
Robust Lipschitz Bandits to Adversarial Corruptions

Yue Kang
Department of Statistics

University of California, Davis
Davis, CA 95616

yuekang@ucdavis.edu

Cho-Jui Hsieh
Google and Department of Computer Science, UCLA

Los Angeles, CA
chohsieh@cs.ucla.edu

Thomas C. M. Lee
Department of Statistics

University of California, Davis
Davis, CA 95616

tcmlee@ucdavis.edu

Abstract

Lipschitz bandit is a variant of stochastic bandits that deals with a continuous arm
set defined on a metric space, where the reward function is subject to a Lipschitz
constraint. In this paper, we introduce a new problem of Lipschitz bandits in
the presence of adversarial corruptions where an adaptive adversary corrupts the
stochastic rewards up to a total budget C. The budget is measured by the sum of
corruption levels across the time horizon T . We consider both weak and strong
adversaries, where the weak adversary is unaware of the current action before the
attack, while the strong one can observe it. Our work presents the first line of
robust Lipschitz bandit algorithms that can achieve sub-linear regret under both
types of adversary, even when the total budget of corruption C is unrevealed to
the agent. We provide a lower bound under each type of adversary, and show that
our algorithm is optimal under the strong case. Finally, we conduct experiments to
illustrate the effectiveness of our algorithms against two classic kinds of attacks.

1 Introduction

Multi-armed Bandit (MAB) [3] is a fundamental and powerful framework in sequential decision-
making problems. Given the potential existence of malicious users in real-world scenarios [10], a
recent line of works considers the stochastic bandit problem under adversarial corruptions: an agent
adaptively updates its policy to choose an arm from the arm set, and an adversary may contaminate
the reward generated from the stochastic bandit before the agent could observe it. To robustify bandit
learning algorithms under adversarial corruptions, several algorithms have been developed in the
setting of traditional MAB [16, 18, 29] and contextual linear bandits [6, 12, 17, 27, 39]. These works
consider either the weak adversary [29], which has access to all past data but not the current action
before choosing its attack, or the strong adversary [6], which is also aware of the current action
for contamination. Details of these two adversaries will be elaborated in Section 3. In practice,
bandits under adversarial corruptions can be used in many real-world problems such as pay-per-click
advertising with click fraud and recommendation systems with fake reviews [29], and it has been
empirically validated that stochastic MABs are vulnerable to slight corruption [12, 15, 18].

Although there has been extensive research on the adversarial robustness of stochastic bandits, most
existing works consider problems with a discrete arm set, such as the traditional MAB and contextual
linear bandit. In this paper, we investigate robust bandit algorithms against adversarial corruptions
in the Lipschitz bandit setting, where a continuously infinite arm set lie in a known metric space

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Comparisons of regret bounds for our proposed robust Lipschitz bandit algorithms.

ALGORITHM REGRET BOUND FORMAT C ADVERSARY

Robust Zooming Õ
(
T

dz+1
dz+2 + C

1
dz+1 T

dz
dz+1

)
HIGH. PROB. KNOWN STRONG

RMEL Õ
(
(C

1
dz+2 + 1)T

dz+1
dz+2

)
HIGH. PROB. UNKNOWN WEAK

EXP3.P Õ
(
(C

1
d+2 + 1)T

d+2
d+3

)
EXPECTED UNKNOWN STRONG

CORRAL Õ
(
(C

1
d+1 + 1)T

d+1
d+2

)
EXPECTED UNKNOWN STRONG

BoB Robust Zooming Õ
(
T

d+3
d+4 + C

1
d+1 T

d+2
d+3

)
HIGH. PROB. UNKNOWN STRONG

with covering dimension d and the expected reward function is an unknown Lipschitz function.
Lipschitz bandit can be used to efficiently model many real-world tasks such as dynamic pricing,
auction bidding [35] and hyperparameter tuning [19]. The stochastic Lipschitz bandit has been well
understood after a large body of literature [8, 23, 30], and state-of-the-art algorithms could achieve
a cumulative regret bound of order Õ(T

dz+1
dz+2)1 in time T . However, to the best of our knowledge,

the stochastic Lipschitz bandit problem with adversarial corruptions has never been explored, and
we believe it is challenging since most of the existing robust MAB algorithms utilized the idea of
elimination, which is much more difficult under a continuously infinite arm pool. Furthermore, the
complex structure of different metric spaces also poses challenges for defending against adversarial
attacks [36] in theory. Therefore, it remains intriguing to design computationally efficient Lipschitz
bandits that are robust to adversarial corruptions under both weak and strong adversaries.

We develop efficient robust algorithms whose regret bounds degrade sub-linearly in terms of the
corruption budget C. Our contributions can be summarized as follows: (1) Under the weak adversary,
we extend the idea in [29] and propose an efficient algorithm named Robust Multi-layer Elimina-
tion Lipschitz bandit algorithm (RMEL) that is agnostic to C and attains Õ(C

1
dz+2T

dz+1
dz+2) regret

bound. This bound matches the minimax regret bound of Lipschitz bandits [8, 23] in the absence
of corruptions up to logarithmic terms. This algorithm consists of multiple parallel sub-layers with
different tolerance against the budget C, where each layer adaptively discretizes the action space
and eliminates some less promising regions based on its corruption tolerance level in each crafted
epoch. Interactions between layers assure the promptness of the elimination process. (2) Under the
strong adversary, we first show that when the budget C is given, a simple modification on the classic
Zooming algorithm [23] would lead to a robust method, namely, Robust Zooming algorithm, which
could obtain a regret bound of order Õ(T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1). We then provide a lower bound to

prove the extra O(C
1

dz+1T
dz

dz+1) regret is unavoidable. Further, inspired by the Bandit-over-Bandit
(BoB) model selection idea [11, 13, 31], we design a two-layer framework adapting to the unknown
C where a master algorithm in the top layer dynamically tunes the corruption budget for the Robust
Zooming algorithm. Three types of master algorithms are discussed and compared in both theory and
practice. Table 1 outlines our algorithms as well as their regret bounds under different scenarios.

