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ABSTRACT

The process of training deep learning models produces a huge
amount of meta-data, including but not limited to losses, hidden
feature embeddings, and gradients. Model diagnosis tools have been
developed to analyze losses and feature embeddings with the aim
to improve the performance of these models. However, gradients,
despite carrying rich information that is potentially relevant for
model interpretation and data debugging, have yet to be fully ex-
plored due to their size and complexity. Each single gradient has
a size as large as the number of parameters of the neural net -
often measured in the tens of millions. This makes it extremely
challenging to efficiently collect, store, and analyze large numbers
of gradients in these models. In this work, we develop MetaStore
to fill this gap. MetaStore leverages our observation that storing
certain compact intermediate results produced in the back propa-
gation process, namely, the prefix and suffix gradients, is sufficient
for the exact restoration of the original gradient. These prefix and
suffix gradients are much more compact than the original gradients,
thus allowing us to address the gradient collection and storage
challenges. Furthermore, MetaStore features a rich set of analytics
operators that allow the users to analyze the gradients for data
debugging or model interpretation. Rather than first having to re-
store the original gradients and then run analytics on top of this
decompressed view, MetaStore directly executes these operators
on the compact prefix and suffix structures, making gradient-based
analytics efficient and scalable. Our experiments on popular deep
learning models such as VGG, BERT, and ResNet and benchmark
image and text datasets demonstrate that MetaStore outperforms
strong baseline methods from 4 to 678x in storage costs and from 2
to 1000x in running time.
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1 INTRODUCTION

Background and Motivation. The training process of deep neural
networks (DNNs) produces a massive amount of meta-data, includ-
ing feature embeddings [39], losses [34], and gradients [31]. This
meta-data holds significant value that can be leveraged for many
tasks critical to achieving superior model performance. These tasks
include but are not limited to cleaning noise in the training data, ex-
plaining the behavior of trained models, or reusing and fine-tuning
models. For example, research [8, 20, 29, 39, 52] has shown that
analyzing training loss and feature embeddings can explain infer-
ence results and help debug DNN models. To address this need,
we develop a system called MetaStore, that collects, stores, and
analyzes such meta-data at scale.
Promise of Gradient Meta-Data. In this paper, we focus on one
particular type of meta-data: gradients. DNNs train models us-
ing a sequence of gradient descent steps which gradually fit the
model parameters to the training data. Thus, as the bridge between
the data and the model, these gradients can be used to effectively
estimate the influence of training samples or hyper-parameters
on the learned model parameters. For example, in the machine
learning literature, many robust deep learning techniques use gradi-
ents[7, 23,30, 31, 45-47, 53, 55] during DNN training to for example
mitigate the impact of potential noise in the training examples and
dynamically adjust the hyper-parameters such as learning rate.
Similarly, in our setting of offline meta-data analytics, if these
gradients can be appropriately analyzed, they are of great value
to solve the data issues in deep learning and explain the behavior
of the models. In particular, we observe that meta gradient — the
inner product between the gradients of a training sample and a set
of testing samples — effectively measures how a training sample
contributes to the model performance. A positive meta gradient
indicates that it impacts the model in a positive way, and vice versa.
With this meta gradient, we are able to discover the mislabeled
samples in the training data, as they tend to contribute negatively
to the performance of the model. Moreover, given a testing sample,
we could explain why the model predicts it in the identified manner
by finding a small number of training samples whose gradients have
the largest inner product with that of the testing sample. Further, the
training samples that contribute the most to the model could guide
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the collection of new training data to improve the performance of
the model.

Performance Challenges. However, it is challenging to effectively
collect, store, or analyze gradients, because the size of the gradient
tends to be huge. DNNSs are typically composed of many layers, in-
cluding convolutional layers, linear layers, batch normalization, etc.
A DNN computes gradients w.r.t. the training examples layer-by-
layer. At each layer, the dimensionality of the gradient is equivalent
to the number of trainable parameters in that layer. Many modern
DNN models are huge, with up to billions of parameters [12].

As an example, in the well-known DNN models, such as
ResNet [17] or VGG [36], a single linear layer can have 4096 X
4096 parameters. Given a CIFAR-10 dataset with 50,000 training
samples, it would take about 3 TB of disk space to store the gradients
produced in just one single linear layer. Worst yet, deep learning
trains models epoch by epoch and thus produces this amount of
gradients per epoch.

Therefore, merely storing this volume of gradients w.r.t. one (or
worse yet all) layers quickly becomes infeasible. Even if we had
sufficient (near infinite) storage resources for keeping all such gra-
dient data for each round of training, the mere task of just collecting
these gradients would be challenging itself. Directly logging the
gradients produced by the DNN training in an online process would
dramatically slow down the already exceedingly expensive training
process. Moreover, loading a large amount of meta-data into mem-
ory for analytics would introduce exorbitant I/O costs during query
execution. On the other hand, if we instead were to re-compute the
gradients on-the-fly whenever a gradient analytics query is issued,
this would cause prohibitive query execution costs. This is because
computing a gradient from scratch effectively requires re-execution
of the NN training pipeline.

Proposed Solution. By exploiting the properties of popular DNN
models and their gradient computation methodology, our MetaS-
tore effectively addresses the above challenges.

MetaStore Compact Data Storage. First, our analysis of the
back-propagation process of DNN training reveals that the huge gra-
dient of a training sample can be decomposed into 2 small gradients,
namely, prefix and suffix gradients, from which the gradient can be
exactly re-constructed via a matrix product operation. These two
partial-gradients are typically several orders of magnitude smaller
than the original gradient especially when produced in layers with
a huge number of parameters.

MetaStore Lightweight Data Collection. Instead of first com-
puting the full gradient and then manually decomposing it, we
observe that both the small prefix and suffix gradients correspond
to intermediate data that could naturally be produced during the
back-propagation step when computing the gradient. Their collec-
tion can thus be done via a very lightweight process.

MetaStore Efficient Analytics. MetaStore is the first system
to provide a rich set of operators that allow users to conduct many
gradient-based analytics on the stored meta-data from discovering
erroneous training samples to interpreting model behavior. These
operators often involve computing the inner product similarity
of two gradients (meta gradient). This inner product operation is
computational expensive [47, 55] due to the high dimensionality of
the gradients. We design an efficient strategy to exactly compute the
inner product of two gradients directly on their respective prefix
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and suffix gradients. With the prefix and suffix gradients much
smaller than the gradient itself, this speeds up the inner product
operation by several orders of magnitude.

Contributions. In summary, our key contributions include:

« We design MetaStore, a system that enables a novel class of
gradient-based analytics for model interpretation, data debugging,
and data valuation.

« Leveraging the prefix and suffix gradients decomposition ob-
servation, MetaStore overcomes the critical data volume bottleneck
in storing and analyzing gradients.

« We design efficient execution strategies to compute the inner-
product similarity between gradients directly on top of the compact
dual prefix/suffix gradient structures.

« Our experiments on popular benchmark datasets and a variety
of pre-trained DNN model architectures demonstrate that MetaS-
tore speeds up the query execution from 2 to 1000 fold and reduces
the storage costs from 4 to 678 fold.

