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Abstract

Deep neural networks (DNN5s) are becoming progressively
large and costly to train. This paper aims to reduce DNN
training costs by leveraging preemptible instances on modern
clouds, which can be allocated at a much lower price when idle
but may be preempted by the cloud provider at any time. Prior
work that supports DNN training on preemptive instances
employs a reactive approach to handling instance preemptions
and allocations after their occurrence, which only achieves
limited performance and scalability.

We present Parcae, a system that enables cheap, fast, and
scalable DNN training on preemptible instances by proac-
tively adjusting the parallelization strategy of a DNN training
job to adapt to predicted resource changes before instance pre-
emptions and allocations really happen, which significantly
reduces the cost of handling these events. Parcae optimizes
liveput, a novel metric that measures the expected training
throughput of a DNN job under various possible preemp-
tion scenarios. Compared to existing reactive, throughput-
optimized systems, Parcae’s proactive, live-optimized solution
considers both the throughput of a job and its robustness under
preemptions. To optimize liveput, Parcae supports lightweight
instance migration and uses an availability predictor to fore-
cast future preemptions. It then uses a liveput optimizer to
discover an optimal strategy to parallelize DNN training un-
der predicted preemptions. We evaluate Parcae on a variety
of DNNs and preemption traces and show that Parcae outper-
forms existing spot-instance DNN training systems by up to
10x. More importantly, Parcae achieves near-optimal perfor-
mance for training large DNNs under frequent preemptions,
in which case existing approaches cannot make any progress.

1 Introduction

Deep neural networks (DNNs) have surpassed human predic-
tive performance on a spectrum of tasks, including computer
vision [18], natural language progressing [14], game play-
ing [44], and content generation [46]. The success of DNNs is
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associated with progressively increasing energy and financial
costs. For example, a single training run of GPT-3 [12], a
language model with 175 billion parameters, requires more
than 1.5 million GPU hours and costs $4.6 million to train
on AWS even with the lowest priced GPUs [37]. While pre-
trained models are publicly available and can be fine-tuned
for different downstream tasks, training new models is often
required for emerging applications and datasets.

Modern cloud platforms provide a variety of cheap pre-
emptible instances, which can be leveraged to minimize the
monetary cost of DNN training. First, spot GPU instances
allow users to take advantage of unused GPU capacity at a
price up to 90% lower than on-demand counterparts [1]. Sec-
ond, modern data centers generally reserve additional GPU
capacity for urgent jobs, which can be allocated by other jobs
in a preemptible manner [35]. Third, some ML systems [51]
support opportunistically running training jobs on inference-
dedicated GPUs to maximize resource utilization and preempt
these training jobs when inference requests arrive. While this
paper focuses on spot GPUs, our techniques can easily gener-
alize to other preemptible resources.

Existing systems that support DNN training on spot in-
stances use a reactive approach to handling instance preemp-
tion and allocation, and can be categorized into two classes:
checkpoint- and redundancy-based systems. We introduce the
two categories and identify the limitations of these reactive
approaches in performance and scalability when applied to
DNN training on preemptible instances.

The first line of work uses checkpoints to maintain model
states during training. For example, Varuna [8] periodically
saves model states to persistent storage and loads the latest
checkpoint back after a preemption, as shown in Figure Ic.
Although Varuna offers promising training throughput when
spot instances have low preemption rates, it struggles to make
progress when preemptions are frequent. This is due to two
reasons: (1) saving and loading checkpoints incur significant
10 overhead, particularly as model size increases, making
frequent checkpointing costly, and (2) high preemption rates
cause training to frequently roll back to the last saved check-
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Figure 1: Illustration of pipelined data parallelism training over on-demand and spot instance respectively. Preempted spot
instances are marked with red markers. X; represents the j-th mini-batch of input data.

point, resulting in wasted computation as model updates made
since the last checkpoint are lost.

The second line of work uses redundant computation to
provide resilience in the presence of preemptions. For ex-
ample, as shown in Figure 1b, Bamboo [47] replicates DNN
computations across spot instances by letting each instance in
a pipeline perform normal computations over assigned DNN
layers (dark boxes) and redundant computations over its suc-
cessor’s layers (striped boxes). Upon an instance preemption,
its predecessor has all the information (e.g., layers and activa-
tions) to continue DNN training. Although Bamboo achieves
higher training throughput than pure checkpointing-based
methods when preemption rates are high, its computation effi-
ciency can still be limited. This is because it is difficult to com-
pletely hide the overhead of redundant computation through
pipeline bubbles, especially for large-scale models (§10.2).
Additionally, storing redundant model states increases per-
GPU memory consumption. Existing redundancy-based meth-
ods such as Bamboo address this challenge by increasing
pipeline depth, but this can lead to reduced computation effi-
ciency and increased vulnerability to preemptions.

To address the performance and scalability limitations of
existing approaches, this paper presents Parcae, a proactive,
liveput-optimized system for DNN training on spot instances.
Parcae combines data and pipeline parallelism for DNN train-
ing on spot instances, and maintains identical semantics as
on-demand training. A key insight behind Parcae is that dif-
ferent strategies to parallelize DNN training exhibit diverse
robustness under preemptions. For example, a strategy with

long pipelines achieves higher throughput but is more vulner-
able to preemptions than a strategy with shorter pipelines.

Parcae is designed to maximize preemption-aware through-
put in a proactive way. We purpose a formulation of liveput for
DNN training on preemptible instances, which is the expected
training throughput of a DNN job under different preemp-
tion scenarios. A key advantage of liveput is that it considers
both the throughput of a parallel configuration and its ro-
bustness under preemptions. Figure 1d illustrates how Parcae
optimizes liveput. After observing two preemptions (i = 2
in the figure), Parcae anticipates that the cloud has reached
its capacity limit and expects additional preemptions in the
near future. Therefore, instead of maintaining two pipelines
each with five instances, which maximizes throughput, Parcae
keeps four instances on each pipeline, which is more robust
under additional preemptions and maximizes liveput. This
allows Parcae to cheaply handle future preemptions using
lightweight live migrations (i = 3,4 in the figure).

There are three key challenges Parcae must address to
optimize liveput: (1) predicting liveput, (2) handling preemp-
tions, and (3) discovering parallel configurations to maximize
liveput. We elaborate these challenges and the main ideas
Parcae uses to overcome them.

First, spot instances can be preempted and reallocated
due to many reasons (e.g., market price changes, resource
constraints) at any time. It is challenging to know ahead
of time when and which specific instances will be pre-
empted/allocated by the cloud provider; nor does the cloud
provider provides any hints or auxiliary information on how
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instance preemption and addition decisions are made. How-
ever, estimating the liveput of a parallel configuration requires
considering a variety of preemption scenarios.

Instead of predicting preemptions and allocations for in-
dividual instances, Parcae uses a two-level approach to fore-
casting the availability of instances at a coarse granularity.
First, the availability predictor takes the instance preemption
and allocation history as input and only predicts the num-
ber of available instances in the near future. Second, the
Monte Carlo preemption sampler uses the predicted instance
availability to sample preemptions. This two-level approach
allows Parcae to employ a lightweight predictor to forecast
spot-instance availability and quickly estimate the liveput of
different parallel configurations.

Second, existing checkpoint- and redundancy-based ap-
proaches to handling preemptions introduce significant mem-
ory and computation overheads. Checkpoint-based systems
(e.g., Varuna [8]) omit all model updates since the last check-
point after each preemption, and periodically saving and load-
ing checkpoints introduce additional overheads. These over-
heads are substantial even by adopting fine-grained check-
pointing mechanisms [32] for better overlapping (see §10.2).
Meanwhile, redundancy-based systems (e.g., Bamboo [47])
require redundant computation on each instance even in the
absence of preemptions, which decreases training throughput
and increases monetary cost due to redundant computations.

