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A B S T R A C T

We examine a reduced membrane model of liquid crystal polymer networks (LCNs) via
asymptotics and computation. This model requires solving a minimization problem for a non-
convex stretching energy. We show a formal asymptotic derivation of the 2𝐷 membrane model
from 3𝐷 rubber elasticity. We construct approximate solutions with point defects. We design a
finite element method with regularization, and propose a nonlinear gradient flow with Newton
inner iteration to solve the non-convex discrete minimization problem. We present numerical
simulations of practical interests to illustrate the ability of the model and our method to capture
rich physical phenomena.

1. Introduction

Liquid crystal polymer networks (LCNs) are materials that combine elastomeric polymer networks with mesogens (compounds
hat display liquid crystal properties). The long rod-like molecules of liquid crystals are densely crosslinked with the elastomeric
polymer network. This contrasts with liquid crystal elastomers (LCEs), whose crosslinks are less dense. The orientation of the liquid
crystal (LC) molecules can be represented by a director. The orientation of the director influences deformation of materials when
actuated. Common modes of actuation are heating (Aharoni et al., 2018; Ware et al., 2015) and light (Camacho-Lopez et al., 2004;
McConney et al., 2013). In this study, we focus on such actuated deformations of LCNs.

LCNs are one of many possible materials that enable spontaneous mechanical motion under a stimulus. This has been referred to
as ‘‘the material is the machine’’ (Bhattacharya and James, 2005). Due to this feature, engineers create soft robots using LCNs/LCEs
materials, such as thermo-responsive micro-robots with autonomous locomotion in unstructured environments (Zhao et al., 2022),
soft materials that ‘‘swim’’ away from light (Camacho-Lopez et al., 2004), and LCN actuators that can lift an object tens of times
its weight (Ware et al., 2015). They offer abundant application prospects, for instance in the design of biomedical devices (Li and
Keller, 2006; Hébert et al., 1997).

Since the deformation of LCNs depend on the orientation of the nematic director, the director can be blueprinted or programmed
so that the materials achieve desired shapes (Aharoni et al., 2018; White and Broer, 2015; Modes and Warner, 2011; Warner,
2020). Some methods to program the orientation of the liquid crystals include mechanical alignment (Camacho-Lopez et al., 2004),
photoalignment (Ware et al., 2015), and additive manufacturing (Kotikian et al., 2018), which is a subset of 4D printing (Kuang
et al., 2019). Even if the director is constant throughout the material, interesting shapes may occur due to nonuniform actuation.
An example of nonuniform actuation from light is the LCE swimmer in Camacho-Lopez et al. (2004). Two reviews of experimental
work on LCEs/LCNs can be found in White and Broer (2015) and McCracken et al. (2020).

∗ Corresponding author.
E-mail addresses: lbouck@andrew.cmu.edu (L. Bouck), rhn@umd.edu (R.H. Nochetto), shuoyang@bimsa.cn (S. Yang).
vailable online 20 March 2024
022-5096/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jmps.2024.105607
Received 7 November 2022; Received in revised form 9 January 2024; Accepted 11 March 2024



Journal of the Mechanics and Physics of Solids 187 (2024) 105607L. Bouck et al.

i

a
w
f
o

For 3D bodies, one of the most accepted elastic energies for modeling the interaction of the material deformation with the LCs
s known as the trace formula (Bladon et al., 1994; Warner and Terentjev, 2007, 2003), although other types of elastic energies
have been proposed (DeSimone and Teresi, 2009). Depending on the density of crosslinks, the director field may be either totally
free (Cesana et al., 2015; DeSimone and Dolzmann, 2002) or subject to a Frank elasticity term (Barchiesi and DeSimone, 2015; Luo
nd Calderer, 2012; Plucinsky et al., 2018b; Bartels et al., 2022d). This kind of blueprinted configuration describes the situation
here the LCs are unconstrained or constrained only on a low-level by rubbery polymers. On the other hand, the LCs may also be
rozen into the material via a direct algebraic constraint (Ozenda et al., 2020; Cirak et al., 2014), an approach that we also follow; see
ur Eq. (1). The director’s deviation from (1) may be penalized with a nonideal energy contribution (Plucinsky et al., 2018b; Verwey
and Warner, 1997). Although the LCs may also be subject to a Frank energy term, a key modeling difference between LCE/LCNs and
nematic LCs is that the former are constrained by the rubber. It is known that higher degree defects are unstable (Brezis et al., 1986)
for the one constant Frank model of nematic LCs. However in LCNs, higher degree defects do not split apart due to the constraining
nature of the polymer network. We refer to McConney et al. (2013) for blueprinted defects with degrees up to order 10 in LCNs.

The energy scaling with respect to thickness in models of thin 3𝐷 elastic bodies dictates 2D models of LCNs/LCEs. If the energy is
scaled linearly with the thickness, the resulting model is a membrane model: the energy is a function of the first fundamental form
of the deformed surface and encodes stretching. Works that studied membrane models include (Cesana et al., 2015; Ozenda et al.,
2020; Conti and Dolzmann, 2018). For LCNs, the first fundamental form of zero stretching energy states satisfy a pointwise metric
condition. Extensive work dedicated to examining configurations that satisfy this metric condition include (Modes et al., 2011;
Mostajeran, 2015; Plucinsky et al., 2018a, 2016; Plucinsky, 2017; Modes and Warner, 2011; Warner and Mostajeran, 2018; Aharoni
et al., 2014; Mostajeran et al., 2016). For a review of these techniques, we refer to Warner (2020). The second common scaling is
a cubic scaling in the thickness, and results in a plate model driven by bending. The metric condition giving zero stretching energy
becomes a constraint in the bending model. Some existing bending models include theory derived via formal asymptotics (Ozenda
et al., 2020), a von Karman plate model derived in Mihai and Goriely (2020) using asymptotics, a rigorous Gamma convergence
theory for a model of bilayer materials composed of LCEs and a classical isotropic elastic plate (Bartels et al., 2022d), or a plate model
where the LC dramatically changes its orientation through the thickness (Agostiniani and DeSimone, 2020). Moreover, reduced 1𝐷
models for LCNs/LCEs have been explored as well; we refer to Bartels et al. (2022c) for a rod model and to Agostiniani et al. (2017)
and Singh and Virga (2022) for ribbon models.

The computation of LCEs/LCNs has received considerable attention in recent years. Publications include computations of various
membrane models (Plucinsky, 2017), a membrane model with regularization (Cirak et al., 2014), a bending model of LCE bilayer
structure (Bartels et al., 2022d), a relevant 2D model for LCEs (Luo and Calderer, 2012), 3D models (Conti et al., 2002; Chung
et al., 2017), and LCE rods (Bartels et al., 2022c). Paper (Luo and Calderer, 2012) proves well-posedness of a mixed method for a
2D model with Frank-Oseen regularization.

The goal of this paper is to predict actuated equilibrium shapes of thin LCN membranes using a finite element method (FEM). We
discretize a membrane energy of LCNs using piecewise linear finite elements and add a numerical regularization that mimics a higher
order bending energy. To solve the discrete minimization problem, we design a nonlinear gradient flow with an embedded Newton
method. Our FEM is able to predict configurations of LCNs of practical significance, whose solutions are hard or impossible to derive
by hand. We present salient examples in Section 5.2 of LCNs with preferred discontinuous metric. We complement the numerical
study with the derivation of the LCN model via Kirchhoff–Love asymptotics, and the development of a new formal asymptotic
method to approximate shapes of membranes that arise from higher order defects, which we discuss first.

Our companion paper (Bouck et al., 2023) provides a numerical analysis of the finite element method (FEM) described in this
article. We refer to Section 1.4 for a list of our main contributions and outline.

1.1. 3D elastic energy: Neo-classical energy

We are concerned with thin films of LCNs. Slender materials are usually modeled as 3𝐷 hyper-elastic bodies  ∶= 𝛺×(−𝑡∕2, 𝑡∕2),
with 𝛺 ⊂ R2 being a bounded Lipschitz domain and 𝑡 > 0 being a small thickness parameter. We denote by 𝐮 ∶  → R3 the 3D
deformation and by 𝐅 ∶= ∇𝐮 ∈ R3×3 the deformation gradient of the LCNs material.

We denote by𝐦 ∶  → S2 the blueprinted nematic director field on the reference configuration and by 𝐧 ∶  → S2 the director field
on the deformed configuration. The former is dictated by construction of the LCNs material, whereas the latter obeys an equation
that depends on the density of crosslinks between the mesogens and polymer network. LCNs (also called liquid crystal glasses) have
moderate to dense crosslinks whereas liquid crystals elastomers (LCEs) have low crosslinks (White and Broer, 2015). In this paper,
we focus on LCNs and leave a numerical study of LCEs for future research. Mathematically, the strong coupling in LCNs is expressed
in terms of the following kinematic constraint between 𝐦 and 𝐧 (Ozenda et al., 2020):

𝐧 ∶= 𝐅𝐦
|𝐅𝐦|

. (1)

In contrast to LCEs (Warner and Terentjev, 2007; Bartels et al., 2022d), 𝐧 is not a free variable but rather a frozen director field
for LCNs (Cirak et al., 2014). For LCEs the energy density may be minimized over 𝐧 first and next over 𝐅, like in Cesana et al.
(2015) and Conti et al. (2002), or a Frank elastic energy for 𝐧 may be introduced (c.f. Barchiesi and DeSimone, 2015; Bartels et al.,
2022d; Luo and Calderer, 2012). Moreover, we note that a director field description may not be the only choice for modeling LC
2

components. One can also formulate a model with 𝑄-tensor descriptions like in Calderer et al. (2015).
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The LC effect on the material is governed by the so-called step-length tensors

𝐋𝐦 ∶= (𝑠0 + 1)−1∕3(𝐈3 + 𝑠0𝐦⊗𝐦) (2)

in the reference configuration, and

𝐋𝐧 ∶= (𝑠 + 1)−1∕3(𝐈3 + 𝑠𝐧⊗ 𝐧) (3)

in the deformed configuration. Both of these are uniaxial tensor fields that exhibit the typical head-to-tail symmetry commonly
observed in LCs. Our definition of these step length tensors follows the notation of Ozenda et al. (2020) and Nguyen and Selinger
2017). The tensor 𝐋𝐦 can be related to the more commonly encountered step length tensor 𝓁0

⟂𝐈3 + (𝓁0
∥ − 𝓁0

⟂)𝐦 ⊗ 𝐦 (Corbett
nd Warner, 2008, Eq. (13)) by setting 𝓁0

⟂ = (𝑠0 + 1)−1∕3 and 𝓁0
∥ = (𝑠0 + 1)2∕3. These step length tensors measure the anisotropy

ontributed by nematogenic molecular units to nematic elastomers/networks, which are isotropic solids with a fluid-like anisotropic
rdering. Moreover, 𝑠0, 𝑠 ∈ 𝐿∞(𝛺) are nematic order parameters that refer to the reference configuration and deformed configuration
espectively. They are typically constant and depend on temperature, but may also vary in 𝛺 if the liquid crystal polymers are
ctuated non-uniformly. These parameters have a physical range

−1 < 𝑠0, 𝑠 ≤ 𝐶 <∞.

onsequently, both 𝐋𝐦 and 𝐋𝐧 are SPD tensor fields, which reduce to the identity matrix, i.e. 𝐋𝐦 = 𝐋𝐧 = 𝐈3 ∈ R3×3, provided
= 𝑠0 = 0 (no actuation).
The neo-classical energy density for incompressible nematic elastomers/networks has been proposed by Bladon, Warner and

erentjev in Bladon et al. (1994) and Warner and Terentjev (2007, 2003) and reads

𝑊3𝐷(𝐱,𝐅) ∶= tr
(

𝐅𝑇𝐋−1
𝐧 𝐅𝐋𝐦

)

− 3; (4)

his energy depends explicitly on the space variable 𝐱 ∶= (𝐱′, 𝑥3) ∶= (𝑥1, 𝑥2, 𝑥3) ∈  due to the dependence of 𝐦,𝐧, 𝑠, 𝑠0 on 𝐱. The
nergy (4) can be rewritten as the neo-Hookean energy density

𝑊3𝐷(𝐱,𝐅) =
|

|

|

𝐋−1∕2
𝐧 𝐅𝐋1∕2

𝐦
|

|

|

2
− 3, (5)

and reduces to the classical neo-Hookean energy density for rubber-like materials 𝑊3𝐷(𝐅) = |𝐅|2 − 3 provided 𝑠 = 𝑠0 = 0. Moreover,
the material is assumed to be incompressible, i.e,

det 𝐅 = 1. (6)

The 3D energy density 𝑊3𝐷 is non-degenerate, namely

𝑊3𝐷(𝐱,𝐅) ≥ dist
(

𝐋−1∕2
𝐧 𝐅𝐋1∕2

𝐦 , 𝑆𝑂(3)
)2 ≥ 0 (7)

for all 𝐅 ∈ R3×3 such that det 𝐅 = 1. We refer to Plucinsky et al. (2018b, Appendix A) and Bouck et al. (2023) for a proof of this
undamental property.
The 3D elastic energy is given in terms of the energy densities (4) or (5) by

𝐸3𝐷[𝐮] = ∫

𝑡∕2

−𝑡∕2 ∫𝛺
𝑊3𝐷(𝐱,∇𝐮) 𝑑𝐱′𝑑𝑥3, (8)

where 𝐱′ ∈ 𝛺, 𝑥3 ∈ (−𝑡∕2, 𝑡∕2), and det ∇𝐮 = 1.

1.2. Model reduction

We assume the 3𝐷 blueprinted director field 𝐦 = (𝐦̃, 0) ∶  → S2 is planar and it depends only on 𝐱′; hence, with a slight abuse
of notation, we identify 𝐦 and 𝐦̃ and let 𝐦 ∶ 𝛺 → S1 be the 2𝐷 blueprinted director field. We denote by 𝐦⟂ ∶ 𝛺 → S1 a director
field perpendicular to 𝐦 everywhere in 𝛺, and by 𝐲 ∶ 𝛺 → R3 the deformation of 2D midplane 𝛺.

The 2𝐷 membrane model requires solving the following minimization problem: find 𝐲∗ ∈ 𝐻1(𝛺;R3) such that

𝐲∗ = argmin
𝐲∈𝐻1(𝛺;R3)

𝐸𝑠𝑡𝑟[𝐲], 𝐸𝑠𝑡𝑟[𝐲] ∶= ∫𝛺
𝑊𝑠𝑡𝑟(𝐱′,∇𝐲)𝑑𝐱′, (9)

where 𝑊𝑠𝑡𝑟 is a stretching energy density that is only a function of 𝐱′ ∈ 𝛺 and of the first fundamental form I[𝐲] ∶= ∇𝐲𝑇∇𝐲. It is
given by

𝑊𝑠𝑡𝑟(𝐱′,∇𝐲) ∶= 𝜆
[

1
𝐽 [𝐲]

+ 1
𝑠 + 1

(

tr I[𝐲] + 𝑠0𝐶𝐦[𝐲] + 𝑠
𝐽 [𝐲]
𝐶𝐦[𝐲]

)]

− 3, (10)

and, since 𝑠, 𝑠0 > −1, the actuation parameter 𝜆 ∶ 𝛺 → R+ is well-defined by

𝜆 = 𝜆𝑠,𝑠0 ∶= 3

√

𝑠 + 1 . (11)
3

𝑠0 + 1
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If the material is heated, then 𝜆 < 1, whereas if it is cooled, then 𝜆 > 1. Moreover, 𝐽 [𝐲], 𝐶𝐦[𝐲] are among the following abbreviations:

𝐽 [𝐲] = det I[𝐲], 𝐶𝐦[𝐲] = 𝐦 ⋅ I[𝐲]𝐦, 𝐶𝐦⟂
[𝐲] = 𝐦⟂ ⋅ I[𝐲]𝐦⟂. (12)

When the second argument of 𝑊𝑠𝑡𝑟 is 𝐅 ∈ R3×2, we then use the following notational abbreviations:

I(𝐅) ∶= 𝐅𝑇𝐅, 𝐽 (𝐅) ∶= det I(𝐅),
𝐶𝐦(𝐅) ∶= 𝐦 ⋅ I(𝐅)𝐦, 𝐶𝐦⟂

(𝐅) ∶= 𝐦⟂ ⋅ I(𝐅)𝐦⟂.
(13)

We emphasize that since 𝑠, 𝑠0,𝐦 depend on 𝐱′ ∈ 𝛺 then 𝑊𝑠𝑡𝑟 also has an explicit dependence on 𝐱′.
We note that (10) is consistent with the stretching energy in Ozenda et al. (2020) after additionally assuming an inextensibility

constraint 𝐽 [𝐲] = 1 and up to the multiplicative parameter 𝜆 and the constant −3.
The energy 𝐸𝑠𝑡𝑟 in (9) is not weakly lower semicontinuous in 𝐻1(𝛺;R3), which we show in Bouck et al. (2023). As a result, 𝐸𝑠𝑡𝑟

may not have minimizers in 𝐻1(𝛺;R3), but may admit minimizing sequences (Bethuel et al., 1999). In fact, one can adapt (Bouck
et al., 2023, Example 2.8) to show that the energy density (10) is not quasiconvex in the sense of Dacorogna (2007, Def. 1.5),
the correct notion of convexity for a vector-valued problem. The lack of weak lower semi-continuity is responsible for the main
difficulties to prove convergence of our discretization as well as to design efficient iterative solvers for the discrete minimization
problem. We discuss convergence of discrete minimizers in Bouck et al. (2023), and present a nonlinear iterative scheme with inner
Newton solver in Section 4.3.

Throughout this work, we do not impose any boundary condition so that the material under consideration has free boundaries.
If necessary, one can take Dirichlet boundary conditions into account with a simple modification on the method.