2 Related Work

Stochastic and Adversarial Bandit Extensive studies have been conducted on MAB and its
variations, including linear bandit [1], matrix bandit [20], etc. The majority of literature can be
categorized into two types of models [24]: stochastic bandit, in which rewards for each arm are
independently sampled from a fixed distribution, and adversarial bandit, where rewards are maliciously
generated at all time. However, adversarial bandit differs from our problem setting in the sense that
rewards are arbitrarily chosen without any budget or distribution constraint. Another line of work
aims to obtain “the best of both worlds” guarantee simultaneously [7]. However, neither of these
models is reliable in practice [9], since the former one is too ideal, while the latter one remains very
pessimistic, assuming a fully unconstrained setting. Therefore, it is more natural to consider the
scenario that lies "in between" the two extremes: the stochastic bandit under adversarial corruptions.

1Õ ignores the polylogarithmic factors. dz is the zooming dimension defined in Section 3.

2

Lipschitz Bandit Most existing works on the stochastic Lipschitz bandit [2] follow two key ideas.
One is to uniformly discretize the action space into a mesh in the initial phase so that any MAB
algorithm could be implemented [21, 30]. The other is to adaptively discretize the action space by
placing more probes in more promising regions, and then UCB [8, 23, 28], TS [19] or elimination [14]
method could be utilized to deal with the exploration-exploitation tradeoff. The adversarial Lipschitz
bandit was recently introduced and solved in [32], where the expected reward Lipschitz function
is arbitrarily chosen at each round. However, as mentioned in the previous paragraph, this fully
adversarial setting is quite different from ours. And their algorithm relies on several unspecified
hyperparameters and hence is computationally formidable in practice. In addition, some interesting
variations of Lipschitz bandits have also been carefully examined, such as contextual Lipschitz
bandits [33], full-feedback Lipschitz bandits [22], and taxonomy bandits [34].

Robust Bandit to Adversarial Corruptions Adversarial attacks were studied in the setting of
MAB [18] and linear bandits [15]. And we will use two classic attacks for experiments in Section 6.
To defend against attacks from weak adversaries, [29] proposed the first MAB algorithm robust to
corruptions with a regret C times worse than regret in the stochastic setting. An improved algorithm
whose regret only contains an additive term on C was then proposed in [16]. [27] subsequently
studied the linear bandits with adversarial corruptions and achieved instance-dependent regret bounds.
[25] also studied the corrupted linear bandit problem while assuming the attacks on reward are
linear in action. Recently, a robust VOFUL algorithm achieving regret bound only logarithmically
dependent on T was proposed in [37]. Another line of work on the robust bandit problem focuses
on a more challenging setting with strong adversaries who could observe current actions before
attacking rewards. [6] considered the corrupted linear bandit when small random perturbations are
applied to context vectors, and [12, 17, 39] extended the OFUL algorithm [1] and achieved improved
regret bounds. [38] further considers general non-linear contextual bandits and also MDPs with
strong adversarial corruptions. However, the study of Lipschitz bandits under attacks remains an
unaddressed open area.

3 Preliminaries

We will introduce the setting of Lipschitz bandits with adversarial corruptions in this section. The
Lipschitz bandit is defined on a triplet (X , D, µ), where X is the arm set space equipped with some
metric D, and µ : X → R is an unknown Lipschitz reward function on the metric space (X , D) with
Lipschitz constant 1. W.l.o.g. we assume X is compact with its diameter no more than 1. Under the
stochastic setting, at each round t ∈ [T] := {1, 2, . . . , T}, stochastic rewards are sampled for each
arm x ∈ X from some unknown distribution Px independently, and then the agent pulls an arm xt

and receives the corresponding stochastic reward ỹt such that,

ỹt = µ(xt) + ηt, (1)

where ηt is i.i.d. zero-mean random error with sub-Gaussian parameter σ conditional on the filtration
Ft = {xt, xt−1, ηt−1, . . . , x1, η1}. W.l.o.g we assume σ = 1 for simplicity in the rest of our analysis.
At each round t ∈ [T], the weak adversary observes the payoff function µ(·), the realizations of Px

for each arm x ∈ X and choices of the agent {xi}t−1
i=1 in previous rounds, and injects an attack ct(xt)

into the reward before the agent pulls xt. The agent then receives a corrupted reward yt = ỹt+ ct(xt).
The strong adversary would be omniscient and have complete information about the problem Ft. In
addition to the knowledge that a weak adversary possesses, it would also be aware of the current action
xt while contaminating the data, and subsequently decide upon the corrupted reward yt = ỹt+ct(xt).
Some literature in corrupted bandits [12, 15] also consider attacking on the contexts or arms, i.e. the
adversary modifies the true arm xt in a small region, while in our problem setting it is obvious that
attacking contexts is only a sub-case of attacking rewards due to the Lipschitzness of µ(·), and hence
studying the adversarial attacks on rewards alone is sufficient under the Lipschitz bandit setting.

The total corruption budget C of the adversary is defined as C =
∑T

t=1 maxx∈X |ct(x)|, which is
the sum of maximum perturbation from the adversary at each round across the horizon T . Note
the strong adversary may only corrupt the rewards of pulled arms and hence we could equivalently
write C =

∑T
t=1 |ct(xt)| in that case as [6, 17]. Define the optimal arm x∗ = argmaxx∈X µ(x)

and the loss of arm x as ∆(x) = µ(x∗)−µ(x), x ∈ X . W.l.o.g. we assume C ≤ T and each
instance of attack |ct(x)| ≤ 1, ∀t ∈ [T], x ∈ X as in other robust bandit literature [16, 29] since

3

Algorithm 1 Robust Zooming Algorithm

Input: Arm metric space (X , D), time horizon T , probability rate δ.
Initialization: Active arm set J = {}, active space Xact = X .

