
Published in Transactions on Machine Learning Research (05/2024)

Revealing an Overlooked Challenge in Class-Incremental
Graph Learning

Daiqing Qi daiqing.qi@virginia.edu
University of Virginia
Charlottesville, VA 22903

Handong Zhao hazhao@adobe.com
Adobe Research
San Jose, CA 95110

Xiaowei Jia xiaowei@pitt.edu
University of Pittsburgh
Pittsburgh, PA 15260

Sheng Li shengli@virginia.edu
University of Virginia
Charlottesville, VA 22903

Reviewed on OpenReview: https: // openreview. net/ forum? id= ScAc73Y1oJ

Abstract

Graph Neural Networks (GNNs), which effectively learn from static graph-structured data,
become ineffective when directly applied to streaming data in a continual learning (CL)
scenario. In CL, historical data are not available during the current stage due to a number
of reasons, such as limited storage, GDPR1 data retention policy, to name a few. A few
recent works study this problem, however, they overlook the uniqueness of continual graph
learning (CGL), compared to well-studied continual image classification: the unavailability
of previous training data further poses challenges to inference in CGL, in additional to the
well-known catastrophic forgetting problem. While existing works make a strong assumption
that full access of historical data is unavailable during training but provided during inference,
which potentially contradicts the continual learning paradigm (Van de Ven & Tolias, 2019),
we study continual graph learning without this strong and contradictory assumption. In this
case, without being re-inserted into previous training graphs for inference, streaming test
nodes are often more sparsely connected, which makes the inference more difficult due to
insufficient neighborhood information. In this work, we propose ReplayGNN (ReGNN)
to jointly solve the above two challenges without memory buffers: catastrophic forgetting
and poor neighbor information during inference. Extensive experiments demonstrate the
effectiveness of our model over baseline models and its effectiveness in different cases with
different levels of neighbor information available.

1 Introduction

Graph Neural Networks (GNNs) (Kipf & Welling, 2016a; Hamilton et al., 2017) have been recognized as a
valid tool for graph learning, showing promising performance on a variety of tasks. In practical scenarios,

1https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

1

https://openreview.net/forum?id=ScAc73Y1oJ

Published in Transactions on Machine Learning Research (05/2024)

Visualization of test samples

0 500 1000 1500 2000 2500 3000 3500 4000

Rank
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
gr

ee

Degree rank plot
Test data
Training data

0 5 10 15 20

Degree
0

200

400

600

800

1000

1200

of

 N
od

es

Degree histogram
Test data
Training data

Visualization of test samples

0 500 1000 1500 2000 2500 3000 3500 4000

Rank
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
gr

ee

Degree rank plot
Test data
Training data

0 5 10 15 20

Degree
0

200

400

600

800

1000

1200

of

 N
od

es

Degree histogram
Test data
Training data

Figure 1: Node degree statistics of training and test data from a graph that records user interactions in
Stack Exchange (an online platform). We extract data accumulated for a month as the training graph and
data from the following few days as the test data. Obvious difference between training and test data density
can be observed under continual graph learning setting (previous training nodes are unavailable).

graphs can often evolve over time, and meanwhile, previous data (e.g., some nodes and edges) are inaccessible
sometimes. For instance, in user interaction graphs of online platforms (Fig. 1), history records can be
unavailable due to customer data storage consent, for instance, the 30-days right-of-erasure in General Data
Protection Regulation (GDPR), or the users’ preferences to hide their history records. Traditional graph
learning models (Hamilton et al., 2017; Kipf & Welling, 2016a), which are not designed for preserving
good performance on all learnt tasks over time, often have limited performance in this setting because the
unavailability of previous data leads to catastrophic forgetting (McCloskey & Cohen, 1989).

Continual learning (Thrun, 1995) aims to develop an intelligent system that can continuously learn from
new tasks without forgetting learnt knowledge in the absence of previous data. Common continual learning
scenarios can be roughly divided into two categories (Van de Ven & Tolias, 2019): task-incremental learning
(TI) and class-incremental learning (CI) (Rebuffi et al., 2017; Qi et al., 2023). Recently, a few works (Liu
et al., 2021; Zhou & Cao, 2021; Wang et al., 2020; 2022; Galke et al., 2021) begin to study Continual
Graph Leaning (CGL), which is helpful when accumulating all history data over time is not feasible due to
storage pressure or customer data storage consent, for instance, the 30-days right-of-erasure in GDPR. 2.
Furthermore, even in scenarios where all prior data remains accessible, continual graph learning still holds
significance. This is because it is advantageous for the model to incrementally learn from new data, rather
than undergoing a complete retraining process from scratch.

However, in the context of graph learning, the unavailability of previous data further poses a unique challenge
in addition to the catastrophic forgetting problem during the inference. Specifically, existing graph-based
models often consider nodes in both training and testing data when performing graph operations in the
evaluation phase, e.g., aggregating neighbors for test nodes. However, this is not practical in the continual
learning setting because a subset of the nodes and edges are from previous tasks and they may not be
available for the following tasks.

When existing works evaluate their models under the continual graph learning setting with citation graphs,
social networks, or co-purchase graphs, during the inference, they re-insert test nodes into the previous
training graph and then aggregate the neighborhood information of test nodes to make a prediction (Fig. 2).
Such evaluation method is common in a traditional graph learning setting. Nevertheless, in continual graph
learning, it is not always practical. This is because in continual learning, training data (previous nodes)
from previous tasks are no longer available at the current stage, including both training and inference stage.
In a typical continual graph learning scenario, on-the-fly inference is often required. For instance, in node
classification, the model needs to infer the labels of streaming test nodes once it receives them, instead of
accumulating a large number of test nodes to do an inference. Without re-inserting back to the graph, the
streaming test nodes of a relatively smaller size are often very sparsely connected. It means while the model
is trained on a dense graph, it is required to infer on a much sparser graph. Fig. 1 showcases the above point

2https://gdpr-info.eu/

2

Published in Transactions on Machine Learning Research (05/2024)

GNN

? ?

GNN

Training stage

?

?

?
?

? ?

Existing works

Ours

: Test node?

Task 1 Task 2 Task 3

Inference stage

: Unavailable node

Figure 2: Different cases during the inference stage. Compared with existing works (Liu et al., 2021; Zhou
& Cao, 2021; Wang et al., 2022), ours is more practical and strictly follows the continual learning paradigm:
previous training nodes and edges are no longer available during current stage, which includes both the
training stage and the inference stage.

in a real-world scenario. We study with the user interaction graph from the Stack Exchange platform 3 and
observe notable difference between training and test data density under the continual graph learning setting.
The above facts lead to a key challenge in addition to catastrophic forgetting in continual graph learning:
the neighborhood information available during the inference is very limited. Different from existing works,
we consider this practical yet ignored case in our paper and solve this challenge.

Besides, different from existing works that either focus on task-incremental learning and data-incremental
learning, or focus on class-incremental learning but use a buffer to store previous data for replay to prevent
forgetting, in this paper, we focus on CI graph learning problem without memory buffers. In light of the
unavailability of history data, we are motivated by the success of generative replay based models in image
classification tasks and further propose a generative replay based GNN model, ReplayGNN (ReGNN), to
solve the above challenges. Without requiring storing previous data, it outperforms baseline models including
competitive baselines with memory buffers on several benchmark graph datasets.

