
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.

April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the

21st USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

Parcae: Proactive, Liveput-Optimized DNN Training
on Preemptible Instances

Jiangfei Duan, The Chinese University of Hong Kong; Ziang Song, ByteDance;

Xupeng Miao and Xiaoli Xi, Carnegie Mellon University; Dahua Lin, The Chinese

University of Hong Kong; Harry Xu, University of California, Los Angeles;

Minjia Zhang, Microsoft; Zhihao Jia, Carnegie Mellon University

https://www.usenix.org/conference/nsdi24/presentation/duan

Parcae: Proactive, Liveput-Optimized DNN Training on Preemptible Instances

Jiangfei Duan‡♠ Ziang Song§♠ Xupeng Miao†♠ Xiaoli Xi†

Dahua Lin‡ Harry Xu♯ Minjia Zhang⋄ Zhihao Jia†

Carnegie Mellon University† The Chinese University of Hong Kong‡

ByteDance§ University of California, Los Angeles♯ Microsoft⋄

Abstract

Deep neural networks (DNNs) are becoming progressively

large and costly to train. This paper aims to reduce DNN

training costs by leveraging preemptible instances on modern

clouds, which can be allocated at a much lower price when idle

but may be preempted by the cloud provider at any time. Prior

work that supports DNN training on preemptive instances

employs a reactive approach to handling instance preemptions

and allocations after their occurrence, which only achieves

limited performance and scalability.

We present Parcae, a system that enables cheap, fast, and

scalable DNN training on preemptible instances by proac-

tively adjusting the parallelization strategy of a DNN training

job to adapt to predicted resource changes before instance pre-

emptions and allocations really happen, which significantly

reduces the cost of handling these events. Parcae optimizes

liveput, a novel metric that measures the expected training

throughput of a DNN job under various possible preemp-

tion scenarios. Compared to existing reactive, throughput-

optimized systems, Parcae’s proactive, live-optimized solution

considers both the throughput of a job and its robustness under

preemptions. To optimize liveput, Parcae supports lightweight

instance migration and uses an availability predictor to fore-

cast future preemptions. It then uses a liveput optimizer to

discover an optimal strategy to parallelize DNN training un-

der predicted preemptions. We evaluate Parcae on a variety

of DNNs and preemption traces and show that Parcae outper-

forms existing spot-instance DNN training systems by up to

10×. More importantly, Parcae achieves near-optimal perfor-

mance for training large DNNs under frequent preemptions,

in which case existing approaches cannot make any progress.

1 Introduction

Deep neural networks (DNNs) have surpassed human predic-

tive performance on a spectrum of tasks, including computer

vision [18], natural language progressing [14], game play-

ing [44], and content generation [46]. The success of DNNs is

♠ Contributed equally. Work done during internships at CMU.

associated with progressively increasing energy and financial

costs. For example, a single training run of GPT-3 [12], a

language model with 175 billion parameters, requires more

than 1.5 million GPU hours and costs $4.6 million to train

on AWS even with the lowest priced GPUs [37]. While pre-

trained models are publicly available and can be fine-tuned

for different downstream tasks, training new models is often

required for emerging applications and datasets.

Modern cloud platforms provide a variety of cheap pre-

emptible instances, which can be leveraged to minimize the

monetary cost of DNN training. First, spot GPU instances

allow users to take advantage of unused GPU capacity at a

price up to 90% lower than on-demand counterparts [1]. Sec-

ond, modern data centers generally reserve additional GPU

capacity for urgent jobs, which can be allocated by other jobs

in a preemptible manner [35]. Third, some ML systems [51]

support opportunistically running training jobs on inference-

dedicated GPUs to maximize resource utilization and preempt

these training jobs when inference requests arrive. While this

paper focuses on spot GPUs, our techniques can easily gener-

alize to other preemptible resources.

Existing systems that support DNN training on spot in-

stances use a reactive approach to handling instance preemp-

tion and allocation, and can be categorized into two classes:

checkpoint- and redundancy-based systems. We introduce the

two categories and identify the limitations of these reactive

approaches in performance and scalability when applied to

DNN training on preemptible instances.