2 PRELIMINARIES

Here, we review the forward and backward propagation processes
in DNN training to understand MetaStore’s methodology. A DNN
model ¢(x; 0) is formed by a stack of layers, with x being the input
data sample, and 0 being the parameters of the model.

Forward Propagation Process. During the inference time, also
called forward propagation, the data samples are fed into the first
layer. Then each layer takes the previous layer’s outputs as its input
and transforms the input features into new representations. Finally,
the output of the last layer is considered the DNN model’s output.
The transformation process inside each layer typically is to multiply
the input features with a set of parameters, called neurons. Each
layer thus can be regarded as a function of the input features and its
parameters, i.e.,zl“ = fl(zl, 91), where z! denotes the inputs (out-
put) of the Ith (I — 1th) layer, and 6/ the parameters of the I'" layer.
The overall DNN model corresponds to a function composition:

§=¢(x;0) = L (L 0Y) ), 08). 1)

Backward Propagation Process. Deep learning uses back-
propagation to train a DNN model. For this, the machine learning
practitioners provide the expected outputs of each data sample,
such as a label. They also define a loss function that produces a loss
value based on the difference between the expected and actual out-
puts of the DNN model. Then, the gradients of each parameter with
respect to the loss value are calculated to update the parameters in
the DNN model. More specifically, the gradients of the parameters
in each layer are calculated with the chain rule below:

dzl+1 dzl
2l do!

dcC dcC

B dZ*' dc dit
dol ~ dzl+t '

dol  dzL dL-1

V@lc = (2)

where C is the loss value, C = Loss(J,y). An optimization
method, typically Stochastic Gradient Descent (SGD), updates the
parameters 0 by taking one step of gradient descent:

o' =0 —a-VyC 3)

where « is a predefined learning rate that controls the learning
speed of the DNN model.



3 GRADIENT-BASED DNN ANALYTICS

In this section, we first discuss meta gradient, the foundation that
most gradient-based DNN analytics techniques are built upon, and
then introduce our core operators for gradient-based analytics.

3.1 Meta Gradient

In deep learning, optimization methods such as SGD directly use
gradients to update the parameters of the DNN models.

Observation. Meta gradient — the inner product between the
gradients of a training sample and a set of validation samples —
effectively estimates how a training sample contributes to the model
performance. Below, we theoretically show why this important
observation is true.

Intuitively, the contribution of a training sample can be mea-
sured by how differently the model would perform if the target
sample was not in the training set [30, 31, 45]. Let’s consider a
standard classification task. The DNN model ¢(x; 0) is evaluated
on a set of validation samples {(x;.’, y;’)}ﬁ\i vl that are not in the
training set with y;? the label of x]’?. We denote the validation loss
as L%(0) = ﬁ Zj\]:vl l(x;.’, y;.’; 0). Let 6; be the parameters of the
model that was trained with the target training sample x; and 0 be
the parameters trained without using the target training sample x;.
Then the contribution of the training sample x; corresponds to the
difference between the validation losses of ¢(x?; 0) and ¢(x?; 6;),
ie., L?(6;) — L¥(6). With Taylor Expansion, this becomes:

L%(6;) — L°(6) =< VoL®(0),0; — 0 > (4)
By Eq. 3, 6; — 0 = a - VgL(0). Substituting this in, we get:
LP(0") — LP(0) o< VoL?(6), VoL (6) > (5)

InEq. 5, VoL (0) - VgL(6) represents the inner product between
the training example’s gradient and the average gradient of the
validation samples. This is the meta gradient.

Therefore, Eq. 5 substantiates our claim that the meta gradient
effectively estimates to what degree a training sample contributes
to the model’s performance. A positive meta gradient indicates that
the training sample impacts the model in a positive way.

3.2 MetaStore Gradient-based Analytics

Leveraging the principles of meta gradients, MetaStore provides 4
core operators for gradient-based analytics:

« Point-to-point (P2P): given a training sample and a validation (or,
testing) example, estimate the contribution of the training sample
to the prediction result of the validation (testing) example.

« Point-to-batch (P2B): given a training sample and a batch of val-
idation (testing) examples, estimate the contribution of the training
sample to the prediction results of the batch of validation (testing)
examples.

« Batch-to-point (B2P): given a batch of training samples and a
validation (testing) example, estimate the contribution of the batch
of training samples to the prediction result of the validation (testing)
example.

« Batch-to-batch (B2B): given a batch of training samples and a
batch of validation (testing) examples, estimate the contribution of
the batch of training samples to the prediction results of the batch
of validation (testing) examples.
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Figure 1: System Overview

Using these operators as building blocks, for the first time users
could easily develop gradient-based analytics techniques to inter-
pret the model prediction by examples [16, 38, 44], debug data
issues [8, 29], or valuate the training samples [22, 49], etc. These
tasks are critical for deep learning to achieve superior performance.
Below are some intuitive examples.

Interpreting Model Prediction By Examples. Users could use
the P2P operator to first compute the contribution of each training
sample to the prediction of one testing sample and then select
the top k training samples shown to have the most significant
contribution to explain why the model predicts the given testing
sample in the identified manner.

Data Debugging. Users could use P2B operator to determine how
each specific training sample contributes to the prediction of a set
of testing samples. If the P2B operator returns a negative value, it
indicates this training sample could jeopardize the overall perfor-
mance of the model. The users thus could identify this sample as a
potential outlier or as mislabeled.

Data Valuation. Accordingly, using the P2B operator, the users
could evaluate the training samples based on their contribution
to the model. The more the training samples contribute, the more
valuable they are. Potentially, the valuation results could guide the
users to determine what new training samples they should collect
to best improve the model performance.

Similarly, the B2P and B2B operators allow the users to evaluate
how a batch of training samples as a whole impacts either the
prediction of one testing sample or the overall performance of the
model, thus interpreting model prediction or debugging data issues.
As deep learning typically updates the model batch by batch using
the average gradient of a batch of training samples, these operators
mimic the training process of deep learning, thus meaningful.

4 SYSTEM OVERVIEW

In this section we overview MetaStore (Fig. 1), which consists of
three key components: (1) a Meta-data Collector, (2) Meta-data
Storage, and (3) a Meta-data Analytics Engine.

Meta-data Collector: MetaStore collects meta-data in a way
non-intrusive to the DNN training process. MetaStore achieves
so by storing a set of model checkpoints during DNN training.
Each model checkpoint records the model parameters at a certain
DNN training step. MetaStore then collects the gradients of the
data samples at a model checkpoint by using the model replay
feature. Model replay is a process that is independent from the



model training process. Therefore, in MetaStore, collecting meta-
data does not intervene with model training.

More specifically, given a data sample x; and a model check-
point ¢(x; 0), model replay first performs a forward propagation
process to get the prediction gj; of x; by ¢(.), where y; = ¢(x;, 0). It
then calculates the loss value C; = L({);, y) and performs backward
propagation as described in Sec. 2 to obtain the gradient-related
meta-data. But it does not update the model parameters. By replay-
ing models, MetaStore is able to collect and materialize meta-data
for the training samples in the offline pre-processing stage.