An important property of the stretching energy is that 𝑊𝑠𝑡𝑟(𝐱′,∇𝐲) = 0 if and only if I[𝐲] = 𝑔 pointwise, where 𝑔 ∈ R2×2 is the
arget metric

𝑔 = 𝜆2𝐦⊗𝐦 + 𝜆−1𝐦⟂ ⊗𝐦⟂; (14)

e show this property in Section 2.2. In the physics literature, maps 𝐲 that satisfy the metric constraint I[𝐲] = 𝑔 are known as
pontaneous distortions (Warner and Terentjev, 2007; Modes et al., 2011). The physics community has developed techniques to
ind such deformations in special situations. Some examples are radially symmetric director fields (Warner and Mostajeran, 2018),
cylindrical shapes (Aharoni et al., 2014), and nonisometric origami (Modes and Warner, 2011; Plucinsky et al., 2018b,a, 2016). We
refer to Warner (2020) for a review of the techniques to predict shapes based on the metric. The purpose of this work is to provide
a different approach via energy minimization and approximation. Rather than constructing 𝐲 analytically such that I[𝐲] = 𝑔, we
umerically approximate minimizers to the stretching energy. We will validate our numerical method in Section 5 by successfully
reproducing the intricate shapes resulting from higher order defects observed in experimental studies (McConney et al., 2013),
as well as exact nonisometric origami solutions (Plucinsky et al., 2018a). An advantage of employing energy minimization and
numerical approximation is the ability to tackle more general scenarios that lack exact analytical solutions. We extensively explore
incompatible metrics in Section 5.2, which present significant challenges when attempting to solve I[𝐲] = 𝑔 exactly or study solutions
analytically. Our computations inspired lab experiments (Baumann and White, 2023).

1.3. Discretizations

In this work, we propose a FEM discretization to (9). We consider the space Vℎ of continuous piecewise linear finite elements
over a shape regular mesh ℎ, and approximate the deformation 𝐲 by 𝐲ℎ ∈ Vℎ. To define a discrete energy, we replace 𝐲 in (9) by
𝐲ℎ and then add a regularization term

𝑅ℎ[𝐲ℎ] ∶=
∑

𝑒∈ℎ
∫𝑒
𝑐𝑟ℎ𝑒|[∇𝐲ℎ]|2, (15)

where 𝑐𝑟 ∶ ℎ → R is a nonnegative function of the skeleton ℎ. If 𝑐𝑟 is uniformly positive, then 𝑅ℎ mimics a higher order bending
energy. This bending regularization term is a scaled 𝐿2 norm of jumps [∇𝐲ℎ] across all the interior edges 𝑒 ∈ ℎ of ℎ, it represents a
scaled discrete Hessian of 𝐲ℎ, and provides a numerical selection mechanism to remove oscillations from equilibrium configurations;
see Section 5.1.2. In cases where 𝑐𝑟 = 0 on a collection of edges, this allows for folding to occur on those edges. If 𝑐𝑟 is uniformly
positive across the whole skeleton ℎ, we abuse notation and regard 𝑐𝑟 as a positive parameter. We prove convergence of discrete
minimizers in our accompanying paper (Bouck et al., 2023). The regularization 𝑅ℎ[𝐲ℎ] is closely related to the Nelson-Seung discrete
bending energy (Seung and Nelson, 1988), which computes the jump of the normal vector across edges. We also note that this energy
is quite similar to the ridge energy introduced in Pedrini and Virga (2021), which accounts for the angle between normal vectors
in the case 𝑠 = 0. We further justify this choice of 𝑅ℎ in Section 4. Moreover, we design a nonlinear gradient flow scheme with an
embedded Newton sub-iteration, to solve the discrete minimization problem. We refer to Section 4 for details.

The discrete energy, defined as 𝐸ℎ ∶= 𝐸𝑠𝑡𝑟 + 𝑅ℎ, serves as a discrete counterpart to the blended energy given by

𝐸𝑠𝑡𝑟[𝐲] + 𝑡2 ∫𝛺
|𝐷2𝐲|2𝑑𝐱′. (16)

The mesh size ℎ in 𝑅ℎ plays a role analogous to the material thickness 𝑡 in (16). The second term in (16) represents a simplified
4

version of the bending energy, as discussed in Plucinsky et al. (2018b, Eq. (1.11)). According to Plucinsky et al. (2018b), this
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energy term exhibits asymptotic behavior similar to that of a fully nonlinear elastic model as 𝑡 → 0. The inclusion of the higher-
order term provides additional compactness, motivated by the geometric rigidity described in Friesecke et al. (2002). Similarly, the
regularization 𝑅ℎ in (15) provides compactness if 𝐸ℎ scales quadratically at minimizers, namely 𝐸ℎ[𝐲ℎ] ≤ 𝛬ℎ2. This is stated in
Theorem 1 and proved in our accompanying paper (Bouck et al., 2023).

1.4. Our contributions and outline of the paper

We summarize our main contributions in this work as follows.

• Asymptotic derivation of the 2D membrane model. In Section 2.1 we derive a 2𝐷 membrane model from 3𝐷 rubber
elasticity via an asymptotic analysis, motivated by Ozenda et al. (2020). However, we remove the inextensibility assumption
det I[𝐲] = 1 of Ozenda et al. (2020). We additionally show that this modified model exhibits a lower 3D energy density
compared to the ansatz in Ozenda et al. (2020). Moreover, we provide a concise and novel proof that global minimizers of
(9) satisfy the target metric (35) in Section 2.2.

• Asymptotic profiles of defects. In Section 3, we present a new formal construction of solutions for rotationally symmetric
blueprinted director fields 𝐦 with a defect of degree 𝑛 > 1. Our technique hinges on the ideas of lifted surfaces (inspired
by Plucinsky et al., 2018b), composition of defects and Taylor expansion.

• Finite element discretization and iterative solver. In Section 4, we present our new finite element discretization of (9) that
includes the regularization term (15), as well as a nonlinear gradient flow scheme together with a Newton sub-iteration to
solve the resulting discrete nonconvex minimization problem.

• Numerical simulations. In Section 5, we present numerous simulations of practical interest. They illustrate the ability of our
discrete membrane model to capture intriguing physical phenomena such as origami-like structures and deformations due to
defects with varying degree. Furthermore, our discrete method enables us to investigate computationally novel incompatible
origami structures, where the metric 𝑔 is discontinuous. Our computational findings might provide valuable insights for future
endeavors in modeling, analysis, laboratory experiments, and potential applications of LCN materials.

2. Membrane model of liquid crystals polymer networks

In this section, we introduce a formal asymptotic derivation of a membrane model of LCNs and discuss properties of the model
related to its global minimizers. We also describe a modified asymptotics that leads to a bending model.

2.1. Derivation of stretching energy from asymptotics

This section is dedicated to deriving a 2D stretching or membrane energy from (8) via formal asymptotics as the thickness 𝑡 goes
to zero. In particular, we shall derive the formal limit lim𝑡→0

1
𝑡 𝐸3𝐷[𝐮]. This procedure will follow closely the derivation of Ozenda

et al. (2020), but we will relax the simplifying assumption det I[𝐲] = 1 made in Ozenda et al. (2020). We also contrast the asymptotic
method presented here with the more analytical method presented in Cirak et al. (2014).

.1.1. Kirchhoff–Love assumption and overview of strategy
We assume that the 3D deformation 𝐮 ∶  ∶= 𝛺 × (−𝑡∕2, 𝑡∕2) → R3 takes the form

𝐮(𝐱′, 𝑥3) = 𝐲(𝐱′) + 𝜙(𝐱′, 𝑥3) 𝝂(𝐱′) (17)

where 𝐲 ∶ 𝛺 → R3 is the reduced deformation and 𝝂 ∶ 𝛺 → R3 is the normal to the deformed midplane 𝐲(𝛺). We posit that 𝜙 takes
the form:

𝜙(𝐱′, 𝑥3) = 𝛼(𝐱′)𝑥3 + (𝑥23), (18)

which is a modified Kirchhoff–Love assumption. The higher order terms would be useful for deriving the bending energy, but we do
not need them for the stretching energy. Note that 𝛼 is undetermined for the moment. Later, 𝛼 will be chosen so that det ∇𝐮 is nearly
1, i.e. det ∇𝐮(𝐱′, 𝑥3) = 1 + (𝑥3). The approach we adopt here follows (Ozenda et al., 2020). We assume that the integral formula
(8) is valid and finite if the deformation 𝐮 satisfies det ∇𝐮(𝐱′, 𝑥3) = 1 +(𝑥3). To justify this assumption heuristically, if 𝐮 is smooth
and satisfies det ∇𝐮(𝐱′, 𝑥3) = 1 + (𝑥3), then we expect that for sufficiently small 𝑡 one can find an incompressible 𝐯 such that

|𝐸3𝐷[𝐯] − 𝐸3𝐷[𝐮]| ≤ 𝐶𝑡2. (19)

The non-degeneracy (7) still holds for 𝐅 = ∇𝐮 as 𝑡 → 0 in view of (19).
To prove (19), if 𝐮(𝐱′, 0), 𝜕3𝐮(𝐱′, 0) ∈ 𝐶∞(𝛺;R3) are such that det ∇𝐮(𝐱′, 0) = 1, then (Conti and Dolzmann, 2006, Proposition

5.1) states that there is a 𝑡0 > 0 and 𝐯 ∈ 𝐶∞(𝛺 × (−𝑡0∕2, 𝑡0∕2);R3) that satisfies det ∇𝐯(𝐱′, 𝑥3) = 1 everywhere in 𝛺 × (−𝑡0∕2, 𝑡0∕2),
𝐯(𝐱′, 0) = 𝐮(𝐱′, 0), and |∇𝐯(𝐱′, 𝑥3) − ∇𝐮(𝐱′, 0)| ≤ 𝐶𝑥3. The uniform pointwise estimate and integrating in the 𝑥3 direction would show

2

5

|𝐸3𝐷[𝐯] − 𝐸3𝐷[𝐮]| ≤ 𝐶𝑡 .
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The goal of asymptotics is to write the energy 𝑊3𝐷(𝐱,∇𝐮) given in (4) for the deformation 𝐮 in terms of powers of 𝑡 and the
educed stretching energy 𝑊𝑠𝑡𝑟(𝐱′,∇′𝐲)

∫

𝑡∕2

−𝑡∕2 ∫𝛺
𝑊3𝐷(𝐱,∇𝐮) 𝑑𝐱′𝑑𝑥3 = 𝑡∫𝛺

𝑊𝑠𝑡𝑟(𝐱′,∇′𝐲) 𝑑𝐱′ + (𝑡3), (20)

here ∇′ ∶= (𝜕1, 𝜕2) denotes the gradient with respect to 𝐱′. The stretching energy 𝑊𝑠𝑡𝑟 in (20) gives the leading order effects of the
energy as the body thickness 𝑡 vanishes in the sense that formally

lim
𝑡→0

1
𝑡 ∫

𝑡∕2

−𝑡∕2 ∫𝛺
𝑊3𝐷(𝐱,∇𝐮) 𝑑𝐱′𝑑𝑥3 = ∫𝛺

𝑊𝑠𝑡𝑟(𝐱′,∇′𝐲) 𝑑𝐱′.

The third order term in (20) corresponds to the bending energy 𝑊𝑏𝑒𝑛 and is not the focus of the current work. Combined with the
modified Kirchhoff–Love assumption (17), the process to derive the stretching energy is as follows:

(1) Write the right Cauchy–Green tensor 𝐂 = 𝐅𝑇𝐅 in terms of leading order terms.
(2) Write 𝑊3𝐷 in terms of 𝐂 and powers of 𝑥3.
(3) Collect (1) terms of 𝑊3𝐷 which contribute to the stretching energy.
(4) Determine 𝛼 so that 𝐮 satisfies incompressibility in an asymptotic sense.

2.1.2. Right Cauchy–Green tensor
Substituting (17) into 𝐂 ∶= ∇𝐮𝑇∇𝐮 yields

𝐂 = ∇𝐮𝑇∇𝐮 =
[

𝐂𝜙 𝐂𝑇1×2
𝐂1×2 𝐂1×1

]

, (21)

where

𝐂𝜙 = ∇′𝐲𝑇∇′𝐲 + 𝜙(∇′𝝂𝑇∇′𝐲 + ∇′𝐲𝑇∇′𝝂) + 𝜙2∇′𝝂𝑇∇′𝝂 + ∇′𝜙⊗ ∇′𝜙 (22)

𝐂1×2 = (𝝂 ⊗ ∇′𝜙)𝑇 𝜕3𝜙𝝂 = 𝜕3𝜙∇′𝜙 (23)

𝐂1×1 = (𝜕3𝜙)2. (24)

Here, we have used the facts that ∇′𝐲𝑇 𝝂 = 0, ∇′𝝂𝑇 𝝂 = 0 and |𝝂| = 1. Since ∇′𝜙(𝐱′, 𝑥3) = ∇′𝛼𝑥3 + (𝑥23) and 𝜕3𝜙(𝐱
′, 𝑥3) = 𝛼 + (𝑥3),

we have 𝐶1×2 = (𝑥3), and hence we may drop 𝐶1×2 as higher order terms.
Also ignoring any terms higher than constant order, we have

𝐂𝜙 = I[𝐲] + (𝑥3),

where I[𝐲] = ∇′𝐲𝑇∇′𝐲 is the first fundamental form of 𝐲. Since
(

𝜕3𝜙(𝐱′, 𝑥3)
)2 = 𝛼(𝐱′)2 + (𝑥3),

we find

𝐂 =
[

I[𝐲] 0
0 𝛼(𝐱′)2

]

+ (𝑥3). (25)

.1.3. Expanding 𝑊3𝐷
Recall that we assume that the 3𝐷 blueprinted director field 𝐦 lies in the plane i.e.

𝐦(𝐱) = (𝐦̃(𝐱′), 0)𝑇 . (26)

irst, substituting the kinematic constraint (1) into (4) with 𝐅 = ∇𝐮, we obtain

𝑊3𝐷(𝐱′,∇𝐮) = 𝜆
(

tr 𝐂 +
𝑠0
𝑠 + 1

𝐦 ⋅ 𝐂𝐦 − 𝑠
𝑠 + 1

𝐦 ⋅ 𝐂2𝐦
𝐦 ⋅ 𝐂𝐦

)

− 3, (27)

where 𝜆 is defined in (11), and we notice that from now on 𝑊3𝐷 depends on 𝐱′ instead of 𝐱, due to the assumption (26). Then
lugging the asymptotic form (25) of 𝐂 into (27) and using (26), the energy density 𝑊3𝐷(𝐱′,∇𝐮) becomes

𝑊3𝐷(𝐱′,∇𝐮)

= 𝜆
[

tr I[𝐲] + 𝛼(𝐱′)2 +
𝑠0
𝑠 + 1

𝐦̃ ⋅ I[𝐲]𝐦̃ − 𝑠
𝑠 + 1

𝐦̃ ⋅ I[𝐲]2𝐦̃
𝐦̃ ⋅ I[𝐲]𝐦̃

]

− 3 + (𝑥3).

Since I[𝐲] is a 2 × 2 matrix, the Cayley–Hamilton Theorem gives

I[𝐲]2 =
(

tr I[𝐲]
)

I[𝐲] − det I[𝐲] 𝐈2,

so that the energy now reads

𝑊3𝐷(𝐱′,∇𝐮)

= 𝜆
[

𝛼(𝐱′)2 + 1
𝑠 + 1

(

tr I[𝐲] + 𝑠0𝐦̃ ⋅ I[𝐲]𝐦̃ + 𝑠
detI[𝐲]

𝐦̃ ⋅ I[𝐲]𝐦̃

)]

− 3 + (𝑥3).

′ ′
6

We now have all the constant order terms of 𝑊3𝐷(𝐱 ,∇𝐮). The only remaining task is to determine 𝛼(𝐱 ). We do this next.
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2.1.4. Incompressibility
Since we would like 𝐮 to satisfy incompressibility det ∇𝐮 = 1 + (𝑥3), we impose det𝐂 = 1 + (𝑥3). By (25), we see that

det𝐂 = det I[𝐲] 𝛼(𝐱′)2 + (𝑥3), (28)

whence

𝛼(𝐱′) = 1
√

det I[𝐲]
(29)

gives us the desired equality det𝐂 = 1 + (𝑥3). This further implies

∇𝐮 = [∇𝐲, (det I[𝐲])−1∕2𝝂] + (𝑥3). (30)

Remark 1 (Comparison With Ozenda et al., 2020). The key difference between our derivation and the one in Ozenda et al. (2020)
s that det I[𝐲] = 1, or equivalently 𝛼 = 1, was assumed in Ozenda et al. (2020). Instead, we impose 𝛼 = (det I[𝐲])−1∕2 in (29). A
physical interpretation is that the LCN film adjusts its thickness to accommodate changes in area within the midplane and maintain
3D incompressibility. Further elaboration on this difference, relating it to the stretching energy, can be found in Section 2.3. Notably,
removing the assumption of det I[𝐲] = 1 is also more convenient for numerical computations.

2.1.5. Stretching energy
For convenience of presentation, from now on we slightly abuse notation and drop the prime for ∇′ and tilde for 𝐦̃. Therefore,

we will denote

𝐦 = 𝐦̃ ∈ R2, 𝐦 = (𝐦̃, 0)𝑇 ∈ R3 (31)

depending on whether we regard 𝐦 as a vector in R2 or R3.
We conclude that, with the steps built in Sections 2.1.1–2.1.4, we finally derive the stretching energy in (10), namely

𝑊𝑠𝑡𝑟(𝐱′,∇𝐲) ∶= 𝜆
[

1
𝐽 [𝐲]

+ 1
𝑠 + 1

(

tr I[𝐲] + 𝑠0𝐶𝐦[𝐲] + 𝑠
𝐽 [𝐲]
𝐶𝐦[𝐲]

)]

− 3, (32)

2.2. Global minimizers and target metrics.

In this section, we characterize global minimizers of (9). We show that minimizing the stretching energy density 𝑊𝑠𝑡𝑟 is equivalent
to satisfying the target metric constraint pointwise. We point to Plucinsky et al. (2018b, Appendix A) for a similar result but for a
ore complicated 3 dimensional model. The authors in Plucinsky et al. (2018b) also show that this metric condition arises from a
ompactness result in the bending scaling regime (Plucinsky et al., 2018b, Theorem 1.13).
We first note that the algebra in Section 2.1 can be used to show the following algebraic relation between 𝑊𝑠𝑡𝑟 and 𝑊3𝐷.

emma 1 (Stretching vs. 3D Energy). Let 𝐱′ ∈ 𝛺 and let 𝐅 = [𝐅1,𝐅2] ∈ R3×2 be such that rank (𝐅) = 2. Then the following algebraic
elation holds:

𝑊𝑠𝑡𝑟(𝐱′,𝐅) = 𝑊3𝐷((𝐱′, 0), [𝐅,𝐛(𝐅)]) , 𝐛(𝐅) =
𝐅1 × 𝐅2

|𝐅1 × 𝐅2|
2
. (33)

roof. Let 𝐛 = 𝐛[𝐅] and notice that 𝐛𝑇𝐅 = 0 and |𝐛|2 = 1
|𝐅1×𝐅2|2

= 1
𝐽 (𝐅) . Therefore, 𝐂 ∶= [𝐅, 𝐛]𝑇 [𝐅,𝐛] satisfies

𝐂 =
[

I(𝐅) 0
0 𝐽 (𝐅)−1

]

.