The first line of work uses checkpoints to maintain model

states during training. For example, Varuna [8] periodically

saves model states to persistent storage and loads the latest

checkpoint back after a preemption, as shown in Figure 1c.

Although Varuna offers promising training throughput when

spot instances have low preemption rates, it struggles to make

progress when preemptions are frequent. This is due to two

reasons: (1) saving and loading checkpoints incur significant

IO overhead, particularly as model size increases, making

frequent checkpointing costly, and (2) high preemption rates

cause training to frequently roll back to the last saved check-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1121

where instances b and f are preempted, and Parcae moves e

from the first stage to the second stage of the first pipeline

(e.g., b⇒ e), resulting in two complete pipelines. Inter-stage

migration requires transferring model parameters (e.g.,⇒)

as the instances keep the model parameters and states of dif-

ferent stages. Both intra- and inter-stage migrations preserve

pipeline depth and manage to recover as many data-parallel

pipelines as possible.

Pipeline migration. Changing the pipeline depth is an im-

portant choice for maximizing training efficiency. Compared

with the other two migration strategies, pipeline migration

requires repartitioning the DNN model into a different num-

ber of pipeline stages, which involves significant migration

overheads as instances need to broadcast their model param-

eters (e.g., All ⇒ All). Pipeline migration is similar to the

reconfiguration mechanism in prior work (e.g., Varuna [8],

Bamboo [47]) to handle instance preemptions.

Parcae makes migration decisions by considering the cur-

rent parallel configuration, the new optimized parallel config-

uration and the actual preemptions. Given the probabilistic

mapping of predicted preemptions, Parcae automatically re-

newals the optimal parallel configuration and the migration

strategy (§7.2). Once the prediction mismatches with the ac-

tual availability, Parcae adjusts the parallel configuration as

well as the corresponding migration strategies for adaptation

(§8). The actual migration decisions are finalized when pre-

emptions really happen, and Parcae leverages the grace period

(e.g., 30s on Azure [2]) to perform these migrations.

7 Liveput Optimizer

This section describes Parcae’s liveput optimizer, which de-

termines the parallel configurations of training a DNN model

on spot instances to maximize its liveput.

7.1 Problem Definition

We formulate liveput maximization as an optimization prob-

lem, where the objective is to discover a sequence of parallel

configurations to maximize the committed training samples in

expectation of spot instance availability. The sequence length

is set to be consistent with the number of time intervals pre-

dicted by the availability predictor (Section 5). Formally, the

objective function Φ is the accumulated number of committed

training samples during the I time intervals:

Φ(D,P | N) =
I−1

∑
i=0

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1), (3)

where Ni is the predicted number of available instances (see

Section 5) at the i-th time interval. Recall that Parcae derives

N−i+1 (i.e., the number of instances to be preempted) and N+
i+1

(i.e., the number of instances to be launched) from Ni and Ni+1.

In addition, the preemption distribution v⃗i+1 (Definition 1) is

generated from Ni and N−i+1 using the probabilistic preemp-

tion model developed in Section 6.1. Finally φ calculates the

number of committed samples within a interval:

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1) (4)

= E
v⃗i+1

[LIVEPUT(Di+1,Pi+1 | v⃗i+1)×Teff],

Teff = T −Tmig(Di,Pi,Di+1,Pi+1 | v⃗i+1),

where T and Teff are the length of the time interval and ef-

fective training time after migrations, respectively, and Tmig

is the migration overhead. Note that φ extends liveput by

making the preemption distribution v⃗i+1 a prior. With these

definitions, the objective of the liveput optimizer is:

argmax
D,P

Φ(D,P | N) (5)

where N = {N1,N2, · · · ,NI} is the output of the availability

predictor, and Parcae discovers a sequence of parallel config-

urations (D,P) to maximize liveput.

7.2 Parallelization Advisor

Parcae uses a dynamic programming algorithm to explore

the optimization space and discovers an optimal sequence of

parallel configurations. Specifically, let F(i+ 1,Di+1,Pi+1)
represent the maximal number of committed training samples

at the end of the i-th time interval, which uses parallel config-

uration (Di+1,Pi+1). We start from F(0,D0,P0) = 0 and have

the following optimal substrates:

F(i+1,Di+1,Pi+1) (6)

= max
∀Di×Pi≤Ni

{

F(i,Di,Pi)+

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1)

}

,

and figure out the final target as max∀DI×PI≤NI
{F(I,DI ,PI)}.