To effectively handle preemptions, Parcac uses a
lightweight live migration mechanism that allows DNN train-
ing to proceed despite losing instances and without introduc-
ing redundant computation as done by prior work. To achieve
this goal, Parcae’s live migration mechanism always uses the
same number of samples to update model’s parameters in
each training iteration and opportunistically reorder samples
to avoid redundant computation or restarting training. This ap-
proach preserves model accuracy by leveraging the stochastic
nature of DNN training — all training samples are drawn in-
dependently from an intrinsic data distribution and reordering
samples does not affect model accuracy [10].

Third, optimizing liveput requires reasoning about instance
preemptions and allocations and quickly adapting to new
resources allocations while minimizing transition cost. Recent
work (e.g., PipeDream [34] and Alpa [55]) has proposed a
variety of techniques to automatically discover throughput-
optimized parallel configurations for DNN training. However,
all these approaches assume a fixed set of GPUs and do not
apply to spot-instance training.

To address this challenge, Parcae’s liveput optimizer formu-
lates the problem of maximizing liveput as an optimization
task and uses a novel dynamic programming algorithm to ex-
plore the search space of parallel configurations that combine
data and pipeline parallelism and discover an optimal parallel
configuration in the search space.

The above techniques allow Parcae to significantly outper-
form prior work. Figure 2 compares Parcae against Bamboo

12001 .- on-demand -

1000 4 Parcae (Ideal) ///
—— Parcae -
8004 —— Varuna -

Bamboo 2.38x

600 4

400 4

Number of Mini-Batches

200

0 500 1000 1500 2000 2500 3000 3500
Time (Seconds)

Figure 2: Comparing Parcae and prior work for training GPT-
2 [38] on 32 spot GPU instances. Note that Parcae, Bamboo,
and Varuna use an identical preemption trace.

and Varuna for training GPT-2 on 32 spot V100 GPU in-
stances on AWS using a collected preemption trace. Parcae
outperforms Bamboo and Varuna by 2.4 x under the same pre-
emptions. The grey curve shows an ideal case, where Parcae
knows all future preemptions and allocations and maximizes
liveput accordingly. Parcae achieves 89% efficiency of the
ideal case. We have evaluated Parcae on a variety of DNN
models and preemption traces and shown that Parcae outper-
forms Varuna by up to 9.9x and Bamboo by up to 10.8x.
Moreover, our evaluation shows that Bamboo and Varuna can-
not scale to large models — for certain spot-instance traces,
both of them cannot make any progress for training GPT-
3 [12] with 6.7 billion parameters, while Parcae can achieve
almost identical performance as its ideal case (i.e., knowing
all future preemptions and allocations).

This paper makes the following contributions:

* We propose liveput, a novel metric that simultaneously
consider the performance and robustness of a paralleliza-
tion strategy for DNN training on spot instances.

* We build Parcae, a liveput-optimized system for spot-
instance training that accurately predicts instance avail-
ability, cheaply handles preemptions, and efficiently op-
timizes training performance under preemptions.

» We evaluate Parcae and show that it outperforms Varuna
and Bamboo by up to 9.9x and 10.8x, and supports
training large-scale models on spot instances.

2 Background
2.1 Distributed DNN Training

Data parallelism. Data parallelism [7,36] is the most widely
used parallelization strategy in distributed DNN training.
Each GPU has a model replica and performs forward and
backward computations for different batches of data samples
independently. It requires to synchronize model gradients
(e.g., All-Reduce [4]) before mode update.

Pipeline parallelism. Pipeline parallelism [19] partitions
DNN model into different stages with data dependency. Each
stage is trained on one GPU, and different GPUs communicate
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activations and corresponding gradients, which are computed
by forward and backward computation respectively, instead of
parameter gradients. A mini-batch of training samples is split
into multiple micro-batches in pipeline training and pipeline
parallelism exploits the opportunity to parallelize the compu-
tations of different micro-batches.

Hybrid data and pipeline parallelism. Some studies [15,
33] combine data and pipeline parallelism to further acceler-
ate the training of large models. Given a number of GPUs,
the training throughput varies for different parallel configura-
tions, which describes the number of stages and data-parallel
pipelines it owns. Some recent systems (e.g., FlexFlow [48],
Alpa [55], Galvatron [30]) further involve more complicated
model parallelism to benefit distributed training of particular
DNNs. However, they can not be applied on spot instance
with dynamic device membership. Our approach considers
hybrid data and pipeline parallelism, follows Varuna and Bam-
boo, and leaves the exploration of more fine-grained model
parallelism as our future work.

2.2 Spot-Instance Training

Recent frameworks [6, 8,47] exploit cheap but preemptible
instances provided by clouds to train DNN models on. Torch-
Elastic [6] focuses on elastic data parallelism training and
cannot be adopted to large models, where pipeline parallelism
is definitely needed. Since the availability of spot instances
varies significantly and frequently, it is critical to decide the
parallel configuration for a DNN model in response to preemp-
tions and allocations. Bamboo [47] keeps the pipeline depth
fixed and varies the number of pipelines according to the avail-
ability of spot instances. This mechanism makes it difficult for
Bamboo to utilize spot instances, which have low availabil-
ity, for large models that require a long pipeline. Varuna [8]
introduces job morphing to dynamically change the parallel
configuration and maximize throughput for a given number
of spot instances. For instances with low preemption rate or
models with negligible reconfiguration cost, switching to the
optimal parallel configuration is definitely optimal. However,
the current spot instance market and DNN models violate the
two conditions, making it sub-optimal to always adopt the
parallel configuration with the optimal throughput.

3 Liveput

This section introduces liveput, a new metric for DNN training
that describes the expected training throughput of a paralleliza-
tion strategy on spot instances by simultaneously considering
its throughput and robustness under preemptions.

3.1 Definition of Liveput

To address the challenge mentioned above, we introduce
liveput, a novel metric for distributed DNN training on spot in-
stances that considers both the performance of a DNN system
as well as potential preemptions.

Configurations i Pre ion Scenarios Distribution | THROUGHPUT LIVEPUT
0 1009 o oo Di=2 100%x2x50 = 100
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Figure 3: Comparing the liveput and throughput of different
parallel configurations and preemption scenarios.

Definition 1 (Liveput). Let (D,P) denote the parallel con-
figuration of a DNN training job, where P is the number of
pipeline stages, and D is the number of data-parallel pipelines.
The liveput of this training job is the expectation of its through-
put under all possible preemption scenarios:

LiveruT(D,P, V) = E [THROUGHPUT(Dy, P;)] (1)
Vi~

T~
where V: {0,1}P*P — [0, 1] is the probability distribution of
all preemption scenarios. Each V is an preemption indicator
vector, vi = 1 if instance k will be preempted and v = 0
otherwise. THROUGHPUT(Dy, Py) is the throughput of the
new parallel configuration (Dy, P;) after preemption V.

Note that we follow prior work [8,47] and focus on data-
and pipeline-parallel DNN training in this paper, while the
liveput definition can easily generalize to other parallel con-
figurations such as model [21] and reduction [48] parallelism.

3.2 Comparing Liveput and Throughput

A key advantage of liveput is that it considers how the per-
formance of a parallel configuration changes under different
preemption scenarios. Figure 3 demonstrates this advantage
with a DNN training example on six spot instances with
two possible parallel configurations: {D = 2,P = 3} and
{D = 3,P =2}. For simplicity, we assume the throughput
of a pipeline with three (or two) stages is 50 (or 30) sam-
ples/second and ignore the parameter synchronization cost.
We compare the two parallel configurations under three pre-
emption scenarios: (a) no preemption, (b) one preemption,
and (c) two preemptions. We also assume that the preemption
probabilities of all instances are the same.