Our meta-data collector is compatible with existing deep learn-
ing frameworks. For example, we can integrate MetaStore with
Pytorch by using its forward/backward hook function and with
Tensorflow by using its custom gradient function. This is because
the < prefix, suffix > pairs that MetaStore leverages are naturally
produced during the backpropagation process, while backpropa-
gation is used by all deep learning frameworks. Therefore, as long
as the deep learning framework provides the interfaces to access
intermediate data during backpropagation, MetaStore is able to
collect the < prefix, suffix > pairs.

Meta-data Storage: The meta-data is maintained on disk (Sec. 5).
With a DNN model composed of a series of layers (Sec. 2), a DNN
model’s gradient equals the concatenation of each layer’s gradient.
Thus, in MetaStore, the minimal unit of storage encapsulates the
meta data of a specific layer in the DNN, which then is typically
stored in a file. If the training set is large, MetaStore may further
divide the entire data set into small batches. In this case, each file
only contains the meta data corresponding to a small batch of data
samples. MetaStore also maintains a directory index that indicates
what data samples are stored in which file. It thus minimizes the
disk I/O costs at online query time by only loading into memory
the meta-data required by the query.

By decomposing the gradient into two partial gradients, namely
the prefix and suffix gradients, MetaStore’s storage strategies elimi-
nate the storage bottleneck caused by the size of the gradients. The
details are discussed in Sec. 5.

Meta-data Analytics Engine: This component provides effi-
cient execution strategies for the 4 core operators discussed in
Sec. 3.2. The input to each operator is the training and testing sam-
ples specified by the users. Because MetaStore already collects the
meta-data of all training samples and maintains them in storage,
the engine directly loads the requested gradients of the training
samples from storage into GPU memory. However, unlike the train-
ing samples, MetaStore had not seen the testing samples in the
training process. Therefore, it will compute their gradients on the
fly by calling the model replay function. The engine then efficiently
executes these operators using the optimized strategies discussed in
Sec. 6 and Sec. 7. In addition, the engine uses caching to maintain
the meta-data in GPU memory whenever possible and thus reduces
I/O costs. It uses the standard LRU cache replacement policy to
evict meta-data when memory overflows [16, 39].

5 SPACE-EFFICIENT GRADIENT STORAGE

MetaStore leverages our prefix/suffix observation to compactly
store the gradients meta-data. In Sec. 5.1, we introduce the key
idea using linear layers as an example layer type. Thereafter, we
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illustrate how to extend these principles to other types of DNN
layers, including convolution and self-attention.

5.1 Gradient Storage: Linear Layers

Given a DNN model, assume its /th layer is a linear layer that applies
a linear transformation to the input feature vector x: y = 0x + b.
Suppose the input feature vector x and the output feature vector
y have D™ and D°% dimensions, respectively. Then 6 contains
D" x D% parameters. Let ‘fi—g or VyC denote the gradient of this

dc _dcC  dy
layer. By Eq. 2, 75 = dy " a0

Prefix Gradient. The first matrix Z—g corresponds to the gradient of

the output feature vector with respect to the loss value, called prefix

gradient. Since the loss value C is calculated based on the output of
dc
dy
from previous layers. Because the linear layer is the Ith layer, then

dC _ dC  dz* 4™
dz! -

dy — dzl  dzl-!
through backpropagation is expensive, its size is only D°%?. That is,
it is identical to the size of the output feature vector y, being much
smaller than the size (D' x D°“!) of the final gradient fl—g we are
interested in.
Suffix Gradient. The other matrix Z—g also called Jacobian ma-
trix, corresponds to the suffix gradient. It indicates the expected
update on parameters 6 that will produce a better output feature
embedding. Even though its general formulation is very complex
and large, the Jacobian Matrix in a linear layer is simple:
dy d(Ox+b) _
- a0
By Eq. 6, the suffix gradient in the linear layers is in fact identical
to its input feature vector x. The size, Djp, is much smaller than the
size of the parameters 0.
Prefix/Suffix Observation. Naturally, extracting out and main-
taining the pair of small prefix and suffix gradients is sufficient to
reconstruct the original gradient of a linear layer as follows:

(V9O = <fl—j)r s ™)

the final layer, calculating the matrix %= requires backpropagation

Although calculating the prefix gradient

(6)

where VgC, s represents the rth row and sth column of 6 and x;
represents the sth column of input x.

Space Complexity. The space complexity of storing the prefix and
suffix gradients is O(D°%! + D), while storing the full gradient takes
DO x D" space. Thus leveraging this prefix/suffix observation,
DOt % Dl n

Doutypin

General Outlook. Next, we show that the principle of decompos-
ing gradients into prefix and suffix gradients is also applicable to
other typical DNN layers, including those that tend to have a large
number of parameters and thus produce huge gradients. This is
because: (1) all these layers use the chain rule to compute gradients
during backpropagation, and (2) they can each be decomposed into
a set of linear layers.

In this paper, we use the convolutional (Sec. 5.2) and self-
attention layers (Sec. 5.2) as examples. Other similar layers include
normalization layers [21], embedding layers, long short term mem-
ory (LSTM) layers [13], and gated recurrent units (GRU) [11], to
just name a few. In addition we will briefly discuss how MetaStore
supports complex blocks that contain multiple such layers.

MetaStore drives down the storage costs by



5.2 Gradient Storage: Convolutional Layers

For the ease of understanding, we use the standard 1D convolu-
tional layer as an example to illustrate the idea. Same as with the
linear layer, we denote the parameters of the convolutional layer
as 0. The input data sample x corresponds to a tensor in the shape
(Cin, S), where Cjp, represents the number of input channels and S
the number of features in each channel. For example, if the input
data is an RGB image with 32 X 32 resolutions, C;j, is equal to 3 and
S equal to 32 X 32. Similarly, its output is a tensor with a shape of
(Cout, S—K), where Cyy; represents the number of output channels
and K the number of the dimensions of one kernel. As a 1D matrix,
a kernel K performs the convolution operation on the features of
an input channel as follows: y; = Z{( Ki - Xs+i-

The convolution operation produces the output features with
S — K dimensions for each individual input channel. Aggregating
these output features produces the final features of one output

channel m: Con K

Ym,s = Z Z em,i,j * XCin,s+j
rJ

Repeating this process Coy; times produces an output with Coyr
channels. Thus, there are Coy; X Ci, kernels in a convolutional
layer. In the training process, DNN learns these kernels to produce
good output features. Thus, in the convolutional layer, parameters
0 is a tensor with the shape of (Coyt, Cin, K). The final output y is
a tensor that contains Cyy,; channels, with each channel composed
of S — K features.

Similar as with linear layers, the gradients ?I—g of the convolu-

®)

tional layer can be decomposed into the prefix gradient Z—i and

ient 4 je. dC _ dC  dy
suffix gradient 73, i.e., 75 = dy o

This is because all layers in
DNN use the same chain rule (Eq. 2) to compute gradients during
back-propagation.

The Storage Strategy. Because C is a scalar, the size of the prefix
Z_i
analyze the suffix gradient Z—Z For this, we establish the connection
between the convolutional layer and the linear layer, so that MetaS-
tore will be able to adapt the storage strategy for the linear layer to
the convolutional layer.