1: for t = 1 to T do
2: if f(v)− f(u) ≥ r(v) + 2r(u) for some pair of active arms u, v ∈ J . then
3: Set J = J \{u} and Xact = Xact \B(u, r(u)). ▷ Removal
4: end if
5: if Xact ⊈ ∪v∈JB(v, r(v)) then
6: Activate and pull some arm x /∈ ∪v∈JB(v, r(v)) in Xact such that xt = x, J = J ∪{x},

and set the components n(x) = 0, f(x) = 0. ▷ Activation
7: else
8: Pull xt = argmaxv∈J I(v) = f(v) + 2r(v), and break ties arbitrarily. ▷ Selection
9: end if

10: Observe the payoff yt. And update components associated with xt in the Robust Zooming
Algorithm: n(xt) = n(xt) + 1, f(xt) = (f(xt) (n(xt)− 1) + yt) /n(xt).

11: end for

the adversary could already make any arm x ∈ X optimal given that ∆(x) ≤ 1. (We can assume
|ct(x)| ≤ u, ∀t ∈ [T], x ∈ X for any positive constant u.) Similar to the stochastic case [21], the
goal of the agent is to minimize the cumulative regret defined as:

RegretT = Tµ(x∗)−
T∑

t=1

µ(xt). (2)

An important pair of concepts in Lipschitz bandits defined on (X , D, µ) are the covering dimension
d and the zooming dimension dz . Let B(x, r) denotes a closed ball centered at x with radius r in
X , i.e. B(x, r) = {x′ ∈ X : D(x, x′) ≤ r}, the r-covering number Nc(r) of metric space (X , D)
is defined as the minimal number of balls with radius of no more than r required to cover X . On
the contrary, the r-zooming number Nz(r) introduced in [23] not only depends on the metric space
(X , D) but also the payoff function µ(·). It describes the minimal number of balls of radius not more
than r/16 required to cover the r-optimal region defined as {x ∈ X : ∆(x) ≤ r} [8, 14]2. Next, we
define the covering dimension d (zooming dimension dz) as the smallest q ≥ 0 such that for every
r ∈ (0, 1] the r-covering number Nc(r) (r-zooming number Nz(r)) can be upper bounded by αr−q

for some multiplier α > 0 that is free of r:

d = min{q ≥ 0 : ∃α > 0, Nc(r) ≤ αr−q, ∀r ∈ (0, 1]},
dz = min{q ≥ 0 : ∃α > 0, Nz(r) ≤ αr−q, ∀r ∈ (0, 1]}.

It is clear that 0 ≤ dz ≤ d since the r-optimal region is a subset of X . On the other hand, dz could
be much smaller than d in some benign cases. For example, if the payoff function µ(·) defined on the
metric space (Rk, ∥·∥2), k ∈ N is C2-smooth and strongly concave in a neighborhood of the optimal
arm x∗, then it could be easily verified that dz = k/2 whereas d = k. However, dz is never revealed
to the agent as it relies on the underlying function µ(·), and hence designing an algorithm whose
regret bound depends on dz without knowledge of dz would be considerably difficult.

4 Warm-up: Robust Lipschitz Bandit with Known Budgets

To defend against attacks on Lipschitz bandits, we first consider a simpler case where the agent is
aware of the corruption budget C. We demonstrate that a slight modification of the classic Zooming
algorithm [23] can result in a robust Lipschitz bandit algorithm even under the strong adversary, called
the Robust Zooming algorithm, which achieves a regret bound of order Õ(T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1).

We first introduce some notations of the algorithm: denote J as the active arm set. For each active arm
x ∈ J , let n(x) be the number of times arm x has been pulled, f(x) be the corresponding average
sample reward, and r(x) be the confidence radius controlling the deviation of the sample average

2We actually use the near-optimality dimension introduced in [8], where the authors imply the equivalence
between this definition and the original zooming dimension proposed in [23].

4

f(x) from its expectation µ(x). We also define B(x, r(x)) as the confidence ball of an active arm x.
In essence, the Zooming algorithm works by focusing on regions that have the potential for higher
rewards and allocating fewer probes to less promising regions. The algorithm consists of two phases:
in the activation phase, a new arm gets activated if it is not covered by the confidence balls of all
active arms. This allows the algorithm to quickly zoom into the regions where arms are frequently
pulled due to their encouraging rewards. In the selection phase, the algorithm chooses an arm with
the largest value of f(v) + 2r(v) among J based on the UCB methodology.

Our key idea is to enlarge the confidence radius of active arms to account for the known corruption
budget C. Specifically, we could set the value of r(x) as:

r(x) =

√
4 ln (T) + 2 ln (2/δ)

n(x)
+

C

n(x)
,

where the first term accounts for deviation in stochastic rewards and the second term is used to defend
the corruptions from the adversary. The robust algorithm is shown in Algorithm 1. In addition to
the two phases presented above, our algorithm also conducts a removal procedure at the beginning
of each round for better efficiency. This step adaptively removes regions that are likely to yield low
rewards with high confidence. Theorem 4.1 provides a regret bound for Algorithm 1.
Theorem 4.1. Given the total corruption budget that is at most C, with probability at least 1− δ, the
overall regret of Robust Zooming Algorithm (Algorithm 1) can be bounded as:

RegretT = O
(
ln (T)

1
dz+2T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
= Õ

(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
.

Furthermore, the following Theorem 4.2 implies that our regret bound attains the lower bound and
hence is unimprovable. The detailed proof is given in Appendix A.6.1.
Theorem 4.2. Under the strong adversary with a corruption budget of C, for any zooming dimension
dz ∈ Z+, there exists an instance for which any algorithm (even one that is aware of C) must suffer
a regret of order Ω(C

1
dz+1T

dz
dz+1) with probability at least 0.5.

