
features of the underlying graph does not make a significant
difference in the prediction accuracy for the synchronization
prediction of coupled oscillators on these graphs.

Graph embedding techniques like DeepWalk*’,
graph2vec®, and Spectral Embedding® have been used
extensively in recent years to embed a graph into a low-
dimensional vector space while preserving the structure of
the graph. In this paper, we have used a rather simple colored
adjacency tensor (CAT)? to encode T-iterations of dynamics



on a k-node subgraph into a k x k X T nonnegative tensor. As
the name suggests, it is a stack of the adjacency matrix of the
underlying graph, with additional information on the phase
difference along the edges at each time. One may wonder if
one uses a more sophisticated graph embedding algorithm
to encode a graph-dynamics pair, then one would get a
potentially significant performance gain in synchronization
prediction problems. However, we argue that this is not the
case.

Spectral embedding is a classical graph embedding
technique that uses top eigenvectors of the graph Laplacian
matrix as low-dimensional vector representations of the nodes
of anetwork. The objective of the DeepWalk is to learn a map-
ping of nodes into a low dimensional Euclidean space such
that two nodes that co-appear frequently in random walk se-
quences on the network would be assigned with their vector
representations with the large inner product; two nodes that
do not co-appear frequently will be nearly orthogonal after
the embedding. The objective of the graph2vec is to learn
low dimensional graph embeddings in an unsupervised man-
ner, primarily used for graph classification.

In Table E, we perform synchronization prediction on k =
20-node subgraphs from UCLA network using a logistic clas-
sifier on data sets generated by using various different meth-
ods to encode the graph topology. The data generation set-
ting is identical to that for the subgraph-level experiments
in Section V C, which we explained in detail in Appendix
B. In this table, ‘dynamics’ means the k x T matrix encod-
ing of the T-iterations of dynamics on the graph. We ap-
pend this matrix with four different encodings of the under-
lying graph: Adjacency matrix, spectral embedding,
DeepWalk, and graph2vec.

TABLE III. Effect on Logistic Regression Prediction Accuracy of
Adding Graph Embedding Features in Addition to Dynamics.

Embedding Technique \ Kuramoto FCA  GHM
Dynamics 96.4% 92.7% 90.6%

Dynamics + Adjacency Matrix 96.3%  92.9% 91.4%
Dynamics + Spectral Embedding 96.9% 92.7% 90.9%
Dynamics + DeepWalk 96.5% 92.1% 91.3%
Dynamics + graph2vec 96.8%  93.1% 91.8%
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We observe that encoding the underlying graph using var-
ious methods does not seem to provide the model with much
additional information. The highest accuracy gain even for
modern embedding methods compared to providing the model
with only dynamics and the adjacency matrix is in the case
of Kuramoto, with a 0.6% gain, which does not lead to a
significant difference. Moreover, this trend remains relevant
for all three coupled oscillator models. Overall, changing the
graph embedding technique seems to have little to no effect on
model performance, which is why a simple adjacency-matrix-
based canonical representation that is encoded by our CATs
(See Figure 2) is already sufficient to provide the model with
enough graph topology information.

Appendix F: Extended subgraph-level prediction accuracies

In this section, we provide the full set of results
of prediction accuracy of various methods versus LLDM
on the subgraph level for k-node subgraphs where k €
{10,15,20,25,30} with the FCA, Kuramoto, and GHM dy-
namics induced on them. Table F represents accuracies for
subgraphs sampled from NWS, table V represents accuracies
for subgraphs sampled from CALTECH, and table VI represents
accuracies for subgraphs sampled from UCLA. Each accuracy
metric reported is the mean accuracy from 5 seeds, based on a
grid search across tuning parameter £ € [0.1,0.5,1.0].

Appendix G: latent dynamics filters or Dictionary Plots for
Various Settings

In this section, we show the rank 8 dictionary atoms learned
by LLDM from the three parent networks and three dynamics
networks for subgraph sizes k € {10,15,25,30} with k =20
in the main text Section V F. See Figures 12 and 13.

Appendix H: Goodness-of-fit Plots

In this section, we show the rank 2,4, 8, and 16 goodness-
of-fit plots in Figure 14 with deviance residuals for subgraph
sizes k € {10,15,25,30} with k = 20 in the main text Section
VE.
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TABLE IV. Prediction accuracy of various methods for FCA, Kuramoto, and GHM dynamics on subgraphs with k£ number of nodes where
k € {10,15,20,25,30} sampled from a large-connected NWS parent graph. All accuracy values are an average of 5 seeds. The highest accuracy
for each setting is indicated in bold. Whenever the average values of accuracy are equal for two methods, both are represented with bold font.