Recall that 6 is a tensor in the shape of (Cyyt, Cip, K). It can thus
be regarded as an aggregation of K linear sub-layers, with the shape
of each sub-layer being (Coyt, Cin). For the ease of presentation,
we denote the ith linear sub-layer 0. . ;) as 0;, and similarly x(.
as xs, and y(. 5y as ys. Then, we have:

gradient is equal to the number of output features. Next, we

dc _ dc dc_ dwo - dysic 7 _ si ac dys
do; “dyo  dys—x dO; T do; &4 dys  do;
From Eq. 8, we have:
K

a —d(Z; i) (10)

do; ~ do;
Since %gs“) = 0ifi # i, while % = xe4i ifi = i.

Finally, we have:
S-K

dC dC

b s (11)

i Z [y v
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Eq. 11 shows that MetaStore is able to reconstruct the gradients

of the convolutional layers in a similar way to those of the linear
layers. Therefore, MetaStore only needs to store the prefix gradient
and the features of the input samples, where the size of the prefix
gradient is the same as that of the output features.
Space Complexity. Storing the gradients as described above, the
space complexity of MetaStore is determined by the size of the input
samples and the size of the gradient of the output samples, that is,
S X (Cin + Cour)- Storing the original gradient takes K X Coyr X Cin
space. Therefore, when SX (Cip+Cour) < KXCout XCin, MetaStore
saves space. This is often true. For example, the last layer of the
VGG16 model contains 9 X 512 X 512 parameters, while its input and
output features are only 512 X 1 X 1 when training a VGG16 model
on CIFAR-10 dataset. In this case, the saving is 4068x. In Sec. 8.2,
we verify this with experiments.

5.3 Gradient Storage: Self-Attention Layers

Here, we use the sentence classification task as an example to
show our gradient storage strategy on the self-attention layers
(SAL). The input sample x of a SAL is a tensor with the shape
of (S, H), where S denotes the length of the sentence and H the
number of hidden features of each word. SAL uses Key-Query-
Value to produce attention scores and update feature embeddings,
accordingly. More specifically, SAL consists of three sub-layers,
the key sub-layer 0%, the query sub-layer 69, and the value sub-
layer 0°. Each sub-layer is a linear layer. Given an input sample,
each sub-layer performs a linear transformation on all word rep-
resentations in the sentence and generates three representations
for each word, namely zj, zq4, 2y, using the following equation:
Zps = ok - x,, zgs = 09 x5, zys = 0" - x5. Then the final output is
Vs = softmax(zj; - qu/‘/ﬁ) * Zys.

Storage Strategy. The three sub-layers perform the linear transfor-
mation on each word in the sentence. The shape of x is (S, H), while
the shapes of Gk, 04, and 6° are all (H, H). Therefore, the shapes of
2k, zq and zy are (S, H). This is equivalent to linearly transforming
a batch of S samples, where S is the length of the sentence. Because
only the three sub-layers contain parameters, MetaStore handles
each sub-layers separately. It then concatenates the gradients of
each sub-layer to obtain the final gradient of the SAL.

Each input sequence can be modeled as a batch of words. Then
given a sub-layer, its gradient is equivalent to the sum of the gra-
dients with respect to a batch of data samples, where a sample
corresponds to one word. Then given one data sample xg, because
the sub-layer is linear, its gradient with respect to this sub-layer
can be decomposed the same way as done by the linear layer (Eq. 7),
that is, decomposed to a prefix gradient and input features xs. Finally,
the gradient of each sub-layer can be computed with Eq 12:

i < e 3

=2 a6 = 2

dok & <

dC
dz;C

dcC

dc < de
dz?

Xss Xs» 100 10 x5 (12)
s 1
Handling each sub-layer separately, MetaStore only needs to
store the prefix gradient per layer and the input features, where the
size of the prefix gradient corresponds to the size of output features.
MetaStore then is able to restore the original gradients using Eq. 12.
Space Complexity. The space complexity of MetaStore is (3H +

H) x S. Storing the full gradients takes 3 X H X H X S space. So



MetaStore drives down the storage costs by O( %I)X. Given a SAL
which produces 128 dimensional feature embeddings (H = 128), the
saving would be 96 fold.

5.4 Gradient Storage: Complex Blocks

Similar to the Convolutional layer and the Self-attention layers,
most of the complex blocks in popular deep learning model architec-
tures, such as residual blocks, can be decomposed into simple linear
sub-layers [18]. Because the key insight of MetaStore, i.e., collecting
and operating on the small < prefix, suffix > pairs, works effectively
on the linear layers, MetaStore can handle complex blocks like resid-
ual connections by decomposing these blocks into a series of simple
linear sub-layers. For example, consider a simple residual layer,

(13)
where 0 represents the parameters of the residual layer, and x, y

correspond to the model input and output respectively. Then based

on the chain rule (Eq. 2):

dCdy dCd(x+F(x;0)) dCdF(x;0)

dy do dy de dy de

As shown above, we can observe that the gradients of the residual

y=x+F(x;0)

(14)

VoC =

layer parameters Z—g are independent of the input tensor x. The

dF (x;0)
do

prefix gradient ‘Zl—i and the suffix gradient are equivalent

to the normal non-residual layers.

6 META-DATA ANALYTICSS: P2P

Next, we describe MetaStore’s strategies that efficiently realize the
gradient-based analytics operators described in Sec. 3. We introduce
the execution strategy for the P2P operator below, while the P2B
operator is covered in Sec. 7. Due to space limitation, we only briefly
sketch the B2P and B2B operators in Sec. 7.2.

6.1 P2P Operator: Linear Layers

Because MetaStore stores the compact prefix and suffix gradients
instead of the original (often huge) gradients, a straightforward
solution to compute the inner product similarity between the gradi-
ents of two data samples would be to restore the gradients first and
then to compute the inner product. Obviously, this would introduce
extra overhead due to having to perform the restore operation.
MetaStore succeeds to compute the inner product of two gradi-
ents exactly without having to restore them first. More specifically,
MetaStore could compute the exact inner product of two gradients
by first in parallel computing the inner product on the prefix gra-
dient g—i and on the suffix gradient x, and thereafter multiplying
these two results. Because it directly operates on the small prefix
and suffix gradients, it is orders of magnitude faster than storing
the original gradients before and then directly computing the inner
product. Lemma 1 proves the correctness of this optimized method.

LEMMA 1. Given two data samples x1 and x3, denote their corre-
sponding outputs of a linear layer 0 as y; and ya, their loss values as
C1 and Cy, and the gradients as VgCy and -VyCy. Then Eq. 15 holds.

dCy dCy
<—) — >-<X1,X2 >.

< VpC1,VpCy >=
61, VoL2 d1dy2

(15)
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Proor. From Eq. 7, we have,
Dout Din
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Dout Dzn
dC 16
-3 Z( p G (5 Gy (19
r=0 s=0 Y2
< — dCy dC2 > < >
= X1, X;
d dyz 1, X2
Therefore, Eq. 15 holds. O

Time Complexity. As discussed in Sec. 5.1, a prefix gradient
has D% dimensions, while a suffix gradient has D™ dimensions.
Therefore, the time complexity of MetaStore is O(D™ + D°%!). Be-
cause the size of the original gradients is D°“ x D", the time
complexity of computing the inner product directly on the gradi-

ents is O(D°%! x D'™). Theoretically, MetaStore speeds up the P2P
pout ><Dm )

operation by O( 5 Feur

6.2 P2P Operator: Convolutional Layers

As discussed in Sec. 5.2, given a convolutional layer whose param-
eters form a tensor 6 with a shape of (Cin, cout K), because the
K is often very small (e.g., K=9 in the VGG16 model), we could
decompose 6 into K linear sub-layers §*.