The main contributions of this paper are as follows: (1) We find an interesting and important yet overlooked
fact by existing works on continual graph learning: the unavailability of previous training nodes and edges
further lead to the poor neighborhood information problem during the inference stage, in addition to the
catastrophic forgetting problem. (2) Taking this ignored fact into account, we study the class-incremental
graph learning problem without the use of memory buffers. (3) We further propose ReplayGNN to address
the problems and the experiments demonstrate its effectiveness in different cases given different levels of
neighbor information.

2 Related Work

2.1 Graph Neural Networks

Graph neural networks are popular models for graph representation learning. The success of GNNs has
boosted research on many real world tasks based on graph-structured data, ranging from node classifica-
tion(Jiang et al., 2019; Rezayi et al., 2021; Jiang et al., 2023; Shi et al., 2023), knowledge graph based
question answering (Hua et al., 2020), to recommender systems (Sheu et al., 2022). GNNs can be roughly
categorized into two groups: spatial methods (Hamilton et al., 2017) and spectral methods (Kipf & Welling,
2016a). GraphSAGE (Hamilton et al., 2017) is a typical spatial method, which directly aggregates node
representations from a node’s neighborhoods to obtain its representation, while graph convolutional network
(GCN) (Kipf & Welling, 2016a), a typical spectral method, learns graph representation in the spectral do-
main, which alleviates over-fitting on local neighbors via the Chebyshev expansion. To further effectively
learn from the local structure, graph attention networks (GAT) (Velickovic et al., 2017) adopt an attention
mechanism based on GCN. Both classic spatial and spectral methods need the entire graph during model
training. To learn more effectively when scaling to large evolving graphs. Some sampling strategies have

3https://stackexchange.com/

3

Published in Transactions on Machine Learning Research (05/2024)

been developed (Hamilton et al., 2017; Chen et al., 2018) so that only part of the graph is required for each
iteration during training.

Although the GNNs have demonstrated their superiority in many graph-related tasks, most of them focus
on graph learning on static graph-structured data. However, in real world applications, graphs are often
evolving, either in form of data or classes, and history data might be no longer available due to privacy or
storage concerns. Traditional GNNs often fail in such cases due to catastrophic forgetting. The performance
on previous tasks would drop significantly, if the standard GNNs are applied in this setting without any
modification.

2.2 Continual Learning

Continual learning studies the problem of learning from streaming data, with the aim of continuously acquir-
ing new knowledge while maintaining its learnt knowledge. Current most studied continual learning settings
can be roughly categorized into two categories (Van de Ven & Tolias, 2019) :Task-Incremental Learning (TI),
and Class-Incremental Learning (CI). Note that in both TI and CI, number of classes can be increased as
the number of task increases. The key difference is that, in TI, the task to which a test sample belongs is
provided during the inference (i.e. the task-ID is available during inference). The change of data distribution
can stem from different domains (Qi et al., 2024; Zhu et al., 2024; 2023) (i.e., domain-incremental), e.g.,
from the classification of handwritten digital numbers in MNIST (Deng, 2012) to the classification of street
view house numbers (Netzer et al., 2011). The change of data distribution can also be caused by different
tasks (i.e., task-incremental), e.g., from classifying handwritten digital numbers 0-4 (Task 1) to 5-9 (Task
2) in MNIST. A more challenging setting is class-incremental learning, where the data distribution shift is
the result of new incoming classes and the model is required to classify both the previously learnt classes
and new classes in all tasks at one time. While in task-incremental learning, the model needs to distinguish
classes within each task but is not required to distinguish classes in different tasks because task-IDs are
available.

Class-incremental learning (CI) (Rebuffi et al., 2017) is a harder continual learning problem due to the un-
availability of task-IDs. Representative continual learning models, such as (Kirkpatrick et al., 2017) and
(Li & Hoiem, 2017), achieve promising performance on TI benchmarks, but suffer from notably forgetting
on simple CI benchmarks. Existing approaches to solve the CI problem can be divided into three cate-
gories (Ebrahimi et al., 2020), including the replay-based methods (Rolnick et al., 2019; Chaudhry et al.,
2019), structure-based methods (Yoon et al., 2017), and regularization-based methods (Kirkpatrick et al.,
2017; Aljundi et al., 2018). Progress has been made in continual learning in recent years, however, only a
few of them study continual learning with GNNs.

2.3 Continual Graph Learning

Different continual graph learning settings are explored in recent studies, including Data Incremental Learn-
ing (DI) (Wang et al., 2020; Xu et al., 2020; Cai et al., 2022; Han et al., 2020; Wang et al., 2022), Task-
Incremental Learning (TI) (Liu et al., 2021; Zhou & Cao, 2021; Zhang et al., 2021) and Class-Incremental
Learning (CI)(Wang et al., 2022). (Cai et al., 2022) studies continual learning in a multi-modal graph with
neural architecture search, and (Xu et al., 2020) prevents the recommendation system from forgetting the
long term user preference by knowledge distillation. (Daruna et al., 2021) and (Kou et al., 2020) focus on
the continual learning of knowledge graph embeddings. Their methods can be further considered in two
scenarios by if they use a buffer to store raw data (Zhou & Cao, 2021) or prototypes (Zhang et al., 2021).
The most related work to ours includes (Zhou & Cao, 2021), (Liu et al., 2021) (Wang et al., 2022) and
(Zhang et al., 2021). DI is not a typical continual learning setting, but it is studied in the context of graph
learning. In DI, all samples are streamed randomly, while in CI and TI, all samples from a group of classes
are streamed before switching to the next group. TWP (Liu et al., 2021) is a regularization-based method
without storing any data or prototypes while (Zhou & Cao, 2021), (Zhang et al., 2021) and (Wang et al.,
2022) need a buffer to store either raw data or prototypes to prevent forgetting.

However, existing works overlook an interesting and important fact that is unique in the context of continual
graph learning compared to regular continual learning in image classification: the unavailability of previous

4

Published in Transactions on Machine Learning Research (05/2024)

training nodes and edges lead to limited neighborhood information during inference, in addition to the
catastrophic forgetting. Our work differs from existing works in that 1. we consider this ignored fact and 2.
we focus on CI setting without the use of a memory buffer to store raw data or prototypes.

3 Methodology

3.1 Problem Formulation

Class-Incremental Graph Learning is defined as follows. Denote a graph as G = {V, E}. A model learns
from a sequence of data D = {D1,D2, ...,Dm}, where Di = {Vi, E i}. Each Di is the data distribution of the
corresponding task T i, with Yi being its label space. When performing the task T t, we assume access to
only Dt, i.e., all data {Di|i < t} is unavailable. The goal is to effectively learn from Dt, while maintaining
the model performance on learnt tasks. At the end of T m (i.e., all m tasks are learnt), the model is required
to map test samples from all seen data distributions to Y1 ∪ Y2... ∪ Ym without task-IDs. Buffers to store
raw data or prototypes are not allowed. More discussions about out setting is available in Appendix A.