FCA Kuramoto GHM

k=10 k=15 k=20 k=25 k=30k=10 k=15 k=20 k=25 k=30|k=10 k=15 k=20 k=25 k=30
Baseline 802 782 69.6 710 694 | 565 632 66.1 69.9 643 | 89.6 787 762 69.6 65.6
LogReg 927 952 948 89.1 764 | 835 81.8 80.1 824 80.2 | 955 927 93.6 90.1 928
FFNN 922 949 954 90.2 828 | 84.2 825 834 83.8 792 | 944 958 91.8 914 94.1
LLDM-T (R=2)| 82.7 894 813 850 759 | 743 76.6 76.0 77.1 80.1 | 855 902 89.0 88.0 89.7
LLDM-T (R=8)| 86.5 91.3 819 860 757 | 752 715 77.1 774 803 | 81.6 904 817 78.1 83.0
LLDM (R=2) | 91.5 922 932 870 772 | 814 176.1 7175 772 783 | 959 933 91.0 894 895
LLDM (R=8) | 93.0 92.8 942 88.1 84.8 | 82.1 81.6 78.4 844 784 | 96.0 962 923 89.0 94.1

TABLE V. Prediction accuracy of various methods for FCA, Kuramoto, and GHM dynamics on subgraphs with k£ number of nodes where
k € {10,15,20,25,30} sampled from a large-connected CALTECH parent graph. All accuracy values are an average of 5 seeds. The highest
accuracy for each setting is indicated in bold. Whenever the average values of accuracy are equal for two methods, both are represented with
bold font.

FCA Kuramoto GHM

k=10 k=15 k=20 k=25 k=30k=10 k=15 k=20 k=25 k=30|k=10 k=15 k=20 k=25 k=30
Baseline 784 743 688 683 637 | 525 61.6 68.3 66.1 654 | 8.3 745 726 667 65.8
LogReg 91.8 922 905 915 894 | 82.6 80.2 81.2 85.6 81.7 | 965 932 929 883 915
FFNN 929 938 914 922 872 | 83.6 812 80.8 904 819 | 953 952 957 90.8 91.8
LLDM-T (R=2)| 89.0 88.8 784 819 762 | 839 782 79.5 824 81.0 | 96.0 925 89.2 864 843
LLDM-T (R=8)| 86.9 90.6 80.1 803 824 | 82.7 786 79.8 848 81.7 | 929 924 849 709 76.7
LLDM (R=2) | 88.8 914 81.1 846 804 | 826 76.8 79.2 83.7 80.1 | 954 922 89.0 847 824
LLDM (R=8) | 904 93.0 895 877 878 | 828 779 82.2 89.0 796 | 955 934 938 91.6 90.1

TABLE VI. Prediction accuracy of various methods for FCA, Kuramoto, and GHM dynamics on subgraphs with k£ number of nodes where
k€{10,15,20,25,30} sampled from a large-connected UCLA parent graph. All accuracy values are an average of 5 seeds. The highest accuracy
for each setting is indicated in bold. Whenever the average values of accuracy are equal for two methods, both are represented with bold font.

FCA Kuramoto GHM

k=10 k=15 k=20 k=25 k=30|k=10 k=15 k=20 k=25 k=30k=10 k=15 k=20 k=25 k=30
Baseline 80.6 774 702 712 683 | 564 653 69.2 684 649 | 865 763 714 672 652
LogReg 89.8 892 941 938 912 | 91.3 902 91.4 928 946 | 942 924 956 923 923
FFNN 904 911 956 932 925 | 928 913 924 93.6 952 | 938 922 948 934 929
LLDM-T (R=2)| 77.9 79.7 804 823 80.1 | 79.8 84.1 87.1 832 872 | 923 922 894 925 914
LLDM-T (R=8)| 783 80.9 84.7 873 84.1 | 826 858 87.6 865 902 | 946 91.1 879 895 884
LLDM (R=2) | 86.8 86.5 905 90.8 864 | 79.1 862 85.9 852 935|932 916 90.7 91.1 912
LLDM (R=8) | 91.1 886 926 927 900 | 89.3 893 90.0 942 947 | 946 916 933 931 959
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FIG. 12. The 8-element SMF latent dynamics filters of FCA and Kuramoto on CALTECH, UCLA, NWS networks of 10 nodes and 15 nodes
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