Therefore, when computing the inner product of two gradients
produced in a convolutional layer, intuitively we could leverage the
P2P operator designed for the linear layers to compute the inner
product between the gradients with respect to ' and then sum
up all the results. Given two data samples x; and x3, we denote
the corresponding outputs of a convolutional layer 8 as y; and ys,
their loss values as C; and Cy, and thus the gradients as VyC; and
VCo. Lemma 2 shows how to use the prefix and suffix gradients
to directly compute VyC1 - VyCs in a convolutional layer.

LEmMMA 2. < Vg Cp, Vg C2 > = ZE_K Z?_K < disc—ll(> ddgc—ZK
- 1 27
C< X x>
Proor. From Eq. 11 and Lemma 1, we have,
< Vo C1, Vo Ca > <S_K e SS_K dC 5 s
0k-1> Yokt2 Z K X1 Z oK %2
s dy] 5 dy;
—S_KS_K< 4Gy dC; > <x5 x>
- -K -K 2
s s dy; ™% dy;



O

By Lemma 2 MetaStore could use Eq. 17 to compute <
ngcl, VekCZ >.

Time Complexity. By Eq. 17 the time complexity of computing
< VgiC1,VgeCy > is (S = K)? X (Cout + Cin). Because VyCy -
VoCs = Xk Vg C1 - Vi Ca, the total time complexity of MetaStore
calculating the gradient inner product on a CNN layer is K X (S —
K)2X(Cin+Couyt). The time complexity of directly using the original
gradients to compute the inner product would be K X Cip, X Cour —
which is identical to the number of the parameters. The potential
Ry

Therefore, the performance of MetaStore will depend on the
number of features (S) of the input samples and the number of
input and output channels (Cj, and Cyy;). For most of the popular
models, S decreases with the number of layers due to the convolu-
tion operation, while Cj, and Cyy; increase. Therefore, the number
of parameters in the later convolutional layers of a DNN model is
often much larger than its early layers. Thus, MetaStore tends to sig-
nificantly outperform the naive method on the later convolutional
layers, while it can be slower on the earlier layers.

speedup is thus

6.3 P2P Operator: Self-Attention Layers

As discussed in Sec. 5.3, a self-attention layer is formed by three
linear sub-layer ok , 09 and 6°. Therefore, MetaStore can directly
leverage the strategy designed for the linear layer to compute the
inner product between the gradients with respect to each sub-layer
and then at the end multiply the results.

Time Complexity. Let’s denote two data samples as x; and x3,
the corresponding output of a CNN layer 6 is y; and y». The time
complexity of MetaStore is S? x (H + H), where S is the length of
the input sequence and H represents the number of the dimensions
of the hidden vector for each word. The time complexity of the
naive solution that pre-computes and stores the original gradients
is H X H. So the potential speedup of MetaStore is %Sz

In a standard BERT model, H = 768. As long as the length of each
sequence S is smaller than /384, MetaStore will win. We find this
often holds on most of the popular benchmark NLP datasets [56].

6.4 Discussion: General to Other Scenarios

In addition to meta-gradient based analytics, MetaStore can pro-
vide benefit to other applications. As an example application, in
adversarial attacks on DNN models, given a training sample x, one
of the most popular gradient-based adversarial attack techniques,
Fast gradient sign method (FGSM) [15], generates adversarial data
samples based on the gradient of a training sample on the feature
space fl—g, where C is the loss value of x. Computing the value of Z—g
normally requires a full pass of forward and backward propagation.
However, with the chain rule, one is able to calculate ‘i—g directly
from the first layers of the meta-data (e.g., the < prefix, suffix >
pairs) that MetaStore materializes. For example, given a linear layer,
dC _ dCdy _ dCWx+b
dx dy dx dy x
prefix artifacts that MetaStore stores.

Moreover, MetaStore remains beneficial even when gradi-
ent reconstruction is eventually needed. Specifically, when the
original gradient is needed, MetaStore will load the compact

= Z—CW, where Z_C corresponds to the
Yy y
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< prefix, suffix > pairs into memory and then reconstruct the gra-
dient in memory. This greatly reduces the disk I/O costs compared
to loading the huge original gradients, no matter whether the ana-
lytics request includes inner product operations or not. In fact, in
our experiments, we find that the I/O costs are the main bottleneck.
They take around 95% of the overall query execution time.

7 META-DATA ANALYTICS: BATCH
OPERATORS

Next, we discuss our strategy to efficiently support the P2B operator
in Sec. 7.1. Then in Sec. 7.2 we show how to leverage the efficient
P2B execution strategy to support B2P and B2B operators.

7.1 P2B Operator: No Gradient Restore

The point-to-batch (P2B) operator estimates the contribution of one
training sample x; on the prediction results of a batch of testing
samples Bj. By the concept of the meta-gradient introduced in
Sec. 3.1, MetaStore measures this as the average inner product
similarity between the gradients of the training sample and any
testing sample in the batch. We denote this as 7%%(x, B).

Because MetaStore has already preprocessed and stored the gra-
dient of each training sample beforehand as a < prefix, suffix > pair,
this pair can be directly fetched. However, MetaStore has to obtain
the gradient of the unseen testing samples on-the-fly using model
replay. Given a batch of testing samples, MetaStore can get their
gradients in two ways: (1) for each sample, we get its gradient in the
format of < prefix, suffix > pair; or, (2) we directly get the average
gradient of this batch. The existing deep learning infrastructures
such as Pytorch readily provide this interface, because deep learn-
ing typically updates the model parameters based on the average
gradient of a batch of training samples.

The advantage of the first approach is that MetaStore can directly
call the efficient P2P operators introduced in Sec. 6 to compute
1999 (x, B). However, it has to iteratively compute the inner product
for each pair of training and testing samples. When the testing batch
is large, this will become expensive.

On the other hand, 7 %%Y(x, B) is equivalent to the inner product
between the gradient of x; and the average gradient of the test-
ing batch. Therefore, if MetaStore restores the full gradient of the
training sample from the < prefix, suffix > pair and extracts the
average gradient of the testing batch using the second approach,
then it would be able to compute 7 4% (x, B) with one single inner
product operation. However, restoring the training sample from
the < prefix, suffix > pair tends to be expensive.

We design an efficient P2P execution strategy which uses one
single inner product operation to compute 7 %%Y(x, B), while not
restoring the full gradient of the training sample. This strategy is
built on Lemma 3.

LEMMA 3. Let VyC denote the gradient of training sample x and
G' the average gradient of the testing batch, given a linear layer with
the shape of (D", D°%?), Eq. 18 holds.