3.2 An Ignored Fact During Inference Stage

In typical image classification scenarios, training data are not required for inference because test samples are
assumed to be independent of training samples. In contrast, graph learning often leverages the dependencies
between test nodes and training nodes for better inference when learning with large networks. For instance,
in many cases, test nodes are re-inserted into the training graph to exploit the dependency by neighbor
aggregation for better inference. However, most of existing graph learning models cannot be applied to the
continual graph learning scenario as the data from previous tasks become unavailable for inference. Besides,
directly applying standard graph models often lead to the catastrophic forgetting problem over previous
tasks.

However, existing works (Wang et al., 2022; Liu et al., 2021; Zhou & Cao, 2021) on TI and CI graph learning
overlook the challenge of unavailable previous data during inference. Fig. 2 illustrates different inference cases
in inductive node classification task. We do not consider transductive learning because it requires all test
samples to appear in the graph for training from the beginning, which is not practical in CI graph learning,
where streaming test samples often appear over time. The scenario adopted by existing works is not practical
because in continual learning, data (i.e. nodes and edges) from previous tasks are no longer available once
learned. However, in existing works, test nodes with labels from all learnt classes are re-inserted into the
graph and connected to previous nodes for inference.

Considering the unavailability of previous training data, we introduce ours as the practical inference scenario
in continual graph learning, where previous training nodes are unavailable and only connections among test
nodes are kept. In this case, as discussed in section 1, the connections among test nodes are very sparse. It
leads to a unique challenge in graph continual learning: the neighborhood information available for inference
is very poor.

3.3 ReGNN

 Graph
 Decoder

(t-1)

generated
data

real data

training
data

Figure 3: Composition of training data for current
task t. It consists of replay data generated by the
copy of the graph encoder from the last task t− 1
and the training data from the current task t.

To solve the major challenges in continual graph learn-
ing: (1) catastrophic forgetting and (2) limited neigh-
borhood information during the inference stage, we pro-
pose our model ReplayGNN (ReGNN). Fig. 3 illustrates
how replay data is generated and used and Fig. 4 illus-
trates the detailed framework of ReGNN. The proposed
GraphCVAE module is maintained to generate old data
for replay to prevent forgetting, while the NodeAE mod-
ule effectively learns from node attributes with little or
no neighborhood information to adapt to our introduced
inference case in Fig. 2.

5

Published in Transactions on Machine Learning Research (05/2024)

 Graph
 Encoder

σ

μ

 Graph
 Decoder

 Node
 Encoder

z

Classifier

1

2

3

4

1

2

3

4

1

2

3

4

4

1

2

3

1

Figure 4: Overview of our ReplayGNN (ReGNN) model. ReGNN consists of three modules with shared
components: a GraphCVAE, a classifier and a NodeAE. The input in the figure is a node (node1) in a mini-
batch with its sampled neighbors. The graph encoder consists of the convolution layer of GNN, which outputs
low-dimensional embeddings (red) of node1. The GraphCVAE module consists of the graph encoder and
graph decoder. The classifier is a single classification layer. The NodeAE, which consists of the node
encoder and the graph decoder (shared with GraphCVAE), takes a single node embedding as input and (1)
tries to reconstruct the structure information and (2) yield node embedding (pink) that is distinguishable
for classifier.

Conceptually, GraphCVAE and NodeAE are designed for two different purposes corresponding to two dif-
ferent challenges in CGL, but they are inherently associated through a shared graph decoder, which further
boosts the model performance as ablation study illustrates.

We use a single-layer GNN in our model for simplicity. More advanced graph generation techniques can
be integrated into our graph encoder and decoder if multiple layers are required. Experiments show our
lightweight model is already effective. More details are discussed in the future work part in Section 5.

3.3.1 GraphCVAE

Based on VAE (Kingma & Welling, 2013) (details are available in Appendix A), we propose a Graph Con-
ditional Variational Autoencoder (GraphCVAE) module, which consists of the graph decoder and graph
encoder. During task t, GraphCVAE is trained with real data Dt and generated replay data Dg, which is
generated by the graph decoder Dt−1

graph. The generation is conditioned on class labels, which contains all
classes learnt before the current task. Different from Variational Graph Auto-Encoders (Kipf & Welling,
2016b), which reconstructs the whole adjacency matrix of a graph without node attributes (for link predic-
tion during inference), our GraphCVAE tries to predict the node attributes for the neighbors of a target
node given its attributes.

Graph Encoder. Given input nodes Dt with sampled neighbors, the graph encoder first obtains the node
embeddings with the forward propagation steps. Denote the input node as v and hin

u as the raw features of
a node u. The output embedding hout

v is calculated by:

hout
N (v) ← AGGREGATE

({
hin

u , ∀u ∈ N (v)
})

, (1)

hout
v ← φ

(
W · CONCAT

(
hin

v , hout
N (v)

))
, (2)

where W is the learnable parameter and φ is the activation function. Similar to the standard VAE, the
mean zµ and standard deviation zσ of the distribution are calculated from the embedding hout

v by:

zµ = ReLU(Wµ · hout
v), zσ = ReLU(Wσ · hout

v), (3)

6

Published in Transactions on Machine Learning Research (05/2024)

where Rectified Linear Unit (ReLU) (Nair & Hinton, 2010) is the activation function. Wµ and Wσ are
learnable parameters. With mean zµ and standard deviation zσ, latent variable z is sampled from the
Gaussian distribution N(zµ, zσ).

Graph Decoder. The decoder tries to reconstruct the input data from the latent variable z. It first
generates embedding fv from latent variable z with learnable parameter B, then the input embedding is
reconstructed:

fv = φ(B · z). (4)

[fout
v ; fout

N (v)]← φ(M · fv), (5)

where M is the learnable parameter and [a; b] is the concatenation of embedding a and b. The decoded
embeddings [fout

v ; fout
N (v)] try to match the input embedding [hin

v , hout
N (v)], which is the return value of the

CONCAT function in 1. This embedding contains the neighbor information of v as well as the feature of the
node v itself. We do not further decode it to obtain {hin

u , ∀u ∈ N (v)} because the current decoded value
already can be the input of graph encoder and be helpful for replay. In other words, we replay the input
embedding [hin

v , hout
N (v)] instead of {hin

u , ∀u ∈ N (v)}. Then the loss functions in GraphCVAE are:

LRecon = DIST([fout
v ; fout

N (v)], [hin
v ; hout

N (v))]), (6)

LKLD = DKL[N (zµ, zσ)||N(c, 1)], (7)

where DIST measures the distance of the two embeddings. Specifically, binary cross entropy is used as the
measure of distance here. and DKL is the Kullback–Leibler divergence. c is the class label of input data.
The overall loss function is:

Lcvae = LRecon + LKLD. (8)

3.4 NodeAE

Node Autoencoder (NodeAE) consists of the an encoder and a graph decoder. During the training, given
a node v, as graphSAGE aggregates the neighbors of v to obtain its representation, the classifier learns
to classify hout

v in Eq. 1, i.e., φ(W · [hin
v ; hout

N (v)]). However, during the inference stage, the neighbors of
v can be very sparse (2). In this case, the classifier fails to fully exploit its learnt knowledge with rich
neighbor information on training graph for inference. Thus during the inference, given a node v with only
few neighbors, the extracted feature of this node, which is fed to the classification layer, is also expected to
contain the neighbor information of the node. In this way, the node can be better classified by the classifier.
We use an autoencoder to achieve it.