Inserting 𝐂 into the right hand side of (27) and using that 𝐦 is planar yields

𝑊3𝐷
(

𝐱, [𝐅,𝐛]
)

= 𝜆
(

𝐽 (𝐅)−1 + tr I(𝐅) +
𝑠0
𝑠 + 1

𝐶𝐦(𝐅) −
𝑠

𝑠 + 1
𝐦 ⋅ I(𝐅)2𝐦
𝐶𝐦(𝐅)

)

− 3,

for 𝐱 ∶= (𝐱′, 0). We next apply the Cayley–Hamilton Theorem to get I(𝐅)2 =
(

tr I(𝐅)
)

I[𝐲] − det I(𝐅) 𝐈2 and

𝑊3𝐷
(

𝐱, [𝐅,𝐛]
)

= 𝜆
[

𝐽 (𝐅)−1 + 1
𝑠 + 1

(

tr I(𝐅) + 𝑠0𝐶𝐦(𝐅) − 𝑠
𝐽 (𝐅)
𝐶𝐦(𝐅)

)]

− 3,

which is the desired expression of 𝑊𝑠𝑡𝑟(𝐱′,𝐅) according to (32). □

In addition to (33), 𝐛(𝐅) satisfies the minimality property

𝑊3𝐷
(

(𝐱′, 0), [𝐅,𝐛(𝐅)]
)

= min
𝐜∈R3∶det[𝐅,𝐜]=1

𝑊3𝐷
(

(𝐱′, 0), [𝐅, 𝐜]
)

; (34)

e refer to Bouck et al. (2022, Proposition 1) for a proof. This algebraic relation is the main tool in the derivation of the membrane
odel with higher order energies in Cirak et al. (2014) and is used in the derivation of a different membrane model in Cesana et al.
7
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(2015, Lemma 5.3). For us, the algebraic relation (33) shows that 𝑊𝑠𝑡𝑟 is nondegenerate, and that deformations with zero stretching
energy satisfy a target metric condition. We discuss this below.

The lower bound of the next proposition is an easy consequence of Lemma 1 (stretching vs. 3D energy) and (7), whereas the
upper bound is proved in Bouck et al. (2023).

Proposition 1 (Nondegeneracy). The stretching energy density 𝑊𝑠𝑡𝑟 satisfies

dist
(

𝐋−1∕2
𝐧 [𝐅,𝐛]𝐋1∕2

𝐦 , 𝑆𝑂(3)
)2 ≤ 𝑊𝑠𝑡𝑟

(

𝐱′,𝐅
)

≤ 3 dist
(

𝐋−1∕2
𝐧 [𝐅,𝐛]𝐋1∕2

𝐦 , 𝑆𝑂(3)
)2

for all 𝐅 ∈ R3×2 such that rank (𝐅) = 2 and 𝐛 = 𝐅1×𝐅2
|𝐅1×𝐅2|2

.

The following result establishes that 𝑊𝑠𝑡𝑟(𝐱′,𝐅) = 0 if and only if 𝐅 satisfies a target metric condition. This well-known fact
s extensively documented in the physics literature, where it is commonly utilized to predict the shapes of LCNs/LCEs during
ctuation (Warner and Mostajeran, 2018; Aharoni et al., 2014; Modes and Warner, 2011; Plucinsky et al., 2018a, 2016; Warner,
2020). We next present a concise and novel proof of it.

Proposition 2 (Target Metric). The stretching energy density 𝑊𝑠𝑡𝑟(𝐱′,𝐅) = 0 vanishes at 𝐅 ∈ R3×2 if and only if I(𝐅) = 𝑔 where 𝑔 ∈ R2×2

s given by

𝑔 = 𝜆2𝐦⊗𝐦 + 𝜆−1𝐦⟂ ⊗𝐦⟂, (35)

is defined in (11) and 𝐦⟂ ∶ 𝛺 → S1 is perpendicular to 𝐦.

roof. We first note that due to Proposition 1, 𝑊𝑠𝑡𝑟(𝐱′,𝐅) = 0 if and only if 𝐑 ∶= 𝐋−1∕2
𝐧 [𝐅, 𝐛]𝐋1∕2

𝐦 ∈ 𝑆𝑂(3), where 𝐛 = 𝐅1×𝐅2
|𝐅1×𝐅2|2

.
Then

𝐑𝑇𝐑 = 𝐈3 ⇒ [𝐅, 𝐛]𝑇𝐋−1
𝐧 [𝐅, 𝐛] = 𝐋−1

𝐦 .

o show the equality I(𝐅) = 𝑔, we equate the upper 2 × 2 blocks of the preceding matrix equality and use that 𝐧 = 𝐅𝐦∕|𝐅𝐦|,
according to (1), to obtain

(𝑠 + 1)
1
3

(

I(𝐅) − 𝑠
𝑠 + 1

I(𝐅)𝐦⊗ (I(𝐅)𝐦)
𝐦 ⋅ I(𝐅)𝐦

)

= 𝐋−1
𝐦 ,

where 𝐋−1
𝐦 denotes the upper 2 × 2 block of 𝐋−1

𝐦 = (𝑠0 + 1)
1
3
(

𝐈3 −
𝑠0
𝑠0+1

𝐦 ⊗ 𝐦
)

. Multiplying both sides by 𝐦 shows that 𝐦 is an
igenvector of I(𝐅) with corresponding eigenvalue 𝜆2. Since I(𝐅) is symmetric, then 𝐦⟂ is an eigenvector, and we can similarly show
that the corresponding eigenvalue for 𝐦⟂ is 𝜆−1, whence I(𝐅) = 𝑔. Conversely, if I(𝐅) = 𝑔 we resort to (32) to write

𝑊𝑠𝑡𝑟(𝐱′,𝐅) = 𝜆
(

2
𝜆
+
𝑠0 + 1
𝑠 + 1

𝜆2
)

− 3 = 0,

n light of (11). This concludes the proof. □

A direct consequence of the characterization of the target metric is that 𝐻1 isometric immersions of 𝑔 are minimizers to the
stretching energy.

Corollary 1 (Immersions of 𝑔 are Minimizers with Vanishing Energy). A deformation 𝐲 ∈ 𝐻1(𝛺;R3) satisfies

I[𝐲] = 𝑔 a.e. in 𝛺, (36)

i.e., 𝐲 is an isometric immersion of the metric 𝑔 defined in (35), if and only if 𝐲 is a global minimizer to (9) with 𝐸𝑠𝑡𝑟[𝐲] = 0.

Therefore, the solvability of (9) is related to the long standing open problem in differential geometry of existence of isometric
mmersions in R3 for a general metric 𝑔 ∶ 𝛺 → R2×2. Smooth isometric immersions in R3 are known to exist for certain metrics
with positive or negative curvatures, while there are also examples of metrics that have no 𝐶2 isometric immersions; we refer to the
book (Han and Hong, 2006) for discussions and further references. Corollary 1 requires the minimal regularity 𝐲 ∈ 𝐻1(𝛺;R3), but
e further assume the existence of an 𝐻2 isometric immersion to prove convergence of our FEM with regularization (15) in Bouck
t al. (2023). The existence of either 𝐻1 or 𝐻2 isometric immersions seems to be an open question, to the best of our knowledge.
inally, it is conceivable that 𝑔 is not immersible and yet there is a global minimizer 𝐲 of (9) with 𝐸𝑠𝑡𝑟[𝐲] > 0; this justifies the
equirement 𝐸𝑠𝑡𝑟[𝐲] = 0 in Corollary 1. We explore this matter computationally in Section 5.2.

.3. Inextensibility vs incompressibility

This section is dedicated to comparing the choice of 𝛼 = (det I[𝐲])−1∕2 in (29) vs. 𝛼 = 1 as in Ozenda et al. (2020). We complement
Remark 1 (comparison with (Ozenda et al., 2020)) with a pointwise statement about energy densities. We first observe that for any
𝐅 ∈ R3×2 that satisfies the metric condition I(𝐅) = 𝐅𝑇𝐅 = 𝑔(𝐱′) at 𝐱′ ∈ 𝛺, we have

𝑊𝑠𝑡𝑟(𝐱′,𝐅) = 𝑊3𝐷((𝐱′, 0), [𝐅,𝐛(𝐅)])= min 𝑊3𝐷
(

(𝐱′, 0), [𝐅, 𝐜]
)

= 0
8

𝐜∈R3∶det[𝐅,𝐜]=1
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according to Lemma 1 (stretching vs 3D energy) and Proposition 2 (target metric). Moreover, since 𝑔(𝐱′) is symmetric positive
efinite, one such matrix exists: let

𝐅 =
(√

𝑔(𝐱′)
𝟎

)

∈ R3×2

nd note that I(𝐅) = 𝑔(𝐱′) and det I(𝐅) = 𝜆. The next lemma states that our ansatz yields strictly lower 3D energy density than that
of Ozenda et al. (2020).

Lemma 2 (Energy density Gap). For any 𝐱′ ∈ 𝛺 and 𝜆 ≠ 1, we have

inf
𝐅∈R3×2 ,det I(𝐅)=1

𝑊3𝐷
(

(𝐱′, 0), [𝐅, 𝐛(𝐅)]
)

> 0

where 𝐛(𝐅) is defined in (33).

Proof. In view of Lemma 1 (stretching vs. 3D energy) and Proposition 2 (target metric), we just have to prove

inf
𝐅∈R3×2 ,det I(𝐅)=1

𝑊𝑠𝑡𝑟(𝐱′,𝐅) > 0.

For any 𝐅 ∈ R3×2, we may write I(𝐅) = 𝑎𝐦 ⊗ 𝐦 + 𝑏𝐦⟂ ⊗ 𝐦⟂ + 𝑐(𝐦⟂ ⊗ 𝐦 + 𝐦 ⊗ 𝐦⟂), and note that det I((𝐅) = 1 is equivalent to
𝑏 − 𝑐2 = 1. The resulting stretching energy density (32) written in terms of 𝐅 reads

𝑊𝑠𝑡𝑟(𝐱′,𝐅) = 𝜆
[

1 + 1
𝑠 + 1

(

(𝑠0 + 1)𝑎 + 𝑏 + 𝑠 1
𝑎

)]

− 3.

We append the constraint 𝑎𝑏− 𝑐2 = 1 to 𝑊𝑠𝑡𝑟(𝐱′,𝐅) via a Lagrange multiplier and differentiate the resulting expression to obtain the
ptimality conditions: 𝑐 = 0, 𝑎 = 𝑏−1 =

( 𝑠+1
𝑠0+1

)1∕2 = 𝜆3∕2. This implies

inf
𝐅∈R3×2 ,det I(𝐅)=1

𝑊𝑠𝑡𝑟(𝐱′,𝐅) = 2𝜆−1∕2 + 𝜆 − 3,

which is strictly positive if 𝜆 ≠ 1. □

2.4. Bending energy

Although we are concerned with a membrane model, we now briefly address the bending energy for LCNs in order to provide
motivation for the regularization 𝑅ℎ in (15), later discussed in Section 4. We refer to Bouck (2023, Section 3.4) for a complete
derivation.

The bending energy, denoted as 𝐸𝑏𝑒𝑛𝑑 [𝐲] ∶=
1
12 ∫𝛺𝑊𝑏𝑒𝑛𝑑 (𝐱′,∇𝐲, 𝐷2𝐲)𝑑𝐱′, is the second term in the asymptotic expansion 𝑡−1𝐸3𝐷 =

𝐸𝑠𝑡𝑟 + 𝑡2𝐸𝑏𝑒𝑛𝑑 + (𝑡4). While building upon the work of Ozenda et al. (2020), our approach again differs in that it relaxes the
inextensibility assumption det I[𝐲] = 1. In fact, our new ansatz is given by

𝐮(𝐱′, 𝑥3) = 𝐲(𝐱′) +
(

𝛼(𝐱′)𝑥3 + 𝛽(𝐱′)𝑥23 + 𝛾(𝐱
′)𝑥33

)

𝝂(𝐱′),

𝛽(𝐱′) = −𝐻𝛼(𝐱′)2, 𝛾(𝐱′) = 𝛼(𝐱′)2
3

(6𝐻2 −𝐾),
(37)

here 𝐾 = det(−II[𝐲]I[𝐲]−1) and 𝐻 = 1
2 tr(−II[𝐲]I[𝐲]

−1) represent the Gaussian curvature and mean curvature of the surface 𝐲(𝛺),
espectively, and are written in terms of the second fundamental form II[𝐲] = (𝜕𝑖𝑗𝐲 ⋅ 𝝂)2𝑖𝑗=1 ∈ R2×2 of 𝐲(𝛺). It is worth noting that
his ansatz satisfies det ∇𝐮(𝐱′, 𝑥3) = 1 + (𝑥33), and that it reduces to that in Ozenda et al. (2020, Eq. (59)) under the inextensibility
ssumption 𝛼(𝐱′) = 1.
We further assume that 𝑠, 𝑠0 are constants with respect to 𝐱′. We insert the ansatz (37) into the expression for 𝑊3𝐷 and collect

erms up to (𝑥23). If I[𝐲] = 𝑔, then the resulting bending energy density is given by

𝑊𝑏𝑒𝑛𝑑 (𝐱′,∇𝐲, 𝐷2𝐲) = 16𝐻2

𝐽 [𝐲]
+ 𝑠
𝑠 + 1

𝐽 [𝐲]
𝐶𝑚[𝐲]

(

8𝐻
𝐶II [𝐲]
𝐶𝐦[𝐲]

+ 4
𝐶II [𝐲]

2

𝐶𝐦[𝐲]2

)

+ 𝐶(𝑔(𝐱′)).

Here, 𝐶II [𝐲] ∶= 𝐦 ⋅ II[𝐲]𝐦 and 𝐶(𝑔(𝐱′)) depends only on the target metric 𝑔(𝐱′). It should be noted that 𝐽 [𝐲] and 𝐶𝐦[𝐲] are constants
hen I[𝐲] = 𝑔. Moreover, this bending energy 𝑊𝑏𝑒𝑛𝑑 agrees with (Ozenda et al., 2020, Eq.(74)), under the condition that I[𝐲] satisfies

the target metric specified in Ozenda et al. (2020, Eq. (17)). If, in addition 𝑠 = 0, then the middle term in 𝑊𝑏𝑒𝑛𝑑 vanishes and thus
𝑊𝑏𝑒𝑛𝑑 simplifies to

𝑊𝑏𝑒𝑛𝑑 (𝐱′,∇𝐲, 𝐷2𝐲) = 𝐶
(

tr(𝑔−1∕2 II[𝐲]𝑔−1∕2)
)2 + 𝐶(𝑔(𝐱′)), (38)

because 𝐻 reads equivalently 𝐻 = 1
2 tr(−I[𝐲]

−1∕2 II[𝐲]I[𝐲]−1∕2) and I[𝐲] = 𝑔. We stress that the constant 𝐶 depends on 𝐽 [𝐲] = det 𝑔
nd so only on 𝜆. The bending energy (38) corresponds to a term in the energy for prestrained plates (Efrati et al.; Bhattacharya
t al.) and will be useful for the discussion of Section 4.
9
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3. Asymptotic profiles of defects

We now develop a new formal asymptotic method to construct asymptotic profiles for blueprinted director fields 𝐦 with point
defects degree greater than 1, which builds on known solutions for defects of degree 1 and 1∕2. Our asymptotic method relies
on several key ingredients, including the concept of lifted surface (Plucinsky et al., 2018b), composition of director fields, and a
formal Taylor expansion. Together, these components constitute a novel procedure for deriving asymptotic profiles of solutions
when dealing with general point defect of degrees greater than 1. We are not aware of studies of shapes beyond the Gauss curvature
obtained in Modes and Warner (2011) for higher degree defects. Our approximate solutions provide insight on the complicated
shapes that can be programmed upon actuation. We reproduce these profiles computationally later in Section 5.1.1.

3.1. Lifted surfaces

Lifted surfaces for LCNs/LCEs are originally introduced in Plucinsky et al. (2018b). We adapt the idea to the reduced model (9)
in this subsection. To this end, we consider the following parameterization of lifted surfaces

𝐲𝑙(𝐱′) =
(

𝛼𝐱′, 𝜙(𝛼𝐱′)
)𝑇 ∀𝐱′ ∈ 𝛺, (39)

where 𝛼 ∈ R will be determined later. Here, 𝜙 ∶ 𝛼𝛺 → R represents the graph of the lifted surfaces. Our goal is to match the metric
𝑔 in (35) with I[𝐲𝑙], i.e,

I[𝐲𝑙] = 𝑔 = 𝜆2𝐦⊗𝐦 + 𝜆−1𝐦⟂ ⊗𝐦⟂ = (𝜆2 − 𝜆−1)𝐦⊗𝐦 + 𝜆−1𝐈2. (40)

ince (39) yields

I[𝐲𝑙] = 𝛼2∇𝜙(𝛼𝐱′)⊗ ∇𝜙(𝛼𝐱′) + 𝛼2𝐈2, (41)

(40) is valid if 𝜙 satisfies |∇𝜙| =
√

𝜆3 − 1 a.e. in 𝛺, and 𝛼 = 𝜆−1∕2, with the properties that 𝜆 > 1 and 𝜆 is constant over 𝛺. Substituting
hem into (39) gives

𝐲𝑙(𝐱′) =
(

𝐱′𝜆, 𝜙(𝐱
′
𝜆)
)𝑇
, 𝐱′𝜆 ∶= 𝜆−1∕2𝐱′. (42)

ince this deformation is an isometric immersion of the metric (35), it is also an equilibrium configuration provided 𝐦(𝐱′) =
(𝜆3 − 1)−1∕2∇𝜙(𝐱′𝜆) according to Corollary 1. We observe that the discussion so far has restricted 𝜆 > 1, which means the LCN
s being cooled. If 𝜆 < 1 and 𝜙 satisfies ±

√

𝜆−3 − 1∇𝜙(𝜆𝐱′) = 𝐦⟂(𝐱′), then a lifted surface of the form

𝐲𝑙(𝐱′) =
(

𝜆𝐱′, 𝜙(𝜆𝐱′)
)𝑇
, (43)

satisfies I[𝐲𝑙] = 𝑔. Since a lifted surface may be constructed for 𝜆 < 1 in a similar fashion as for 𝜆 > 1, we restrict the remaining
iscussion of this section to 𝜆 > 1. However, we note that the computations in Section 5.1.1 typically set 𝜆 < 1.