The DP algorithm considers all possible parallel con-

figurations that satisfy resource constraints (i.e., Di×Pi ≤
Ni), and φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1) is the product of two

terms in Equation (4). Here the exploration adapts a simi-

lar search space as Varuna with a size of O(N logN), which

is large enough for most recent large DNNs consisting of

a stack of homogeneous layers. It is also possible to ex-

tend to a larger search space (e.g., Alpa) for more com-

plicated workloads. The first term LIVEPUT can be re-

placed by THROUGHPUT(Di+1,Pi+1), where (Di+1,Pi+1) is

the new parallel configuration after live migration. Note that

(Di+1,Pi+1) should be a feasible model partition that satisfies

the device memory capacity. For unfeasible cases that violate

memory constraints, their THROUGHPUT is set to be zero.

The second term Teff depends on the preemption distri-

bution, (Di,Pi), (Di+1,Pi+1), and the migration strategy to

transit from (Di,Pi) to (Di+1,Pi+1). Given a pair of parallel

configurations (Di,Pi) and (Di+1,Pi+1), there may exist mul-

tiple migration strategies with different overheads Tmig, and

the cost of each migration strategy also depends on the DNN

workload. Parcae uses a cost estimator (Section 9.4) to es-

timate Tmig for different migration strategies. If the pipeline

depth changes (i.e., Pi+1 ̸= Pi), Parcae infers that pipeline mi-

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1127

Migration manager. As shown in Algorithm 1, the migra-

tion manager keeps receiving instance availability information

(i.e., preemption or allocation interruptions) from the cloud

provider and updating the current number of available in-

stances (line 3). As discussed in §8, the parallel configuration

(Di,Pi) computed in the previous iteration using predicted

availability may be incompatible with the current instances’

availability. To handle this exception, ParcaeScheduler first

adjusts the target parallel configuration (line 4) and then gen-

erates the required migration strategy Si based on the current

and target configurations (Di−1,Pi−1) and (Di,Pi). Note that

the adaptation step (line 4) is performed before generating the

migration strategy (line 5) so it will not involve re-adjustment

overheads. Next, the availability predictor will forecast the

number of available instances for a series of future intervals

(i.e., Ni+1, · · · ,Ni+I) based on the historical information (line

7). Finally, the liveput optimizer makes parallelization sugges-

tions for the following time interval using the prediction (line

8). The workflow continues until the training job is completed.

The handling of instance preemption and allocation inter-

ruptions are slightly different. Allocations are controllable

as they only occur after we consciously send requests to the

cloud, although they may not always succeed. We let a new

instance join after its ParcaeAgent is successfully initialized.

In contrast, preemptions are passive and may interrupt in-

stances at any time, which requires additional mechanisms

to handle various exceptions. Fortunately, the clouds usually

provide a small grace period to inform the preemption before

it happens. As the duration is usually enough to finish a mini-

batch’s training, we utilize the preemption notice to simplify

the implementation and enforce instances to be preempted

only at the mini-batches’ boundaries. Parcae also handles rare

failures that may interrupt training process, in which case

ParcaeScheduler restarts training using the latest checkpoint

in ParcaePS, avoiding losing model updates.

Sample manager. The training dataset is divided into mini-

batches of fixed size and trained by DNNs iteratively. Each

mini-batch of samples are “committed” after each iteration.

However, preemptions may terminate training at any time, re-

sulting in uncommitted mini-batches (Figure 1). To guarantee

the same training semantics as on-demand instances, the sam-

ple manager tracks each data sample, records all uncommitted

samples’ indices, and makes them rejoin the training process

later. This guarantees that all data samples are trained exactly

once per epoch, preserving identical theoretical convergence

property as the original data feeding order. We also provide

a convergence experiment in Figure 16 to verify its training

correctness.

9.2 ParcaeAgent

A ParcaeAgent runs on each spot GPU instance to interact

with ParcaeScheduler as shown in Algorithm 1. It repeatedly

receives a migration instruction from the ParcaeScheduler

(line 13). If no migration is required, the ParcaeAgent re-

Algorithm 1 Workflow of Parcae components.