Given a node v, while the graph encoder takes node v and its sampled neighbors as input, node encoder only
takes the node attribute of node v as input. But the decoder is required to reconstruct the embeddings of
the aggregation of its neighbors as well as its own embedding. Another option is to generate random masks
to mask certain portion of neighbor nodes of the input node before the neighbor aggregation process, while
the decoder also wants to do the reconstruction. Here we simply mask all neighbors and only use the input
node attribute, which is still effective. The forward propagation of the encoder is:

xout
v ← φ(H · [hin

v ;]), (9)

where H is the learnable parameter, whose size is the same as W . The loss function is:

Lae = DIST(φ(M · xout
v), [hin

v ; hout
N (v)]). (10)

When trained properly, given an isolated node, the node encoder can map the node attribute into a com-
pressed embedding xout

v that contains its neighbor information and is then used for prediction.

7

Published in Transactions on Machine Learning Research (05/2024)

Table 1: Accuracy on different datasets under class-incremental learning scenario.

Model Scenario Dataset
No Memory Buffer Memory size Citeseer Cora Amazon

M = 1% 34.13± 0.14 41.78± 0.62 50.53± 2.94
ER-GNN (Zhou & Cao, 2021) % M = 3% 41.46± 2.32 51.96± 1.65 60.53± 2.85

M = 5% 45.48± 2.35 57.96± 2.58 67.82± 2.23
M = 1% 35.94± 0.28 38.48± 0.17 49.53± 1.74

ContinualGNN (Wang et al., 2020) % M = 3% 46.08± 0.45 46.49± 0.51 56.78± 2.04
M = 5% 50.60± 0.49 60.41± 1.91 60.79± 2.23

GraphSAGE (Hamilton et al., 2017) - 31.02± 0.12 25.00± 0.14 37.01± 0.43
LwF (Li & Hoiem, 2017) - 36.74± 1.15 42.27± 1.54 50.01± 1.83
ReGNN (Ours) - 55.02± 2.01 64.33± 1.82 69.32± 1.48

3.5 Classifier

The classifier is a single classification layer and takes the output of the graph encoder and the node encoder
as input. The loss function for classification is:

Lcls = Lce(g(xout
v , hout

v), y), (11)

where Lce is the cross entropy loss function, and g(·) is a function that combines two embeddings, and we
simply add them together. Note that the current training data are a mixture of real data and replay data
as 3 illustrates. y are their corresponding labels.

By summarizing the three modules together, the overall loss function for our ReGNN model is:

LReGNN = Lcls + Lcvae + Lae. (12)

4 Experiments
4.1 Datasets
Following related works (Wang et al., 2022; Liu et al., 2021; Zhou & Cao, 2021), we conduct experiments
on three benchmark datasets under the continual learning settings: Cora (Sen et al., 2008), CiteSeer (Sen
et al., 2008), and Amazon (McAuley et al., 2015), which is a segment of Amazon co-purchasing graph.
We split each dataset into several tasks, following (Liu et al., 2021; Zhou & Cao, 2021; Wang et al., 2022).
CoraFull (McCallum et al., 2000) and Arxiv (Hu et al., 2020) are both citation networks. Red-
dit (Hamilton et al., 2017) is a post-to-post graph. The Products (Hu et al., 2020) dataset is
the co-purchase network. Details about dataset information and how we build tasks for continual learning
scenario are available in Appendix A.

In our class-incremental setting, we divide Cora into three tasks. The first and second tasks consist of two
classes, and the last task has three classes. Citeseer are split into three tasks with two classes in each task.
The first task of Amazon has two classes. The second and third tasks on Amazon dataset have three classes.
The model is required to classify all learnt classes without using task-IDs.

4.2 Baselines
We adopt the following baselines in our experiments. GraphSAGE (Hamilton et al., 2017) is a representa-
tive GNN model, which is also used as the backbone for some other baselines for fair comparison. LwF (Li
& Hoiem, 2017) is a representative data-free continual learning model, which uses the history state of itself
as the teacher for knowledge distillation to avoid forgetting. ER-GNN (Zhou & Cao, 2021) uses a buffer to
store data for experience replay, in order to prevent from forgetting. ContinualGNN (Wang et al., 2020) al-
leviates forgetting by storing data for replay and adopts a model regularization similar to EWC (Kirkpatrick
et al., 2017). Finetuning is the lower bound baseline by updating the model only with newly incoming

8

Published in Transactions on Machine Learning Research (05/2024)

Table 2: Accuracy on Citeseer dataset at different levels of neighborhood information. Best results in bold.

Model Default 3-hop 5-hop Full
ER-GNN (M=1%) 34.13± 0.14 36.44± 0.42 36.64± 0.25 38.65± 0.93
ER-GNN (M=3%) 41.46± 2.32 49.29± 2.76 50.20± 2.23 58.82± 3.32
ER-GNN (M=5%) 45.48± 2.35 55.82± 0.56 57.53± 1.27 61.44± 2.18
ContinualGNN (M=1%) 35.94± 0.28 40.06± 0.85 41.67± 0.99 41.46± 1.50
ContinualGNN (M=3%) 46.08± 0.45 52.71± 1.22 53.81± 1.44 55.02± 1.26
ContinualGNN (M=5%) 50.60± 0.49 57.22± 1.22 58.63± 1.35 60.14± 1.35
GraphSAGE 31.02± 0.12 31.02± 0.19 30.72± 0.39 31.92± 0.46
LwF 36.74± 1.15 40.65± 1.06 42.85± 1.34 48.97± 1.03
ReGNN (Ours) 55.02± 2.01 62.57± 2.12 64.57± 2.34 67.74± 2.12

graphs. Joint is the ideal upper bound situation where the memory bank contains all historical incoming
graphs. EWC (Kirkpatrick et al., 2017) applies quadratic penalties to the model weights that are important
to the previous tasks. MAS (Aljundi et al., 2018) utilises a regularisation term for parameters sensitive to
the model performance of historical tasks. GEM (Lopez-Paz & Ranzato, 2017) modifies the gradients using
the informative data stored in memory. TWP (Liu et al., 2021) preserves the topological information for
previous tasks by a regularisation term. LwF (Li & Hoiem, 2017) distils the knowledge from the old model
to the new model to keep the previous knowledge. ER-GNN (Zhou & Cao, 2021) samples the informative
nodes from incoming graphs into the memory bank. SSM (Zhang et al., 2022) stores the sparsified incoming
graph in the memory bank for future replay.