Figure 3 compares the throughput and liveput of the two
parallel configurations under the three preemption scenar-
ios. Throughput is independent of instance preemptions;
therefore, {D =2, P = 3} achieves a higher throughput than
{D =3,P = 2} for all cases. On the other hand, liveput con-
siders the amount of possible preemptions as well as the distri-
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bution of these preemptions over spot instances. When there is
no preemption (i.e., fixed resource allocation), liveput is equiv-
alent to throughput. Once a concrete future preemption sce-
nario is given as a prior condition, the corresponding liveput
can be treated as the effective throughput after such a pre-
emption. For example, under preemption of 1 or 2 instances,
the configuration {D = 3, P = 2} achieves higher effective
throughput than {D =2, P = 3}. Intuitively, due to data depen-
dencies between the pipeline stages, longer pipelines are more
vulnerable to preemptions, since a single preemption would
invalidate an entire pipeline within a mini-batch, and shorter
pipelines exhibit better elasticity and resilience under frequent
preemptions. Existing throughput-optimized approaches fail
to consider this trade-off when estimating training efficiency
and may make suboptimal decisions.

4 Parcae Overview

Figure 4 shows an overview of Parcae, a liveput-optimized sys-
tem for DNN training on spot instances. Computing liveput re-
quires predicting instance preemptions and allocations. Since
predicting instance-wise availability is infeasible (§5.1), Par-
cae uses a two-level approach to forecasting the availability
of all instances at a coarse granularity, where an availability
predictor takes the instance preemption/allocation history as
input and only predicts the number of available instances in
the future, and the Monte Carlo preemption sampler uses the
predicted availability to sample preemptions and allocations.

Parcae’s liveput optimizer takes the predicted instance avail-
ability as input and discovers a parallel configuration to max-
imize the liveput of the DNN model. The liveput optimizer
formulates the problem of maximizing liveput as an opti-
mization task and uses a dynamic programming algorithm to
discover an optimal parallel configuration.

To migrate across different parallel configurations and han-
dle potential preemptions, Parcae uses three live migration
strategies. These migration strategies leverage statistical ro-
bustness of DNN training, allow Parcae to significantly reduce
migration and preemption overheads compared to existing
checkpoint- and redundancy-based systems.

For the rest of this paper, we introduce Parcae’s availability
predictor in §5, live migration strategies in §6, and liveput
optimizer in §7. §8 describes how Parcae handles exceptional
cases where actual preemptions mismatch Parcae’s predic-
tions. Finally, we discuss Parcae’s design and implementation
on modern clouds in §9 and evaluate its performance in §10.

5 Availability Predictor
5.1 Instance-wise Availability Unpredictability

There are several factors that affect spot-instance preemptions
and allocations, including the types of the instances a user
requires and their availability zones, the price of the current
spot instance market, and competitions from other users. Most
existing approaches to predicting the availability of spot in-
stances focus on estimating their prices [16,17], which cannot

Figure 4: An overview of Parcae.

be used to estimate their lifetime. Prior work [16,27,31,53]
has also tried to predict the reliability of spot instances based
on historical data collected from cloud providers. These at-
tempts rely heavily on the cloud behaviour, which varies
across cloud providers and availability zones within a cloud.
Moreover, for a new cloud or zone, applying these data-driven
approaches before running a job is expensive and time con-
suming. As a result, accurately forecasting individual in-
stances’ preemptions (i.e., V in Definition 1) is impractical
since clouds currently do not support specifying preferences
on the instance preemption order (i.e., which instances to pre-
empt first), nor do they provide any auxiliary information that
can help understand preemption and allocation decisions.

5.2 Statistical Availability Prediction

To make Parcae a general and practical DNN training system
on spot instances, the only visible and reliable information
is the past preemption/allocation records of the current user-
submitted training job. Instead of forecasting when and which
instance will be preempted in the future, Parcae uses a coarse-
grained time-series forecasting approach. We observe that
it is possible to predict the rotal amount of available spot
instances for short time intervals in the future and benefit
Parcae’s proactive optimization performance.

Problem formulation. We split the timeline of a training
job into equally sized intervals, where the length of an interval
T is a hyper-parameter. For the i-th interval, we define a tupe
(N;,N;",N:") to represent the number of available instances,
newly allocated instances, and preempted instances within the
i-th interval, respectively. We assume that node preemptions
and allocations only happen at the beginning of each time
interval and that all available spot instances are stable within a
time interval; this assumption is reasonable since each interval
is small (e.g., 1 minute). Therefore, we have N; = N;_; +
Nt —N; (i > 0). Instead of predicting N;" and N; , Parcae’s
availability predictor only forecasts a sequence of N; (i.e.,
overall availability) and uses N; to derive Ni+ and N;. This
design is based on an important observation that a cloud does
not preempt existing instances and allocate new instances at
the same time, therefore N; = max(0,N; —N;_;) and N; =
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max(0,N;_; — N;). Formally, in the time-series forecasting
problem, an agent takes the instance availability trace in the
past H intervals as input and forecasts the instance availability
for the future 7 time intervals:
(Nj, -+ ,Nit;—1) = PREDICTION(N;_p,- -+ ,Ni—1).  (2)
Note that (N;,---,N;4s—1) can be used to derive the predicted
instance preemptions and allocations for the next / intervals.
Limited input data prevents Parcae from using complex
prediction models such as deep neural networks. Instead,
we propose to leverage lightweight statistical algorithms
(e.g., moving averaging, exponential smoothing, current avail-
able nodes) and empirically study their performance in Fig-
ure 5a (more details are in Appendix B). We select the
auto-regressive integrated moving average (ARIMA) algo-
rithm [11] as our availability predictor due to its superior
performance. We observe that ARIMA can faithfully de-
scribe the tendency of instance availability, as shown in Fig-
ure 5b. Finally, our evaluation on collected real-world pre-
emption/allocation traces further verifies that the ARIMA pre-
dictor can help Parcae achieve near-optimal liveput (§10.2).

6 Live Migration

This section describes the proactive migration mechanism
of Parcae. Existing checkpoint- and redundancy-based ap-
proaches handle preemptions reactively, leading to significant
overheads. Instead, we design several fine-grained live mi-
gration strategies to proactively handle different future pre-
emption scenarios. Given the preemption prediction results,
Parcae could schedule efficient adjustments in advance to
adapt to the dynamic instance availability.

6.1 Pipeline-aware Preemption Mapping

Before introducing live migration, we first discuss the pre-
emption mapping step in Parcae. Recall that the outputs of
the availability predictor (§5) only include statistical informa-
tion (i.e., the number of preemptions or allocations during a
time interval). However, the impact of an instance preemption
highly depends on the instance’s position in the data- and
pipeline-parallel topology. Therefore, instance-wise preemp-
tion predictions (i.e., ¥ in Definition 1) is still necessary to
make efficient live migration decisions.

To bridge this gap, Parcae uses a probabilistic model to
reason about the mapping from preemption events to actual
instances. This preemption mapping is essential for data- and
pipeline-parallel training because of the unique dependen-
cies between instances. In particular, instances in the same
pipeline have sequential dependencies for both forward and
backward computation, and instances in the same stage have
synchronization dependencies for parameter synchronization.
For each preemption event, Parcae assumes that all spot in-
stances may be preempted with the same probability (see
the example in Figure 3). Note that such an assumption can
be replaced by more accurate estimations when additional
preemption information is provided by cloud providers.