▷ ParcaeScheduler

1: function MIGRATIONMANAGER(D0,P0)

2: for i in 1, 2, 3, · · · do

3: Ni ← Receive availability info from cloud provider

4: (Di,Pi)← AdjustParallelConfiguration(Ni)

5: Si← GetMigrationStrategy ((Di−1,Pi−1), (Di,Pi))
6: Send migration strategy Si to all ParcaeAgents

7: Ni+1, · · · ,Ni+I ← AvailPredictor(Ni−H+1, ...,Ni)

8: (Di+1,Pi+1)← LiveputOpt
(

(Di,Pi),Ni, ...,Ni+I

)

9: if job completes then

10: break

▷ ParcaeAgent

11: function PARCAERUNTIME(model, batch_size)

12: while job does not complete do

13: Receive migration instruction m from ParcaeScheduler

14: Apply migration instruction m if m is not empty

15: X ,Y ← DataLoader(batch_size)

16: Train(model, X , Y)

quests a batch of training samples and starts model training

(line 15-16). Otherwise, it performs the assigned migration in-

struction (line 14). ParcaeAgent manages to reuse the current

model states to alleviate checkpoint overheads and rollbacks.

For example, intra-stage migration is implemented by rebuild-

ing communication groups and reusing previous model states

on each GPU. For inter-stage and pipeline migration, addi-

tional costs are required for loading the latest model states

from other instances via GPUs’ peer-to-peer communications.

Specially, if all instances of a stage are preempted, all the

ParcaeAgents have to roll back to a previous checkpoint. In

this way, ParcaeScheduler automatically generates the most

efficient migration strategy and let the ParcaeAgents transit to

the target parallel configuration. Note that, the ParcaeSched-

uler also notifies a ParcaeAgent if it will be preempted or stay

idle (i.e., Ni−Di×Pi instances will be idle) by sending a halt

or termination instruction to the ParcaeAgent.

9.3 ParcaePS

Parcae needs checkpoints to handle rare cases as introduced

in §8. Unlike prior checkpointing approaches relying on ex-

pensive cloud storage (e.g., S3 on AWS), Parcae employs

several cheap on-demand CPU instances (e.g., c5.4xlarge

instance, 0.68$/hour) to maintain the latest model states in

their DRAM. Instead of directly communicating model states

and weights as prior checkpointing approaches, the ParcaePS

maintains an up-to-date checkpoint by iteratively synchroniz-

ing gradients with spot GPU instances to update the model

states the on CPU side (e.g., parameters and optimizer states),

which reduces communication by 5× for stateful optimizers

(e.g., Adam [23]) in the FP16 format [41]. Parcae also parti-

tions gradients into small pieces for better overlapping and

prevents bandwidth competition with cross-stage activation

transfer.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1129

References

[1] Amazon ec2 spot instances. https://aws.amazon.

com/ec2/spot/.

[2] Use azure spot virtual machines. https://learn.

microsoft.com/en-us/azure/virtual-machines/

spot-vms.

[3] Amazon sagemaker spot training. https:

//docs.aws.amazon.com/sagemaker/latest/

dg/model-managed-spot-training.html, 2018.

[4] Nvidia nccl. https://developer.nvidia.com/nccl,

2021.

[5] Operating etcd clusters for kubernetes.

https://kubernetes.io/docs/tasks/

administer-cluster/configure-upgrade-etcd/,

2021.

[6] Pytorch elastic. https://github.com/pytorch/

elastic, 2021.

[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. Tensorflow: A system for large-

scale machine learning. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and

Implementation, OSDI, 2016.

[8] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ra-

machandran Ramjee, and Nipun Kwatra. Varuna: scal-

able, low-cost training of massive deep learning models.

In Proceedings of the Seventeenth European Conference

on Computer Systems, pages 472–487, 2022.

[9] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Ur-

gaonkar. Burscale: Using burstable instances for cost-

effective autoscaling in the public cloud. In Proceedings

of the ACM Symposium on Cloud Computing, pages 126–

138, 2019.

[10] Léon Bottou. Stochastic gradient descent tricks. In

Neural networks: Tricks of the trade, pages 421–436.