Although in data-free continual learning setting, no data can be stored for replay, we show that ReGNN
outperforms ER-GNN (Zhou & Cao, 2021) and ContinualGNN(Wang et al., 2020), which use memory
buffers for replay. Because ER-GNN (Zhou & Cao, 2021) already outperforms continual learning models
EWC (Kirkpatrick et al., 2017) and GEM (Lopez-Paz & Ranzato, 2017), we only report the results for
ER-GNN. More discussions about choices of baselines are available in Appendix A.

Experimental Setup. We use the neighborhood sampling strategy in GraphSAGE for all models when
sampling is available. Details of experiment settings are available in Appendix A.

4.3 Main Results

Table 1 shows the main results of our model and baselines. The proposed ReGNN outperforms LwF (Li &
Hoiem, 2017), which also does not require a memory buffer as our model, by a large margin. ER-GNN (Zhou
& Cao, 2021) is a strong baseline modified from experience replay. Experience Replay, a typical memory based
method, is a competitive baseline because it is able to access the old data during training by maintaining
a memory buffer, and it often notably outperforms the regularization based methods in class-incremental
learning scenario (Buzzega et al., 2020; 2021) with a small buffer size (e.g., 2% in (Buzzega et al., 2021)).
The shortage of memory based methods is that they need a memory buffer to store data, which is not always
feasible. We experiment with memory size M = {1%, 3%, 5%} for memory based models. Experiment results
show the effectiveness of ReGNN in class-incremental setting. Our model still outperforms ER-GNN (Zhou
& Cao, 2021) and ContinualGNN (Wang et al., 2020) when they have a buffer with memory size M = 5%.
This is considered to be a relatively large buffer size in continual learning, given that the actual number of
stored nodes, including the neighbor nodes for aggregation, is larger than our reported M.

In Tab. 5, we compare our model with more continual learning baselines on graph with larger scale. In
Tab. 4, we show detailed data statistics of the benchmarks. We consistently outperform baselines under the
same memory-free scenario (i.e., all previous data are dropped and are not allowed to be stored in a memory
buffer).

In Tab. 6, we show results of our model and memory-based models. We show their results with (marked with
‘Required’ in the table) and without (marked with ‘-’ in the table) memory buffers. We kindly remind that

9

Published in Transactions on Machine Learning Research (05/2024)

Table 3: Results of replay based models on Citeseer when neighbors of the stored old nodes are not available
in the memory buffer.

Model Default 3-hop 5-hop Full
GraphSAGE (Hamilton et al., 2017) 31.02 31.02 (↓ 0.00) 30.72 (↓ 0.30) 31.92 (↑ 0.90)
ContinualGNN (*) (Wang et al., 2020) 41.86 45.28 (↓ 3.42) 47.89 (↓ 6.03) 47.59 (↓ 5.73)
ER-GNN (*) (Zhou & Cao, 2021) 43.37 41.56 (↓ 1.81) 40.69 (↓ 2.68) 42.21 (↓ 1.13)
ER-MLP (*) (Rolnick et al., 2019) 39.23 37.17 (↓ 2.06) 36.32 (↓ 2.91) 36.74 (↓ 2.49)
ReGNN (Ours) 55.02 62.57 (↑ 7.55) 64.57 (↑ 9.55) 67.74 (↑ 12.72)

Table 4: Dataset Statistics.

Dataset Nodes Edges Features Classes
CoraFull (McCallum et al., 2000) 19,793 130,622 8,710 70
Arxiv (Hu et al., 2020) 169,343 1,166,243 128 40
Reddit (Hamilton et al., 2017) 227,853 114,615,892 602 40
Products (Hu et al., 2020) 2,449,028 61,859,036 100 46

they are not our baselines because (1) we work under different scenarios (memory-based v.s. memory-free),
and (2) storing previous data in a memory buffer (i.e., memory-based) makes the problem significantly
easier and is not a fair comparison.

Interestingly, even without a memory buffer, our method outperforms GEM, ER-GNN, SSM on all
benchmarks, and CaT on Products in Tab. 6. When evaluating the memory-based models under our
memory-free scenario, where their memory buffers are removed, they lose the ability to prevent forgetting
and degrade to a lower-bound performance.

Table 5: Comparison with Memory-free Baselines. CL Model refers to Continual Learning Model.
Methods CL Model Memory CoraFull Arxiv Reddit Products
Finetuning No - 1.9 4.3 4.2 3.6
GLNN No - 1.9 3.9 - 3.2
NOSMOG No - 1.9 4.3 - 3.6
EWC Yes - 2.3 4.0 4.2 6.1
MAS Yes - 1.8 3.9 8.7 8.2
TWP Yes - 16.3 3.1 7.4 5.2
LwF Yes - 1.9 4.3 4.2 3.6
ReGNN (Ours) Yes - 18.7 32.7 45.8 56.4

Inference at Different Levels of Neighbor Information. Table 1 shows the effectiveness of ReGNN
in our practical scenario for continual graph learning illustrated in Fig. 1 and Fig. 2, where the neighbor-
hood information for test nodes is poorly available or completely unavailable. A natural question is, whether
ReGNN can also achieve good performance in different cases where the neighborhood information is provided
at different levels. This could be valuable when additional information is available to help build richer con-
nections between test nodes for more neighborhood information and better inference. We further investigate
the performance of ReGNN in different cases.

Because we randomly split the data into training and test sets and also detach the test nodes from the
original graph, we cannot control the level of neighborhood information among test nodes with the random
partition process. Instead, we change the level of neighborhood information by manually linking test nodes
according to their distance to each other in the original graph.

10

Published in Transactions on Machine Learning Research (05/2024)

Table 6: Comparison with Memory-based Baselines. CL Model refers to Continual Learning Model.
Methods CL Model Memory CoraFull Arxiv Reddit Products
GEM Yes Required 2.1 4.1 4.0 3.3

- 1.9 4.3 4.2 3.6
ER-GNN Yes Required 3.1 23.8 22.9 31.0

- 1.9 4.3 4.2 3.6
SSM Yes Required 12.1 26.9 39.7 49.2

- 1.9 4.3 4.2 3.6
CaT Yes Required 50.4 53.8 78.9 54.9

- 1.9 4.3 4.2 3.6
ReGNN (Ours) Yes - 18.7 32.7 45.8 56.4

Specifically, given a pair of nodes (v, u) from detached test nodes, we denote the distance from v to u as
Dist(v, u), which is calculated by the number of hops from v to u in the original graph. Original graph
refers to the complete graph before the training-test split. In this way, we can increase the neighborhood
information of test nodes by manually linking pairs of test nodes. For instance, (v, u) can be linked if
Dist(v, u) is smaller than a certain threshold k. After linking all node pairs {(v, u)|Dist(v, u) < k, v ∈
Vtest, u ∈ Vtest} in the test nodes, we denote the evaluation on the test data with this additional neighborhood
information as k-hop evaluation. Note that the way we increase the neighborhood information can involve
noise if k is set to a very large number, which consequently leads to a performance drop. In our experiments,
we empirically choose a proper k that is smaller than a threshold, as larger k values fail to further improve
the performance.

