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Abstract

Deep neural networks (DNNs) are becoming progressively

large and costly to train. This paper aims to reduce DNN

training costs by leveraging preemptible instances on modern

clouds, which can be allocated at a much lower price when idle

but may be preempted by the cloud provider at any time. Prior

work that supports DNN training on preemptive instances

employs a reactive approach to handling instance preemptions

and allocations after their occurrence, which only achieves

limited performance and scalability.

We present Parcae, a system that enables cheap, fast, and

scalable DNN training on preemptible instances by proac-

tively adjusting the parallelization strategy of a DNN training

job to adapt to predicted resource changes before instance pre-

emptions and allocations really happen, which significantly

reduces the cost of handling these events. Parcae optimizes

liveput, a novel metric that measures the expected training

throughput of a DNN job under various possible preemp-

tion scenarios. Compared to existing reactive, throughput-

optimized systems, Parcae’s proactive, live-optimized solution

considers both the throughput of a job and its robustness under

preemptions. To optimize liveput, Parcae supports lightweight

instance migration and uses an availability predictor to fore-

cast future preemptions. It then uses a liveput optimizer to

discover an optimal strategy to parallelize DNN training un-

der predicted preemptions. We evaluate Parcae on a variety

of DNNs and preemption traces and show that Parcae outper-

forms existing spot-instance DNN training systems by up to

10×. More importantly, Parcae achieves near-optimal perfor-

mance for training large DNNs under frequent preemptions,

in which case existing approaches cannot make any progress.

1 Introduction

Deep neural networks (DNNs) have surpassed human predic-

tive performance on a spectrum of tasks, including computer

vision [18], natural language progressing [14], game play-

ing [44], and content generation [46]. The success of DNNs is
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associated with progressively increasing energy and financial

costs. For example, a single training run of GPT-3 [12], a

language model with 175 billion parameters, requires more

than 1.5 million GPU hours and costs $4.6 million to train

on AWS even with the lowest priced GPUs [37]. While pre-

trained models are publicly available and can be fine-tuned

for different downstream tasks, training new models is often

required for emerging applications and datasets.

Modern cloud platforms provide a variety of cheap pre-

emptible instances, which can be leveraged to minimize the

monetary cost of DNN training. First, spot GPU instances

allow users to take advantage of unused GPU capacity at a

price up to 90% lower than on-demand counterparts [1]. Sec-

ond, modern data centers generally reserve additional GPU

capacity for urgent jobs, which can be allocated by other jobs

in a preemptible manner [35]. Third, some ML systems [51]

support opportunistically running training jobs on inference-

dedicated GPUs to maximize resource utilization and preempt

these training jobs when inference requests arrive. While this

paper focuses on spot GPUs, our techniques can easily gener-

alize to other preemptible resources.

Existing systems that support DNN training on spot in-

stances use a reactive approach to handling instance preemp-

tion and allocation, and can be categorized into two classes:

checkpoint- and redundancy-based systems. We introduce the

two categories and identify the limitations of these reactive

approaches in performance and scalability when applied to

DNN training on preemptible instances.

The first line of work uses checkpoints to maintain model

states during training. For example, Varuna [8] periodically

saves model states to persistent storage and loads the latest

checkpoint back after a preemption, as shown in Figure 1c.

Although Varuna offers promising training throughput when

spot instances have low preemption rates, it struggles to make

progress when preemptions are frequent. This is due to two

reasons: (1) saving and loading checkpoints incur significant

IO overhead, particularly as model size increases, making

frequent checkpointing costly, and (2) high preemption rates

cause training to frequently roll back to the last saved check-
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where instances b and f are preempted, and Parcae moves e

from the first stage to the second stage of the first pipeline

(e.g., b⇒ e), resulting in two complete pipelines. Inter-stage

migration requires transferring model parameters (e.g.,⇒)

as the instances keep the model parameters and states of dif-

ferent stages. Both intra- and inter-stage migrations preserve

pipeline depth and manage to recover as many data-parallel

pipelines as possible.

Pipeline migration. Changing the pipeline depth is an im-

portant choice for maximizing training efficiency. Compared

with the other two migration strategies, pipeline migration

requires repartitioning the DNN model into a different num-

ber of pipeline stages, which involves significant migration

overheads as instances need to broadcast their model param-

eters (e.g., All ⇒ All). Pipeline migration is similar to the

reconfiguration mechanism in prior work (e.g., Varuna [8],

Bamboo [47]) to handle instance preemptions.

Parcae makes migration decisions by considering the cur-

rent parallel configuration, the new optimized parallel config-

uration and the actual preemptions. Given the probabilistic

mapping of predicted preemptions, Parcae automatically re-

newals the optimal parallel configuration and the migration

strategy (§7.2). Once the prediction mismatches with the ac-

tual availability, Parcae adjusts the parallel configuration as

well as the corresponding migration strategies for adaptation

(§8). The actual migration decisions are finalized when pre-

emptions really happen, and Parcae leverages the grace period

(e.g., 30s on Azure [2]) to perform these migrations.