Springer, 2012.

[11] George EP Box, Gwilym M Jenkins, Gregory C Reinsel,

and Greta M Ljung. Time series analysis: forecasting

and control. John Wiley & Sons, 2015.

[12] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

Scott Gray, Benjamin Chess, Jack Clark, Christopher

Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot

learners. In Advances in Neural Information Processing

Systems 33: Annual Conference on Neural Information

Processing Systems 2020, NeurIPS 2020, December 6-

12, 2020, virtual, 2020.

[13] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos

Guestrin. Training deep nets with sublinear memory

cost. CoRR, abs/1604.06174, 2016.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: pre-training of deep bidirec-

tional transformers for language understanding. In Jill

Burstein, Christy Doran, and Thamar Solorio, editors,

Proceedings of the 2019 Conference of the North Amer-

ican Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, NAACL-HLT

2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1

(Long and Short Papers), pages 4171–4186. Association

for Computational Linguistics, 2019.

[15] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu

Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun

Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei

Lin. Dapple: A pipelined data parallel approach for

training large models. In Proceedings of the 26th ACM

SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’21, page 431–445, New

York, NY, USA, 2021. Association for Computing Ma-

chinery.

[16] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gre-

gory R. Ganger, and Phillip B. Gibbons. Tributary:

spot-dancing for elastic services with latency slos. In

Haryadi S. Gunawi and Benjamin Reed, editors, 2018

USENIX Annual Technical Conference, USENIX ATC

2018, Boston, MA, USA, July 11-13, 2018, pages 1–14.

USENIX Association, 2018.

[17] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gre-

gory R Ganger, and Phillip B Gibbons. Proteus: agile ml

elasticity through tiered reliability in dynamic resource

markets. In Proceedings of the Twelfth European Con-

ference on Computer Systems, pages 589–604, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-

30, 2016, pages 770–778. IEEE Computer Society, 2016.

1134 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[19] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan

Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee,

Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng

Chen. Gpipe: Efficient training of giant neural networks

using pipeline parallelism. In Hanna M. Wallach, Hugo

Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,

Emily B. Fox, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 32: Annual

Conference on Neural Information Processing Systems

2019, NeurIPS 2019, December 8-14, 2019, Vancouver,

BC, Canada, pages 103–112, 2019.

[20] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and

Mosharaf Chowdhury. Oobleck: Resilient distributed

training of large models using pipeline templates. In

Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine

Kaufmann, and Jonathan Mace, editors, Proceedings of

the 29th Symposium on Operating Systems Principles,

SOSP 2023, Koblenz, Germany, October 23-26, 2023,

pages 382–395. ACM, 2023.

[21] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond

data and model parallelism for deep neural networks.

In Proceedings of the 2nd Conference on Systems and

Machine Learning, SysML’19, 2019.

[22] Jcs Kadupitiya, Vikram Jadhao, and Prateek Sharma.

Scispot: Scientific computing on temporally constrained

cloud preemptible vms. IEEE Transactions on Parallel

and Distributed Systems, 2022.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In Yoshua Bengio and Yann

LeCun, editors, 3rd International Conference on Learn-

ing Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

[24] Alex Krizhevsky and Geoffrey Hinton. Learning multi-

ple layers of features from tiny images. 2009.

[25] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,

Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,

Brian Vaughan, Pritam Damania, et al. Pytorch dis-

tributed: Experiences on accelerating data parallel train-

ing. Proceedings of the VLDB Endowment, 13(12).

[26] Shijian Li, Robert J Walls, and Tian Guo. Characterizing

and modeling distributed training with transient cloud

gpu servers. In 2020 IEEE 40th International Confer-

ence on Distributed Computing Systems (ICDCS), pages

943–953. IEEE, 2020.

[27] Yan Li, Bo An, Junming Ma, Donggang Cao, Yasha

Wang, and Hong Mei. Spottune: Leveraging transient

resources for cost-efficient hyper-parameter tuning in

the public cloud. In 2020 IEEE 40th International Con-

ference on Distributed Computing Systems (ICDCS),

pages 45–55. IEEE, 2020.

[28] Stephen Merity, Caiming Xiong, James Bradbury, and

Richard Socher. Pointer sentinel mixture models. In

5th International Conference on Learning Representa-

tions, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net, 2017.

