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In this paper, we propose and analyze a finite element discretization for the
computation of fractional minimal graphs of order s € (0,1/2) on a bounded
domain (2. Such a Plateau problem of order s can be reinterpreted as a Dirichlet
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1. Introduction

Several complex phenomena, such as those involving surface tension, can be interpreted in terms of
perimeters. In general, perimeters provide a good local description of these intrinsically nonlocal phenomena.
The study of fractional minimal surfaces, which can be interpreted as a non-infinitesimal version of classical
minimal surfaces, began with the seminal works by Imbert [40] and Caffarelli, Roquejoffre and Savin [19].

As a motivation for the notion of fractional minimal sets let us show how it arises in the study of a nonlocal
version of the Ginzburg-Landau energy, extending a well-known result for classical minimal sets [44,45]. Let
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2 C R4 be a bounded set with Lipschitz boundary, € > 0 and define the energy

_ < \Vu(z)|? de+ [ W(u(z)) dz
], /.

where W (t) = (1 — t?)? is a double-well potential. Then, for every sequence {u.} of minimizers of the
rescaled functional F. [u; 2] = e~ 7.[u; 2] with uniformly bounded energies there exists a subsequence {u., }
such that

Ug, — XE — XEe in Ll(.Q),

where F is a set with minimal perimeter in (2. Analogously, given s € (0, 1), consider the energy

2
T2 u; 2] = // — n+2)§| dxdy +/ W (u(z)) dx,
Qo |$ yl Q

where Q@ = (R% x R?) \ (£2¢ x 22¢), and rescale it as

e 2 T2 u; 2] if s €(0,1/2);
Filu; 2] =< e tloge| 1 T2 w; 2] if s = 1/2;
e 1 T8 u; 2] if s € (1/2,1).

Note that the first term in the definition of 7 involves the H*®(R?)-norm of u, except that the interactions
over £2¢ x {2¢ are removed; for a minimization problem in {2, these are indeed fixed. As proved in [47], for
every sequence {u.} of minimizers of 77 with uniformly bounded energies there exists a subsequence {u., }
such that

Ug, = XE — XEe in Ll(Q) as e, — 0.

If s € [1/2,1), then E has minimal classical perimeter in {2, whereas if s € (0,1/2), then E minimizes the
nonlocal s-perimeter functional given by Definition A.1.

Other applications of nonlocal perimeter functionals include motions of fronts by nonlocal mean curva-
ture [21-23] and nonlocal free boundary problems [20,30,34]. We also refer the reader to [16, Chapter 6]
and [25] for nice introductory expositions to the topic.

The goal of this work is to design and analyze finite element schemes in order to compute fractional
minimal sets over cylinders 2 x R? in R?*!, provided the external data is a subgraph. In such a case,
minimal sets turn out to be subgraphs in the interior of the domain {2 as well, and the minimization problem
for minimal sets can be equivalently stated as a minimization problem for a functional acting on functions

u: R — R, given by "
—uly 1

drd 1.1

/'/QQ < |$ - y| ) ‘x — y‘d+23—1 xay, ( )

where Qg = (R? x R?)\ (02¢ x 2°), 2¢ = R%\ 2 is the complement of 2 in R? and F; : R — R is a suitable
convex nonnegative function. This is the s-fractional version of the classical graph area functional

:/Q\/l+|Vu(ac)|2dx

among suitable functions u : {2 — R satisfying the Dirichlet condition © = g on 9f2. A crucial difference

between the two problems is that the Dirichlet condition for Is[u] must be imposed in ¢, namely
u=g in 2°.