In addition to the lower bound provided in Theorem 4.2, we further propose another lower bound for
the strong adversary particularly in the case that C is unknown in the following Theorem 4.3:
Theorem 4.3. For any algorithm, when there is no corruption, we denote R0

T as the upper bound of
cumulative regret in T rounds under our problem setting described in Section 3, i.e. RegretT ≤ R0

T
with high probability, and it holds that R0

T = o(T). Then under the strong adversary and unknown
attacking budget C, there exists a problem instance on which this algorithm will incur linear regret
Ω(T) with probability at least 0.5, if C = Ω(R0

T /4
dz) = Ω(R0

T).

However, there are also some weaknesses to our Algorithm 1. The first weakness is that the algorithm
is too conservative and pessimistic in practice since the second term of r(x) would dominate under
a large given value of C. We could set the second term of r(x) as min{1, C/n(x)} to address this
issue and the analysis of Theorem 4.1 will still hold as shown in Appendix A.1 Remark A.5. The
second weakness is that it still incurs the same regret bound shown in Theorem 4.1 even if there are
actually no corruptions applied. To overcome these problems and to further adapt to the unknown
corruption budget C, we propose two types of robust algorithms in the following Section 5.

5 Robust Lipschitz Bandit with Unknown Budgets

In practice, a decent upper bound of the corruption budget C would never be revealed to the agent,
and hence it is important to develop robust Lipschitz bandit algorithms agnostic to the amount of
C. In this section, we first propose an efficient adaptive-elimination-based approach to deal with the
weak adversary, and then we adapt our Algorithm 1 by using several advances of model selection in
bandits to defend against the attacks from the strong adversary.

5.1 Algorithm for Weak Adversaries

The weak adversary is unaware of the agent’s current action before contaminating the stochastic
rewards. We introduce an efficient algorithm called Robust Multi-layer Elimination Lipschitz bandit
algorithm (RMEL) that is summarized in Algorithm 2. Four core steps are introduced as follows.

5

Algorithm 2 Robust Multi-layer Elimination Lipschitz Bandit Algorithm (RMEL)

Input: Arm metric space (X , D), time horizon T , probability rate δ, base parameter B.
Initialization: Tolerance level vl = ln (4T/δ)Bl−1,ml = 1, nl = 0,Al = 1/2-covering of

X , fl,A = nl,A = 0 for all A ∈ Al, l ∈ [l∗] where l∗ := min{l ∈ N : ln (4T/δ)Bl−1 ≥ T}.
1: for t = 1 to T do
2: Sample layer l ∈ [l∗] with probability 1/vl, with the remaining probability sampling l = 1.

Find the minimum layer index lt ≥ l such that Alt ̸= ∅. ▷ Layer sampling
3: Choose At = argminA∈Alt

nlt,A, break ties arbitrary.
4: Randomly pull an arm xt ∈ At, and observe the payoff yt.
5: Set nlt = nlt + 1, nlt,At = nlt,At + 1, and flt,At = (flt,At(nlt,At − 1) + yt) /nlt,At .
6: if nlt = 6 ln(4T/δ) · 4ml × |Alt | then
7: Obtain flt,∗ = maxA∈Alt

flt,A.
8: For each A ∈ Alt , if flt,∗ − flt,A > 4/2mlt , then we eliminate A from Alt and all active

regions A′ from Al′ in the case that A′ ⊆ A,A′ ∈ Al′ , l
′ < l. ▷ Removal

9: Find 1/2ml+1-covering of each remaining A ∈ Alt in the same way as A was partitioned
in other layers. Then reload the active region set Alt as the collection of these coverings.

10: Set nlt = 0, mlt = mlt + 1. And renew nlt,A = flt,A = 0, ∀A ∈ Alt . ▷ Refresh
11: end if
12: end for

Multi-layer Parallel Running: Inspired by the multi-layer idea used in robust MABs [29], our
algorithm consists of multiple sub-layers running in parallel, each with a different tolerance level
against corruptions. As shown in Algorithm 2, there are l∗ layers and the tolerance level of each layer,
denoted as vl, increases geometrically with a ratio of B (a hyperparameter). At each round, a layer l
is sampled with probability 1/vl, meaning that layers that are more resilient to attacks are less likely
to be chosen and thus may make slower progress. This sampling scheme helps mitigate adversarial
perturbations across layers by limiting the amount of corruptions distributed to layers whose tolerance
levels exceed the unknown budget C to at most O(ln(T/δ)). For the other low-tolerance layers
which may suffer from high volume of attacks, we use the techniques introduced below to rectify
them in the guidance of the elimination procedure on robust layers. While we build on the multi-layer
idea introduced in [29], our work introduces significant refinements and novelty by extending this
approach to continuous and infinitely large arm sets, as demonstrated below.

Active Region Mechanism: For each layer ℓ, our algorithm proceeds in epochs: we initialize the
epoch index ml = 1 and construct a 1/2ml -covering of X as the active region set Al. In addition, we
denote nl as the number of times that layer l has been chosen, and for each active region A ∈ Al

we define nl,A, fl,A as the number of times A has been chosen as well as its corresponding average
empirical reward respectively. Assume layer lt is selected at time t, then only one active region
(denoted as At) in Alt would be played where we arbitrarily pull an arm xt ∈ At and collect the
stochastic payoff yt. For any layer l, if each active region in Al is played for 6 ln (4T/δ) · 4m
times (i.e. line 6 of Algorithm 2), it will progress to the next epoch after an elimination process
that is described below. All components mentioned above that are associated with the layer l will
subsequently be refreshed (i.e. line 10 of Algorithm 2).