.2. Surfaces for defects of degree 1 and 1∕2

To set the stage, we first go over known lifted surfaces that arise from degree 1 and degree 1/2 defects. These solutions will
atch the metric 𝑔 exactly, and will help us later in constructing approximate solutions for higher order defects in Sections 3.5 and
.6.
A director field 𝐦1 with a defect of degree 1 reads

𝐦1(𝐱′) =
𝐱′
|𝐱′|

. (44)

If 𝐑1 is a rotation of ±𝜋∕2, the corresponding exact solution 𝐲1 for 𝐑1𝐦1 reads

𝐲1(𝐱′) =
(

𝐱′𝜆, 𝜙1(𝐱′𝜆)
)𝑇

(45)

here

𝜙1(𝐱′) =
√

𝜆3 − 1 (1 − |𝐱′|); (46)

𝐲1 is a cone with vertex at the origin as long as 𝜆 > 1 (Modes et al., 2011). If 𝜆 < 1, then the cone solution in (46) is no longer well
efined. In fact, the director field 𝐦1 in (44) will produce what is known as an anticone configuration (Modes et al., 2011). The
olution for a degree 1 defect will be a cone or anti-cone depending on the angle 𝛼𝑟 between 𝐦1 and 𝐱′ as well as 𝜆 (Mostajeran
t al., 2016). See Fig. 1 for the cone and anti-cone shapes computed by our algorithm.
Next, we introduce a solution induced by a director field with a degree 1∕2 defect, which will help us construct an approximate

olution for a degree 3∕2 defect in Section 3.6. Motivated by Modes and Warner (2011), we consider the director field

𝐦1∕2(𝐱′) =
{

sign(𝑥2)𝐞2, 𝑥1 ≥ 0
𝐱′ (47)
10

|𝐱′| , 𝑥1 < 0 ,
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Fig. 1. Computed solution with the blueprinted director field 𝐦1 that has degree 1 defect, 𝜆 < 1 and 𝛼𝑟 = 0 (right), 𝜋∕2 (left). We refer to Section 5.1.1 for
details of these numerical simulations.

Fig. 2. Director field 𝐦1∕2 from (47) (left), lifted surface 𝐲1∕2 from (48)–(49) for 𝜆 = 21∕3 (middle), and computed solution in a unit disc domain with 𝐦 = 𝐦1∕2
and a Dirichlet boundary condition that is compatible with (48)–(49) (right). Note that the gradient of 𝜙1∕2 is parallel to 𝐦1∕2 whereas 𝐦⟂

1∕2 is the typical director
field for a 1∕2 defect.

and note that 𝐦⟂ ⊗ 𝐦⟂ is the typical line field for a defect of degree 1∕2 at the origin. Since 𝐦1∕2(𝐱′) = 𝐦1(𝐱′) when 𝑥1 < 0, we
expect a cone configuration forming in the left half-plane. For 𝜆 > 1, an exact solution is given by the lifted surface configuration

𝐲1∕2(𝐱′) =
(

𝐱′𝜆, 𝜙1∕2(𝐱′𝜆)
)𝑇
, (48)

where

𝜙1∕2(𝐱′) =
{√

𝜆3 − 1 (1 − |𝑥2|), 𝑥1 ≥ 0
√

𝜆3 − 1 (1 − |𝐱′|), 𝑥1 < 0.
(49)

This entails stretching in the direction 𝐦1∕2 and shrinking in the perpendicular direction 𝐦⟂
1∕2, which in turn explains the shape of

the membrane in Fig. 2 for 𝑥1 > 0. We see that when 𝑥1 < 0, the map 𝐲1∕2 coincides with the cone in (45). We plot 𝐦1∕2 (left), 𝐲1∕2
(middle) and our computed solution (right) in Fig. 2.

.3. Higher degree defects: main idea and idealized construction

We now consider rotationally symmetric blueprinted director fields 𝐦𝑛 with defects of integer degree 𝑛 > 1. Such director fields
re given in polar coordinates by

𝐦𝑛(𝑟, 𝜃) =
(

cos(𝑛𝜃), sin(𝑛𝜃)
)

. (50)

e observe that the line field 𝐦𝑛 ⊗ 𝐦𝑛 given by 𝐦𝑛 in (50) exhibits a discontinuity at the origin. We denote by 𝑔𝑛 the metric
enerated by 𝐦𝑛 and arbitrary 𝜆 via (35). Ideally, the goal is to build on the solution (45) for 𝑛 = 1 and composition of defects to
btain a solution 𝐲𝑛 with degree 𝑛 defect. The main idea is as follows.
We exploit the relation to the complex-valued function 𝑓𝑛(𝑧) = 𝑒𝑖𝑛 arg(𝑧) to write

𝐦𝑛(𝐱′) = 𝑝−1
(

𝑓𝑛(𝑝(𝐱′))
)

,

here 𝑧 = |𝑧|𝑒𝑖 arg(𝑧) for any 𝑧 ∈ C and 𝑝 ∶ R2 → C is the map 𝑝(𝐱′) = 𝑥1 + 𝑖𝑥2. From this perspective, we can write a director field
ith degree 𝑛 defect as the multiplication or composition of two director fields with degree 1 and 𝑛 − 1 defects

𝑒𝑖𝑛arg(𝑧) = 𝑒𝑖arg(𝑧)𝑒𝑖(𝑛−1)arg(𝑧).

f 𝐦1 ∶= (𝜇1, 𝜇2) and 𝐦𝑛−1 ∶= (𝜉1, 𝜉2), then 𝜇1 + 𝑖𝜇2 = 𝑒𝑖 arg(𝑝(𝐦1)) and 𝜉1 + 𝑖𝜉2 = 𝑒𝑖 arg(𝑝(𝐦𝑛−1)) imply

𝑒𝑖 arg(𝑝(𝐦𝑛)) = (𝜇1 + 𝑖𝜇2)(𝜉1 + 𝑖𝜉2) = (𝜇1𝜉1 − 𝜇2𝜉2) + 𝑖(𝜇1𝜉2 + 𝜇2𝜉1).

pplying 𝑝−1 to both sides yields

𝐦𝑛 =
(

𝜇1 −𝜇2
)(

𝜉1
)

= 𝐑1𝐦𝑛−1, (51)
11

𝜇2 𝜇1 𝜉2
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where 𝐑1 ∶=
(

𝐦1,𝐦⟂
1
)

is a rotation matrix that depends on 𝐱′. In view of (40) we may write the metric 𝑔𝑛 at 𝐱′ as

𝑔𝑛 = (𝜆2 − 𝜆−1)𝐑1
(

𝐦𝑛−1 ⊗𝐦𝑛−1
)

𝐑𝑇1 + 𝜆−1𝐈2. (52)

Assuming 𝜆 > 1, we compare (52) with the metric that arises from function composition of two defects of degree 1 and 𝑛 − 1. With
′
𝜆 = 𝜆−1∕2𝐱′ already defined in (42), we consider the following modified lifted surface

𝐲𝑛(𝐱′) ∶=
(

𝐱′𝜆, 𝜙𝑛
(

𝐯(𝐱′𝜆)
)

)𝑇
. (53)

ompared to either (45) or (48) of Section 3.1, we now compose 𝜙𝑛 with an unknown function 𝐯 ∶ 𝜆−1∕2𝛺 → 𝜆−1∕2𝛺. We then apply
he chain rule to determine

I[𝐲𝑛(𝐱′)] = 𝜆−1𝐈2 + 𝜆−1∇𝐯(𝐱′𝜆)
𝑇 (∇𝜙𝑛(𝐯(𝐱′𝜆))⊗ ∇𝜙𝑛(𝐯(𝐱′𝜆))

)

∇𝐯(𝐱′𝜆). (54)

o match (52) an ideal construction would be to find 𝜙𝑛 and 𝐯 so that ∇𝜙𝑛(𝐯(𝐱′𝜆)) =
√

𝜆3 − 1 𝐦𝑛−1(𝐱′) and ∇𝐯(𝐱′𝜆) = 𝐑1(𝐱′)𝑇 . We
will find 𝜙𝑛 in terms of 𝜙𝑛−1, but before we do so we need to argue with 𝐯. An ideal 𝐯 should have a gradient whose rows are 𝐦1
and 𝐦⟂

1 . Since 𝐦1 points radially outward and 𝐦⟂
1 is tangent to concentric circles, the choice of 𝐯 in polar coordinates should be

𝐯(𝑟, 𝜃) = (𝑣1(𝑟), 𝑣2(𝜃)) in order for the rows of ∇𝐯 to be parallel to 𝐦1 and 𝐦⟂
1 . One such choice of 𝐯 is

𝐯(𝑟, 𝜃) =
(

𝑎 log 𝑟
𝑎 𝜃

)

(55)

for 𝑎 > 0, whose gradient in Euclidean coordinates is formally

∇𝐯(𝐱′) = 𝑎
|𝐱′|

𝐑1(𝐱′)𝑇 . (56)

he choice of 𝑣1(𝑟) = 𝑎 log 𝑟 is so that the scaling of 1
𝑟 matches the gradient of 𝑣2(𝜃) = 𝑎𝜃. Here, ∇𝐯 matches 𝐑1(𝐱)𝑇 up to the

scaling 𝑎
|𝐱′| , and we nearly recover the ideal 𝐯. Finding a vector field 𝐯 whose gradient equals a space-dependent rotation 𝐑1(𝐱′)𝑇

is questionable. In fact, in order for curl
(

𝜓(𝑟)𝐦⟂
1 (𝐱)

)

= 0 and potentially have an antiderivative, the only choice of 𝜓 is 𝜓(𝑟) = 𝑎
𝑟 .

Therefore, 𝜓(|𝐱′|) = 𝑎
|𝐱′| is the only scaling for which one may hope to find an antiderivative of 𝜓(|𝐱

′
|)𝐑1(𝐱′)𝑇 . The choice of 𝜙𝑛 is

esigned to compensate for this scaling. If

𝜙𝑛(𝐱′) ∶=
√

𝜆3 − 1
𝑛 𝑎𝑛−1

|𝐱′|𝑛 ⇒ ∇𝜙𝑛(𝐱′) =
|𝐱′|
𝑎

∇𝜙𝑛−1(𝐱′), (57)

which is consistent with (46) for 𝑛 = 1. Combining the inductive hypothesis

∇𝜙𝑛−1
(

𝐯(𝐱′𝜆)
)

=
√

𝜆3 − 1𝐦𝑛−1(𝐱′),

with the recursion relation (57) yields

∇
[

𝜙𝑛
(

𝐯(𝐱′𝜆)
)]

= ∇𝐯(𝐱′𝜆)
𝑇∇𝜙𝑛

(

𝐯(𝐱′𝜆)
)

=
|𝐯(𝐱′𝜆)|
|𝐱′𝜆|

𝐑1(𝐱′𝜆)∇𝜙𝑛−1
(

𝐯(𝐱′𝜆)
)

=
|𝐯(𝐱′𝜆)|
|𝐱′𝜆|

√

𝜆3 − 1𝐑1(𝐱′)𝐦𝑛−1(𝐱′) =
|𝐯(𝐱′𝜆)|
|𝐱′𝜆|

√

𝜆3 − 1𝐦𝑛(𝐱′).

This shows that we need |𝐯(𝐱′)| = |𝐱′| to close the argument, which may not be possible unless 𝐯(𝐱′) = 𝐑(𝐱′)𝑇 𝐱′ with 𝐑(𝐱′) a
rotation. This in turn would not lead to (56). Finally, the cone solution for 𝑛 = 1 satisfies ∇𝜙1(𝐱′𝜆) = ±

√

𝜆3 − 1 𝐦1(𝐱′), whereas the
ideal construction requires ∇𝜙1

(

𝐯(𝐱′𝜆)
)

= ±
√

𝜆3 − 1 𝐦1(𝐱′). The sign does not matter because 𝑔1 is invariant under 𝐦1 ↦ −𝐦1, but
here is a mismatch in the argument of ∇𝜙1 since 𝐯(𝐱′𝜆) may not be equal to 𝐱′𝜆 everywhere. We next discuss how to circumvent
hese obstructions to the idealized construction via approximation.

.4. Formal approximation of idealized construction

We now build an approximate deformation 𝐲𝑛 such that I[𝐲𝑛] ≈ 𝑔𝑛. To this end, we modify 𝐯 from (55), so that 𝐯(𝐱′𝜆) ≈ 𝐱′𝜆 near
he point 𝐱∗ = (𝑎, 0)𝑇 for 𝑎 > 0; this avoids a singularity at 𝟎. To guarantee that 𝐯(𝐱∗) = 𝐱∗ and ∇𝐯(𝐱∗) = 𝐈2, we choose

𝐯(𝐱′) =
( 𝑎

2 log(𝑥
2
1 + 𝑥

2
2) + 𝐶𝑎

𝑎 arctan(𝑥2∕𝑥1)

)

, (58)

where 𝐶𝑎 = 𝑎 − 𝑎 log(𝑎). Hence, 𝐯 satisfies (56) and the formal Taylor expansion

𝐯(𝐱′) = 𝐱∗ + (𝐱′ − 𝐱∗) + 
(

|𝐱′ − 𝐱∗|2
)

= 𝐱′ + 
(

|𝐱′ − 𝐱∗|2
)

,

or equivalently the following expression in the rescaled coordinates 𝐱′𝜆
′ ′ ( ′ ∗ 2)
12

𝐯(𝐱𝜆) = 𝐱𝜆 +  |𝐱 − 𝐱 | , (59)
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Fig. 3. Approximate lifted surface for degree 2 defect (left) and computed solution with the director field 𝐦2 in Section 5.1.1 (right). Our derivation requires
1 > 0, but the solution should be symmetric across the 𝑥2𝑥3 plane, which is why we plot a reflected solution for 𝑥1 < 0. We recover two bumps, consistent
ith the simulation but at the cost of a singularity at the origin.

ecause 𝜆 = (1). Using (59), we approximately satisfy the three crucial requirements

|𝐯(𝐱′𝜆)|
2 = |𝐱′𝜆|

2 + (|𝐱′ − 𝐱∗|2),

𝐦1(𝐯(𝐱′𝜆)) = 𝐦1(𝐱′𝜆) + (|𝐱′ − 𝐱∗|2),

∇
[

𝜙𝑛
(

𝐯(𝐱′𝜆)
)]

=
√

𝜆3 − 1𝐦𝑛(𝐱′) + (|𝐱′ − 𝐱∗|2).

Inserting these formal approximations into (54) yields a map 𝐲𝑛 defined by (53) for 𝑛 ≥ 2 that approximately satisfies the metric
onstraint in a vicinity of 𝐱∗

I[𝐲𝑛(𝐱′)] = 𝑔𝑛(𝐱′) + (|𝐱′ − 𝐱∗|2). (60)

3.5. Approximate surfaces for defects of degree two

We now specialize the above construction for 𝑛 = 2. In view of (57), we realize that

𝜙2(𝐱′) ∶=
√

𝜆3 − 1
2𝑎

|𝐱′|2 ⇒ ∇𝜙2(𝐱′) =
√

𝜆3 − 1
𝑎

𝐱′ =
√

𝜆3 − 1
𝑎

|𝐱′|𝐦1(𝐱′),

Hence, (53) gives an approximate map 𝐲2 with

𝜙2
(

𝐯(𝐱′)
)

=

√

𝜆3 − 1
2𝑎

(

(𝑎
2
log

(

𝑥21 + 𝑥
2
2
)

+ 𝑎 − 𝑎 log 𝑎
)2

+ 𝑎2arctan2
(𝑥2
𝑥1

)

)

,

for 𝑥1 > 0 and any 𝑎 > 0 not be too large so that 𝐲2 captures the correct defect configuration. We display 𝜙◦𝐯 for 𝑎 = .75, 𝜆 = 1.1 in
Fig. 3, reflected for 𝑥1 < 1 to account for symmetry, along with the computed solution from Section 5.1.1.

3.6. Approximate surface for degree 3/2 defect

We now apply the above approach of composing defects, but for a defect of degree 3∕2. We intend to explain the intriguing
‘‘bird beak’’ shape observed in our computations displayed in Figs. 4 and 5. We first observe that the explicit expressions (48) and
(49) for a defect of degree 1∕2 do not quite conform with (50) for 𝑛 = 1∕2, except in the vicinity of the origin. Motivated by the
ecursion relation (51), we still write the degree 3∕2 director field as

𝐦3∕2(𝐱′) = 𝐑1(𝐱′)𝐦1∕2(𝐱′), (61)

ith 𝐦1∕2 given in (47). We now construct an approximate map 𝐲3∕2 such that

I[𝐲3∕2(𝐱′)] ≈ 𝑔3∕2(𝐱′) = (𝜆2 − 𝜆−1)𝐦3∕2(𝐱′)⊗𝐦3∕2(𝐱′) + 𝜆−1𝐈2,

according to (52) for 𝜆 > 1. The deformation 𝐲3∕2 satisfies in turn (53), namely

𝐲3∕2(𝐱′) =
(

𝐱′𝜆, 𝜙3∕2(𝐯(𝐱′𝜆))
)𝑇 (62)

with 𝜙3∕2 related to 𝜙1∕2 via (57). Since we are interested in an approximation for 𝑥1 > 0 to capture the ‘‘bird beak’’ structure, we
educe from (49)

∇𝜙 (𝐱′) = |𝐱′|
∇𝜙 (𝐱′) ⇒ ∇𝜙 (𝐱′) =

√

𝜆3 − 1
|𝐱′| sign(𝑥 ) 𝐞 .
13
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Fig. 4. Contour plot of approximate lifted surface for degree 3/2 defect for 𝑎 = .75 and 𝑥1 > 0 (left) and computational result for a degree 3/2 defect obtained
in Section 5.1.1. The profile matches the computed ‘‘bird beak’’ shape. To see this, notice that contour lines pinch off as 𝑥1 → 0. As a result, the lifted surface
gets steeper near the origin. This helps explains the ‘‘bird beak’’ shape.