7 Liveput Optimizer

This section describes Parcae’s liveput optimizer, which de-

termines the parallel configurations of training a DNN model

on spot instances to maximize its liveput.

7.1 Problem Definition

We formulate liveput maximization as an optimization prob-

lem, where the objective is to discover a sequence of parallel

configurations to maximize the committed training samples in

expectation of spot instance availability. The sequence length

is set to be consistent with the number of time intervals pre-

dicted by the availability predictor (Section 5). Formally, the

objective function Φ is the accumulated number of committed

training samples during the I time intervals:

Φ(D,P | N) =
I−1

∑
i=0

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1), (3)

where Ni is the predicted number of available instances (see

Section 5) at the i-th time interval. Recall that Parcae derives

N−i+1 (i.e., the number of instances to be preempted) and N+
i+1

(i.e., the number of instances to be launched) from Ni and Ni+1.

In addition, the preemption distribution v⃗i+1 (Definition 1) is

generated from Ni and N−i+1 using the probabilistic preemp-

tion model developed in Section 6.1. Finally φ calculates the

number of committed samples within a interval:

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1) (4)

= E
v⃗i+1

[LIVEPUT(Di+1,Pi+1 | v⃗i+1)×Teff],

Teff = T −Tmig(Di,Pi,Di+1,Pi+1 | v⃗i+1),

where T and Teff are the length of the time interval and ef-

fective training time after migrations, respectively, and Tmig

is the migration overhead. Note that φ extends liveput by

making the preemption distribution v⃗i+1 a prior. With these

definitions, the objective of the liveput optimizer is:

argmax
D,P

Φ(D,P | N) (5)

where N = {N1,N2, · · · ,NI} is the output of the availability

predictor, and Parcae discovers a sequence of parallel config-

urations (D,P) to maximize liveput.

7.2 Parallelization Advisor

Parcae uses a dynamic programming algorithm to explore

the optimization space and discovers an optimal sequence of

parallel configurations. Specifically, let F(i+ 1,Di+1,Pi+1)
represent the maximal number of committed training samples

at the end of the i-th time interval, which uses parallel config-

uration (Di+1,Pi+1). We start from F(0,D0,P0) = 0 and have

the following optimal substrates:

F(i+1,Di+1,Pi+1) (6)

= max
∀Di×Pi≤Ni

{

F(i,Di,Pi)+

φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1)

}

,

and figure out the final target as max∀DI×PI≤NI
{F(I,DI ,PI)}.

The DP algorithm considers all possible parallel con-

figurations that satisfy resource constraints (i.e., Di×Pi ≤
Ni), and φ(Di,Pi,Ni | Di+1,Pi+1,Ni+1) is the product of two

terms in Equation (4). Here the exploration adapts a simi-

lar search space as Varuna with a size of O(N logN), which

is large enough for most recent large DNNs consisting of

a stack of homogeneous layers. It is also possible to ex-

tend to a larger search space (e.g., Alpa) for more com-

plicated workloads. The first term LIVEPUT can be re-

placed by THROUGHPUT(Di+1,Pi+1), where (Di+1,Pi+1) is

the new parallel configuration after live migration. Note that

(Di+1,Pi+1) should be a feasible model partition that satisfies

the device memory capacity. For unfeasible cases that violate

memory constraints, their THROUGHPUT is set to be zero.

The second term Teff depends on the preemption distri-

bution, (Di,Pi), (Di+1,Pi+1), and the migration strategy to

transit from (Di,Pi) to (Di+1,Pi+1). Given a pair of parallel

configurations (Di,Pi) and (Di+1,Pi+1), there may exist mul-

tiple migration strategies with different overheads Tmig, and

the cost of each migration strategy also depends on the DNN

workload. Parcae uses a cost estimator (Section 9.4) to es-

timate Tmig for different migration strategies. If the pipeline

depth changes (i.e., Pi+1 ̸= Pi), Parcae infers that pipeline mi-
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Migration manager. As shown in Algorithm 1, the migra-

tion manager keeps receiving instance availability information

(i.e., preemption or allocation interruptions) from the cloud

provider and updating the current number of available in-

stances (line 3). As discussed in §8, the parallel configuration

(Di,Pi) computed in the previous iteration using predicted

availability may be incompatible with the current instances’

availability. To handle this exception, ParcaeScheduler first

adjusts the target parallel configuration (line 4) and then gen-

erates the required migration strategy Si based on the current

and target configurations (Di−1,Pi−1) and (Di,Pi). Note that

the adaptation step (line 4) is performed before generating the

migration strategy (line 5) so it will not involve re-adjustment

overheads. Next, the availability predictor will forecast the

number of available instances for a series of future intervals

(i.e., Ni+1, · · · ,Ni+I) based on the historical information (line

7). Finally, the liveput optimizer makes parallelization sugges-

tions for the following time interval using the prediction (line

8). The workflow continues until the training job is completed.