Although the elimination idea has been used for various bandit algorithms [35], applying it to our
problem setting poses significant challenges due to three sources of error: (1) uncertainty in stochastic
rewards; (2) unknown corruptions assigned to each layer; (3) approximation bias between the pulled
arm and its neighbors in the same active region. We encapsulate our carefully designed elimination
procedure that is specified in line 8 of Algorithm 2 from two aspects:

Within-layer Region Elimination and Discretization: For any layer l ∈ [l∗], the within-layer
elimination occurs at the end of each epoch as stated above. We obtain the average empirical reward
fl,A for all A ∈ Al and then discard regions with unpromising payoffs compared with the optimal
one with the maximum estimated reward (i.e. fl,∗ defined in line 7 of Algorithm 2). We further
“zoom in” on the remaining regions of the layer l that yield satisfactory rewards: we divide them into
1/2ml+1-covering and then reload Al as the collection of these new partitions for the next epoch (line
9 of Algorithm 2) for the layer l. In consequence, only regions with nearly optimal rewards would
remain and be adaptively discretized in the long run.

6

Cross-layer Region Elimination: While layers are running in parallel, it is essential to facilitate
communication among them to prevent less reliable layers from getting trapped in suboptimal regions.
In our Algorithm 2, if an active region A ∈ Al is eliminated based on the aforementioned rule, then
A will also be discarded in all layers l′ ≤ l. This is because the lower layers are faster whereas
more vulnerable and less resilient to malicious attacks, and hence they should learn from the upper
trustworthy layers whose tolerance levels surpass C by imitating their elimination decisions.

Note that the elimination step (line 8 of Algorithm 2) could be executed either after each epoch or
after each round. The former, which is used in the current Algorithm 2, is computationally simpler as
it does not require the entire elimination procedure to be repeated each time. On the other hand, the
latter version is more precise as it can identify and eliminate sub-optimal regions more quickly. We
defer the pseudocode and more details of the latter version in Appendix A.5 due to the space limit.
Another tradeoff lies in the selection of the hyperparameter B, which controls the ratio of tolerance
levels between adjacent layers. With a larger value of B, only fewer layers are required, and hence
more samples could be assigned to each layer for better efficiency. But the cumulative regret bound
would deteriorate since it’s associated with B sub-linearly. The cumulative regret bound is presented
in the following Theorem 5.1, with its detailed proof in Appendix A.2.
Theorem 5.1. If the underlying corruption budget is C, then with probability at least 1 − δ, the
overall regret of our RMEL algorithm (Algorithm 2) could be bounded as:

RegretT = Õ
((

(BC)
1

dz+2 + 1
)
T

dz+1
dz+2

)
= Õ

((
C

1
dz+2 + 1

)
T

dz+1
dz+2

)
.

Proof sketch: It is highly non-trivial to deduce the regret bound depending on C and dz in Theorem 5.1
without the knowledge of these two values. We first bound the cumulative regret occurred in the
robust layers whose tolerance levels vl are no less than the unknown C by showing the estimated
mean fl,A is close to the underlying ground truth µ(x), x ∈ A for all time t and active regions A
simultaneously with high probability, i.e. we define the set Φ as follows and prove P (Φ) ≥ 1− 3δ/4.

Φ =
{
|fl,A − µ(x)| ≤ 1

2ml
+

√
4 ln (T) + 2 ln (4/δ)

nl,A,t
+

ln (T) + ln (4/δ)

nl,A,t
:

∀x ∈ A, ∀A ∈ Al, ∀l s.t. vl ≥ C, ∀t ∈ [T]
}
.

This concentration result can guarantee that regions with unfavorable rewards will be adaptively
eliminated. And we could show that the extra cumulative regret from the other vulnerable layers be
controlled by the regret occurred in the robust layers. A detailed proof is presented in Appendix A.2.

Note that if no corruption is actually applied (i.e. C = 0), our RMEL algorithm could attain a regret
bound of order Õ(T

dz+1
dz+2) which coincides with the lower bound of stochastic Lipschitz bandits up to

logarithmic terms. We further prove a regret lower bound of order Ω(C) under the weak adversary
in Theorem 5.2 with its detailed proof in Appendix A.6.2. Therefore, a compelling open problem
is to narrow the regret gap by proposing an algorithm whose regret bound depends on C in another
additive term free of T under the weak adversary, like [16] for MABs and [17] for linear bandits.
Theorem 5.2. Under the weak adversary with corruption budget C, for any zooming dimension dz ,
there exists an instance such that any algorithm (even is aware of C) must suffer from the regret of
order Ω(C) with probability at least 0.5.

5.2 Algorithm for Strong Adversaries

In Section 4, we propose the Robust Zooming algorithm to handle the strong adversary given the
knowledge of budget C and prove that it achieves the optimal regret bound. However, compared with
the known budget C case, defending against strong adversaries naturally becomes more challenging
when the agent is unaware of the budget C. Motivated by the literature on model selection in bandits,
we extend our Robust Zooming algorithm by combining it with different master algorithms to learn
and adapt to the unknown C on the fly. We consider two approaches along this line: the first approach
uses the master algorithms EXP3.P and CORRAL with the smoothing transformation [31] to deal
with unknown C, which leads to a promising regret bound but a high computational cost. We then
equip Robust Zooming algorithm with the efficient bandit-over-bandit (BoB) idea [11] to adapt to the
unknown C, leading to a more efficient algorithm with a slightly worse regret bound.