Unfortunately, this ideal relation is incompatible because curl
(
|𝐱′𝜆|
𝑎 sign(𝑥2)𝐞2

)

≠ 0 and we need to amend the construction of 𝜙3∕2 by
approximation. To this end, we define for 𝑥1 > 0 the following modification of 𝜙3∕2

𝜙3∕2(𝐱′) =
√

𝜆3 − 1
(

1 − 1
𝑎 ∫

|𝑥2|

0

√

𝑠2 + 𝑥21 𝑑𝑠
)

, (63)

whose gradient is

∇𝜙3∕2(𝐱′) = −
√

𝜆3 − 1
|𝐱′|
𝑎
sign(𝑥2)𝐞2 −

√

𝜆3 − 11
𝑎

⎛

⎜

⎜

⎜

⎝

∫

|𝐱2|

0

𝑥1
√

𝑠2 + 𝑥21

𝑑𝑠

⎞

⎟

⎟

⎟

⎠

𝐞1.

xploiting that the integrand in the second term is bounded by 1 yields

∇𝜙3∕2(𝐱) = −
√

𝜆3 − 1
|𝐱|
𝑎
sign(𝑥2) 𝐞2 −

√

𝜆3 − 1
𝑎

(|𝑥2|).

To approximate the first fundamental form I[𝐲3∕2], we recall (54) and compute

∇𝐯(𝐱′𝜆)
𝑇∇𝜙(𝐯(𝐱′𝜆)) =

√

𝜆3 − 1𝐑1(𝐱′𝜆)
|𝐯(𝐱′𝜆)|
|𝐱′𝜆|

sign(𝐯(𝐱′𝜆)2)𝐞2 + (|𝐯(𝐱′𝜆)2|),

where 𝐯(𝐱′𝜆)2 = 𝑎 arctan(𝑥2∕𝑥1) denotes the second component of 𝐯(𝐱′𝜆) written in (58). We thus deduce sign(𝐯(𝐱
′
𝜆)2) = sign(𝑥2) for

𝑥1 > 0 and, employing that 𝐦1∕2(𝐱) = sign(𝑥2) 𝐞2 for 𝑥1 > 1 along with (61), we arrive at

∇𝐯(𝐱′𝜆)
𝑇∇𝜙(𝐯(𝐱′𝜆)) =

√

𝜆3 − 1𝐦3∕2(𝐱′) + (|𝑥2|) + (|𝐱′ − 𝐱∗|2),

because arctan(𝑥2∕𝑥1) = (|𝑥2|) for 𝑥1 away from 0. The expression (62) for 𝐲3∕2 with 𝜙3∕2 defined in (63) gives an approximate
hape profile that satisfies

I[𝐲3∕2(𝐱′)] = 𝑔3∕2(𝐱′) + (|𝑥2|) + (|𝐱 − 𝐱∗|2).

The contour plot of the corresponding lifted surface 𝜙3∕2
(

𝐯(𝐱′𝜆)
)

is displayed in Fig. 4 (left) for 𝑎 = .75. We note that the profile has
similar bird beak shape to the computational result reported in Fig. 4 (right) and Fig. 5. For the 𝑥1 < 0, 𝐦1∕2(𝐱′) = 𝐦1(𝐱′), and
ne can apply the arguments in Section 3.5 to get the asymptotic profile for 𝑥1 < 0.
The compositional method explains why we should expect the intriguing ‘‘bird beak’’. We now provide a heuristic explanation.

f 𝑎 is fixed but 𝑥1 is small, we drop 𝑥1 in the integrand of (63), and 𝜙3∕2(𝐱′) behaves like 𝜙̃3∕2(𝐱′) ∶=
√

𝜆3 − 1
(

1 − 1
2𝑎 |𝑥2|

2). We
see that level sets of this function are straight lines |𝑥2| = constant that increase as |𝑥2| decreases to 0, very much like level sets of
𝜙1∕2(𝐱′) in (49) for 𝑥1 > 0. On the other hand, the lifted surface 𝜙3∕2(𝐯(𝐱′𝜆)) from (62) behaves like

𝜙̃3∕2(𝐯(𝐱′𝜆)) =
√

𝜆3 − 1
(

1 − 𝑎
2
arctan

(

|𝑥2|
𝑥1

)2)
, (64)

whose level sets are radial lines |𝑥2|
𝑥1

= constant that increase as |𝑥2|
𝑥1

decreases to 0. Therefore, the lifted surface 𝜙̃3∕2(𝐯(𝐱′𝜆)) pinches
ff at the origin in the sense that it develops a discontinuity. In Section 3.3 we advocated that a defect of degree 3∕2 could be
iewed as a composition of degree 1∕2 and 1 defects. The effect of the degree 1 defect on (48) is to twist or compress the horizontal
level sets of 𝜙1∕2(𝐯(𝐱′𝜆)) into radial level sets of 𝜙̃3∕2(𝐯(𝐱′𝜆)). This is due to the action of the vector-valued map 𝐯 and boils down to
the replacement of |𝑥2| in (49) by

𝑎
2 arctan

(

|𝑥2|
𝑥1

)2 in (64).

. Finite element method with regularization

In this section, we introduce a finite element discretization to (9) and a nonlinear iterative scheme to solve the ensuing nonconvex
14

iscrete minimization problem.
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Fig. 5. Director fields with point defects of degree 𝑛. First row displays 𝑛 = 2, 3∕2,−1 and 𝛼 = 0 (from left to right). Each panel shows experimental and expected
configurations from McConney et al. (2013) as well as two views of the computed solution. Second row depicts experimental pictures from de Haan et al.
(2012) and our simulations of the cone structure 𝑛 = 1, 𝛼 = 𝜋

2
(left) and anti-cone structure 𝑛 = 1, 𝛼 = 0 (right). The numerical model reproduces experimental

observations well.

4.1. Discretization

We consider a shape-regular family {ℎ} of simplicial meshes of 𝛺 parametrized by the mesh size ℎ = max𝑇∈ℎ ℎ𝑇 , where
ℎ𝑇 = diam(𝑇 ). We denote by ℎ the set of vertices of ℎ, and by ℎ the set of interior edges of ℎ.

For any 𝑇 ∈ ℎ, we denote by 1(𝑇 ) the space of first-degree polynomials on 𝑇 and byℎ(𝑇 ) the set of vertices of 𝑇 . We consider
the space of ℎ-piecewise affine and globally continuous vector-valued functions

Vℎ ∶=
{

𝐯ℎ ∈ 𝐶0(𝛺;R3) ∶ 𝐯ℎ|𝑇 ∈ [1(𝑇 )]3 for all 𝑇 ∈ ℎ
}

, (65)

and note that Vℎ ⊂ 𝐻1(𝛺;R3). We write V∗
ℎ to designate the dual space of Vℎ and denote by 𝐼ℎ the nodal Lagrange interpolation

operator 𝐼ℎ ∶ 𝐶0(𝛺;R3) → Vℎ.
We now introduce the jump operators. To this end, let 𝐧𝑒 be a unit normal to 𝑒 ∈ ℎ (the orientation is chosen arbitrarily but is

fixed once for all). Given a scalar piecewise polynomial function 𝑣ℎ over ℎ and 𝑒 ∈ ℎ, we set

[𝑣ℎ] 𝑒 ∶= 𝑣−ℎ − 𝑣+ℎ , (66)

where 𝑣±ℎ (𝐱
′) ∶= lim𝑠→0+ 𝑣ℎ(𝐱′ ± 𝑠𝐧𝑒) for 𝐱′ ∈ 𝑒; jumps of vector-valued and tensor-valued functions are computed component-wise.

Note that for 𝐯ℎ ∈ Vℎ, we have [𝐯ℎ] 𝑒 = 0 for any 𝑒 ∈ ℎ, while [∇𝐯ℎ] 𝑒 ≠ 0 in general.
We propose the discrete energy 𝐸ℎ ∶ Vℎ → R to be

𝐸ℎ[𝐲ℎ] = 𝐸𝑠𝑡𝑟[𝐲ℎ] + 𝑅ℎ[𝐲ℎ], (67)

here the first term is the stretching energy defined in (9) and (10). 𝑅ℎ is the regularization term defined in (15), namely

𝑅ℎ[𝐲ℎ] ∶=
∑

𝑒∈ℎ
∫𝑒
𝑐𝑟ℎ𝑒|[∇𝐲ℎ]|2, (68)

and allows for a non-negative regularization mesh function 𝑐𝑟 ∶ ℎ → R , which we set to zero on certain edges to accommodate
folding in a pre-specified pattern. We expand on this later in Section 4.2 below. Here, ℎ𝑒 = diam(𝑒) represents the length of edge 𝑒.

This is a crucial computational feature of the discrete counterpart of (9), which reads

𝐲∗ℎ ∈ argmin
𝐲ℎ∈Vℎ

𝐸ℎ[𝐲ℎ]. (69)

.2. Regularization

This section is dedicated to a discussion of the regularization term 𝑅ℎ in (68). We add 𝑅ℎ to the stretching energy 𝐸𝑠𝑡𝑟, given in
(9) and (10), to deal with the lack of weak lower semi-continuity of 𝐸𝑠𝑡𝑟. We refer to our accompanying paper (Bouck et al., 2023)
or a detailed discussion of the lack of weak lower semi-continuity and other possible strategies to treat it. We also prove in Bouck

69).
15

t al. (2023) convergence of discrete minimizers of (
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We first point out that, in the context of discontinuous Galerkin (DG) methods (for instance (Cockburn et al., 2012; Bonito et al.,
023)), a discrete 𝐻2 semi-norm for functions in Vℎ is defined as

‖𝐷2
ℎ𝐲ℎ‖

2
𝐿2(𝛺;R3×2×2)

+
∑

𝑒∈ℎ

ℎ−1𝑒 ‖[∇𝐲ℎ]‖2𝐿2(𝑒;R3×2)
+

∑

𝑒∈ℎ

ℎ−3𝑒 ‖[𝐲ℎ]‖2𝐿2(𝑒;R3)
,

where 𝐷2
ℎ denotes a broken Hessian on every element. Since 𝐲ℎ ∈ Vℎ is piecewise affine and continuous, only the second term

emains while other terms vanish. This motivates our choice of regularization 𝑅ℎ[𝐲ℎ] in (68), which is proportional to this discrete
2 semi-norm provided 𝑐𝑟 is uniformly positive and ℎ is quasi-uniform. Moreover, we can regard the ratio ℎ−1𝑒 |[∇𝐲ℎ]| between
umps of constant ∇𝐲ℎ in contiguous elements to 𝑒 ∈ ℎ to the length of 𝑒 as a discrete Hessian of 𝐲ℎ associated to 𝑒. The following
efinition of element-wise norm of the Hessian reveals the significance of 𝑅ℎ[𝐲ℎ]:

∫𝑇
|

|

|

𝐻ℎ[𝐲ℎ]
|

|

|

2
∶= ℎ𝑇 ∫𝜕𝑇

|[∇𝐲ℎ]|2

ℎ2𝑇
⇒ 𝑅ℎ[𝐲ℎ] ≈

∑

𝑇∈ℎ

𝑐𝑟ℎ
2
𝑇 ∫𝑇

|

|

|

𝐻ℎ[𝐲ℎ]
|

|

|

2
.

We emphasize that the full reduced model of LCNs derived in Bouck (2023) and reported in Section 2.4 reads 𝐸𝑠𝑡𝑟 + 𝑡2𝐸𝑏𝑒𝑛𝑑 ,
here the principal term of the bending energy density 𝑊𝑏𝑒𝑛𝑑 in the case 𝑠 = 0 in (38) is given by

𝑊𝑏𝑒𝑛𝑑 [𝐲] ∶= 𝐶 ∫𝛺
|

|

|

tr(𝑔−
1
2 II[𝐲]𝑔−

1
2 )||
|

2
. (70)

We recall that II[𝐲] = (𝜕𝑖𝑗𝐲 ⋅𝝂)2𝑖𝑗=1 ∈ R2×2 stands for the second fundamental form of the surface 𝐲(𝛺). Moreover, (70) is a component
of the bending energy for prestrained plates (Efrati et al.; Bhattacharya et al.), and it is important to realize that this energy (70) can
be equivalently written as (Bonito et al., 2022, 2023)

𝑊𝑏𝑒𝑛𝑑 [𝐲] = ∫𝛺
𝑐1
|

|

|

tr(𝑔−
1
2𝐷2𝐲𝑔−

1
2 )||
|

2
+ 𝑐2(𝑔),

at the expense of a term 𝑐2(𝑔) that only depends on the given data 𝑔 but not on 𝐲, whence neglecting 𝑐2(𝑔) does not change the
minimizers; we refer to Bartels (2015), Bartels et al. (2017) for similar computations. This reveals that the effect of bending energy
∫𝛺𝑊𝑏𝑒𝑛𝑑 [𝐲] with the density defined in (70) is similar to the simplified energy ∫𝛺 |𝐷2𝐲|2 advocated in Plucinsky et al. (2018b, Eq.
(1.11)).

This discussion provides physical justification for the structure of the regularization 𝑅ℎ[𝐲ℎ] in (68): for 𝑐𝑟 > 0 constant and ℎ
quasi-uniform, we realize that

𝑅ℎ[𝐲ℎ] ≈ 𝑐𝑟ℎ
2
∫𝛺

|

|

|

𝐻ℎ[𝐲ℎ]
|

|

|

2

mimics 𝑡2 ∫𝛺 |𝐷2𝐲|2 with ℎ being interpreted as a discrete thickness parameter. Moreover, allowing 𝑐𝑟 to vanish over a polygonal
𝛤 made of edges of ℎ mimics discretely a material amenable to folding across 𝛤 (Bartels et al., 2022a,b). We prove the following
statement about convergence of minimizers of (69) in Bouck et al. (2023).

Theorem 1 (Convergence of Discrete Minimizers). Let 𝛺∖𝛤 = ∪𝐼𝑖=1𝛺𝑖 be a decomposition of 𝛺 into disjoint subdomains 𝛺𝑖 due to the
creases 𝛤 , which are matched by the mesh ℎ. Let the regularization parameter 𝑐𝑟 vanish on all edges contained in 𝛤 . Let the target metric
𝑔 in (35) admit an isometric immersion 𝐲 ∈ 𝑊 1,∞(𝛺;R3), i.e. I[𝐲] = 𝑔 a.e. in 𝛺, that satisfies 𝐲|𝛺𝑖 ∈ 𝐻2(𝛺𝑖;R3) ∩ 𝐶1(𝛺𝑖;R3) for all
𝑖 = 1,… , 𝐼 . Then there is a constant 𝛬 > 0 such that discrete minimizers 𝐲∗ℎ of (69) satisfy the energy scaling

𝐸ℎ[𝐲∗ℎ] ≤ 𝛬ℎ2. (71)

n addition, if a minimizer 𝐲∗ℎ satisfies (71) and 𝐲∗ℎ ∶= |𝛺|

−1 ∫𝜔 𝐲
∗
ℎ is its meanvalue, then there exists a subsequence (not relabeled) such

that 𝐲∗ℎ − 𝐲∗ℎ → 𝐲∗ converges strongly in 𝐻1(𝛺;R3) to a function 𝐲∗ ∈ 𝑊 1,∞(𝛺;R3), that satisfies 𝐲|𝛺𝑖 ∈ 𝐻2(𝛺𝑖;R3) for all 𝑖 = 1,… , 𝐼 and
I[𝐲∗] = 𝑔 a.e. in 𝛺, or equivalently

𝐸𝑠𝑡𝑟,𝛤 [𝐲∗] = ∫𝛺∖𝛤
𝑊𝑠𝑡𝑟(𝐱′,∇𝐲∗)𝑑𝐱′ = 0. (72)

We regard (68) as a mechanism for equilibria selection. In the absence of regularization, i.e. 𝑐𝑟 = 0 in (68), minimizers 𝐲∗ℎ ∈ Vℎ
of (69) can exhibit extra bumps and wrinkling which have negligible influence on the stretching energy. This is a manifestation of
lack of convexity of 𝑊𝑠𝑡𝑟, and thus of uniqueness, and leads to the formation of micro-structure (Bartels, 2015). In our model the
liquid crystal director is frozen, so we expect mechanical wrinkling. We point to Bouck et al. (2023, Example 2.8) for an explicit
construction showing the possibility of wrinkling. This topic is well studied in nonlinear elasticity, both theory and computation,
but it is not the focus of this paper. We resort to (68) to suppress numerical oscillations in Section 5.1.2 as well as to allow for
folding in the development of compatible origami-structures in Section 5.1.3 and incompatible origami-structures in Section 5.2.
The latter lead to weak limits 𝑦∗ ∈ 𝐻1(𝛺;R3) with 𝐸𝑠𝑡𝑟[𝐲∗] > 0, so they are not minimizers of the stretching energy 𝐸𝑠𝑡𝑟.

4.3. Iterative solver

We design a nonlinear discrete gradient flow to find a solution to (69) in this subsection. Due to the stretching energy being
non-quadratic and non-convex, we end up with a nonlinear non-convex discrete problem to solve.
16
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4.3.1. Nonlinear gradient flow.
Implicit gradient flows are robust methods to find stationary points of energy functionals 𝐸 regardless of their convexity, and

have the advantage of built-in energy stability; they belong to the class of energy descent methods. Consider the auxiliary evolution
equation 𝜕𝑡𝐴[𝐲]+𝛿𝐸[𝐲] = 0, where 𝐴 is a symmetric elliptic operator, 𝛿𝐸[𝐲] stands for the first variation of 𝐸, and 𝑡 is a pseudo-time.
The backward Euler discretization reads: given 𝐲𝑛 solve for 𝐲𝑛+1

1
𝜏
(

𝐴𝐲𝑛+1 − 𝐴𝐲𝑛
)

+ 𝛿𝐸[𝐲𝑛+1] = 0,

where 𝜏 is the time-step discretization parameter. The weak formulation of this semi-discrete equation is equivalent to minimizing
the augmented functional

𝐿𝑛[𝐲] ∶= 1
2𝜏

‖𝐲 − 𝐲𝑛‖2𝐴 + 𝐸[𝐲] (73)

where ‖ ⋅ ‖𝐴 is the norm associated with the operator 𝐴, i.e. ‖𝐲‖2𝐴 ∶= ⟨𝐴𝐲, 𝐲⟩. This can be reinterpreted as finding a minimizer of 𝐸
constrained to be closed to 𝐲𝑛; so the first term in (73) penalizes the deviation of 𝐲 from 𝐲𝑛 in the 𝐴-norm.