[29] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi,

Dahua Lin, Bin Cui, and Zhihao Jia. Spotserve: Serv-

ing generative large language models on preemptible

instances. Proceedings of ASPLOS Conference, 2024.

[30] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi,

Xiaonan Nie, Hailin Zhang, and Bin Cui. Galvatron:

Efficient transformer training over multiple gpus using

automatic parallelism. Proc. VLDB Endow., 16(3):470–

479, 2023.

[31] Ashish Kumar Mishra, Brajesh Kumar Umrao, and Dhar-

mendra K Yadav. A survey on optimal utilization of

preemptible vm instances in cloud computing. The Jour-

nal of Supercomputing, 74(11):5980–6032, 2018.

[32] Jayashree Mohan, Amar Phanishayee, and Vijay

Chidambaram. {CheckFreq}: Frequent,{Fine-

Grained}{DNN} checkpointing. In 19th USENIX

Conference on File and Storage Technologies (FAST

21), pages 203–216, 2021.

[33] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,

Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,

Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-

eralized pipeline parallelism for dnn training. In Pro-

ceedings of the 27th ACM Symposium on Operating

Systems Principles, SOSP ’19, page 1–15, New York,

NY, USA, 2019. Association for Computing Machinery.

[34] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie

Chen, and Matei Zaharia. Memory-efficient pipeline-

parallel DNN training. In Marina Meila and Tong

Zhang, editors, Proceedings of the 38th International

Conference on Machine Learning, ICML 2021, 18-24

July 2021, Virtual Event, volume 139 of Proceedings of

Machine Learning Research, pages 7937–7947. PMLR,

2021.

[35] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pa-

van Kumar, Maxim Khutornenko, Mayank Pundir, Yirui

Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le, Bren-

don Daugherty, Apurva Samudra, Prashasti Baid, James

Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre Ro-

drigues, Scott Michelson, Ben Christensen, Kaushik

Veeraraghavan, and Chunqiang Tang. Ras: Continuously

optimized region-wide datacenter resource allocation.

In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles, SOSP ’21, page 505–520,

New York, NY, USA, 2021. Association for Computing

Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1135

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Z. Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. Pytorch: An imperative style, high-

performance deep learning library. In Advances in Neu-

ral Information Processing Systems 32: Annual Confer-

ence on Neural Information Processing Systems 2019,

NeurIPS 2019, December 8-14, 2019, Vancouver, BC,

Canada, pages 8024–8035, 2019.

[37] David A. Patterson, Joseph Gonzalez, Quoc V. Le,

Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,

David R. So, Maud Texier, and Jeff Dean. Carbon

emissions and large neural network training. CoRR,

abs/2104.10350, 2021.

[38] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,

Dario Amodei, Ilya Sutskever, et al. Language mod-

els are unsupervised multitask learners. OpenAI blog,

1(8):9, 2019.

[39] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and

Yuxiong He. Zero: Memory optimizations toward train-

ing trillion parameter models. In SC20: International

Conference for High Performance Computing, Network-

ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[40] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and

Yuxiong He. Deepspeed: System optimizations enable

training deep learning models with over 100 billion pa-

rameters. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery &

Data Mining, pages 3505–3506, 2020.

[41] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-

inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia

Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}:
Democratizing {Billion-Scale} model training. In 2021

USENIX Annual Technical Conference (USENIX ATC

21), pages 551–564, 2021.

[42] Supreeth Shastri and David E. Irwin. Hotspot: auto-

mated server hopping in cloud spot markets. In Pro-

ceedings of the 2017 Symposium on Cloud Computing,

SoCC 2017, Santa Clara, CA, USA, September 24-27,

2017, pages 493–505. ACM, 2017.

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,

Patrick LeGresley, Jared Casper, and Bryan Catanzaro.

Megatron-lm: Training multi-billion parameter language

models using model parallelism. CoRR, abs/1909.08053,

2019.

[44] David Silver, Aja Huang, Chris J. Maddison, Arthur

Guez, Laurent Sifre, George van den Driessche, Julian

Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy

Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore

Graepel, and Demis Hassabis. Mastering the game of

Go with deep neural networks and tree search. Nature,

529(7587):484–489, jan 2016.