6.2 Migration Strategies

Parcae uses three migration strategies (Figure 6) to handle
preemptions: intra-stage, inter-stage, and pipeline migration.

Intra-stage migration. In pipeline-parallel training, in-
stances in the same stage maintain the same shard of model
parameters. Therefore, when an instance is preempted, Parcae
can opportunistically divert an available instance from the
same stage in another broken pipeline. This intra-stage mi-
gration allows Parcae to re-establish a complete pipeline. As
shown in Figure 6 (a), when instances a and f are preempted,
Parcae can replace f by moving b to the second pipeline (e.g.,
f — b), resulting in two complete pipelines. Intra-stage mi-
gration only requires updating the communication routing
(e.g., —) of a few instances and does not involve transferring
parameters since b and the preempted instance f share the
same model parameters and states.

Inter-stage migration. When intra-stage migration does
not help recover broken pipelines, Parcae opportunistically
performs inter-stage migrations, which moves intstances
across stages. Figure 6 (b) shows an inter-stage migration,
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where instances b and f are preempted, and Parcae moves e
from the first stage to the second stage of the first pipeline
(e.g., b = e), resulting in two complete pipelines. Inter-stage
migration requires transferring model parameters (e.g., =)
as the instances keep the model parameters and states of dif-
ferent stages. Both intra- and inter-stage migrations preserve
pipeline depth and manage to recover as many data-parallel
pipelines as possible.

Pipeline migration. Changing the pipeline depth is an im-
portant choice for maximizing training efficiency. Compared
with the other two migration strategies, pipeline migration
requires repartitioning the DNN model into a different num-
ber of pipeline stages, which involves significant migration
overheads as instances need to broadcast their model param-
eters (e.g., All = All). Pipeline migration is similar to the
reconfiguration mechanism in prior work (e.g., Varuna [8],
Bamboo [47]) to handle instance preemptions.

Parcae makes migration decisions by considering the cur-
rent parallel configuration, the new optimized parallel config-
uration and the actual preemptions. Given the probabilistic
mapping of predicted preemptions, Parcae automatically re-
newals the optimal parallel configuration and the migration
strategy (§7.2). Once the prediction mismatches with the ac-
tual availability, Parcae adjusts the parallel configuration as
well as the corresponding migration strategies for adaptation
(§8). The actual migration decisions are finalized when pre-
emptions really happen, and Parcae leverages the grace period
(e.g., 30s on Azure [2]) to perform these migrations.

7 Liveput Optimizer

This section describes Parcae’s liveput optimizer, which de-
termines the parallel configurations of training a DNN model
on spot instances to maximize its liveput.

7.1 Problem Definition

We formulate liveput maximization as an optimization prob-
lem, where the objective is to discover a sequence of parallel
configurations to maximize the committed training samples in
expectation of spot instance availability. The sequence length
is set to be consistent with the number of time intervals pre-
dicted by the availability predictor (Section 5). Formally, the
objective function & is the accumulated number of committed
training samples during the / time intervals:
-1
®(D,P|N) =Y 0(D;,P,N; | Dit1,Pis1,Nig1),  (3)
i=0

where N, is the predicted number of available instances (see
Section 5) at the i-th time interval. Recall that Parcae derives
N (ie., the number of instances to be preempted) and Nli 1
(i.e., the number of instances to be launched) from N; and N;y ;.
In addition, the preemption distribution v (Definition 1) is
generated from N; and N using the probabilistic preemp-
tion model developed in Section 6.1. Finally ¢ calculates the
number of committed samples within a interval:

¢(DiaH7M|Di+17[Ji+lvNi+1) (4)
= E [LIVEPUT(Djt1, Piy1 | Vig1) X Terel,
Vit1

Tett = T — Thig(Di, Py, Diy1, Piy1 | Vig1),
where T and Tig are the length of the time interval and ef-
fective training time after migrations, respectively, and Tpg
is the migration overhead. Note that ¢ extends liveput by
making the preemption distribution V| a prior. With these
definitions, the objective of the liveput optimizer is:

argmax ®(D,P | N) ()
DP
where N = {N;,Na,--- ,N;} is the output of the availability
predictor, and Parcae discovers a sequence of parallel config-
urations (D,P) to maximize liveput.

7.2 Parallelization Advisor

Parcae uses a dynamic programming algorithm to explore
the optimization space and discovers an optimal sequence of
parallel configurations. Specifically, let F (i + 1,D;y1,P11)
represent the maximal number of committed training samples
at the end of the i-th time interval, which uses parallel config-
uration (Dj 1, P41). We start from F (0, Dy, Py) = 0 and have
the following optimal substrates:

F(i+1,Diy1,P1) (6)
F(i,D;,P)+ }

= max
VDixPi<N;i {q)(Di,PnNi | Dit1,Piv1,Nit1)
and figure out the final target as maxyp,«p,<n, {F(I,Dr,Pr)}.
The DP algorithm considers all possible parallel con-
figurations that satisfy resource constraints (i.e., D; X P; <
N)), and 0(D;, P;,N; | Diy1,Pi11,N;+1) is the product of two
terms in Equation (4). Here the exploration adapts a simi-
lar search space as Varuna with a size of O(NlogN), which
is large enough for most recent large DNNs consisting of
a stack of homogeneous layers. It is also possible to ex-
tend to a larger search space (e.g., Alpa) for more com-
plicated workloads. The first term LIVEPUT can be re-
placed by THROUGHPUT(D;41,P;+1), where (Dit1,Pit1) is
the new parallel configuration after live migration. Note that
(Dj+1,P;+1) should be a feasible model partition that satisfies
the device memory capacity. For unfeasible cases that violate
memory constraints, their THROUGHPUT is set to be zero.
The second term T.fr depends on the preemption distri-
bution, (D;,P;), (Dit+1,P+1), and the migration strategy to
transit from (D;, P;) to (Djt1,Pi41). Given a pair of parallel
configurations (D;, P;) and (D;+1,P;+1), there may exist mul-
tiple migration strategies with different overheads Ti;g, and
the cost of each migration strategy also depends on the DNN
workload. Parcae uses a cost estimator (Section 9.4) to es-
timate Tiye for different migration strategies. If the pipeline
depth changes (i.e., P41 # P;), Parcae infers that pipeline mi-
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gration is performed. Otherwise, Tmig should be attributed to
either inter- or intra-stage migrations. When both of them are
applicable, Parcae selects the one with lower migration cost.
In the absence of preemptions (i.e., Ni+1 = N;), there can be
no migration cost if (D;11,Pi+1) equals to (D;, P;).

7.3 Preemption Mapping Sampler

As introduced in Section 6.1, preemption mapping is nec-
essary to reason about live migration, since preemptions at
different positions in the data- and pipeline-parallel topology
require different migration strategies. Given N; spot instances,
among which N, ; are to be preempted, the number of possi-
ble preemption mappings on a D X P topology grows expo-
nentially in N;, ;. The large preemption mapping space makes
it infeasible to explicitly consider all preemption scenarios or
analyze the exact solutions mathematically.

To address this issue, Parcae uses sampling techniques
to explore the mapping space and quickly discovers reason-
able accurate approximations. Specifically, Parcae applies
Monte Carlo (MC) sampling over the large space of all pre-
emption scenarios and randomly samples vV while preserving
N, = le\il v;. For each sampled V, Parcae identifies the cor-
responding migration costs. Parcae ensembles multiple trails
of sampling to approximate the expectation in Equation (4).
Note that this sampling step can be done offline in advance,
therefore it does not block the dynamic programming opti-
mization procedure. This allows parallelization advisor to
quickly compute new parallel configurations and migration
strategies during spot-instance training.