Since the stretching energy 𝐸𝑠𝑡𝑟 from (9) and (10) is formulated in 𝐻1(𝛺;R3), we choose 𝐴 = 𝐼 −𝛥 and the corresponding norm
to be the 𝐻1(𝛺;R3)-norm. This choice has the property of making 𝐿𝑛ℎ convex in 𝐻

1(𝛺;R3) provided 𝜏 is sufficiently small and
det I[𝐲𝑛ℎ] is bounded away from 0. With this in mind, we devise a discrete counterpart of (73) to find stationary points of 𝐸ℎ in (67)
and, under some additional assumptions on the current iterate 𝐲𝑛ℎ ∈ Vℎ to be discussed below, solve (68). We thus minimize

𝐿𝑛ℎ[𝐲ℎ] ∶=
1
2𝜏

‖𝐲ℎ − 𝐲𝑛ℎ‖
2
𝐻1(𝛺;R3)

+ 𝐸ℎ[𝐲ℎ], (74)

whose Euler–Lagrange equation results from computing the first order variation of 𝐿𝑛ℎ[𝐲ℎ] in the direction 𝐯ℎ

𝛿𝐿𝑛ℎ[𝐲ℎ](𝐯ℎ) =
1
𝜏
(𝐲ℎ, 𝐯ℎ)𝐻1(𝛺;R3) + 𝛿𝐸ℎ[𝐲ℎ](𝐯ℎ) − 𝐹 𝑛ℎ (𝐯ℎ) = 0 ∀ 𝐯ℎ ∈ Vℎ, (75)

where 𝐹 𝑛ℎ ∈ V∗
ℎ is defined as

𝐹 𝑛ℎ (𝐯ℎ) ∶=
1
𝜏
(𝐲𝑛ℎ, 𝐯ℎ)𝐻1(𝛺;R3),

nd

𝛿𝐸ℎ[𝐲ℎ](𝐯ℎ) = 𝛿𝐸𝑠𝑡𝑟[𝐲ℎ](𝐯ℎ) + 𝛿𝑅ℎ[𝐲ℎ](𝐯ℎ).

Moreover, given a tolerance tol1 > 0, we stop the nonlinear gradient flow when
1
𝜏
|

|

|

𝐸ℎ[𝐲𝑁ℎ ] − 𝐸ℎ[𝐲𝑁−1
ℎ ]||

|

< tol1

is satisfied for some 𝑁 > 0. The function 𝐲𝑁ℎ ∈ Vℎ is the desired output. We next discuss how we solve the nonlinear Eq. (75).
We solve each step 𝑛 of (75) by a Newton-type sub-iteration: letting 𝐲𝑛,0ℎ ∶= 𝐲𝑛ℎ and assuming 𝐲𝑛,𝑘ℎ ∈ Vℎ, we solve for the increment

𝛿𝐲𝑛,𝑘ℎ ∈ Vℎ

𝛿2𝐿𝑛ℎ[𝐲
𝑛,𝑘
ℎ ](𝛿𝐲𝑛,𝑘ℎ , 𝐯ℎ) = −𝛿𝐿𝑛ℎ[𝐲

𝑛,𝑘
ℎ ](𝐯ℎ) ∀ 𝐯ℎ ∈ Vℎ, (76)

In Theorem 2 we summarize properties of this Newton iteration, and refer to Bouck et al. (2022, Appendix A) for complete proofs
and discussion.

Theorem 2 (Quadratic Estimate). For any 𝑛 ≥ 0 and 𝑘 ≥ 0, suppose 𝐲𝑛,𝑘ℎ satisfies

0 < 𝑐1 ≤ 𝜆1[𝐲
𝑛,𝑘
ℎ ] ≤ 𝜆2[𝐲

𝑛,𝑘
ℎ ] ≤ 𝑐2 ∀ 𝑇 ∈ ℎ, (77)

where 𝜆1[𝐲
𝑛,𝑘
ℎ ] and 𝜆2[𝐲

𝑛,𝑘
ℎ ] are eigenvalues of I[𝐲𝑛,𝑘ℎ ]. If 𝜏 is smaller than a constant depending only on 𝑐1, 𝑐2, 𝜆,𝐦, then (76) is well-posed

and 𝛿𝐲𝑛,𝑘ℎ is the unique solution. Moreover, if 𝐲𝑛,𝑘+1ℎ ∶= 𝐲𝑛,𝑘ℎ + 𝛿𝐲𝑛,𝑘ℎ , then

‖𝐲𝑛,𝑘+1ℎ − 𝐲𝑛,∗ℎ ‖𝐻1(𝛺;R3) ≤
𝐶
2ℎ

‖𝐲𝑛,𝑘ℎ − 𝐲𝑛,∗ℎ ‖

2
𝐻1(𝛺;R3)

, (78)

here 𝐶 is a constant that depends on 𝑐1, 𝑐2, 𝜆 and 𝐲𝑛,∗ℎ is a local minimizer of 𝐿𝑛ℎ.

Theorem 2 yields quadratic convergence under a smallness assumption on 𝜏. To see this, let 𝐲𝑛,0ℎ satisfy (77) and

‖𝐲𝑛,0ℎ − 𝐲𝑛,∗ℎ ‖𝐻1(𝛺;R3) ≤ 𝐶ℎ. (79)

hen for 𝑘 ≥ 0 an induction argument combined with (78) yields

‖𝐲𝑛,𝑘+1ℎ − 𝐲𝑛,∗ℎ ‖𝐻1(𝛺;R3) ≤
1
2
‖𝐲𝑛,𝑘ℎ − 𝐲𝑛,∗ℎ ‖𝐻1(𝛺;R3) < 𝐶ℎ. (80)

This implies that the sub-iterations 𝐲𝑛,𝑘ℎ remain within an 𝐻1-ball of radius 𝐶ℎ centered at 𝐲𝑛,∗ℎ and converge to 𝐲𝑛,∗ℎ ; in view of (78)
this convergence is quadratic.
17
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It remains to check whether the initialization condition (79) is realistic. Assume that 𝐸ℎ[𝐲0ℎ] ≤ 𝐴0 for a constant 𝐴0 > 0 and
ecall that 𝐲𝑛,0ℎ = 𝐲𝑛ℎ to deduce

1
2𝜏

‖𝐲𝑛,∗ℎ − 𝐲𝑛ℎ‖
2
𝐻1(𝛺;R3)

≤ 𝐿𝑛ℎ[𝐲
𝑛,∗
ℎ ] ≤ 𝐿𝑛ℎ[𝐲

𝑛
ℎ] = 𝐸ℎ[𝐲𝑛ℎ] ≤ 𝐸ℎ[𝐲0ℎ] ≤ 𝐴0.

Consequently, if 𝜏 ≤ 𝐶2ℎ2

2𝐴0
then (79) is valid. However, quantitative numerical experiments in our accompanying paper (Bouck et al.,

023) reveal that the largest admissible value of 𝜏 is independent of ℎ. This is strikingly better than our theoretical prediction.

5. Computing shapes: Defects and origami structures

We have implemented Algorithm 1 below using the multiphysics finite element software Netgen/NGSolve (Schöberl et al., 2017),
hereas the visualization relies on ParaView (Ahrens et al., 2005).

Algorithm 1: (nonlinear gradient flow scheme)
Given a pseudo time-step 𝜏 > 0 and target tolerances tol1 and tol2;
Choose initial guess 𝐲0ℎ ∈ Vℎ;
while 𝜏−1||

|

𝐸ℎ[𝐲𝑛+1ℎ ] − 𝐸ℎ[𝐲𝑛ℎ]
|

|

|

> tol1 do
Set 𝐲𝑛,0ℎ = 𝐲𝑛ℎ, 𝑘 = 0;

while |

|

|

𝛿𝐿𝑛ℎ[𝐲
𝑛,𝑘
ℎ ](𝛿𝐲𝑛,𝑘ℎ )||

|

1∕2
> tol2 do

Solve (76) for 𝛿𝐲𝑛,𝑘ℎ ;
Update 𝐲𝑛,𝑘+1ℎ = 𝐲𝑛,𝑘ℎ + 𝛿𝐲𝑛,𝑘ℎ , 𝑘 = 𝑘 + 1;

end
Update 𝐲𝑛+1ℎ ∶= 𝐲𝑛,𝑘ℎ , where 𝑘 is the index of last sub-iterate.

end

We recall that global minimizers to (9) are characterized by the pointwise metric relation (36), namely I[𝐲] = 𝑔. Therefore, if
∞
ℎ denotes the output of Algorithm 1, we quantify the deviation of I[𝐲∞ℎ ] from the target metric 𝑔 by

𝑒1ℎ[𝐲
∞
ℎ ] ∶= ‖

‖

‖

I[𝐲∞ℎ ] − 𝑔‖‖
‖𝐿1(𝛺;R2×2)

, (81)

and employ it as an error indicator between the approximate solution 𝐲∞ℎ and an exact global minimizer to (9).
We report quantitative properties of Algorithm 1 in Bouck et al. (2023), namely

• The metric deviation 𝑒1ℎ[𝐲∞ℎ ] converges as (ℎ).
• The energy 𝐸ℎ[𝐲∞ℎ ] converges as (ℎ2) when 𝐦 is smooth.
• The energy 𝐸ℎ[𝐲∞ℎ ] converges sub-quadratically when 𝐦 has a point defect.

The focus of this section, instead, is on the ability of Algorithm 1 to capture quite appealing and practical physical phenomena
related to shape formation. In Section 5.1, we validate our discrete reduced model (69) against configurations from the literature
such as existing laboratory experiments or modeling results. In Section 5.2, we further explore incompatible nonisometric origami
and present novel simulations for LCNs, which offer valuable insights for laboratory experiments.

5.1. Benchmark shapes: defects and compatible nonisometric origami

We validate our reduced mathematical model and computational method against known equilibrium configurations originating
from defects and creases.

5.1.1. Rotationally symmetric director fields and defects
Let 𝛺 ⊂ R2 be the unit disc and, motivated by Modes et al. (2011), White and Broer (2015), McConney et al. (2013) and Chung

t al. (2017), let the blueprinted director field 𝐦 ∈ S1 be a rotation of (50) by an angle 𝛼 with degree 𝑛

𝐦(𝑟, 𝜃) =
(

cos(𝑛(𝜃 + 𝛼)), sin(𝑛(𝜃 + 𝛼))
)

; (82)

is discontinuous at the origin. We run Algorithm 1 with several values of 𝑛 and 𝛼 and display the output in Fig. 5. We use physical
nd numerical parameters

𝑠 = 0.1, 𝑠0 = 1; tol1 = 10−6, tol2 = 10−10, 𝜏 = 0.1, ℎ = 1∕32, 𝑐𝑟 = 1.

e initialize Algorithm 1 with 𝐲0ℎ = 𝐼ℎ𝐲0, where

𝐲0(𝐱) =
(

𝐱, 0.05(1 − |𝐱|2)
)

𝐱 ∈ 𝛺 (83)

s a small perturbation of a flat disc (i.e. 𝐲(𝐱) = (𝐱, 0)), and 𝐼ℎ ∶ 𝐶0(𝛺;R3) → Vℎ is the Lagrange interpolation operator. Metric
eviations 𝑒1ℎ[𝐲

∞
ℎ ] and energies 𝐸ℎ[𝐲∞ℎ ] are at the scale of 10−2 and 10−3 respectively, indicating that Algorithm 1 produces quite
18

ccurate approximations to global minimizers of (9).
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Fig. 6. Director fields with point defects of degree ±5. Left: 𝑛 = 5 and 𝑐𝑟 = 1. Middle: 𝑛 = 5 and 𝑐𝑟 = 0.2 (notice oscillations close to the origin). Right: 𝑛 = −5 and
𝑐𝑟 = 1. Left and middle computations illustrate the role of regularization.

Fig. 5 illustrates the ability of Algorithm 1, namely the reduced discrete model (69), to capture physical phenomena. Comparing
the computed shapes with experimental and expected configurations in Modes et al. (2011) and White and Broer (2015), we find
striking similarities.

5.1.2. High order defects and role of regularization
In Fig. 6, we present computed shapes corresponding to director fields (82) with 𝑛 = ±5 and 𝛼 = 0; otherwise the setting

s the same as in Section 5.1.1. It is worth noting that conducting laboratory experiments for high-order defects poses practical
hallenges (Baumann and White, 2023). Conversely, our computational method and model offer a convenient and efficient means
f predicting these shapes. Our results align with the observed trend found in McConney et al. (2013): higher-order defects degrees
orrelate with larger number of oscillations within the disc. However, a quantitative study of wave-lengths seems to be lacking.
Furthermore, we investigate the computational impact of the regularization parameter 𝑐𝑟 in Fig. 6 (left and middle) by comparing

𝑟 = 1 and 𝑐𝑟 = 0.2 for degree 𝑛 = 5. We observe that for 𝑐𝑟 small, self-similar wrinkling patterns emerge around the origin, where
he point defect is located. Conversely, a larger value of 𝑐𝑟 eliminates these wrinkles, thereby providing further support for the
nterpretation in Section 4.2 of regularization as a pseudo bending energy term. The nature of these wrinkles, whether numerical
oscillations or physical microstructures, is an open question worth investigating.

5.1.3. Compatible nonisometric origami
Origami are ancient structures made of folding thin sheets. They have recently attracted growing interest in the area of materials

science for its practical value in the design of medical devices, deployable space structures and robotics (Zhao et al., 2022). In this
ection we explore whether our discrete model (69) with regularization is able to capture such structures.
Motivated by Plucinsky et al. (2016, 2018b,a), we embark on a computational study of nonisometric origami formed by LCNs.

Unlike isometric origami shapes, that arise from pure folding and bending mechanisms, nonisometric origami result from satisfying
the metric constraint (36), i.e. I[𝐲] = 𝑔, or equivalently minimizing the stretching energy 𝐸𝑠𝑡𝑟 of (9); nonisometric origami thus
exhibit stretching and shearing. In each origami experiment below, we split the domain 𝛺 into several subdomains by ‘‘folding
lines’’ or ‘‘creases’’ 𝛾𝑖 for 𝑖 = 1,… , 𝑁𝛾 , and denote the set of them by 𝛤 . We consider fitted meshes to 𝛤 , i.e., 𝛤 ⊂

⋃

𝑒∈ℎ 𝑒; we
also provide computations of a pyramidal structure in Bouck et al. (2023) where the mesh is not fitted to 𝛤 , confirming that the
computed origami structures are not a result of mesh effect.

Compatibility : We assume the blueprinted director field 𝐦 to be constant in each subdomain. We say the set-up of nonisometric
origami is compatible if

• 𝐦 satisfies the compatibility condition proposed in Plucinsky et al. (2018b, formula (6.3)), namely

|𝐦+
𝛾𝑖
⋅ 𝐭𝛾𝑖 | = |𝐦−

𝛾𝑖
⋅ 𝐭𝛾𝑖 |,

for any 𝑖 = 1,… , 𝑁𝛾 , where 𝐭𝛾𝑖 represents a unit tangent vector to 𝛾𝑖 and 𝐦±
𝛾𝑖
denote 𝐦 restricted to the two subdomains that

share 𝛾𝑖;
• The actuation parameters 𝑠, 𝑠0, and thus the parameter 𝜆 defined in (11), are continuous across 𝛾𝑖 for 𝑖 = 1,… , 𝑁𝛾 .

he compatibility condition means that the tangential component of the line field 𝐦⊗𝐦 and parameter 𝜆 are continuous across 𝛾𝑖.
herefore, since any equilibrium configuration satisfies the metric constraint (36) with metric 𝑔 defined in (35), such configuration
sustains compatible stretching on both sides of a folding line 𝛾𝑖.

Moreover, we tune the regularization parameter 𝑐𝑟 ∶ ℎ → R to incorporate the creases 𝛤 in the discrete energy 𝐸ℎ in (67). We
thus take, unless specified otherwise, regularization parameter 𝑐𝑟 = 0 along the folding lines 𝛤 and 𝑐𝑟 = 100 in the rest of domain,
i.e., we rewrite (68) as

𝑅ℎ[𝐲ℎ] = 𝑐𝑟ℎ
∑

∫ |[∇𝐲ℎ]|2. (84)
19
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Journal of the Mechanics and Physics of Solids 187 (2024) 105607L. Bouck et al.

r
p

5

p

C

a

e
c
o
f

f
c
s
c

5

Fig. 7. Folding table: Setting for origami in Section 5.1.4 (left). Final configurations for Case 1 (middle) and Case 2 (right) llustrate non-uniqueness of minimizers.

In fact, the zero regularization (no jumps of gradient) models a weakened (or damaged) material on creases (Bartels et al., 2022a),
and mathematically this allows for the formation of kinks. On the other hand, the large regularization in the subdomains serves as
a mechanism to prevent bending. Consequently, equilibrium configurations of 𝐸ℎ prefer flat surfaces and folds to meet the target
metric (36).

Furthermore, since the exact solutions of compatible origami can be represented as piecewise affine functions over the mesh
ℎ, as long as ℎ aligns with the creases, our discretization approach employing piecewise linear finite elements (65) reproduces
such solutions exactly. In fact, discrete energies 𝐸ℎ of computed solutions in Sections 5.1.4 and 5.1.5 achieve values close to zero,
eaching levels between 10−8 to 10−6, even with rather coarse meshes. Any remaining error solely stems from the optimization
rocess outlined in Algorithm 1.

.1.4. Folding table and non-uniqueness.
The set-up of blueprinted director field 𝐦, creases 𝛤 and subdomains of 𝛺 = [0, 1]×[0, 2] are displayed in Fig. 7 (left). We choose

arameters

𝑠 = 0.1, 𝑠0 = 1; ℎ = 1∕64, 𝜏 = 0.5, tol1 = 10−6, tol2 = 10−10.

ase 1. We use the initialization 𝐲0ℎ = 𝐼ℎ𝐲0 with

𝐲0(𝑥1, 𝑥2) =
(

𝑥1, 𝑥2, 0.8 𝑥1(1 − 𝑥1)𝑥2(2 − 𝑥2)
)

(85)

nd obtain 𝐸ℎ[𝐲∞ℎ ] = 8.27 × 10−6 and 𝑒1ℎ[𝐲
∞
ℎ ] = 4.5 × 10−3.Case 2. We use the initialization 𝐲0ℎ = 𝐼ℎ𝐲0 with

𝐲0(𝑥1, 𝑥2) =
(

𝑥1, 𝑥2, 0.8 𝑥1(1 − 𝑥1)𝑥2(1 − 𝑥2)
)

, (86)

and obtain 𝐸ℎ[𝐲∞ℎ ] = 5.97 × 10−6 and 𝑒1ℎ[𝐲
∞
ℎ ] = 3.7 × 10−3.