~ _+dC
T%(x,B) =< VyC,G' >=<xT, G'd— > (18)
y
Proor.
Din pout
I9%9(x,B) =< VoC,G' > = 3" 3" [(VoO)ij - Gi;l  (19)
i=0 j=0



From Eq. 7, we have (VgC); j = x; - (Z_i)j' Then:

DinDoul dc
I°%(x,B)= > > [xi-Gi;- (G
L4 L
l DJout (20)
+dC _+dC
_ T t 1__ T A4t
= x Z[Gi,j-(d—y),] =<al.G' >
Jj=0

where x and Z_c correspond to the <prefix, suffix> pair of the
Y

training sample. This concludes the proof of Lemma 3. O

Time Complexity. The time complexity is D' x D%/ which does
not rely on the size of the batch. Therefore, this strategy scales to
large testing batches.

Extending this method to the convolutional and self-attention
layers is straightforward. MetaStore decomposes their parame-
ters into a set of linear sub-layers. Using the average gradient of
the testing batch w.r.t. each linear sub-layer and the pre-stored
< prefix, suffix > pair, it first calculates the partial inner product as
described above and then aggregates up the partial results.

7.2 Other Operators: B2P and B2B

Unlike the P2P and P2B operators, the B2P and B2B operators in-
volve a batch of training samples which have their prefix and suffix
gradients already maintained in MetaStore storage. An intuitive
method to execute these two types of operators would thus be to
first restore the original gradient from the prefix and suffix gradi-
ents for each training sample, compute the average gradient for this
batch, then use model replay to extract the gradient or the average
gradient for the testing samples, and finally compute the inner
product. This method only needs to compute the inner product
once. However, as we have discussed in Sec. 7.1 and confirmed in
the experiments (Sec. 8.4), restoring the original gradient from the
prefix and suffix gradient typically is even more expensive than the
inner product operation itself, thus not acceptable.

After ruling out restoring the gradients as an option, we are left
with having to iterate over each training sample in the batch, then
call the P2P or P2B operator to compute the inner product, and
lastly, to take the average. To mimic the DNN training process, users
might set the size of the training batch according to the batch size
hyper-parameter (typically 64 or 128). Thus, the cost of iterating
over each training sample in a batch tends to be acceptable.

8 EXPERIMENTS

Our experimental study focuses on the following questions:

« Storage: Does MetaStore reduce the storage footprint of gradi-
ent meta-data and thereby offer practical feasibility?

+ Execution Time: Does MetaStore speed up the execution of
gradient-based analytics compared to unoptimized methods?

«+ Preprocessing: Is MetaStore efficient at collecting meta-data?

« How useful are our analytics interfaces in applications?

8.1 Experimental Setup

Settings. All the experiments are implemented in Python3.7 on
Pytorch. We conduct all experiments on a virtual cloud instance
with Intel Xeron G6248 CPU, 0.5 TB Memory, an SSD storage disk
with 2TB space, and one V100 GPU with 32G memory.
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Datasets. We evaluate our method with three benchmark datasets,
namely, ImageNet (image), CIFAR10 (image) and AGNews [54]
(text) dataset. ImageNet contains 1,200,000 images from 1000 classes.
Each image has the dimensions of 3 X 512 x 512. CIFAR10 contains
50,000 images from 10 classes. Each image has the dimension of
3 % 32 x 32. AGNews contains 30,000 sentences from four classes,
where each sentence contains 6 to 89 words.

Baseline Methods. In the experiments we only measure the effi-
ciency of the point-to-point (P2P) operators and the point-to-batch
(P2B) operators, because the B2P and B2B operators simply leverage
the P2P and P2B operators, as discussed in Sec. 7.2.

For the P2P operators, we compare MetaStore with the following
baseline methods:

1) Pre-compute: We pre-compute the full gradient on the
queried layers for all training samples and store them in disk. Once
an analytics query is submitted, we retrieve the gradient of the
indicated training sample from the disk into GPU memory, extract
the gradient for the indicated testing sample in the <prefix,suffix>
pair format, and run the corresponding analytics operators.

2) Re-compute: After an analytics query is submitted, it com-
putes the gradient of the training sample on the fly through model
replay using the model maintained in GPU.

For the point-to-batch (P2B) operators, we evaluate the Iterate
and Reconstruction methods discussed in Sec. 7. Both methods lever-
age our compact <prefix, suffix> storage structure to reduce the I/O
costs when collecting the gradients of training samples.

1) Iterate: This method extracts the gradients for each indicated
testing sample in the <prefix,suffix> pair format as described in
Sec.4, and then calls our optimized P2P operator to compute the
inner product between the training samples and each testing sample
in the query batch and then compute the average.

2) Reconstruction: This method extracts the average gradient
for the testing batch through model replay, and then reconstructs
the gradients of training samples from the <prefix, suffix> pair.
Finally, it directly calculates the similarity between the gradient
of a training sample and the average gradient of the testing batch.
Therefore, Reconstruction only computes the inner product once.

Unlike the P2P operators experiments, in the P2B experiments
we don’t compare against Pre-compute and Re-compute baselines,
because Iterate and Reconstruction leverage our compact <pre-
fix,suffix> storage structure and optimized P2P operator. Thus, they
are clearly more efficient than Pre-compute and Re-compute. Sim-
ilarly, although Reconstruction could work for P2B operator, we
don’t compare against it in the P2P experiments. This is because
for the P2P operator, Reconstruction does not reduce the number of
inner product computations, while introducing extra computation
costs to reconstruct the original gradient from the <prefix, suffix>
structure. It is thus guaranteed to be worse than Pre-compute.

Data Compression. We evaluate how quantization improves
the performance of the above baseline methods as well as our
MetaStore. More specifically, we apply the Lower precision float
representation quantization [39] to reduce the size of meta-data.

Usefulness: We compare MetaStore with two baseline methods
(Sec. 8.7), namely Gradient-shapely [14] and Small-loss [29] also
discussed in related work, in studies assessing their relative utility.
DNN Models. We evaluate our method on three popular deep
neural network architectures, namely ResNet-50 [18], VGG16 [36]
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Figure 3: The End-to-End Query Execution Time of P2P Op-
erator using the VGG16, BERT and ResNet50 Models.

and BERT [12]. ResNet-50 contains 49 convolutional layers and
one linear layer. VGG16 consists of 13 Convolutional layers and
three linear layers. The BERT Model, popular in natural language
processing, contains 12 Attention layers and one linear layer. We
trained a ResNet-50 on ImageNet, a VGG16 model on CIFAR10, and
a BERT model on AGNews through finetuning.

8.2 Storage Costs

Table 1: Storage Costs: MetaStore vs Full Gradient.

Storage Cost (MB)

Layers Shape MetaStore Full Gradi- | Disk Space

ent Saving
VGG16-Convl 9X3X64 2744 69 0.025x
VGG16-Conv7 9 X 128 X 256 1310 23593 18.0x
VGG16-Convl3 9 X 512 X 512 163 94371 578%
VGG16-Linearl 512 X 10 21 205 9.76 X
BERT-SAL1 3 X 768 X 768 2949 70779 24.00x
BERT-SALG6 3 X768 X 768 2949 70779 24.00x
BERT-SAL11 3 X 768 X 768 2949 70779 24.00x
BERT-Linear1 768 X 4 31 122 3.93%
ResNet50-Conv48 9 X 512 X 512 157 90100 573.88%
ResNet50-Linear 2048 x 1000 118 80100 678.81x

In this set of experiments, we evaluate the storage costs and
savings of the MetaStore’s prefix/suffix gradient strategy of storing
decomposed gradients. We evaluate the storage costs for 10,000
training samples randomly sampled from the training set because
the baseline cannot handle the whole training set. Following previ-
ous work [16], for the VGG16 model, we report the storage costs
of the first, mid, and last convolutional layers and the linear layer,
while for the BERT model, we report the storage costs of the first,
mid and last self-attention layer and the last linear layer. For the
ResNet50 model, we report the storage costs of the last linear layer
and the 48th Convolutional layer as it contains the most number of
parameters in the ResNet50 model.