We propose a discrete counterpart of I[u] based on piecewise linear Lagrange finite elements on shape-
regular meshes, and prove a few properties of the discrete solution uy, including convergence in Wi (§2) for
any 0 < r < s as the meshsize h tends to 0. We point out that u € W2%(£2) is the minimal regularity needed
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to guarantee that I;[u] is finite. We also derive error estimates for a novel geometric quantity related to the
concept of fractional normal.
A minimizer of I[u] satisfies the variational equation

//QQ < u(?ﬁ) (u(x) —xugy;igzgfll— u(y)) dady — 0 "

|z — y

for all functions v € W25(£2) such that v = 0 in £2°. Hereafter, G,(p) := p~LF/(p) has the property that
Gs(p) — 0 as |p| — oo, which makes the equation for u both nonlinear and degenerate. This extends to

0 < s < 1 the equation
Vu(z) - Vo(z)

2 1+ |Vu(z)?

for minimal graphs. Moreover, this extends the quadratic case Fi(p) = Csp?, which leads to the equation
for the integral fractional Laplacian (—A)**1/2 of order s +1/2 < 1,

A T2y, v) = 2C; y))(v(x)—v(y)) dxdy = 0.
(-2 —2c. | /Q ) y=0

=0 (1.3)

|£ZZ _ y‘d+2s+1

Our nonlinear solver hinges on the linear solver for (—A)®u of [1]. In fact, we develop a discrete gradient flow
and a Newton method, which are further discussed in [12] along with several numerical experiments that
illustrate and explore the boundary behavior of w. In this paper we present simple numerical experiments.

Let us briefly review the literature on finite element discretizations of (—A)®* on bounded domains {2
in RY. We refer to [1,2,4,10,28] for homogeneous Dirichlet conditions g = 0 in 2° as well as details on
convergence of the schemes and their implementation. On the other hand, methods have been proposed to
deal with arbitrary nonhomogeneous Dirichlet conditions g # 0 in £2¢, either based on weak imposition of
the datum by using Lagrange multipliers [3] or on the approximation of the Dirichlet problem by Robin
exterior value problems [6]. We refer to the survey [9] for additional discussion, comparison of methods,
and references. Moreover, the fractional obstacle problem for (—A)® has been studied in [11,13,17], where
regularity estimates and convergence rates are derived.

This paper seems to be the first to treat numerically fractional minimal graphs. We now outline its
contents and organization. Section 2 deals directly with the functional I, thereby avoiding a lengthy
discussion of fractional perimeters, which is included in Appendix A. Section 2 studies some properties of
I, and introduces the variational formulation (1.2). The discrete formulation and the necessary tools for its
analysis, such as localization of fractional order seminorms, quasi-interpolation operators and interpolation
estimates are described in Section 3. In Section 4 we show that our discrete energy is consistent. This leads
to convergence of discrete solutions u;, to s-minimal graphs in W2"(£2) for every 0 < r < s as the largest
element size h tends to 0 without any additional regularity of u beyond u € W2%(£2).

A more intrinsic error measure than the Sobolev norm in W27 (£2) exploits the geometric structure of I.
For the classical case s = 1, set v(a) = (g’(;;) with Q(a) = /1 + |a|? and consider the geometric error
between two functions u,v: 2 - R

e(u,v) = (/Q 7(vu) —ﬁ(Vv)‘Q Q) —;Q(Vuh)dx)%.

This quantity e(u,v) gives a weighted L2-estimate of the discrepancy between the unit normals to the graphs

of u and v [37]. Section 5 deals with a novel nonlocal geometric quantity e,(u,v) that mimics e(u,v). We

first derive an upper bound for es(u, up,), where u is the s-minimal graph and wy, is its discrete counterpart,

without regularity of u as well as error estimates under realistic regularity assumptions on u. We next prove
1

that the nonlocal quantity ey(u,v) recovers its local counterpart e(u,v) as s — 5 . In doing so, we also

prove convergence of the forms (1.2) to (1.3) as s — &
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Section 6 presents experiments that illustrate the performance of the proposed numerical methods and the
behavior of s-minimal graphs. We conclude with some technical material in appendices. We collect definitions
and results for fractional perimeters in Appendix A and exploit them to derive the energy I, in Appendix B.

2. Formulation of the problem

As a motivation for the formulation of the problem we are concerned with in this work, we first visit the
classical minimal graph problem. Let 2 C R? be an open set with sufficiently smooth boundary, and let
g: 082 — R? be given. Then, the Plateau problem consists in finding u: 2 — R? that minimizes the graph

surface area functional
I[u]:/ VIF V@) dz (2.1)
0]

among a suitable class of functions satisfying u = g on 92. For simplicity, let us assume that such a class is
a subset of H'({2). By taking first variation of I, it follows that the minimizer u satisfies

Vulz) Volz) r=0, YveHjQ). (2.2)
o 1+ |Vu(z)|?