Results for both cases are presented in Fig. 7. We get final configurations consistent with the predicted and experimental shapes
in Plucinsky (2017, Figure 5.2). The two distinct final states correspond to different initial configurations. However, final energies
𝐸ℎ[𝐲∞ℎ ] and metric deviations 𝑒1ℎ[𝐲

∞
ℎ ] are rather small, thereby indicating that both configurations are global minimizers with zero

energy. Consequently, this provides an example of non-unique global minimizers due to the non-convex nature of the discrete model
(69). We refer to Bouck et al. (2023) for further analytical and computational discussions.

We emphasize that the gradient flow within Algorithm 1 may be viewed as relaxation dynamics: different initial states may
volve (or relax) into distinct minimizers. This process is natural in optimization, differential geometry and physics. However, our
omputational method and model are robust with respect to initialization in the following sense: minor adjustments to the amplitude
f the perturbed initial states, such as modifying slightly the coefficient 0.8 in the third component of (85) or (86), do not alter the
inal configuration.
Although a flat surface would be the most natural and straightforward initial state to implement, previous research on gradient

low for surface deformation problems (Bonito et al., 2022) demonstrates that a planar initialization always results in a planar final
onfiguration. To overcome this inherent limitation of general optimization approaches, we opt to perturb the flat plane (𝑥1, 𝑥2, 0)
lightly, as exemplified by (85) and (86), in the remaining part of this section. This enables us to generate various non-trivial
onfigurations while still maintaining a natural physical meaning and a reasonable level of generality for initializations.

.1.5. Folding cube.
We now consider the design in Plucinsky et al. (2016) whose folded shape is an origami cube. The set-up is given in Fig. 8 (left),

where the domain 𝛺 is a rhombus with vertices (0, 1), (0, 2), (
√

3, 0), (
√

3, 1). We take a graded mesh such that ℎ = 1∕128 near the
creases and ℎ = 1∕32 everywhere else. We choose the parameters

𝑠 = −1∕3, 𝑠0 = 1; 𝜏 = 0.1, tol1 = 10−8, tol2 = 10−10,

and use the initialization 𝐲0ℎ = 𝐼ℎ𝐲0 with

𝐲0(𝑥 , 𝑥 ) =
(

𝑥 , 𝑥 , 0.8𝑥 (𝑥 −
√

3)
(

𝑥 +

√

3
𝑥 − 1

)(

𝑥 +

√

3
𝑥 − 2

)

)

. (87)
20

1 2 1 2 1 1 2 3 1 2 3 1



Journal of the Mechanics and Physics of Solids 187 (2024) 105607L. Bouck et al.

e

a

5

s
i
𝐦
a
s
t
l

W
t
a

𝐸
s
p

Fig. 8. Folding cube: Rhombus 𝛺, creases 𝛤 and director field 𝐦⟂ (left). Gradient flow iterates 𝐲0ℎ , 𝐲
110
ℎ , 𝐲310ℎ , 𝐲1010ℎ and final configuration 𝐲1287ℎ displayed clockwise

(right).

The evolution of our nonlinear gradient flow, regarded as relaxation dynamics, is displayed in Fig. 8 (right). The final cube
quilibrium configuration satisfies

𝐸ℎ[𝐲∞ℎ ] = 7.34 × 10−8, 𝑒1ℎ[𝐲
∞
ℎ ] = 3.6 × 10−4,

nd reveals that the cube is a discrete minimizer of (69). This also demonstrates the success of Algorithm 1 in dealing with very
large deformations accurately, as required to reach the cube configuration starting from an almost flat one.

5.2. New shapes: Incompatible nonisometric origami

In this section, we allow the physical quantities 𝐦, 𝑠, 𝑠0 to violate the compatibility condition in Section 5.1.3, namely to be
discontinuous across creases 𝛤 . This entails a discontinuity of 𝑔 across 𝛤 and requires the material to sustain incompatible stretching
on both sides of 𝛤 . The presence of this discontinuity introduces inherent challenges, rendering manual construction of solutions
through direct analysis of the metric 𝑔 exceedingly difficult, if not impossible. Consequently, a computational investigation assumes
greater significance in assessing this problem.

Exploring incompatible origami seems to be a novel endeavor in the field of LCNs. Our computational investigation may provide
valuable insights for future studies of such structures, including modeling, analysis, and laboratory experiments, along with their
potential applications. As far as we know, discontinuous metrics are presently being studied within the framework of fully nonlinear
non-Euclidean elasticity by Padilla-Garza and Tobasco (2023). At the same time, motivated by our simulations below, laboratory
experiments are being conducted on such structures by Baumann and White (2023).

.2.1. Lifted square incompatible origami.
Let 𝛺 ∶= [0, 1]2 be the unit square and the creases and subdomains be as depicted in Fig. 9 (upper left). The latter are concentric

quares with vertices connected by folding lines. We take 𝑠 = 𝑠0 = 1 in the inner square (ideally no deformation) and 𝑠 = 0.1, 𝑠0 = 1
n the annulus between the two squares so that 𝜆 < 1 in this region. This implies shrinking along the direction of the director field
, hence parallel to the sides, and stretching in the orthogonal direction 𝐦⟂. In the inner region, the preferred length of a side,
s determined by 𝑔 = 𝐈2, is 1. However, in the outer region, 𝑔 prescribes a preferred length of approximately 0.82, because each
ide shrinks along 𝐦 by a ratio 𝜆 = ( 𝑠+1𝑠0+1

)1∕3 ≈ 0.82. This discrepancy is visually illustrated in Fig. 9 (upper right). It is important
o emphasize that the model being considered does not account for material fracture. Consequently, such a mismatch in preferred
engths is expected to result in the buckling of the inner square.
We use the initialization (86) and choose the parameters to be

ℎ = 1∕64, 𝜏 = 0.1, tol1 = 10−6, tol2 = 10−10.

e consider the modified regularization (84) with 𝑐𝑟 = 0 along 𝛤 , the folding line, and 𝑐𝑟 = 100 in the rest of the domain. We plot
wo views of the final configuration in Fig. 9 (bottom). Despite the inner region has no internally-induced deformation, it shrinks
nd lifts up out of plane to accommodate the change of the outer region.
To explore the asymptotic behavior of 𝐲∞ℎ as ℎ → 0 we run a series of experiments reported in Fig. 10. We see that the energy

ℎ[𝐲∞ℎ ] is (10−2) and decreases but not quadratically; in fact, it seems that it stabilizes to a positive value. Recall that the quadratic
caling 𝐸ℎ[𝐲ℎ] ≤ 𝛬ℎ2 of (71) in Theorem 1 (convergence of discrete minimizers) leads to strong convergence in 𝐻1(𝛺;R3) to a
iecewise 𝐻2-limit 𝐲∗ such that 𝐸 [𝐲∗] = 0 and I[𝐲∗] = 𝑔. This suggests that a discontinuous 𝑔 may not admit an isometric
21
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Fig. 9. Lifted square incompatible origami: Upper left: Lines indicate creases and black arrows indicate the blueprinted director field 𝐦 in regions where 𝜆 < 1
(red for shrinking direction and blue for stretching). The inner square has 𝜆 = 1 (no internal deformation), i.e. 𝑔 = 𝐈2. Upper right: A schematic illustration of
incompatible stretching caused by discontinuous 𝑔. Bottom: Two views of equilibrium configuration show that buckling takes place to accommodate the lack of
data compatibility.

Fig. 10. Lifted square incompatible origami: The table shows a monotone decrease of discrete energy 𝐸ℎ[𝐲∞ℎ ] and metric defect 𝑒1ℎ[𝐲
∞
ℎ ] in terms of ℎ, which

stabilizes to a positive value. Side views of the deformations for ℎ = 1∕128 (middle) and ℎ = 1∕64 (right). The buckling is more pronounced for smaller ℎ.

immersion, at least not with the regularity stated in Theorem 1. This in turn contrasts with the compatible origami shapes in
Sections 5.1.4 and 5.1.5 for which the final energies are (10−6) and (10−8), thus making it plausible that the asymptotic limit
𝐲∗ satisfies 𝐸𝑠𝑡𝑟,𝛤 [𝐲∗] = 0 and I[𝐲∗] = 𝑔 in view of Corollary 1 (immersions of 𝑔 are minimizers with vanishing energy). Moreover,
such piecewise affine exact solutions obviously satisfy the piecewise 𝐻2 regularity. When comparing the scenarios of compatible
and incompatible origami, it becomes highly likely that the non-existence of isometric immersion for the latter can be attributed to
the mismatch of expected side lengths on each side of the crease.

Fig. 10 also reveals that buckling becomes more pronounced as the meshsize ℎ decreases. One possible explanation for this
phenomenon is that the effect of regularization reduces as ℎ becomes smaller. We can interpret 𝑅ℎ[𝐲ℎ] as a numerical mechanism
that selects equilibrium configurations in the limit as ℎ approaches zero.

To validate the impact of regularization, we conduct additional experiments with the same parameters, except that the
regularization parameter becomes 𝑐𝑟 = 1 or 𝑐𝑟 = 0 away from creases 𝛤 ; see Fig. 11 for results. In contrast to the case 𝑐𝑟 = 100 in
𝛺 ⧵𝛤 , depicted in Fig. 9, it is evident that a smaller regularization parameter leads to more pronounced buckling. Furthermore, the
use of 𝑅ℎ with 𝑐𝑟 = 1 eliminates the observed wrinkles seen in the case of 𝑐𝑟 = 0. This reinforces the impact of regularization, as
discussed in Section 5.1.2.

We now discuss the behavior of 𝑒1ℎ[𝐲
∞
ℎ ] and 𝐸ℎ[𝐲∞ℎ ] for various 𝑐𝑟. We obtain

𝑐𝑟 = 100, 1, 0 ⇒ 𝑒1ℎ[𝐲
∞
ℎ ] ≈ 0.1, 0.035, 0.01; 𝐸ℎ[𝐲∞ℎ ] ≈ 0.012, 0.0026, 8.9 × 10−4.

We note that as 𝑐𝑟 increases, the corresponding 𝑒1ℎ[𝐲
∞
ℎ ] and 𝐸ℎ[𝐲∞ℎ ] increase as well. The minimizing configuration cannot keep the

stretching energy low without increasing the bending energy. We may conclude that the regularization (68) serves as a mechanism
to select minimizers of stretching energy for compatible origami, while a competition between stretching and bending energies
determines the final shape for incompatible origami. This process as ℎ → 0 produces a candidate minimizing sequence for 𝐸𝑠𝑡𝑟
where the length scale of oscillations is determined by a trade-off between minimizing 𝐸𝑠𝑡𝑟 and minimizing the bending energy.

5.2.2. Lifted square origami without creases.
We proceed to investigate again the lifted square example, considering the blueprinted director field with 𝜆 = 1 in the inner

square as depicted in Fig. 9 (upper left), but with an empty folding set 𝛤 = ∅. We set 𝑠 = 𝑠 = 1 within the inner square and
22
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8

Fig. 11. Incompatible square origami: Two views of the final configurations with regularization parameter 𝑐𝑟 = 1 (top) and 𝑐𝑟 = 0 (bottom) away from the creases.
Wrinkling occurs for 𝑐𝑟 = 0.

Fig. 12. Lifted incompatible square origami: Computed solutions with 𝑐𝑟 = 0.2 (top) and laboratory configurations by Baumann and White (2023) (bottom) for
lifted squares without creases. The size of the inner square relative to the outer domain varies from left to right. The images in the bottom row are 3-D scans
of experimental samples heated to 150 ◦C generated with an optical profilometer.

𝑠 = −0.3, 𝑠0 = 1 within the square annulus, ensuring that 𝜆 < 1 in this exterior region. This computation is motivated by the fact
that creasing the material may be impractical in laboratory experiments. Additionally, we plan to investigate the influence of the
size of the inner square relative to the outer domain on the resulting deformation.

In Fig. 12 (top row), we display the output of Algorithm 1 with

tol1 = 10−6, tol2 = 10−10, ℎ = 1∕64, 𝑐𝑟 = 0.2.

The aspect ratios between side lengths for inner and outer squares are 0.3, 0.5, and 0.7 from left to right on top of Fig. 12, whereas
the corresponding parameters 𝜏 are 𝜏 = 0.3, 0.4, 0.5. The initialization is chosen to be the same as in Section 5.2.1.

In Fig. 12, we also present a comparison between our computational results and ongoing laboratory experiments (Baumann and
White, 2023). In the latter, the outer square side length is 16 mm, while the inner square exhibits varying side lengths of 4.8 mm,
mm, and 11.2 mm from left to right, as depicted in Fig. 12 (bottom). The sample used in the experiments has a thickness of

0.45 mm. We observe a remarkable agreement between our computational predictions and the experimental outcomes. Both exhibit
concave regions, or wrinkling, near the edges of the inner square region. It is worth mentioning that this wrinkling structure occurs
at a much larger length scale than those shown in Fig. 11. This phenomenon can be again attributed to the mismatch of expected
length changes across the boundary of the inner square.

The practical interest in lifted squares stems from their potential to exert larger lifting forces than cones (Ware et al., 2015).
Preliminary lab experiments conducted by Baumann and White (2023) suggest that the configuration on the left in Fig. 12
23
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Fig. 13. Metric defect and stress. Left: plot of metric deviations on 𝛺. Right: plot of the 𝑙1 norm of the stress tensor on 𝛺. In the visualization, the color dark
blue represents values close to zero, while the color red indicates larger positive values; see legend.

outperforms the others. This seems to be related to the relative size of wrinkles which is more pronounced for the middle and
right configurations in Fig. 12.

We explore this observation next, upon considering the current choice of 𝑠 and 𝑠0 which leads to 𝜆 ≈ 0.7. The interface length
from the outer region undergoes a fixed contraction dictated by 𝜆 whereas the inner length remains fixed. Letting 𝓁 denote the side
length of the inner square, this implies that the total length mismatch across the interface is given by 4𝓁(1 − 𝜆). Consequently, if
the inner side length 𝓁 is larger, the length of the mismatch that needs to be accommodated also increases and so does the size of
wrinkles. This provides a plausible explanation for the observed phenomenon.

We further compare the outcomes presented in Figs. 11 and 12, where the folding set is defined as 𝛤 = ∅ and 𝛤 ≠ ∅, respectively.
oth scenarios involve a disparity in preferred arc lengths along the inner square boundary, yet the resulting configurations adapt
o this mismatch in different ways. Notably, in the case where 𝛤 ≠ ∅, the inner square bulges upward as the primary behavior.
onversely, in the case where 𝛤 = ∅, the material begins to form large wrinkles, or concave regions, near the boundary of the
nner square. This contrasting behavior can be attributed to the penalty imposed on [∇𝐲ℎ] along the inner square when 𝛤 = ∅.
he presence of a significant jump in [∇𝐲ℎ] across the metric discontinuity becomes energetically costly, and so does a pronounced
uckling behavior. Consequently, the resulting configuration in Fig. 12 mitigates this energy increase by introducing wrinkling
cross the interface to accommodate the length mismatch. It is worth noting that wrinkling is observed in analogous situations,
uch as the uniform compression of thin sheets (Conti et al., 2005).
We also include in Fig. 13 plots of the metric defect |I(𝐲∞ℎ ) − 𝑔|(𝐱) and the 𝑙1 norm of the stress tensor on 𝛺. The former is an

lementwise constant function, while the latter is the sum of the absolute values of each component. The stress tensor is obtained
y calculating variational derivatives of the energy density function, but we omit the detailed calculations here. The plots in Fig. 13
orrespond to the solution of the lifted square with larger inner square, specifically the third image in the top row of Fig. 12. It is
vident that both the metric defect and the stress are concentrated along the interfaces, which are the locations where the metric
xhibits a discontinuity. This phenomenon can be plausibly attributed to the inconsistent stretching experienced on both sides of
he interfaces in incompatible origami configurations.

.2.3. Generalizations: lifted M-origami
We explain now how to exploit the idea in Section 5.2.1 as a building block to design lifted configurations of any polygonal

hapes. In this case, our strategy entails penalizing bending by setting a high value of 𝑐𝑟 = 100, while also permitting the presence
of creases in the material. In fact, for any polygonal subdomain 𝑃 ⊂ 𝛺 ∶= [0, 1]2 with dist(𝑃 , 𝜕𝛺) > 0, we can always construct a
dilation 𝑃 ′ of 𝑃 so that it is ‘‘concentric’’ with 𝑃 and 𝑃 ⊂ 𝑃 ′ with dist(𝑃 ′, 𝜕𝛺) > 0. Then we further connect corresponding vertices
of 𝑃 and 𝑃 ′ with folding lines, and also let all the sides of 𝜕𝑃 and 𝜕𝑃 ′ be creases. We finally take 𝐦 parallel to the sides of 𝜕𝑃 and
< 1 in 𝑃 ′ ⧵ 𝑃 , while 𝜆 = 1 in 𝑃 and 𝛺 ⧵ 𝑃 ′. The discontinuity of 𝜆 across creases implies again 𝐸𝑠𝑡𝑟[𝐲] > 0 for all 𝐲 ∈ 𝐻1(𝛺;R3).
We apply this procedure to an M-shaped subdomain, as shown in Fig. 14 (left). We choose all the parameters, unless otherwise

specified, to be the same as in Section 5.2.1. In particular 𝑠 = −0.5 inside the M-annulus region while 𝑠 = 1 in the rest of domain.
We use a graded mesh of size ℎ = 1∕256 near the creases and otherwise ℎ = 1∕32. The initialization is also taken as (86).