Experiments show that the manually added links are helpful for node classification. Because in k-hop
evaluations, we manually select a proper k and add these links according to the original complete graph. An
interesting future direction is to train an additional task, for instance, link prediction, to predict these links
and then link them for better node classification. In this work, we just manually add these links and focus
on analyzing the ReGNN model with k − hop evaluation.

Tab. 2 shows the results of this study. Default means no additional links are added. k refers to k-hop
evaluation, and Full is the evaluation method adopted by existing works in Tab. 2, i.e., linking the detached
test nodes back to the graph from which they are detached for inference. Intuitively, Full should yield best
results. Compared to the results of the default evaluation, increasing neighborhood information can indeed
improve our model performance. ReGNN constantly outperforms other baselines under different settings,
which manifests the reliability and effectiveness of our model and indicates that our model can work well in
different cases with either rich or poor neighborhood information.

Preserving Neighbor Information via Generative Replay. Because each node is associated with a
node attribute, simply replaying and using node attributes can also make predictions. Although ReGNN
outperforms other baselines, we are curious to know whether generated replay data can really help ReGNN
remember the neighbor information and effectively exploit them for inference, or it is just simply replaying
the attribute of the input node.

To study this problem, we conduct another experiment with different baseline models ER-GNN(*) (Zhou
& Cao, 2021), ContinualGNN(*) (Wang et al., 2020) and MLP+ER (*) (Rolnick et al., 2019), where
(*) indicates the memory buffer only store nodes without their neighbors, thus the neighbor information
cannot be replayed. Different from other models, ER-MLP does not include a GNN and uses MLP to learn
from isolated node features without neighbor information. We add experiencer replay similar to ER-GNN
for continual learning setting.

We start with analyzing how ER-GNN remembers the neighborhood information. ER-GNN requires a
memory buffer to store old training nodes from previous tasks for replay to prevent forgetting. When
replaying stored old nodes from the buffer, the neighbor nodes of the old nodes need to be sampled via the
sampling strategy in graphSAGE for aggregation to compute the embeddings of stored old nodes. Thus in
earlier experiments, we allow ER-GNN to store the neighbors of the stored old nodes to fulfill the model’s

11

Published in Transactions on Machine Learning Research (05/2024)

Table 7: Ablation study results.

Method Accuracy
Full Method 55.02± 2.01
Ablate NodeAE 52.40± 2.14
Use separate GraphCVAE 51.21± 1.79
Ablate GraphCVAE (No replay) 31.02± 0.12

potential. In this case, the memory size of the buffet is in fact larger than our reported 1% 3% 5%, because
their neighbors are also stored for the neighbor aggregation process in GraphSAGE. In this way, when ER-
GNN uses old data for training, the neighborhood information of the stored old nodes is also replayed. Thus
ER-GNN can remember and exploit the neighbor information during inference, which is proved by results
in 2: as k − hop increases, ER-GNN achieves better performance by using the richer neighbor information.

Here we experiment with another version of ER-GNN and ContinualGNN, where the neighbors of stored old
nodes are not available, which means only their own node attributes are used for replay. 3 shows, in this
case, ContinualGNN (Wang et al., 2020) still has improvements as k increases because it also uses model
regularization besides data replay. However, the performance of ER-GNN, which fully relies on data replay,
fails to be improved as k increases (i.e., richer neighborhood information is provided), which means ER-GNN
cannot exploit neighborhood information anymore. This is because only isolated node attributes are replayed
without neighbor aggregation thus model forgets how to exploit given neighbors. Note that only replaying
node attributes helps to remember the features of isolated nodes, thus it still outperforms graphSAGE by a
large margin. ContinualGNN (Wang et al., 2020) still has improvements as k increases because it also uses
model regularization besides data replay.

The performance of our model consistently grows with richer neighborhood information, indicating that
ReGNN remembers how to exploit given neighbors for better inference by replaying our generated data. It
further manifests our generated data contains helpful neighborhood information, which prevents ReGNN
from forgetting it during generative replay.

4.4 Ablation Study

To simplify the model structure, we use the graph convolution layer in GNN as the graph encoder for
the GraphCVAE. We are curious about whether sharing parameters can further improve the performance.
To study this point, we train a separate GraphCVAE that owns an separate graph encoder. In this way,
the GraphCVAE becomes a separate model without any shared parameters with others. It follows the
representative generative replay based framework (Shin et al., 2017), where an separate generative model is
trained for replay without any interactions, such as parameter sharing, with the classification module.

Through the ablation experiment, We find that sharing part of the parameters (i.e., the graph encoder) not
only simplifies the model structure, but also improves the performance of the model. It indicates proper
parameter sharing learns better than using two separate modules. The two reconstruction process can
share some useful information with each other for better representation learning. Finally we ablate the
GraphCVAE module to stop generative replay. The forgetting phenomenon becomes obvious.

A clear performance drop is observed after removing NodeAE in Tab. 7. It manifests the effectiveness of
learning to reconstruct the neighbors from single node attribute embeddings with node AE module.

5 Conclusions and Future Work

In this paper, we find an important and practical case that has been ignored by existing works in continual
graph learning: the unavailability of previous data leads to sparse neighborhood information during inference,

12

Published in Transactions on Machine Learning Research (05/2024)

in additional to the challenge of catastrophic forgetting. We further propose ReGNN to jointly solve the
challenges, whose effectiveness is supported by the experiments.

More advanced graph generation techniques can also be integrated into our graph encoder and decoder
modules for better graph generation, which we we leave for future work. It has rarely been studied to generate
large graphs with different node attributes, and most of existing works on this topic focus on molecular graph
generation (Simonovsky & Komodakis, 2018; Mitton et al., 2021). Some other works (Bojchevski et al., 2018;
Wang et al., 2018) learn to generate sub-graph for large graphs, which focus on the structure reconstruction.
However, the node features, which are critical in many real applications, are not considered in these methods.
Effective graph generation with node attributes is another under-explored topic and is beyond the scope of
this paper. One promising future direction is to integrate such a generation process with the proposed
method in this paper. k − hop evaluations have better performance but we manually set k and build links
with ground truth. We will also explore automating this process so that the model can infer the connections
by itself to improve model performance.

Acknowledgement

The work is in part supported by the the U.S. Army Research Office Award under Grant Number W911NF-
21-1-0109, the National Science Foundation under Grants IIS-2316305 and IIS-2316306, the Cisco Faculty
Award, and the Adobe Data Science Research Award.

References
Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory

aware synapses: Learning what (not) to forget. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 139–154, 2018.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan: Generating
graphs via random walks. In International Conference on Machine Learning, pp. 610–619. PMLR, 2018.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for
general continual learning: a strong, simple baseline. Advances in neural information processing systems,
33:15920–15930, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking experience replay: a
bag of tricks for continual learning. In 2020 25th International Conference on Pattern Recognition (ICPR),
pp. 2180–2187. IEEE, 2021.

Jie Cai, Xin Wang, Chaoyu Guan, Yateng Tang, Jin Xu, Bin Zhong, and Wenwu Zhu. Multimodal continual
graph learning with neural architecture search. In Proceedings of the ACM Web Conference 2022, pp.
1292–1300, 2022.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv
preprint arXiv:1902.10486, 2019.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via importance
sampling. arXiv preprint arXiv:1801.10247, 2018.