[45] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition.

In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-

tional Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

[46] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma,

Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-

based generative modeling through stochastic differen-

tial equations. In 9th International Conference on Learn-

ing Representations, ICLR 2021, Virtual Event, Austria,

May 3-7, 2021. OpenReview.net, 2021.

[47] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yi-

fan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali, and

Guoqing Harry Xu. Bamboo: Making preemptible in-

stances resilient for affordable training of large dnns.

CoRR, abs/2204.12013, 2022.

[48] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep

Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakr-

ishnaiah, Nirmal Prajapati, Patrick S. McCormick, Ja-

maludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,

Jongsoo Park, Misha Smelyanskiy, and Alex Aiken.

Unity: Accelerating DNN training through joint opti-

mization of algebraic transformations and paralleliza-

tion. In 16th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2022, Carlsbad, CA,

USA, July 11-13, 2022, pages 267–284. USENIX Asso-

ciation, 2022.

[49] Leslie G Valiant. A bridging model for parallel com-

putation. Communications of the ACM, 33(8):103–111,

1990.

[50] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xin-

wei Fu, T. S. Eugene Ng, and Yida Wang. GEMINI: fast

failure recovery in distributed training with in-memory

checkpoints. In Jason Flinn, Margo I. Seltzer, Peter

Druschel, Antoine Kaufmann, and Jonathan Mace, edi-

tors, Proceedings of the 29th Symposium on Operating

Systems Principles, SOSP 2023, Koblenz, Germany, Oc-

tober 23-26, 2023, pages 364–381. ACM, 2023.

[51] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,

Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and

1136 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Yangqing Jia. Antman: Dynamic scaling on gpu clusters

for deep learning. In Proceedings of the 14th USENIX

Conference on Operating Systems Design and Imple-

mentation, OSDI’20, USA, 2020. USENIX Association.

[52] Fangkai Yang, Lu Wang, Zhenyu Xu, Jue Zhang, Liqun

Li, Bo Qiao, Camille Couturier, Chetan Bansal, Soumya

Ram, Si Qin, et al. Snape: Reliable and low-cost com-

puting with mixture of spot and on-demand vms. In

Proceedings of the 28th ACM International Conference

on Architectural Support for Programming Languages

and Operating Systems, Volume 3, pages 631–643, 2023.

[53] Sheng Yang, Samir Khuller, Sunav Choudhary, Subrata

Mitra, and Kanak Mahadik. Scheduling ml training

on unreliable spot instances. In Proceedings of the

14th IEEE/ACM International Conference on Utility

and Cloud Computing Companion, pages 1–8, 2021.

[54] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-

Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan

Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,

and Ion Stoica. SkyPilot: An intercloud broker for sky

computing. In 20th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 23), pages

437–455, Boston, MA, April 2023. USENIX Associa-

tion.

[55] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao

Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,

Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.

Gonzalez, and Ion Stoica. Alpa: Automating inter- and

intra-operator parallelism for distributed deep learning.

In Marcos K. Aguilera and Hakim Weatherspoon, ed-

itors, 16th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2022, Carlsbad, CA,

USA, July 11-13, 2022, pages 559–578. USENIX Asso-

ciation, 2022.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1137

	Introduction
	Background
	Distributed DNN Training
	Spot-Instance Training

	Liveput
	Definition of Liveput
	Comparing Liveput and Throughput

	Parcae Overview
	Availability Predictor
	Instance-wise Availability Unpredictability
	Statistical Availability Prediction

	Live Migration
	Pipeline-aware Preemption Mapping
	Migration Strategies

	Liveput Optimizer
	Problem Definition
	Parallelization Advisor
	Preemption Mapping Sampler

	Exception Handling
	Parcae's Design and Implementation
	ParcaeScheduler
	ParcaeAgent
	ParcaePS
	Cost Estimator

	Evaluation
	Experimental Setup
	End-to-End Evaluation
	Breakdown Analysis
	Proactive v.s. Reactive
	Convergence Preservation

	Related Work
	Conclusion
	Addition Details of Migration Costs
	Additional Details of ARIMA
	Additional Experimental Details
	End-to-End Evaluation Setting
	Parcae Components Evaluation