8 Exception Handling

This section describes how Parcae handles exceptional cases
where actual spot-instance preemptions mismatch Parcae’s
predictions or the suggested parallel configuration is not com-
patible with the available spot instances.

Parallelization adaptation. Compared to prior work, Par-
cae proactively adjusts parallel configurations by predicting
instances’ availability and planning live migrations ahead.
However, if actual preemptions rarely differ from predictions,
the liveput optimizer may not work on available spot instances.
To address this issue, Parcae includes a configuration adapta-
tion step to adjust the target parallel configuration before live
migration. Specifically, when the number of actual available
spot instances is greater (or less) than the predicted N;, Parcae
adds (or drops) data-parallel pipelines while preserving the
pipeline depth. When available spot instances cannot even for-
mulate a single pipeline, it will try to re-partition the pipeline
into fewer stages. This adaptation ensures a feasible configu-
ration without significant migration overheads, performing at
least as well as existing throughput-optimized approaches that
reactively handle preemptions when predictions go wrong.

Fault tolerance. Even if the predictions align well with
actual preemptions, there still exist rare cases where the mi-
gration strategies do not work. For example, if all instances
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Figure 7: Overview of Parcae’s design and implementation.

in one stage are preempted, both inter- and intra-stage migra-
tion cannot recover this stage’s status. Parcae uses a cheap,
in-memory checkpointing mechanism (§9.3) to handle these
cases. In addition, for the extreme cases where the number of
available instances is less than the minimum feasible pipeline
depth P, the training process has to be suspended until new
spot instances are available.

9 Parcae’s Design and Implementation

Parcae consists of three main components as illustrated in Fig-
ure 7. First, ParcaeScheduler (§9.2) runs persistently on one
on-demand CPU instance, determining the migration sched-
ule based on our liveput optimizer and availability predictor.
It also manages the training data samples to maintain the
training semantics. Second, each spot GPU instance runs a
ParcaeAgent (§9.2), which performs assigned training work-
load, monitors training progress, and executes the migration
strategies issued by the ParcaeScheduler. Third, ParcaePS
(§9.3) runs on several on-demand CPU instances to keep
model checkpoints for rare rollback cases.

Parcae’s implementation consists of ~ 8K LoC in Python
and takes PyTorch [25] as the default runtime. Communica-
tions between ParcaeScheduler and ParcaeAgent use etcd [5],
a distributed key-value store. We implement live migration
strategies by modifying DeepSpeed [40]. We show the work-
flow of ParcaeScheduler and ParcacAgent in Algorithm | and
introduce the detailed components as follows.

9.1 ParcaeScheduler

ParcaeScheduler has two major components: a migration man-
ager and a sample manager. The former is responsible for
parallelization and live migration, and the latter handles the
data samples distribution.
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Migration manager. As shown in Algorithm [, the migra-
tion manager keeps receiving instance availability information
(i.e., preemption or allocation interruptions) from the cloud
provider and updating the current number of available in-
stances (line 3). As discussed in §8, the parallel configuration
(D;, P;) computed in the previous iteration using predicted
availability may be incompatible with the current instances’
availability. To handle this exception, ParcaeScheduler first
adjusts the target parallel configuration (line 4) and then gen-
erates the required migration strategy S; based on the current
and target configurations (D;_1,P;—1) and (D;, P;). Note that
the adaptation step (line 4) is performed before generating the
migration strategy (line 5) so it will not involve re-adjustment
overheads. Next, the availability predictor will forecast the
number of available instances for a series of future intervals
(i.e., Niy1,--+,N;y7) based on the historical information (line
7). Finally, the liveput optimizer makes parallelization sugges-
tions for the following time interval using the prediction (line
8). The workflow continues until the training job is completed.

The handling of instance preemption and allocation inter-
ruptions are slightly different. Allocations are controllable
as they only occur after we consciously send requests to the
cloud, although they may not always succeed. We let a new
instance join after its ParcaeAgent is successfully initialized.
In contrast, preemptions are passive and may interrupt in-
stances at any time, which requires additional mechanisms
to handle various exceptions. Fortunately, the clouds usually
provide a small grace period to inform the preemption before
it happens. As the duration is usually enough to finish a mini-
batch’s training, we utilize the preemption notice to simplify
the implementation and enforce instances to be preempted
only at the mini-batches’ boundaries. Parcae also handles rare
failures that may interrupt training process, in which case
ParcaeScheduler restarts training using the latest checkpoint
in ParcaeP$S, avoiding losing model updates.

Sample manager. The training dataset is divided into mini-
batches of fixed size and trained by DNNSs iteratively. Each
mini-batch of samples are “committed” after each iteration.
However, preemptions may terminate training at any time, re-
sulting in uncommitted mini-batches (Figure 1). To guarantee
the same training semantics as on-demand instances, the sam-
ple manager tracks each data sample, records all uncommitted
samples’ indices, and makes them rejoin the training process
later. This guarantees that all data samples are trained exactly
once per epoch, preserving identical theoretical convergence
property as the original data feeding order. We also provide
a convergence experiment in Figure 16 to verify its training
correctness.

9.2 ParcaeAgent

A ParcaeAgent runs on each spot GPU instance to interact
with ParcaeScheduler as shown in Algorithm 1. It repeatedly
receives a migration instruction from the ParcaeScheduler
(line 13). If no migration is required, the ParcaecAgent re-

Algorithm 1 Workflow of Parcae components.
> ParcaeScheduler

1: function MIGRATIONMANAGER(Dy, Pp)

2 foriinl1,2,3,--- do

3 N; < Receive availability info from cloud provider

4: (Dj,P;) + AdjustParallelConfiguration(®V;)

5: S; « GetMigrationStrategy ((Di—1,Pi—1), (Di, P;))
6 Send migration strategy S; to all ParcacAgents

7 Nit1, -+ ,Nip1 < AvailPredictor(Ni—g+1,...,Ni)

8 (Dit1,Pit1) < Liveputopt ((Di, ), N, ....Nis1)

9 if job completes then

10: break
> ParcaeAgent
11: function PARCAERUNTIME(model, batch_size)

12: while job does not complete do

13: Receive migration instruction m from ParcaeScheduler
14: Apply migration instruction m if m is not empty

15: X,Y < DataLoader(batch_size)

16: Train(model, X, Y)

quests a batch of training samples and starts model training
(line 15-16). Otherwise, it performs the assigned migration in-
struction (line 14). ParcaeAgent manages to reuse the current
model states to alleviate checkpoint overheads and rollbacks.
For example, intra-stage migration is implemented by rebuild-
ing communication groups and reusing previous model states
on each GPU. For inter-stage and pipeline migration, addi-
tional costs are required for loading the latest model states
from other instances via GPUs’ peer-to-peer communications.
Specially, if all instances of a stage are preempted, all the
ParcaeAgents have to roll back to a previous checkpoint. In
this way, ParcaeScheduler automatically generates the most
efficient migration strategy and let the ParcacAgents transit to
the target parallel configuration. Note that, the ParcaeSched-
uler also notifies a ParcaeAgent if it will be preempted or stay
idle (i.e., N; — D; x P; instances will be idle) by sending a halt
or termination instruction to the ParcaeAgent.