Angel Daruna, Mehul Gupta, Mohan Sridharan, and Sonia Chernova. Continual learning of knowledge graph
embeddings. IEEE Robotics and Automation Letters, 6(2):1128–1135, 2021.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adversarial
continual learning. In European Conference on Computer Vision, pp. 386–402. Springer, 2020.

13

Published in Transactions on Machine Learning Research (05/2024)

Lukas Galke, Benedikt Franke, Tobias Zielke, and Ansgar Scherp. Lifelong learning of graph neural networks
for open-world node classification. In 2021 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Yi Han, Shanika Karunasekera, and Christopher Leckie. Graph neural networks with continual learning for
fake news detection from social media. arXiv preprint arXiv:2007.03316, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS, 2020.

Yuncheng Hua, Yuan-Fang Li, Guilin Qi, Wei Wu, Jingyao Zhang, and Daiqing Qi. Less is more: Data-
efficient complex question answering over knowledge bases. Journal of Web Semantics, 65:100612, 2020.

Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: convolution with edge-node switching in graph
neural networks. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp.
2656–2662, 2019.

Xiaodong Jiang, Ronghang Zhu, Pengsheng Ji, and Sheng Li. Co-embedding of nodes and edges with graph
neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6):7075–7086,
2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. NeurIPS, 2016b.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Xiaoyu Kou, Yankai Lin, Shaobo Liu, Peng Li, Jie Zhou, and Yan Zhang. Disentangle-based continual graph
representation learning. arXiv preprint arXiv:2010.02565, 2020.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph neural networks.
AAAI, 2021.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. Advances in
neural information processing systems, 30, 2017.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommen-
dations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR conference on
research and development in information retrieval, pp. 43–52, 2015.

Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction of
internet portals with machine learning. Inf. Retr., 2000.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165. Elsevier, 1989.

Joshua Mitton, Hans M Senn, Klaas Wynne, and Roderick Murray-Smith. A graph vae and graph transformer
approach to generating molecular graphs. arXiv preprint arXiv:2104.04345, 2021.

14

Published in Transactions on Machine Learning Research (05/2024)

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Icml,
2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. 2011.

Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning, 2023.

Daiqing Qi, Handong Zhao, Aidong Zhang, and Sheng Li. Extending to new domains without visual and
textual oracles, 2024. URL https://openreview.net/forum?id=tG5mpAM7ZK.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2001–2010, 2017.

Saed Rezayi, Handong Zhao, Sungchul Kim, Ryan Rossi, Nedim Lipka, and Sheng Li. Edge: Enriching
knowledge graph embeddings with external text. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
2767–2776, 2021.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience replay
for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collec-
tive classification in network data. AI magazine, 29(3):93–93, 2008.

Heng-Shiou Sheu, Zhixuan Chu, Daiqing Qi, and Sheng Li. Knowledge-guided article embedding refinement
for session-based news recommendation. IEEE Transactions on Neural Networks and Learning Systems,
33(12):7921–7927, 2022. doi: 10.1109/TNNLS.2021.3084958.

Weili Shi, Xueying Yang, Xujiang Zhao, Haifeng Chen, Zhiqiang Tao, and Sheng Li. Calibrate graph
neural networks under out-of-distribution nodes via deep q-learning. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, pp. 2270–2279, 2023.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay.
Advances in neural information processing systems, 30, 2017.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using variational
autoencoders. In International conference on artificial neural networks, pp. 412–422. Springer, 2018.

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? Advances in neural information
processing systems, 8, 1995.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. stat, 1050:20, 2017.

Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. Lifelong graph learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13719–13728, 2022.

H Wang, J Wang, J Wang, et al. Graph representation learning with generative adversarial nets. AAAI,
Graphgan, 2018.

Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. Streaming graph neural networks via continual learn-
ing. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management,
pp. 1515–1524, 2020.

15

https://openreview.net/forum?id=tG5mpAM7ZK

Published in Transactions on Machine Learning Research (05/2024)

Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark Coates. Graphsail: Graph struc-
ture aware incremental learning for recommender systems. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 2861–2868, 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expand-
able networks. arXiv preprint arXiv:1708.01547, 2017.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Hierarchical prototype networks for continual graph repre-
sentation learning. arXiv preprint arXiv:2111.15422, 2021.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Sparsified subgraph memory for continual graph represen-
tation learning. In 2022 IEEE International Conference on Data Mining (ICDM), pp. 1335–1340. IEEE,
2022.

Fan Zhou and Chengtai Cao. Overcoming catastrophic forgetting in graph neural networks with experience
replay. AAAI, 2021.

Ronghang Zhu, Dongliang Guo, Daiqing Qi, Zhixuan Chu, Xiang Yu, and Sheng Li. Trustworthy represen-
tation learning across domains, 2023.

Ronghang Zhu, Dongliang Guo, Daiqing Qi, Zhixuan Chu, Xiang Yu, and Sheng Li. A survey of trustworthy
representation learning across domains. ACM Trans. Knowl. Discov. Data, apr 2024. ISSN 1556-4681.
doi: 10.1145/3657301. URL https://doi.org/10.1145/3657301. Just Accepted.

A Appendix

A.1 Dataset

To evaluate the performance of ReGNN in our continual graph learning scenario, we conduct experiments
on three benchmark datasets that are also used to build datasets for continual learning settings in related
works (Wang et al., 2022; Liu et al., 2021; Zhou & Cao, 2021): Cora (Sen et al., 2008), CiteSeer (Sen et al.,
2008), and we use Amazon (McAuley et al., 2015) to refer to AmazonCoBuyPhoto, a segment of Amazon
co-purchasing graph. We split each dataset into several tasks, following (Liu et al., 2021; Zhou & Cao, 2021;
Wang et al., 2022).

Cora (Sen et al., 2008) is a citation network consisting of and 5429 links and 2708 nodes classified into one
of seven classes. Each node has a vector of size 1433 as its attribute.

CiteSeer (Sen et al., 2008) consists of 3312 publications classified into one of six classes. The citation
network consists of 4732 links. Each node has a vector of size 3073 as its attribute.

Amazon (McAuley et al., 2015) to refer to AmazonCoBuyPhoto, a segment of Amazon co-purchasing graph.
It consists of 119,043 links with 7,650 nodes of 8 classes.

To construct datasets for class-incremental graph learning, we follow (Liu et al., 2021; Zhou & Cao, 2021;
Wang et al., 2022) and divide each dataset into several tasks, where each task contains several non-overlapping
classes. For Cora, we divide it into three tasks. The first and second tasks consist of two classes, and the
last task contains three classes. Citeseer are split into three tasks with two classes in each task. The first
task of Amazon contains two classes. The second and third tasks on Amazon contain three classes.