Table 1 shows these storage costs. We see that compared to
storing the original gradients, MetaStore reduces the storage costs
by up to x578 for the VGG16 model and by up to x678 for the
ResNet50 model. The only exception is the first convolutional layer
that features only a few parameters, has a small gradient, and thus
not much disk space is saved in this case.

Similarly, for the BERT model, MetaStore reduces the storage
costs by 24x. However, for this model, both methods need more disk
space than the ResNet50 and VGG16 models, because the BERT-
AGNews model contains many more parameters than the VGG16-
CIFAR10 model. Also, each layer in the BERT-AGNews model gener-
ates a larger number of input and output features for each training
sample compared to the ResNet50 and VGG16-CIFAR10 model.
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8.3 P2P Operator: End-to-End Execution Time

In this experiment, we evaluate the end-to-end execution time of
the P2P operator which computes the inner product between the
gradients of two data samples. This execution time includes the
times for calculating the gradients of the testing samples by model
replay, loading the gradients of the training samples into GPU
memory, and running the corresponding analytics operators.

8.3.1 Execution Times for Different DNN Layers.

First, we compare MetaStore against the Pre-compute and Re-
compute methods (Sec. 8.1) on the VGG16-CIFAR10, ResNet50-
ImageNet and BERT-AGNews models. Similar as with the above
storage experiments, we evaluate the first, middle and the last con-
volutional layer of the VGG16 model, the 48th Convolutional layer
and the last linear layer of the ResNet50 model, and the first, middle
and the last self-attention layer of the BERT Model. We randomly
select one testing sample from the testing set. For each pair of
training sample and this chosen testing sample, we run the P2P
operator. We use 10,000 training samples and thus call the P2P op-
erator 10,000 times. We repeat the experiment 10 times and report
the average execution time.

Fig. 3 (in log scale) shows that for the VGG16-CIFAR10 model,
MetaStore is up to 1,000 times faster than Pre-compute, and 7 orders
of magnitude faster than Re-compute. In particular, Pre-compute is
slower on the later convolutional layers, while MetaStore improves
speed there. This is because that the complexity of Pre-compute
increases linearly with the number of parameters, and the later
convolutional layers have more parameters. On the other hand,
the complexity of MetaStore increases linearly with the size of the
input features, which is smaller in the later layers compared to
the earlier layers. This is common for CNN networks, since the
convolution operation naturally shrinks the size of the features.

For the ResNet50 model, all three methods are slower on the
ResNet50 model than on the VGG16 model. This is expected, be-
cause ResNet50 has many more parameters than the VGG16 model.
However, MetaStore is still up to 3 orders of magnitude faster than
Pre-compute and 5 orders of magnitude faster than Re-compute.

For BERT, MetaStore is about 10 to 100 times faster than Pre-
compute and 100 to 1000 times faster than Re-compute. Because
different self-attention layers in BERT have the same architecture,
their performance does not vary much across different layers.

8.3.2  Varying Number of Dimensions of Layers.

In this set of experiments, we evaluate MetaStore’s performance
on DNN layers with a varying number of dimensions. To achieve
this, for the linear layer, we append one additional linear layer
before the last layer in ResNet50. Similarly, for the convolutional
layer, we append one additional convolutional layer after the last
convolutional layer in VGG16. We refer to these two “extended”
models as ResNet50-Linear and VGG16-Conv, respectively. We then
vary the number of dimensions of these new layers. For the self-
attention layer, we directly vary the input and output dimension of
each self-attention layers. We name this model BERT-Att.

For the ResNet50-Linear model, to ensure the appended layer
is aligned with the previous layers, we keep the input dimensions
fixed and only vary the output dimensions from 32 to 512. Similarly,
for the VGG16-Conv model, we fix the number of input channels
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Figure 4: The End-to-End Query Execution Time of P2P Operator: Varying Num. of Dimensions of Different Layers.

and vary the output channels from 32 to 512. Thereafter, we focus
on comparing the end-to-end execution time on the new layer of
each model. For the BERT-Attention model, we vary the input and
output dimensions of each Self-Attention layers from 96 to 768. We
report the execution time of the last self-attention layer.

As depicted in Fig. 4, MetaStore is up to 1000x faster than both
baseline methods in all experiments. For the VGG16-Conv and
the ResNet50-Linear models, as shown in Fig. 4(a) and Fig. 4(c),
respectively, for all three types of layers, the execution time of
Pre-compute increases quickly as the output dimensions get larger,
while the query time of MetaStore does not increase significantly.
This can be explained by the time complexity of Pre-compute which
equals the input dimensions multiplied by the output dimensions,
while the time complexity of MetaStore equals the input dimensions
plus the output dimensions, as discussed in Sec. 5. For the BERT-
Attention model, MetaStore is up to 1,000 faster than both baseline
methods. In all experiments, Re-compute is much slower than the
other two methods in most cases, because calculating the gradient
of a single layer on the fly is expensive.

8.3.3  Vary the Number of Training Samples.

We vary the number of training samples for each query from 500
to 8,000 and compare MetaStore against the Pre-Compute and Re-
Compute methods. We measure the cumulative total time of run-
ning 100 queries on the last convolutional and the last linear layer
in the VGG16-CIFAR10 model, the 48th convolutional and the last
linear layer in the ResNet50-ImageNet model, and the last self-
attention layer in the BERT-AGNews model. We cache the gradients
in the memory, when possible, using LRU as cache replacement
policy. As shown in Fig. 5, MetaStore only gets about 5 times slower
when increasing the number of training samples from 500 to 8000
on the VGG16-CIFAR10, ResNet50-ImageNet, and BERT-AGNews
models, while the execution time of Pre-Compute and Re-Compute
increase 12-15 times in both cases. This is because MetaStore can
cache more data samples in memory due to its efficient storage
strategy, therefore significantly reducing the I/O costs. The query
execution time of Pre-compute increases fast as the number of ana-
lyzed samples increases. Eventually, when the number of training
samples increases to 8,000, it becomes as slow as the Re-compute
method which computes the gradients on the fly. This is because
the gradients of the ResNet50-ImageNet model are very large. It
is thus not able to cache the gradients of many training samples
in memory, hence suffering from high disk I/O costs. In contrast,
when the number of analyzed samples increases from 500 to 8,000,
the execution time of MetaStore only increases around 10 times.
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8.4 P2B Operator: Execution Time

We evaluate the performance of our optimized method (Sec. 7.1)
for the P2B operator. In this experiment, we compare Iterate and
Reconstruction as baseline methods. The reconstruction method
leverages our prefix/suffix gradients insights, thus significantly
reducing its I/O costs.