The handling of instance preemption and allocation inter-

ruptions are slightly different. Allocations are controllable

as they only occur after we consciously send requests to the

cloud, although they may not always succeed. We let a new

instance join after its ParcaeAgent is successfully initialized.

In contrast, preemptions are passive and may interrupt in-

stances at any time, which requires additional mechanisms

to handle various exceptions. Fortunately, the clouds usually

provide a small grace period to inform the preemption before

it happens. As the duration is usually enough to finish a mini-

batch’s training, we utilize the preemption notice to simplify

the implementation and enforce instances to be preempted

only at the mini-batches’ boundaries. Parcae also handles rare

failures that may interrupt training process, in which case

ParcaeScheduler restarts training using the latest checkpoint

in ParcaePS, avoiding losing model updates.

Sample manager. The training dataset is divided into mini-

batches of fixed size and trained by DNNs iteratively. Each

mini-batch of samples are “committed” after each iteration.

However, preemptions may terminate training at any time, re-

sulting in uncommitted mini-batches (Figure 1). To guarantee

the same training semantics as on-demand instances, the sam-

ple manager tracks each data sample, records all uncommitted

samples’ indices, and makes them rejoin the training process

later. This guarantees that all data samples are trained exactly

once per epoch, preserving identical theoretical convergence

property as the original data feeding order. We also provide

a convergence experiment in Figure 16 to verify its training

correctness.

9.2 ParcaeAgent

A ParcaeAgent runs on each spot GPU instance to interact

with ParcaeScheduler as shown in Algorithm 1. It repeatedly

receives a migration instruction from the ParcaeScheduler

(line 13). If no migration is required, the ParcaeAgent re-

Algorithm 1 Workflow of Parcae components.

▷ ParcaeScheduler

1: function MIGRATIONMANAGER(D0,P0)

2: for i in 1, 2, 3, · · · do

3: Ni ← Receive availability info from cloud provider

4: (Di,Pi)← AdjustParallelConfiguration(Ni)

5: Si← GetMigrationStrategy ((Di−1,Pi−1), (Di,Pi))
6: Send migration strategy Si to all ParcaeAgents

7: Ni+1, · · · ,Ni+I ← AvailPredictor(Ni−H+1, ...,Ni)

8: (Di+1,Pi+1)← LiveputOpt
(

(Di,Pi),Ni, ...,Ni+I

)

9: if job completes then

10: break

▷ ParcaeAgent

11: function PARCAERUNTIME(model, batch_size)

12: while job does not complete do

13: Receive migration instruction m from ParcaeScheduler

14: Apply migration instruction m if m is not empty

15: X ,Y ← DataLoader(batch_size)

16: Train(model, X , Y )

quests a batch of training samples and starts model training

(line 15-16). Otherwise, it performs the assigned migration in-

struction (line 14). ParcaeAgent manages to reuse the current

model states to alleviate checkpoint overheads and rollbacks.

For example, intra-stage migration is implemented by rebuild-

ing communication groups and reusing previous model states

on each GPU. For inter-stage and pipeline migration, addi-

tional costs are required for loading the latest model states

from other instances via GPUs’ peer-to-peer communications.

Specially, if all instances of a stage are preempted, all the

ParcaeAgents have to roll back to a previous checkpoint. In

this way, ParcaeScheduler automatically generates the most

efficient migration strategy and let the ParcaeAgents transit to

the target parallel configuration. Note that, the ParcaeSched-

uler also notifies a ParcaeAgent if it will be preempted or stay

idle (i.e., Ni−Di×Pi instances will be idle) by sending a halt

or termination instruction to the ParcaeAgent.

9.3 ParcaePS

Parcae needs checkpoints to handle rare cases as introduced

in §8. Unlike prior checkpointing approaches relying on ex-

pensive cloud storage (e.g., S3 on AWS), Parcae employs

several cheap on-demand CPU instances (e.g., c5.4xlarge

instance, 0.68$/hour) to maintain the latest model states in

their DRAM. Instead of directly communicating model states

and weights as prior checkpointing approaches, the ParcaePS

maintains an up-to-date checkpoint by iteratively synchroniz-

ing gradients with spot GPU instances to update the model

states the on CPU side (e.g., parameters and optimizer states),

which reduces communication by 5× for stateful optimizers

(e.g., Adam [23]) in the FP16 format [41]. Parcae also parti-

tions gradients into small pieces for better overlapping and

prevents bandwidth competition with cross-stage activation

transfer.
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