A.2 Experiments

A.2.1 Experimental setup

SGD optimizer is used and the initial learning rate is set to 0.01 for Cora and Citeseer and 0.005 for Amazon.
The batch size it set to 128 and run 100 epochs for each dataset. For baselines, the number of layers in GNN
is set to the default value according to their papers. A standard two layer GNN is used if the information is
not provided. We run each experiment five times and report the results with mean and standard deviation.

16

https://doi.org/10.1145/3657301

Published in Transactions on Machine Learning Research (05/2024)

Note that otherwise specified, the buffer size M of the baseline modes (if buffer required) is the number
of stored nodes without their neighbors. We also store their neighbors for aggregation process so that the
structure information can also be replayed, which fulfills their model potential. Thus the total number of
stored nodes in buffer is actually larger than M (It equals to M + the number of their neighbor nodes).

A.2.2 Baselines

As ER-GNN is a strong baseline for graph class incremental learning, which already outperforms baselines
such as EWC, GEM, we only compare with most competing baselines. Note that even ER-GNN is not
necessarily our baseline because it uses memory buffers to store history data (it is a "cheat"), while we do
not have any history data. For fair comparison, we should compare with models without memory buffers.
Because we are the first to study graph class incremental learning without buffers, we make concessions and
compare our model with competing baselines with buffers.

A.3 Variational Autoencoders

Autoencoders (AE). An autoencoder is a type of a neural network, which aims to encode the input into
a compressed and meaningful representation, and then decode it back such that the reconstructed input is
similar as possible to the original one. The main purpose is to learn an informative representation of the
data that can be used for various implications in an unsupervised manner. A typical AE learns two functions
A: Rn → Rp and B: Rn → Rp that satisfy:

arg min
A,B

E[∆(x, B ◦A(x)], (13)

where E is the expectation over the distribution of x and ∆ is the reconstruction loss function, which
measures the distance between the output of the decoder and the input.

Variational Autoencoders (VAE). (Kingma & Welling, 2013) VAE is a generative model that is similar
to AE in structure. It provides a formulation in which the encoding z is interpreted as a latent variable
in a probabilistic generative model. And a probabilistic decoder is defined by a likelihood function pθ(x, z)
parameterized by θ. Alongside a prior distribution pθ(z) over the latent variables, the posterior distribution
pθ(z|x) ∝ p(z)pθ(x|z) can then be interpreted as a probabilistic encoder.

To avoid the huge complexity, the approach simultaneously learns both the parameters of pθ(x|z) as well
as those of a posterior approximation qϕ(z|x). This is achieved by maximizing the evidence lower bound
(ELBO):

L(ϕ, θ; x) = Eqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] , (14)

with L(ϕ, θ; x) ≤ log pθ(x). Wide flexibility in choice of encoder and decoder models is allowed because the
ELBO can be maximized via gradient descent as long as pθ(x|z) and qθ(z|x) can be computed point wise,
and are differentiable with respect to their parameters. Conditional VAE (CVAE) is slightly different from
VAE in that, the encoder and decoder are conditioned on x and another given variable c. In our case, it is
the class label of x.

A.4 Continual Graph Learning

In this section, we disucss the motivation of our setting.

We first illustrate (1) the differences of our motivation and previous works, then explain (2) why we also
evaluate on two citation graphs, in addition to the AmazonCoBuying network, which is a real-world case for
our motivation.

In short, our proposed scenario strictly follows continual learning, where training data are dropped once used
(thus not available at both training and inference stage) due to multiple reasons like GDPR data regulation,
privacy issues.

This motivation is very different from existing works such as ContinualGNN (Wang et al., 2020), where
training nodes are available during both training and inference stage, and they simply choose to avoid using

17

Published in Transactions on Machine Learning Research (05/2024)

previous training data at current training stage for efficiency. In our case, previous training data are unavail-
able due to multiple reasons mentioned above, which strictly follows the continual learning scenario (Van de
Ven & Tolias, 2019). Note that although existing works mentioned "continual learning" (in a general sense)
in their presentation, in fact it is not a standard continual learning setting because their history data are
actually not unavailable. That is why we propose our scenario, where history data are actually unavailable
due to practical reasons.

We do not use citation networks as real-world examples, instead, we use them to build class-incremental
tasks as an evaluation of our model, which are also adopted in related works (Liu et al., 2021; Zhou & Cao,
2021). We just follow them to evaluate our model performance.

Besides, we also experiment with the AmazonCoBuying network, where it is natural that history nodes are
not available after use due to storage constraints, privacy issues (for example, transaction records have to
be deleted due to data regulation or user preference), etc. In these cases, training data have to be dropped
after training and not available across future training and test stages.

In the following, We summarize the motivation of our practical scenario from three aspects.

(1) Comparison with Existing Works

Let us start from continual learning (CL), in typical CL, previous training data are not available
due to a series of reasons, such as privacy issues, deletion by users, storage pressure, etc. Graph continual
learning, is a type of continual learning (CL) but on graph. Therefore, existing works follow CL and assume
that previous training data are already dropped and not available during training. However, the uniqueness
of graph learning is, the training data could be used during inference.

Here is the problem: existing typical continual learning works often focus on image classification,
thus dropping previous training data does not influence the inference (because in image classification,
training data is not required during inference). However, in graph learning, training data is often required
during inference. But according to the standard setting in continual learning, training data is already
dropped and no longer available.

However, existing graph continual learning works simply ignored the fact that "training data is al-
ready dropped and no longer available" and still use them for inference, which is contradictory. Our work
corrects this contradiction.

(2) Practical Scenarios

In practice, frequently, historical data is unavailable due to privacy issue, deletion by users, storage
pressure, etc. For instance, in social networks or user interaction graphs, history records (nodes and links)
will be deleted and thus become unavailable due to customer data storage consent, such as the 30-days
right-of-erasure in General Data Protection Regulation (GDPR). Besides, they can also be unavailable if
users choose to hide or delete their history records.

Besides citation networks, we have also used the Amazon Co-purchasing networks, which could be
more practical because historical data could be hidden or deleted by users, and they could also become
unavailable due to customer data storage consent (such as 30-days right-of-erasure in GDPR). In this case,
previous training data is no longer available no matter for current training or testing.

(3) Citation Benchmarks as Simulator

In public citation networks such as Cora, existing papers are always available for inference. In fact
they are even always available for training as well. Although in public citation networks, papers are in
fact always available for both training and inference, existing works still assume that previous papers are
not available for training because they just want to use citation networks to simulate the cases where the

18

Published in Transactions on Machine Learning Research (05/2024)

previous data is unavailable. Citation networks are commonly used because they are prevalent.

We also use citation networks for the same purpose: to simulate the cases where previous data is
dropped and unavailable due to privacy issues, deletion by users, storage pressure, etc.

19

	Introduction
	Related Work
	Graph Neural Networks
	Continual Learning
	Continual Graph Learning

	Methodology
	Problem Formulation
	An Ignored Fact During Inference Stage
	ReGNN
	GraphCVAE

	NodeAE
	Classifier

	Experiments
	Datasets
	Baselines
	Main Results
	Ablation Study

	Conclusions and Future Work
	Appendix
	Dataset
	Experiments
	Experimental setup
	Baselines

	Variational Autoencoders
	Continual Graph Learning