9.3 ParcaePS

Parcae needs checkpoints to handle rare cases as introduced
in §8. Unlike prior checkpointing approaches relying on ex-
pensive cloud storage (e.g., S3 on AWS), Parcae employs
several cheap on-demand CPU instances (e.g., c5.4xlarge
instance, 0.68$/hour) to maintain the latest model states in
their DRAM. Instead of directly communicating model states
and weights as prior checkpointing approaches, the ParcaePS
maintains an up-to-date checkpoint by iteratively synchroniz-
ing gradients with spot GPU instances to update the model
states the on CPU side (e.g., parameters and optimizer states),
which reduces communication by 5x for stateful optimizers
(e.g., Adam [23]) in the FP16 format [41]. Parcae also parti-
tions gradients into small pieces for better overlapping and
prevents bandwidth competition with cross-stage activation
transfer.
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Table 1: Overview of the four trace segments evaluated.

Trace HADP HASP LADP LASP
Availability High  High Low Low
Preemption intensity | Dense Sparse Dense Sparse
#avg instances 27.05 29.63 16.82  14.60
#preemption events 9 6 8 3
#allocation events 8 5 12 0
length lh lh lh lh

3 30

©

2
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Figure 8: The complete trace and segments of four scenarios.

9.4 Cost Estimator

We develop a cost estimator to estimate migration cost by con-
sidering different preemption scenarios and parallel configu-
rations. We conduct an empirical study to profile the migra-
tion cost and find that it varies across several factors (details
in Appendix A). Some of these terms have relatively fixed
overheads like CUDA context initialization (less than 10s).
The communication group updating and model building costs
are associated with the parallel configuration (less than 30s).
The model transfer cost varies considerably according to the
preemptions (up to 60s). We consider the instance network
topology for each preemption scenario and adopt an o — 3
model [49] to accurately estimate the communication cost.

10 Evaluation

10.1 Experimental Setup

DNNs. We select five popular DNNS for various applications.
ResNet-152 [18] and VGG-19 [45] are CV tasks, and we use
CIFAR-100 [24] as the training dataset. BERT [14], GPT-
2 [38], and GPT-3 [12] are popular model architectures for
NLP tasks, and we evaluate them on WikiText-2 [28]. We use
GPT-2 and GPT-3 including 1.5 and 6.7 billion model param-
eters respectively. More setting details are in Appendix C.
Traces. Due to the dynamic availability of spot instance,
it is almost impossible to evaluate different systems on real
spot instances multiple times and expect consistent dynamic
environments. Instead, to make a fair comparison, we take
the real spot instance availability traces and replay them on
regular instances. Specifically, we collect a 12-hour trace on
a 32-instance cluster with p3.2xlarge instances on AWS.
Inspired by Bamboo [47], we extract representative segments
from the whole trace for our evaluation. We design two new
measurements for each segment, including the availability
(i.e., the average number of instances) and the preemption
intensity (i.e., the number of instance preemption and alloca-

Table 2: Comparison of monetary cost (x 1e"®USD) for dif-
ferent models and approaches. We report per-image cost for
ResNet and VGG and per-token cost for BERT and GPT.

Model  Trace | On-Demand Varuna Bamboo Parcae
HsDp | 8.68(2.3x) 10.86(2.8x) 9.77(2.6x) 3.81(1x)
ResNet H;Sp | 8.68 (2.4x) 5.32 (1.5%) 7.61 (2.1x) 3.62(1x)
LsDp | 8.68 (3.2x) 4.89 (1.8x) 6.72(2.5x) 271 (1x)
LsSp 8.68 (3.4x) 2.43 (1.0x) 6.96 (2.7x)  2.54(1x)
HuDp | 1243 (2.7x) 12.10(2.6x) 12.11(2.6x) 4.62(1x)
VGG HpSp | 1243 (2.7x) 652 (14x) 13.12(2.8x) 4.66(1x)
LsDp | 1243 (34x) 543 (1.5%) 9.40 (2.6x)  3.66 (1x)
LaSp | 1243 (4.0x)  3.37(1.1x) 8.88(29%) 3.11(1x)
HaDp | 0.10(2.9%) 0.09 (2.6x) 0.09 (2.6x) 0.03(1x)
BERT HxSp | 0.10 (2.8%) 0.06 (1.6%) 0.06 (1.9%)  0.03 (1x)
LsDp | 0.10 (3.4%) 0.07 (2.4x) 0.07 (2.4x)  0.03(1x)
LASp 0.10 (4.2x) 0.03 (1.2x) 0.07 (3.0x)  0.02 (1x)
HaDp | 0.62(2.9%) 0.49 (2.3%) 0.55(2.6x) 021 (1x)
GPT-2 HpSp | 0.62(3.0%) 0.44 (2.1x) 0.62(3.0x) 021 (1x)
LsDp | 0.62(3.5%) 0.63 (3.6%) 0.64 (3.6x) 0.18 (1x)
LsSp 0.62 (4.1x) 0.27 (1.8%) 031 (2.1x) 0.15(1%)
HaDp | 2.39(2.5x%) 9.35(9.9%) 2.07(2.2x) 094 (1x)
GPT3 HxSp | 2.39 (3.0x) 1.81 (2.3x) 1.74 (2.2x)  0.80 (1x)
LsDp | 2.39(3.6x) 381 (5.7x)  7.28 (10.8x)  0.67 (1x)
LsSp 2.39 (4.8x) - - 0.49 (1x)

tion events). Table | and Figure 8 show four extracted 1-hour
trace segments based on different availability and preemp-
tion intensity. Traces with over 70% available instances are
high availability (i.e., Hy) traces, otherwise have low avail-
ability (i.e., L4). Dense preemption intensity traces (i.e., Dp)
have around 20 instance preemption and allocation events,
but sparse preemption intensity traces (i.e., Sp) only have
few. We replay these four trace segments on 32 on-demand
V100-16GB GPU instances to simulate spot-instance clusters.

10.2 End-to-End Evaluation

We first compare the end-to-end training performance be-
tween Parcae and existing SOTA spot-instance training
systems including Bamboo [47] (redundancy-based) and
Varuna [8] (checkpoint-based). We also compare with on-
demand instances training approach. The results are displayed
in Figure 9a and Table 2. In all experiments, Parcae looks
ahead 12 intervals based on the availability predictor, while
Parcae (Ideal) looks ahead 12 intervals based on truth traces.
Parcae significantly outperforms both Bamboo and Varuna
in terms of throughput for almost all the models and preemp-
tion traces. On average, Parcae delivers an overall of 2.59 x
higher throughput than Varuna and 3.0x than Bamboo. Ap-
parently, Parcae is much more economical than Varuna and
Bamboo as it completes more samples with the same mon-
etary costs. Compared with on-demand instances, Parcae is
3.24x cheaper, and Parcae (Ideal) even achieves competitive
throughput, e.g., only 14.2% lower for GPT-2 on high avail-
ability traces. The results also show that the performance of
Parcae is quite close (i.e., up to 13.3%) to Parcae (ideal).
The performance improvement mainly comes from two as-
pects. First, Parcae’s liveput optimized configurations balance
the trade-off between throughput and available duration, in-
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Figure 9: (a) Training throughput comparison among existing frameworks and Parcae on four traces. The dotted on-demand line
shows the best throughput with on-demand instances. The numbers over the bars represent the speedup of Parcae over Varuna
and Bamboo respectively. (b) The GPT-2 training throughput for the H4Dp trace with different look-ahead intervals.
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Figure 11: GPT-2 training throughput (tokens/s) using the
HyDp trace with different prediction rates.

stead of greedily doing expensive reconfiguration like Varuna.
While Bamboo maintains a fixed long pipeline depth (e.g., 16
for GPT-2), leading to many unutilized instances, especially
for low availability traces. Second, the migration mechanism
in Parcae is highly efficient to handle preemptions. Varuna
is designed for low preemption environments and relies on
shared storage (e.g. S3) to save and load checkpoints. Al-
though Varuna overlaps checkpoint saving with training itera-
tions, when preemptions happen, it requires rolling back to the
last checkpoint and loses tens of seconds’ (i.e., the duration
of one complete checkpointing) training progress for large
models. To recover from preemptions, Varuna needs to load
the last checkpoint from persistent storage and restart train-
ing, which is also expensive. Bamboo is designed for high
preemption environments based on redundant computation.
It can efficiently handle preemptions, but the redundant com-
putation is inefficient and brings additional synchronization
overheads between redundant and normal modules.