7

Model Selection: When an upper bound on C is known, we propose the Robust Zooming algorithm
with regret bound Õ(T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1) against strong adversaries in Section 4. Therefore,

it is natural to consider a decent master algorithm that selects between ⌈log2(T)⌉ base algorithms
where the i-th base algorithm is the Robust Zooming algorithm with corruptions at most 2i. As
C ≤ T , there must exist a base algorithm that is at most 2C-corrupted. Here we choose the stochastic
EXP3.P and CORRAL with smooth transformation proposed in [31] as the master algorithm due to
the following two reasons with respect to theoretical analysis: (1). our action set A is fixed and the
expected payoff is a function of the chosen arm, which satisfies the restrictive assumptions of this
master algorithm (Section 2, [31]); (2). the analysis in [31] still works even the regret bounds of base
algorithms contain unknown values, and note the regret bound of our Zooming Robust algorithm
depends on the unknown C. Based on Theorem 3.2 in [31], the expected cumulative regret of our
Robust Zooming algorithm with these two types of master algorithms could be bounded as follows:

Theorem 5.3. When the corruption budget C is unknown, by using our Algorithm 1 with {2i}⌈log2(T)⌉
i=1

corruptions as base algorithms and the EXP3.P and CORRAL with smooth transformation [31] as
the master algorithm, the expected regret could be upper bounded by

E(RegretT) =

Õ
(
(C

1
d+2 + 1)T

d+2
d+3

)
EXP3.P,

Õ
(
(C

1
d+1 + 1)T

d+1
d+2

)
CORRAL.

We can observe that the regret bounds given in Theorem 5.3 are consistent with the lower bounds
presented in Theorem 4.3. And CORRAL is better under small corruption budgets C (i.e. C =

Õ(T
d+1
d+3)) whereas EXP3.P is superior otherwise. Note that the order of regret relies on d instead

of dz since the unknown dz couldn’t be used as a parameter in practice, and both regret bounds
are worse than the lower bound given in Theorem 4.2 for the strong adversary. Another drawback
of the above method is that a two-step smoothing procedure is required at each round, which is
computationally expensive. Therefore, for better practical efficiency, we propose a simple BoB-based
method as follows:

BoB Robust Zooming: The BoB idea [11] is a special case of model selection in bandits and aims to
adjust some unspecified hyperparameters dynamically in batches. Here we use ⌈log2(T)⌉ Robust
Zooming algorithms with different corruption levels shown above as base algorithms in the bottom
layer and the classic EXP3.P [4] as the top layer. Our method, named BoB Robust Zooming, divides
T into H batches of the same length, and in one batch keeps using the same base algorithm that
is selected from the top layer at the beginning of this batch. When a batch ends, we refresh the
base algorithm and use the normalized accumulated rewards of this batch to update the top layer
EXP3.P since the EXP3.P algorithm [4] requires the magnitude of rewards should at most be 1 in
default. Specifically, we normalize the cumulative reward at the end of each batch by dividing it
with (2H +

√
2H log(12T/Hδ)) due to the fact that the magnitude of the cumulative reward at each

batch would at most be this value with high probability as shown in Lemma A.14 in Appendix A.4.
Note that this method is highly efficient since a single update of the EXP3.P algorithm only requires
O(1) time complexity, and hence the additional computation from updating EXP3.P is only O(H).
Due to space limit, we defer Algorithm 4 to Appendix A.5, and the regret bound is given as follows:

Theorem 5.4. When the corruption budget C is unknown, with probability at least 1− δ, the regret
of our BoB Robust Zooming algorithm with H = T (d+2)/(d+4) could be bounded as:

RegretT = Õ
(
T

d+3
d+4 + C

1
d+1T

d+2
d+3

)
.

Although we could deduce the more challenging high-probability regret bound for this algorithm,
its order is strictly worse than those given in Theorem 5.3. In summary, the BoB Robust Zooming
algorithm is more efficient and easier to use in practice, while yielding worse regret bound in theory.
However, due to its practical applicability, we will implement this BoB Robust Zooming algorithm in
the experiments. It is also noteworthy that we can attain a better regret bound with Algorithm 2 under
the weak adversary as shown in Theorem 5.1, which aligns with our expectation since the strong
adversary considered here is more malicious and difficult to defend against.

8

0 10000 20000 30000 40000 50000
Iterations

0

500

1000

1500

2000

Cu
m

ul
at

iv
e

Re
gr

et

Triangle mean function under Oracle attack
Zooming
BoB
RMEL

0 10000 20000 30000 40000 50000
Iterations

0

500

1000

1500

2000

2500

3000

Cu
m

ul
at

iv
e

Re
gr

et

Sine mean function under Oracle attack
Zooming
BoB
RMEL

0 10000 20000 30000 40000 50000 60000
Iterations

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e

Re
gr

et

Two dim mean function under Oracle attack
Zooming
BoB
RMEL

0 10000 20000 30000 40000 50000
Iterations

0

500

1000

1500

2000

2500

Cu
m

ul
at

iv
e

Re
gr

et

Triangle mean function under Garcelon attack
Zooming
BoB
RMEL

0 10000 20000 30000 40000 50000
Iterations

0
250
500
750

1000
1250
1500
1750
2000

Cu
m

ul
at

iv
e

Re
gr

et

Sine mean function under Garcelon attack
Zooming
BoB
RMEL

0 10000 20000 30000 40000 50000 60000
Iterations

0
1000
2000
3000
4000
5000
6000
7000
8000

Cu
m

ul
at

iv
e

Re
gr

et

Two dim mean function under Garcelon attack
Zooming
BoB
RMEL

Figure 1: Plots of regrets of Zooming algorithm (blue), RMEL (green) and BoB Robust Zooming
algorithm (red) under different settings with three levels of corruptions: (1) dotted line: no corruption;
(2) dashed line: moderate corruptions; (3) solid line: strong corruptions. Numerical values of final
cumulative regrets in our experiments are also displayed in Table 3 in Appendix A.7.