As shown in Fig. 6, our method is at least 2 times faster than
the baseline methods in all experiments. Compared with the recon-
struction method, our method speeds up the execution by up to 10x,
because it directly computes the results on the <prefix, suffix> pairs
of training samples, and thus avoids reconstructing large gradients
for the training samples.

8.5 Meta-data Collection and Storage Times

We evaluate the time of extracting and storing the gradient of 10,000
training samples. We compare MetaStore against computing and
storing the full gradients. Again, we measure the collection time on
the first, mid, and last convolutional layers and the linear layer in
the VGG16-CIFAR10 model, the 48th convolutional layer and the
last linear layer of the ResNet50-ImageNet model, and the first, mid,
and last self-attention layers and the last linear layer in the BERT-
AGNews model. Fig. 7 shows that MetaStore is up to 1,000 times
faster than the baseline. This is because although both methods
use the same forward and backward propagation process to extract
meta-data, MetaStore only needs to log the small prefix and suffix
matrices into the storage.

Similar to the trend in the storage cost experiments, the baseline
takes more time to collect meta-data on the later convolutional
layer in the VGG16 model in comparison to MetaStore. Again, this
is because the later convolutional layers in the VGG16 model have
more parameters than the earlier convolutional layers.

We also evaluate the meta-data collection time by varying the
number of dimensions of the target layers. As shown in Fig. 8,
MetaStore consistently outperforms the baseline. As the number of
dimensions increases, the collection time of the baseline increases
linearly, while MetaStore only becomes slightly slower.

8.6 Augmented with Data Compression

Our technique is orthogonal to the choice of the compression meth-
ods, including quantization. For this reason, we were able to apply
quantization to both MetaStore and to the pre-compute baseline.
We evaluate this addition of compression by varying the pre-
cision of quantized meta-data from 8 digits to 32 digits, and then
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measure both the end-to-end query execution time and the stor-
age costs. As shown in Fig. 10, quantization indeed reduces the
storage costs of both MetaStore and the pre-compute methods by
up to 4X. However, MetaStore is still up to three orders of magni-
tude more efficient than the pre-compute method in terms of both
storage costs and query execution time. In particular, for query
execution time, the pre-compute method with quantized tensors
is up to 10 X faster than the original method using the standard
precision tensors. Because MetaStore is already very efficient due
to our < prefix, suffix > insight, quantization is not able to speed
up MetaStore that much. Most importantly, in all scenarios, MetaS-
tore remains up to 1000x faster than the baselines even with the
addition of quantization.

8.7 Utility of Gradient-based Analytics

We use data debugging as an example to showcase that the gradient-
based analytics enabled by MetaStore are indeed useful.
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As discussed in Sec. 3.2, users can use the P2B operator to dis-
cover mislabeled objects (data debugging). The k training samples
(where k is a user defined input parameter) that have the smallest
meta-gradient with a batch of testing samples are the least influen-
tial samples, and therefore the most likely to be mislabeled.

We train a VGG16 model using CIFAR10. We randomly flip the
labels of 1000 samples from class 0 to class 1 and select 1000 testing
samples to form the batch. We gradually add the layers of the DNN
model, starting with only the last linear layer and then adding the
last, middle, and first convolutional layers step by step.

As shown in Fig. 9, our MetaStore achieves higher noisy label
detection precision and query efficiency than the small-loss method
because the later method requires one pass of forward propagation
to calculate the loss value.

In Fig. 9, we also observe that our MetaStore solution
achieves similar precision on this noisy labeling task as Gradient-
shapely [14] - yet in addition it is up to 3 orders of magnitude faster.
This is because Gradient-shapely requires iteratively calculating
the original gradients of training samples at query time, while our
MetaStore operates on the compact < prefix, suffix > pairs.

Fig. 9 shows that by increasingly analyzing more layers, the
precision of MetaStore and Gradient-shapely increases from 0.1
to 0.6. Moreover, although the query execution time of Gradient-
shapely increases significantly as more layers are analyzed, the
query execution time of MetaStore remains relatively stable. This
shows MetaStore allows users to analyze more layers and thus is
able to get better results with much less computing resources.
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9 RELATED WORK

DNN Diagnosis Tools. A plethora of developed tools have been re-
searched for diagnosing DNN models, some of which involve meta-
data. Among them, MISTIQUE [39, 40] compactly stores the meta-
data, namely, feature embeddings and losses. DeepEverest [16]
speeds up the model diagnosis queries on storage. However, none
of them support gradient-based diagnostic queries.

Several works [4, 24, 24, 28, 33, 35, 50] target the visualization
of meta-data. However, none of them use gradients.

Gradient-shapely [14] evaluates the contribution of each training
sample to model predictions by estimating the shapely value [22].
Given a training sample, Gradient-Shapely calculates its gradient
and updates the model parameters. It compares the validation loss
on the models before and after the update and uses the decrease of
the validation loss as the training sample’s shapely value. Gradient-
shapely confirms that gradients are indeed effective in model in-
terpretation, debugging, and data valuation. However, unlike our
work, Gradient-shapely [14] does not address the scalability and
efficiency issues of gradient analytics.
Robust Deep Learning with Meta-data. Researchers have used
meta-data in the training process to make DNN models robust to
noisy data and adversarial attack [9, 19, 29, 34, 37, 39]. In particular,
Small-loss [29] uses training losses to detect mislabeled training
samples. It is based on a simple and common observation that
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correctly training samples tend to have smaller training loss values
than incorrectly labeled samples.

People have used gradients to perform adversarial attacks on
DNN models [15, 32, 51]. Some methods [1, 9] leverage statistics of
gradients to identify potential data leakage of DNN models. Some
other methods use the gradients to modify the training process and
search for hyper-parameters [7, 23, 27, 48] to improve DNN models’
performance. However, all above works do not tackle the problem
of compactly storing and efficiently analyzing gradients.

Gradient Compression. Federated learning may need to trans-
fer gradients from the clients to the servers. To reduce the com-
munication costs, researchers have proposed techniques [3, 5, 6,
10, 26, 43] to compress the gradients by approximation. Some
works [2, 3, 5, 6, 43] use quantization and sparsification techniques
to compress the gradients by preserving the large gradient val-
ues while discarding the small ones. Because our < prefix, suffix >
based optimization is orthogonal to the choice of the compression
methods, including quantization, we are able to seamlessly apply
the quantization technique to our MetaStore.

Some other works [25, 41, 42] use matrix factorization to de-
compose big gradients. However, performing matrix factorization
on each training sample will introduce prohibitive overhead. Fur-
thermore, the original gradients have to be reconstructed when
computing the meta gradient at the online query stage, while recon-
structing gradients is slow as shown in our experiments (Sec. 8.4).
Our MetaStore instead efficiently analyzes the gradients without
conducting any extra operations such as matrix factorization and
gradient reconstruction.

10 CONCLUSION

We propose MetaStore to efficiently collect, store, and analyze meta-
data produced by DNN training. The key techniques of MetaStore
address the challenges caused by the size of the gradients and thus
enable gradient-based analytics for data debugging and model in-
terpretation. Our experiments show that MetaStore significantly
reduces storage costs and query execution times by orders of mag-
nitude compared to baseline solutions.
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