Multi-GPU instances. To demonstrate the generality of
Parcae, we also evaluate Parcae on multi-GPU instances. Un-
fortunately, we fail to collect meaningful multi-GPU spot
instance traces on the cloud (e.g. p3.8xlarge with 4 V100
GPUs) as they show extremely low availability recently. In-
stead, we propose to generate the 4-GPU instance based on
the single GPU trace by accumulating every four preemption
or allocation events. Each 4-GPU instance is allocated at the
first allocation event and preempted at the last preemption
event. In this way, multi-GPU instance trace will have higher
GPU hours than the single GPU trace in total. For multi-GPU
instances, we follow prior work [39,43] using pipeline par-
allelism only for inter-nodes. Figure 10 shows the training
throughput and cost for different trace segments. Although
our trace generation favors multi-GPU instances in theoretical
availability, Parcae on single GPU instance still performs bet-
ter in terms of both throughput and monetary cost. The major
reason is that preempting one 4-GPU instance will interrupt 4
pipelines, significantly slowing down training. Besides, unuti-
lized 4-GPU instances are also significant as it takes four
times more GPUs to increase a new pipeline.

10.3 Breakdown Analysis

Look-ahead interval length. Figure 9b shows the results of
training GPT-2 with different numbers of look-ahead intervals
on the H4Dp trace. Here Parcae looks back past 12 intervals
and predicts the next 1,4,8,12, and 14 intervals respectively.
The results show that Parcae (Ideal) keeps improving by con-
sidering longer futures and achieves the best performance
when looking ahead 12 intervals. It shows the benefits of
liveput-optimized configurations by considering future pre-
emptions and allocations. On the other hand, Parcae exhibits
a slightly different pattern, where its performance improves
significantly by looking ahead 4 intervals compared with 1
interval (1.8 ). As Parcae looks ahead more intervals, the
prediction error increases as we evaluated in Figure 5a. Fig-
ure 9b shows that Parcae can still yield significant improve-
ment compared with looking ahead 1 interval, and achieves
best performance by looking ahead 12 intervals. Overall, Par-
cae’s throughput is 12.8% lower than that of the ideal case.
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Figure 12: GPU hours breakdown of GPT-2 execution.

The result demonstrates that looking ahead longer can indeed
help Parcae make more optimized decisions, and that there is
still room to improve our availability predictor.

Prediction rate. Figure 11 shows the results of training
GPT-2 with different prediction rates on the H4Dp trace. As
the prediction rate decreases, so do the training throughput
achieved by Parcae and Parcae (Ideal). Fortunately, the ex-
ecution time of the liveput optimizer is much less than one
minute, which allows Parcae to use a high prediction rate and
optimize frequently (i.e., per minute) for better performance.

GPU hours breakdown. To further understand the per-
formance and drawbacks of different approaches, we break-
down the GPU hours of GPT-2 training into five components
(Figure 12). The results demonstrate that Parcae spends the
majority of GPU hours performing effective computation (i.e.,
committed mini-batches). In contrast, Bamboo spends more
than 40% GPU hours on redundant computation on HyDp,
while wastes more than 50% GPU hours on Ly Dp. Similarly,
Varuna takes a long time to handle preemptions, including
checkpointing and reconfiguration. As a result, their unuti-
lized parts are quite small compared with Parcae. The results
also align with the disadvantages we mentioned in §10.2.

Parcae components analysis. Figure 13 shows how each
component contributes to the performance improvements,
using GPT-2 as an example. We start from a checkpoint-
based approach with throughput-optimized execution plans.
By adding ParcaePS and migration strategies, we improve
the throughput by 13%-67%. Especially for trace L4 Dp with
low availability, it leaves little room for parallel configuration
variation. When there are frequent preemption and allocation
events, the migration allows training to make more progress
than frequently triggering the costly reconfiguration. Finally,
adopting liveput optimized parallel configurations improves
an additional 25.5% over migration mechanisms.

10.4 Proactive v.s. Reactive

Preemption Tolerance. We evaluate the performance of Par-
cae (i.e., Parcae-Proactive) and Parcae-Reactive with GPT-2
on a synthetic preemption trace Figure 14. The auxiliary base-
line (i.e., Parcae-Reactive) is created by disabling the liveput
optimization in Parcae and only enabling the parallelization
adaptation mechanism (§8). Parcae-Reactive can be classi-
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Figure 13: The decomposed throughput speedup on GPT-2.
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Figure 14: The throughput comparison between Parcae and
Parcae-Reactive under different preemption intensity.

fied as a throughput-optimized system and used to highlight
the advantages of our proactive, liveput-based approach. We
generate the synthetic trace from the HsSp trace by scaling
the number of preemption events from 3 to 30 within one
hour. The performance gap between Parcae-Reactive and
Parcae-Proactive becomes larger as the preemption intensity
increases, showing that our proactive approach can be more
effective for scenarios with more frequent preemptions.
Case study. As a case study, we compare the liveput-
optimized Parcae with throughput-optimized Parcae-Reactive
in detail using GPT-2 and partial H4Dp trace. Figure 15a
shows each interval’s instance availability, parallel configura-
tion (D x P), and average throughput as time elapses. We
observe that for intervals with stable availability, Parcae-
Reactive can select configurations with relatively higher
throughput. However, greedily selecting execution plans that
maximize throughputs suffers when preemptions or alloca-
tions happen because it neglects high reconfiguration costs.
It can barely make training progress when the available
instances frequently change. In contrast, Parcae carefully
chooses parallel configurations by considering the future in-
stance availability and adapting efficient migration strategies
accordingly to ensure high training efficiency while mitigating
expensive reconfiguration. For example, in the first 8 inter-
vals, Parcae selects a pipeline depth of 7 and avoids changing
pipeline depth as Parcae-Reactive does (e.g., 8 and 13). Al-
though resulting in some unused instances, the progress made
is still larger than running with Parcae-Reactive because of
its reconfiguration overheads. Similar observation exists in
the last 10 consecutive intervals, where Parcae maintains the
same parallel configurations but leverages lightweight inter-
and intra-stage migrations to adapt to dynamic preemptions
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Figure 16: The loss curve of ResNet-152 on CIFAR100.

and allocations. As a result, Parcae achieves 16% more accu-
mulated tokens within 40 minutes (Figure 15b).

10.5 Convergence Preservation

Figure 16 visualizes the convergence curve of training loss
between Parcae running on spot instances and the baseline
on on-demand instances. We observe that both convergence
rates are very close, and Parcae reaches the same training loss
of 0.058 as the baseline after training for 110 epochs. This
verifies that the Parcae design and implementation align with
the model convergence.