6 Experiments

In this section, we show by simulations that our proposed RMEL and BoB Robust Zooming algorithm
outperform the classic Zooming algorithm in the presence of adversarial corruptions. To firmly
validate the robustness of our proposed methods, we use three types of models and two sorts of
attacks with different corruption levels. We first consider the metric space ([0, 1], |·|) with two expected
reward functions that behave differently around their maximum: (1). µ(x) = 0.9− 0.95|x− 1/3|
(triangle) and (2). µ(x) = 2/(3π) · sin (3πx/2) (sine). We then utilize a more complicated metric
space ([0, 1]2, ∥·∥∞) with the expected reward function (3). µ(x) = 1− 0.8∥x− (0.75, 0.75)∥2 −
0.4∥x− (0, 1)∥2 (two dim). We set the time horizon T = 50, 000 (60, 000) for the metric space with
d = 1 (2) and the false probability rate δ = 0.01. The random noise at each round is sampled IID
from N(0, 0.01). Average cumulative regrets over 20 repetitions are reported in Figure 1.

Since adversarial attacks designed for stochastic Lipschitz bandits have never been studied, we extend
two types of classic attacks, named Oracle [18] for the MAB and Garcelon [15] for the linear bandit,
to our setting. The details of these two attacks are summarized as follows:

• Oracle: This attack [18] was proposed for the traditional MAB, and it pushes the rewards of “good
arms” to the very bottom. Specifically, we call an arm is benign if the distance between it and the
optimal arm is no larger than 0.2. And we inject this attack by pushing the expected reward of any
benign arm below that of the worst arm with an additional margin of 0.1 with probability 0.5.

• Garcelon: We modify this type of attack studied in [15] for linear bandit framework, which replaces
expected rewards of arms outside some targeted region with IID Gaussian noise. For d = 1, since
the optimal arm is set to be 1/3 for both triangle and sine payoff functions, we set the targeted arm
interval as [0.5, 1]. For d = 2, since the optimal arm is close to (0.75, 0.75), we set the targeted
region as [0, 0.5]2. Here we contaminate the stochastic reward if the pulled arm is not inside the
target region by modifying it into a random Gaussian noise N(0, 0.01) with probability 0.5.

We consider the strong adversary in experiments as both types of attack are injected only if the pulled
arms lie in some specific regions. Note although we originally propose RMEL algorithm for the weak
adversary in theory, empirically we find it works exceptionally well (Figure 1) across all settings
here. We also conduct simulations based on the weak adversary and defer their settings and results to
Appendix A.7 due to the limited space. The first Oracle attack is considered to be more malicious in
the sense that it specifically focuses on the arms with good rewards, while the second Garcelon attack
could corrupt rewards generated from broader regions, which may contain some “bad arms” as well.

9

Since there is no existing robust Lipschitz bandit algorithm, we use the classic Zooming algorithm [23]
as the baseline. As shown in Figure 1, we consider three levels of quantities of corruptions applied on
each case to show how attacks progressively disturb different methods. Specifically, we set C = 0
for the non-corrupted case, C = 3, 000 for the moderate-corrupted case and C = 4, 500 for the
strong-corrupted case. Due to space limit, we defer detailed settings of algorithms to Appendix A.7.

From the plots in Figure 1, we observe that our proposed algorithms consistently outperform the
Zooming algorithm and achieve sub-linear cumulative regrets under both types of attacks, whereas
the Zooming algorithm becomes incompetent and suffers from linear regrets even under a moderate
volume of corruption. This fact also implies that the two types of adversarial corruptions used here are
severely detrimental to the performance of stochastic Lipschitz bandit algorithms. And it is evident
our proposed RMEL yields the most robust results under various scenarios with different volumes of
attacks. It is also worth noting that the Zooming algorithm attains promising regrets under a purely
stochastic setting, while it experiences a huge increase in regrets after the corruptions emerge. This
phenomenon aligns with our expectation and highlights the fact that our proposed algorithms balance
the tradeoff between accuracy and robustness in a much smoother fashion.

7 Conclusion

In this work we introduce a new problem of Lipschitz bandits in the presence of adversarial cor-
ruptions, and we originally provide efficient algorithms against both weak adversaries and strong
adversaries when agnostic to the total corruption budget C. The robustness and efficiency of our
proposed algorithms is then validated under comprehensive experiments.

Limitations: For both the weak and strong adversary, our work leaves a regret gap between the lower
bound deduced in Theorem 5.2 (Theorem 4.2) and the upper bound in Theorem 5.1 (Theorem 5.3)
when agnostic to C. Closing or narrowing this regret gap seems highly non-trivial since the regret
gap still exists under the simpler MAB setting [16], and we will leave it as a future work.

Acknowledgments and Disclosure of Funding

We appreciate the insightful comments from the anonymous reviewers and area chair. This work was
partially supported by the National Science Foundation under grants CCF-1934568, DMS-1916125,
DMS-2113605, DMS-2210388, IIS-2008173 and IIS2048280.

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24, 2011.

[2] Rajeev Agrawal. The continuum-armed bandit problem. SIAM journal on control and optimiza-
tion, 33(6):1926–1951, 1995.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

[4] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[5] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual
bandit algorithms with supervised learning guarantees. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 19–26. JMLR Workshop
and Conference Proceedings, 2011.

[6] Ilija Bogunovic, Arpan Losalka, Andreas Krause, and Jonathan Scarlett. Stochastic linear
bandits robust to adversarial attacks. In International Conference on Artificial Intelligence and
Statistics, pages 991–999. PMLR, 2021.

[7] Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adversarial
bandits. In Conference on Learning Theory, pages 42–1. JMLR Workshop and Conference
Proceedings, 2012.

10

[8] Sébastien Bubeck, Gilles Stoltz, Csaba Szepesvári, and Rémi Munos. Online optimization in
x-armed bandits. Advances in Neural Information Processing Systems, 21, 2008.

[9] Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie. Nearly optimal adaptive procedure
with change detection for piecewise-stationary bandit. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 418–427. PMLR, 2019.

[10] Pin-Yu Chen and Cho-Jui Hsieh. Adversarial robustness for machine learning. Academic Press,
San Diego, CA, August 2022.