We display the computed solution in Fig. 14, which is the desired lifted M-shape. We stress that the background and solid M are
not completely flat due to the same buckling effect already discussed in Section 5.2.1. However, this effect is not so pronounced
because the shrinking layer is thin relative to the rest of the M and background. We emphasize that the current procedure is different
from the construction of lifted surfaces in Section 3.1. The latter requires |∇𝜙| =

√

𝜆3 − 1 a.e. in 𝛺, which makes it harder to
mplement; recall the discussion after (41).

.2.4. Incompatible origami with cuts
In this section, we examine the same configuration of the director field 𝐦 as depicted in Fig. 9 (upper left). We now introduce

cuts to the boundaries of the inner squares, where the metric experiences discontinuity. This additional set of numerical experiments
is inspired by kirigami (Sussman et al., 2015), which provide new methods for shape-programming beyond origami.

The domains of the experiments considered in this section are illustrated in Fig. 15. Similar to previous investigations, we utilize
an empty folding set 𝛤 = ∅. The numerical parameters chosen for this experiment are:

ℎ = 1∕32, 𝜏 = 0.15, tol = 10−6, tol = 10−10, 𝑐 = 0.2.
24
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Fig. 14. Lifted M-origami: (Left) Lines indicate creases and arrows indicate the blueprinted director field 𝐦 in regions where 𝜆 < 1, whereas 𝜆 = 1 within and
outside the M. (Center and Right) Two views of final equilibrium configuration. Color on the right picture represents the value of 𝑦3 and shows that the solid
M and background are not completely flat.

Fig. 15. Incompatible origami with cuts: The domain is the same as in Fig. 9 (left), but with cuts on the inner square boundary. Domains with two different cuts
are displayed in this image.

Fig. 16. Lifted squares with cuts. Left: computed solution with cuts on all 4 sides of the inner square. Middle and Right: computed solution with cuts on one
ide of the inner square, with different angles of viewing. Compared to Figs. 11 and 12, cuts relax wrinkle formation by allowing incompatible length changes.

oreover, 𝑠 = 𝑠0 = 1 within the inner square, and 𝑠 = −0.3, 𝑠0 = 1 within the annulus between the two squares. The ratio between
he side length of inner and outer square is 1∕2. The initialization is chosen to be the same as in Section 5.2.1.
We display in Fig. 16 the computed solutions for two scenarios, one with cuts added to all four sides of the inner square and

nother with a single cut on one side. We observe that the presence of cuts releases the wrinkles across the interfaces in the inner
egion. The inner square now experiences fewer constraints and lifts up more prominently to accommodate the incompatibility,
ompared to the experiments in Section 5.2.2. Additionally, the compression in the outer region across the interfaces, characterized
by the contraction ratio 𝜆, gives rise to waves near the interfaces in the outer region. Interestingly, the case with a single cut
appears to exhibit larger wave amplitudes compared to the case with four cuts. The plausible explanations for this phenomenon are
as follows: 1. In the single-cut scenario, the mismatch on the sides of the inner square is greater compared to the four-cuts case; 2.
The material with a single cut has reduced flexibility (i.e., fewer cuts) to accommodate the mismatch.

The final energies obtained for four cuts, one cut, and no cut are, respectively

𝐸ℎ[𝐲∞ℎ ] = 0.0173, 0.0269, 0.0303;

the metric defect 𝑒1ℎ[𝐲
∞
ℎ ] exhibits a similar trend, indicating that configurations with larger mismatch lengths face greater difficulty

in satisfying the metric 𝑔. The decrease in energy and metric defect as the number of cuts increases confirms the relaxation effect
achieved by introducing cuts to the domain. This observation further supports our earlier conclusion of Section 5.2.1 regarding the
non-existence of isometric immersions with the desired regularity for incompatible origami.

6. Conclusions

This paper deals with a membrane model of nematic liquid crystal polymer networks (LCNs). The two main threads in this paper
are asymptotics and computation. Our main contributions as are follows.
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• Asymptotic modeling and profiles. We use formal asymptotics, in the spirit of Ozenda et al. (2020), to derive a reduced model
of LCNs involving the nonconvex stretching energy (9) without inextensibility constraint. We prove crucial properties of the
reduced model such as the characterization of zero energy states in terms of deformations that satisfy a metric constraint and
an energy gap relative to Ozenda et al. (2020). We utilize a novel formal asymptotic method to explore shapes of high-order
degree defects.

• Numerics: discretization. We propose a finite element method for the stretching energy consisting of continuous piecewise affine
functions over a shape regular 2d mesh made of triangles. We augment the stretching energy with a regularization term
involving a discrete 𝐻2-norm. The latter acts as a selection mechanism to prevent oscillations of the solution. The minimizers
of the discrete energy converge under a realistic regularity assumption that permits creases, resulting in a quadratic scaling
of the discrete energy. This result is stated in Theorem 1, which we prove in our companion paper (Bouck et al., 2023). We
employ an implicit nonlinear gradient flow to minimize the discrete energy, and a Newton method to solve each sub-problem.

• Numerics: computations. We present numerous computations highlighting many features of the discrete membrane model.
Simulations included shapes coming from LCNs with point defects, nonisometric compatible and incompatible origami. We
embark on a substantial assessment of the novel computations of incompatible origami, thoroughly exploring their intricacies,
implications in modeling and analysis, predictive power and connection to ongoing lab experiments.

RediT authorship contribution statement

Lucas Bouck: Conceptualization, Methodology, Visualization, Writing – original draft, Writing – review & editing. Ricardo H.
ochetto: Conceptualization, Funding acquisition, Methodology, Supervision, Writing – original draft, Writing – review & editing.
huo Yang: Conceptualization, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The authors thank Grant Bauman and Timothy J. White of the University of Colorado, Boulder, who generously shared their
xperimental data and engaged in insightful discussions. Additionally, we express our appreciation to Ian Tobasco from the
niversity of Illinois, Chicago, for his fruitful conversations, bringing our attention to the Padilla-Garza and Tobasco (2023), and
uggesting the visualization of pointwise metric error.
Lucas Bouck was supported by the National Science Foundation, USA grant DGE-1840340. Ricardo H. Nochetto and Shuo Yang

ere partially supported by National Science Foundation, USA grant DMS-1908267. Shuo Yang was also partially supported by
ational Key R&D Program of China (Grant No. 2021YFA0719200).

eferences

gostiniani, V., DeSimone, A., 2020. Rigorous derivation of active plate models for thin sheets of nematic elastomers. Math. Mech. Solids 25 (10), 1804–1830.
gostiniani, V., DeSimone, A., Koumatos, K., 2017. Shape programming for narrow ribbons of nematic elastomers. J. Elasticity 127 (1), 1–24.
haroni, H., Sharon, E., Kupferman, R., 2014. Geometry of thin nematic elastomer sheets. Phys. Rev. Lett. 113 (25), 257801.
haroni, H., Xia, Y., Zhang, X., Kamien, R.D., Yang, S., 2018. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc. Natl. Acad. Sci. 115
(28), 7206–7211.

hrens, J., Geveci, B., Law, C., 2005. ParaView: An end-user tool for large data visualization. In: Hansen, C.D., Johnson, C.R. (Eds.), Visualization Handbook.
Elsevier, pp. 717–731. http://dx.doi.org/10.1016/B978-012387582-2/50038-1.

archiesi, M., DeSimone, A., 2015. Frank energy for nematic elastomers: a nonlinear model. ESAIM Control Optim. Calc. Var. 21 (2), 372–377.
artels, S., 2015. Numerical Methods for Nonlinear Partial Differential Equations, vol. 47, Springer.
artels, S., Bonito, A., Hornung, P., 2022a. Modeling and simulation of thin sheet folding. Interfaces Free Bound.
artels, S., Bonito, A., Nochetto, R.H., 2017. Bilayer plates: Model reduction, 𝛤 -convergent finite element approximation, and discrete gradient flow. Comm.
Pure Appl. Math. 70 (3), 547–589.

artels, S., Bonito, A., Tscherner, P., 2022b. Error estimates for a linear folding model. arXiv preprint arXiv:2205.05720.
artels, S., Griehl, M., Keck, J., Neukamm, S., 2022c. Modeling and simulation of nematic LCE rods. arXiv preprint arXiv:2205.15174.
artels, S., Griehl, M., Neukamm, S., Padilla-Garza, D., Palus, C., 2022d. A nonlinear bending theory for nematic LCE plates. arXiv preprint arXiv:2203.04010.
aumann, G., White, T.J., 2023. Private Communication.
ethuel, F., Huisken, G., Müller, S., Steffen, K., Müller, S., 1999. Variational Models for Microstructure and Phase Transitions. Springer.
hattacharya, K., James, R.D., 2005. The material is the machine. Science 307 (5706), 53–54.
hattacharya, K., Lewicka, M., Schäffner, M., Plates with incompatible prestrain.
ladon, P., Terentjev, E.M., Warner, M., 1994. Deformation–induced orientational transitions in liquid crystals elastomer. J. Phys. II 4 (1), 75–91.
onito, A., Guignard, D., Nochetto, R.H., Yang, S., 2022. LDG approximation of large deformations of prestrained plates. J. Comput. Phys. 448, 110719.
onito, A., Guignard, D., Nochetto, R., Yang, S., 2023. Numerical analysis of the LDG method for large deformations of prestrained plates. IMA J. Numer. Anal..
26



Journal of the Mechanics and Physics of Solids 187 (2024) 105607L. Bouck et al.

B
B
C
C
C
C

C

C

C

C

C

C

C
D
d

D

D
E
F

H
H
K

K

L
L
M

M
M
M
M

M
M

N

O
P
P
P
P
P
P

S
S
S
S

V
W
W
W
W

W
W
Z

Bouck, L., 2023. Liquid Crystal Variational Problems: Modeling, Numerical Analysis and Computation. (Ph.D thesis). University of Maryland.
Bouck, L., Nochetto, R.H., Yang, S., 2022. Reduced membrane model for liquid crystal polymer networks: Asymptotics and computation. arXiv preprint

arXiv:2210.02710v1.
ouck, L., Nochetto, R.H., Yang, S., 2023. Convergent FEM for a membrane model of liquid crystal polymer networks. SIAM J. Numer. Anal. 61 (6), 2887–2916.
rezis, H., Coron, J.-M., Lieb, E.H., 1986. Harmonic maps with defects. Comm. Math. Phys. 107 (4), 649–705.
alderer, M.C., Garzón, C.A.G., Yan, B., 2015. A Landau–de Gennes theory of liquid crystal elastomers. Discrete Contin. Dyn. Syst. Ser. S 8 (2), 283–302.
amacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P., Shelley, M., 2004. Fast liquid-crystal elastomer swims into the dark. Nature Mater. 3 (5), 307–310.
esana, P., Plucinsky, P., Bhattacharya, K., 2015. Effective behavior of nematic elastomer membranes. Arch. Ration. Mech. Anal. 218 (2), 863–905.
hung, H., Yun, J.-H., Choi, J., Cho, M., 2017. Finite-element analysis of the optical-texture-mediated photoresponse in a nematic strip. Comput. Mech. 59 (1),
147–160.

irak, F., Long, Q., Bhattacharya, K., Warner, M., 2014. Computational analysis of liquid crystalline elastomer membranes: Changing Gaussian curvature without
stretch energy. Int. J. Solids Struct. 51 (1), 144–153.

ockburn, B., Karniadakis, G.E., Shu, C.-W., 2012. Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11, Springer Science & Business
Media.

onti, S., DeSimone, A., Dolzmann, G., 2002. Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50 (7),
1431–1451.

onti, S., DeSimone, A., Müller, S., 2005. Self-similar folding patterns and energy scaling in compressed elastic sheets. Comput. Methods Appl. Mech. Engrg. 194
(21–24), 2534–2549.

onti, S., Dolzmann, G., 2006. Derivation of elastic theories for thin sheets and the constraint of incompressibility. In: Analysis, Modeling and Simulation of
Multiscale Problems. Springer, pp. 225–247.

onti, S., Dolzmann, G., 2018. An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers. J. Mech. Phys. Solids 113,
126–143.

orbett, D., Warner, M., 2008. Polarization dependence of optically driven polydomain elastomer mechanics. Phys. Rev. E 78 (6), 061701.
acorogna, B., 2007. Direct Methods in the Calculus of Variations, vol. 78, Springer Science & Business Media.
e Haan, L.T., Sánchez-Somolinos, C., Bastiaansen, C.M., Schenning, A.P., Broer, D.J., 2012. Engineering of complex order and the macroscopic deformation of
liquid crystal polymer networks. Angew. Chem. 124 (50), 12637–12640.

eSimone, A., Dolzmann, G., 2002. Macroscopic response of nematic elastomers via relaxation of a class of SO (3)-invariant energies. Arch. Ration. Mech. Anal.
161 (3), 181–204.

eSimone, A., Teresi, L., 2009. Elastic energies for nematic elastomers. Eur. Phys. J. E 29 (2), 191–204.
frati, E., Sharon, E., Kupferman, R., Elastic theory of unconstrained non-Euclidean plates.
riesecke, G., James, R.D., Müller, S., 2002. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity.
Comm. Pure Appl. Math. 55 (11), 1461–1506.

an, Q., Hong, J.-X., 2006. Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, vol. 13, American Mathematical Soc..
ébert, M., Kant, R., De Gennes, P.-G., 1997. Dynamics and thermodynamics of artificial muscles based on nematic gels. J. Physique I 7 (7), 909–919.
otikian, A., Truby, R.L., Boley, J.W., White, T.J., Lewis, J.A., 2018. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order.
Adv. Mater. 30 (10), 1706164.

uang, X., Roach, D.J., Wu, J., Hamel, C.M., Ding, Z., Wang, T., Dunn, M.L., Qi, H.J., 2019. Advances in 4D printing: materials and applications. Adv. Funct.
Mater. 29 (2), 1805290.

i, M.-H., Keller, P., 2006. Artificial muscles based on liquid crystal elastomers. Phil. Trans. R. Soc. A 364 (1847), 2763–2777.
uo, C., Calderer, M.-C., 2012. Numerical study of liquid crystal elastomers by a mixed finite element method. European J. Appl. Math. 23 (1), 121–154.
cConney, M.E., Martinez, A., Tondiglia, V.P., Lee, K.M., Langley, D., Smalyukh, I.I., White, T.J., 2013. Topography from topology: photoinduced surface features
generated in liquid crystal polymer networks. Adv. Mater. 25 (41), 5880–5885.

cCracken, J.M., Donovan, B.R., White, T.J., 2020. Materials as machines. Adv. Mater. 32 (20), 1906564.
ihai, L.A., Goriely, A., 2020. A plate theory for nematic liquid crystalline solids. J. Mech. Phys. Solids 144, 104101.
odes, C.D., Bhattacharya, K., Warner, M., 2011. Gaussian curvature from flat elastica sheets. Proc. R. Soc. A 467 (2128), 1121–1140.
odes, C.D., Warner, M., 2011. Blueprinting nematic glass: Systematically constructing and combining active points of curvature for emergent morphology. Phys.
Rev. E 84 (2), 021711.

ostajeran, C., 2015. Curvature generation in nematic surfaces. Phys. Rev. E 91 (6), 062405.
ostajeran, C., Warner, M., Ware, T.H., White, T.J., 2016. Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids. Proc. R. Soc. A 472
(2189), 20160112.

guyen, T.-S., Selinger, J.V., 2017. Theory of liquid crystal elastomers and polymer networks: Connection between neoclassical theory and differential geometry.
Eur. Phys. J. E 40, 1–9.

zenda, O., Sonnet, A.M., Virga, E.G., 2020. A blend of stretching and bending in nematic polymer networks. Soft Matter 16 (38), 8877–8892.
adilla-Garza, D., Tobasco, I., 2023. Energy scaling laws for irregularly prestrained elastic sheets (in preparation).
edrini, A., Virga, E.G., 2021. Ridge energy for thin nematic polymer networks. Eur. Phys. J. E 44, 1–18.
lucinsky, P.P., 2017. The Deformations of Thin Nematic Elastomer Sheets (Ph.D. thesis). California Institute of Technology.
lucinsky, P., Kowalski, B.A., White, T.J., Bhattacharya, K., 2018a. Patterning nonisometric origami in nematic elastomer sheets. Soft Matter 14 (16), 3127–3134.
lucinsky, P., Lemm, M., Bhattacharya, K., 2016. Programming complex shapes in thin nematic elastomer and glass sheets. Phys. Rev. E 94 (1), 010701.
lucinsky, P., Lemm, M., Bhattacharya, K., 2018b. Actuation of thin nematic elastomer sheets with controlled heterogeneity. Arch. Ration. Mech. Anal. 227 (1),
149–214.

chöberl, J., et al., 2017. Netgen/ngsolve. Software hosted at https://ngsolve.org.
eung, H.S., Nelson, D.R., 1988. Defects in flexible membranes with crystalline order. Phys. Rev. A 38 (2), 1005.
ingh, H., Virga, E.G., 2022. A ribbon model for nematic polymer networks. J. Elasticity 1–22.
ussman, D.M., Cho, Y., Castle, T., Gong, X., Jung, E., Yang, S., Kamien, R.D., 2015. Algorithmic lattice kirigami: A route to pluripotent materials. Proc. Natl.
Acad. Sci. 112 (24), 7449–7453.

erwey, G., Warner, M., 1997. Compositional fluctuations and semisoftness in nematic elastomers. Macromolecules 30 (14), 4189–4195.
are, T.H., McConney, M.E., Wie, J.J., Tondiglia, V.P., White, T.J., 2015. Voxelated liquid crystal elastomers. Science 347 (6225), 982–984.
arner, M., 2020. Topographic mechanics and applications of liquid crystalline solids. Annu. Rev. Condens. Matter Phys. 11, 125–145.
arner, M., Mostajeran, C., 2018. Nematic director fields and topographies of solid shells of revolution. Proc. R. Soc. A 474 (2210), 20170566.
arner, M., Terentjev, E.M., 2003. Thermal and photo-actuation in nematic elastomers. In: Macromolecular Symposia, vol. 200, (no. 1), Wiley Online Library,
pp. 81–92.

arner, M., Terentjev, E.M., 2007. Liquid crystal elastomers, vol. 120, Oxford University Press.
hite, T.J., Broer, D.J., 2015. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Mater. 14 (11), 1087–1098.
hao, Y., Chi, Y., Hong, Y., Li, Y., Yang, S., Yin, J., 2022. Twisting for soft intelligent autonomous robot in unstructured environments. Proc. Natl. Acad. Sci.
119 (22), e2200265119.
27