11 Related Work

Dynamic preemptible instances. There is a trend of using
preemptible instances on modern clouds for cheap service.
Tributary [16] studies the latency issues from preemptions
and proposes to switching preemptible offerings from clouds
with different preemption likelihoods. BurScale [9] employs
autoscaling to handle transient queuing in web service traf-
fic. SciSpot [22] presents a reliability model for temporally
constrained preemptions to optimize the job scheduling for
scientific computing. HotSpot [42] transparently migrates
spot VMs in lower price and achieves higher cost-efficiency.
Snape [52] improves spot resources’ availability by dynami-
cally mixing on-demand VMs with spot eviction predictions.
SpotServe [29] realizes fast and reliable serving of LLMs on
cheap preemptible instances with dynamic reparallelization
and optimal context migration. Prior work has demonstrated
the cost benefits of spot instances in cloud computing and

motivates the following related research.

Preemptible distributed DNN training. Recently, using
preempible instances for machine learning tasks is becoming
popular as they are much more cost effective, like what is
done in Varuna [8] and Bamboo [47]. SageMaker in AWS [3]
automatically pauses the training job when a spot instance is
interrupted and resumes from the checkpoint in S3 if the spot
instance becomes available again. CM-DARE [26] analyzes
distributed training under transient cloud GPU servers and pro-
vides a performance modeling methodology. SpotTune [27]
leverages spot instances to paralleize hyper-parameter tuning
for ML models. SkyPilot [54] migrates training workload to
spot resources from other clouds and relaunch jobs using the
periodical checkpoint from cloud storage. These approaches
make meaningful explorations in this direction but are still
suffering from the limited performance due to preemptions.

Oobleck [20] and Gemini [50] are concurrent works
for quick failure recovery in distributed DNN train-
ing. Oobleck introduces pipeline reinstantiation with pre-
computed pipeline templates. Gemini uses in-memory check-
points and orchestras checkpoint traffic schedule. Both are
reactive approaches. Besides, Gemini targets dedicated in-
stances and relies on high network bandwidth to reduce check-
pointing time, while the bandwidth is low for spot instances.

12 Conclusion

In this work, we present an efficient distributed training sys-
tem over spot instances, Parcae. The key idea is to proactively
adjust the parallelization strategy using a novel metric, liveput,
considering both training throughput and instance availability.
With holistic system mechanisms and implementation opti-
mizations, Parcae significantly outperforms checkpoint- and
redundancy-based solutions in evaluations.
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Table 3: Overview of the five DNNs evaluated.

Model mini-batch  micro-batch  Dataset

ResNet-152 [18] 2048 32 CIFAR-100 [24]
VGG-19 [45] 2048 32 CIFAR-100 [24]
BERT-Large [14] 1024 8 WikiText-2 [28]
GPT-2 (1.5B) [38] 128 1 WikiText-2 [28]
GPT-3 (6.7B) [12] | 64 1 WikiText-2 [28]

Table 4: Migration costs in our experiments on AWS.

Cost Terms Magnitude (s) Interfering Factor

Start process <1

Rendezvous 0~ 10 Instance state

Init CUDA context 0~ 10

Load data 0~ 10 Dataset

Build model 0~ 10 .

Update comm. groups 0~ 20 Model, Configuration

Model states transfer 0~ 60 Model, Qonﬁguratlf)n
Preemption Scenario

A Addition Details of Migration Costs

Table 4 lists detailed costs of migrations and their magnitudes.
All of them are profiled multiple times and averaged over five
DNN models (see Table 3).

B Additional Details of ARIMA

The ARIMA time-series forecasting algorithm is sensitive to
trivial perturbations in inputs, which may impede its under-
standing of essential patterns from previous instance history.
We introduce a few optimizations to ensure its predictions
are faithful. First, we flatten random spikes that last for only
1-2 intervals in previous instance history, since such trivial
noise will likely cause abrupt rise and falls in prediction.
ARIMA also likes to simulate the tendency of the entire input
curves. When input curves have multiple "hops", we ensure
that ARIMA only learns from the most recent variations that
are indeed beneficial for prediction. Second, though ARIMA
can accurately capture intermediate fluctuations, its prediction
can be so steep that it easily hits the upper and lower bound-
aries of available instances on intervals of sudden increase
and decrease. To do so, we set upper and lower boundaries to
limit the predicted curves based on observations of all spot
instance traces we have. Additionally, our empirical study on
traces indicate most intervals have a limitation on the extent
of growth. Thus, we would also apply such constraints on
predictions. We also apply additional penalty to flatten ex-
cessively steep predictions such as their predictions follow
the essential patterns of AWS traces. We take care to reset
ARIMA mispredictions when the generation deviates seri-
ously from the input. With these rules and modifications, we
ensure the ARIMA model can sufficiently describe future
scenarios by learning from the past history.

________ On-demand Bamboo [ Parcae (Ideal)
@4, \aruna Parcae
VGG19
2e3-
1.4x 1.1x

Throughput

0 - T T T T
HaDp HaSp LaDp LaSp

Figure 17: Training throughput comparison of VGG19 among
existing frameworks and Parcae on four traces. The dotted
on-demand line shows the best throughput with on-demand
instances. The numbers over the bars represent the speedup
of Parcae over Varuna and Bamboo respectively.

C Additional Experimental Details
C.1 End-to-End Evaluation Setting

We select five popular DNNs for various applications and
summarize them in Table 3. For all the models, we used
Adam optimizer with half precision (i.e., FP16) for training.

Parallel Configuration. Parcae and Varuna will adjust
parallel configurations according to instance availability dur-
ing training. The parallel configuration of Parcae is decided
by migration manager, while it is decided by job morphing
for Varuna. We follow the settings of Vauna and first run a
one-time profiling to collect primitive parameters of the hard-
ward and the DNN model. Varuna will automatically decide
the optimal parallel configuration considering DNN models
and number of availability instances. Table 5 summarizes the
parallel configurations used for Bamboo in our evaluation.
Bamboo maintains a fixed pipeline depth and its redundant
computation consumes a huge amount of memory. For dif-
ferent models, we tuned the number of pipeline stages and
partitions to find an optimal parallel configuration for Bam-
boo. We find it requires at least 20 stages for Bamboo to run
GPT-3 even with activation checkpointing [13] enabled, and
Bamboo performs best for P = 23.

VGG Results Figure 17 shows the end-to-end evaluation
results of VGG19. Parcae significantly outperforms Varuna
and Bamboo, except for trace L4Sp, where Varuna achieves
comparable performance with Parcae. We move these results
in the appendix due to the limited page space.

C.2 Parcae Components Evaluation

Cost Estimation Accuracy. The cost estimator estimates mi-
gration cost for different preemption scenarios and parallel
configurations. An accurate estimator is important for accu-
rate liveput optimization. We compare the estimated migration
cost predicted by cost estimator with the real migration time
measured by actual executions. Figure 18a shows the results
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Table 5: The parallel configuration of Bamboo in evaluation.

Model D
ResNet-152 [18]
VGG-19 [45]
BERT-Large [14]
GPT-2 (1.5B) [38]
GPT-3 (6.7B) [12]
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(a) The accuracy of cost estimator. (b) The cost of migration advisor.

Figure 18: (a) Comparison between the estimated and actual
reconfiguration time for different models. (b) Optimization
time of looking ahead 12 intervals for GPT-2.

for different DNN models. The dashed lines indicate a rela-
tive difference of —15% and 15% between real and estimated
migration cost, respectively. The results demonstrate that our
cost estimator is appropriate to evaluate the migration cost for
different preemption scenarios and models.

Optimization Cost. ParcaeScheduler periodically runs on-
line liveput optimization to suggest the parallel configuration
for the next interval. We evaluate the optimization time it
takes to look ahead 12 intervals for one run on one CPU ma-
chine. Figure 18b shows the results of GPT-2 on different
trace segments. Overall, one optimization takes less than 0.3
seconds, which is negligible compared with interval length.
Therefore, the liveput optimization will not delay the training
process.
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