[11] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Learning to optimize under non-
stationarity. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
1079–1087. PMLR, 2019.

[12] Qin Ding, Cho-Jui Hsieh, and James Sharpnack. Robust stochastic linear contextual bandits
under adversarial attacks. In International Conference on Artificial Intelligence and Statistics,
pages 7111–7123. PMLR, 2022.

[13] Qin Ding, Yue Kang, Yi-Wei Liu, Thomas Chun Man Lee, Cho-Jui Hsieh, and James Sharp-
nack. Syndicated bandits: A framework for auto tuning hyper-parameters in contextual bandit
algorithms. Advances in Neural Information Processing Systems, 35:1170–1181, 2022.

[14] Yasong Feng, Zengfeng Huang, and Tianyu Wang. Lipschitz bandits with batched feedback.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[15] Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud,
Alessandro Lazaric, and Matteo Pirotta. Adversarial attacks on linear contextual bandits.
Advances in Neural Information Processing Systems, 33:14362–14373, 2020.

[16] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits with
adversarial corruptions. In Conference on Learning Theory, pages 1562–1578. PMLR, 2019.

[17] Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Nearly optimal algorithms for linear
contextual bandits with adversarial corruptions. arXiv preprint arXiv:2205.06811, 2022.

[18] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks on stochastic
bandits. Advances in Neural Information Processing Systems, 31, 2018.

[19] Yue Kang, Cho-Jui Hsieh, and Thomas Lee. Online continuous hyperparameter optimization
for contextual bandits. arXiv preprint arXiv:2302.09440, 2023.

[20] Yue Kang, Cho-Jui Hsieh, and Thomas Chun Man Lee. Efficient frameworks for generalized low-
rank matrix bandit problems. Advances in Neural Information Processing Systems, 35:19971–
19983, 2022.

[21] Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. Advances in
Neural Information Processing Systems, 17, 2004.

[22] Robert Kleinberg and Aleksandrs Slivkins. Sharp dichotomies for regret minimization in metric
spaces. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pages 827–846. SIAM, 2010.

[23] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Bandits and experts in metric spaces.
Journal of the ACM (JACM), 66(4):1–77, 2019.

[24] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[25] Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang, and Xiaojin Zhang. Achieving
near instance-optimality and minimax-optimality in stochastic and adversarial linear bandits
simultaneously. In International Conference on Machine Learning, pages 6142–6151. PMLR,
2021.

[26] Wenjie Li, Haoze Li, Jean Honorio, and Qifan Song. Pyxab – a python library for X -armed
bandit and online blackbox optimization algorithms, 2023.

11

[27] Yingkai Li, Edmund Y Lou, and Liren Shan. Stochastic linear optimization with adversarial
corruption. arXiv preprint arXiv:1909.02109, 2019.

[28] Shiyin Lu, Guanghui Wang, Yao Hu, and Lijun Zhang. Optimal algorithms for lipschitz bandits
with heavy-tailed rewards. In International Conference on Machine Learning, pages 4154–4163.
PMLR, 2019.

[29] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to
adversarial corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 114–122, 2018.

[30] Stefan Magureanu, Richard Combes, and Alexandre Proutiere. Lipschitz bandits: Regret lower
bound and optimal algorithms. In Conference on Learning Theory, pages 975–999. PMLR,
2014.

[31] Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore,
and Csaba Szepesvari. Model selection in contextual stochastic bandit problems. Advances in
Neural Information Processing Systems, 33:10328–10337, 2020.

[32] Chara Podimata and Alex Slivkins. Adaptive discretization for adversarial lipschitz bandits. In
Conference on Learning Theory, pages 3788–3805. PMLR, 2021.

[33] Aleksandrs Slivkins. Contextual bandits with similarity information. In Proceedings of the 24th
annual Conference On Learning Theory, pages 679–702. JMLR Workshop and Conference
Proceedings, 2011.

[34] Aleksandrs Slivkins. Multi-armed bandits on implicit metric spaces. Advances in Neural
Information Processing Systems, 24, 2011.

[35] Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in
Machine Learning, 12(1-2):1–286, 2019.

[36] Yitzchak Solomon, Alexander Wagner, and Paul Bendich. A fast and robust method for global
topological functional optimization. In International Conference on Artificial Intelligence and
Statistics, pages 109–117. PMLR, 2021.

[37] Chen-Yu Wei, Christoph Dann, and Julian Zimmert. A model selection approach for corruption
robust reinforcement learning. In International Conference on Algorithmic Learning Theory,
pages 1043–1096. PMLR, 2022.

[38] Chenlu Ye, Wei Xiong, Quanquan Gu, and Tong Zhang. Corruption-robust algorithms with
uncertainty weighting for nonlinear contextual bandits and markov decision processes. In
International Conference on Machine Learning, pages 39834–39863. PMLR, 2023.

[39] Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Linear contextual bandits with adversarial
corruptions. arXiv preprint arXiv:2110.12615, 2021.

12

	Introduction
	Related Work
	Preliminaries
	Warm-up: Robust Lipschitz Bandit with Known Budgets
	Robust Lipschitz Bandit with Unknown Budgets
	Algorithm for Weak Adversaries
	Algorithm for Strong Adversaries

	Experiments
	Conclusion
	Appendix
	Analysis of Theorem 4.1
	Useful Lemmas
	Proof of Theorem 4.1

	Analysis of Theorem 5.1
	Useful Lemmas
	Proof of Theorem 5.1

	Analysis of Theorem 5.3
	Useful Lemmas
	Proof of Theorem 5.3

	Analysis of Theorem 5.4
	Useful Lemmas
	Proof of Theorem 5.4

	Additional Algorithms
	Alternative Algorithm for RMEL
	BoB Robust Zooming Algorithm

	Discussion on Lower Bounds
	Lower Bound for Strong Adversaries
	Lower Bound for Weak Adversaries

	Additional Experimental Details