The integral on the left above can be understood as a weighted form, where the weight depends on
the solution u. Identity (2.2) is the starting point for classical approaches to discretize the graph Plateau
problem [24,41,46].

We now fix s € (0,1/2) and consider the s-perimeter operator Ps given by Definition A.1. Like for the
classical minimal surface problem, one may study the nonlocal minimal surface problem under the restriction
of the domain being a cylinder. A difference between the problem we consider in this paper and its classical
counterpart is that here imposition of Dirichlet data on the boundary of the domain becomes meaningless
and thus we require that the exterior data can be written as a subgraph with respect to a fixed direction.
Concretely, from now on we consider 2/ = 2 xR with £2 C R? bounded. We assume that the exterior datum
is the subgraph of some given function g : R%\ 2 — R,

Eo = {(2/,2a+1): za41 < g(z'), 2’ € R*\ 2}. (2.3)

Remark 2.1 (Assumptions on Data). Many of the results we describe in this paper are not optimal, in the
sense that the assumptions can be weakened. In particular, this applies to the domain {2 and the Dirichlet
datum g. About the latter, most of the theory can be carried out by assuming g to be locally bounded and
with some growth condition at infinity. However, in view of the proposed numerical method, we consider this
exterior data function to be uniformly bounded and with bounded support. More precisely, unless otherwise
stated, from now on we assume that

{2 is a bounded Lipschitz domain; (2.4)
g € L®(R%) with compact support. '

We leave all the technical discussion about the well-posedness of the nonlocal minimal graph problem to
Appendix A, but here we only mention two important features to take into account. The first one is that,
in this setting, the notion of s-minimal set becomes meaningless, as every set E that coincides with Fy in
£ satisfies Ps(FE, 2') = oo; the correct notion to consider is the one of locally s-minimal set. The second
important feature is the existence of a locally s-minimal set in {2’ that coincides with the exterior datum
(2.3), and that actually corresponds to the subgraph of a function u in (2, that is,

ENnQ ={(a',x411): za41 < u(z'), 2’ € 2}. (2.5)
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Remark 2.2 (Solving the Graph Nonlocal Plateau Problem). Appendix A explains that, in order to find the
locally s-minimal graph in £2’, it suffices to take M large enough, consider 2); = 2 x [-M, M], and then
seek a function w in the class

{u: R? 5 R: llull ooy < M, u =g in Qc}
such that the set E := {(2',2441) : Ta+1 < u(a’)} satisfies
Py(E, 2n) < Po(F, 20)

for every set F' that coincides with E outside §2);.

2.1. An energy functional

According to (A.3), the s-minimal sets we aim to approximate in this work are subgraphs. When
restricting the fractional perimeter functional Pg(-, £257) to subgraphs of functions that coincide with some
given ¢ in (2¢, it is convenient to work with an operator acting on the function u rather than on the set E.
More precisely, consider the set Qo = (]Rd X Rd) \ (£2¢ x 2¢) and the function Fy: R — R,

Fy(p) = ’ p—r d (2.6)
s\p) = ) (1+T2)(d+1+2s)/2 T :

In order to study the Plateau problem for nonlocal minimal graphs, we introduce the energy

RS = ———

This functional is the nonlocal analogue of (2.1). Indeed, there exists a direct relation between the operator I
and the s-perimeter. As pointed out in Remark 2.2, in order to find nonlocal minimal graphs on {2 it suffices

to find minimizers of the fractional s-perimeter Ps(FE, 2)s) for M sufficiently large. The next proposition
shows that, in the graph setting, if M is large enough then the s-perimeter Ps(E, £2)7) can be written as the
sum of a term depending only on w plus a term that is independent of u, albeit it blows up as M — oo. For
completeness, we include a proof of this proposition in Appendix B; we refer also to [43, Proposition 4.2.8].

Proposition 2.3 (Relation between Py and I5). Let 2 C R? be a bounded Lipschitz domain, g € L>(0°),
M > ||lgllpoo(ey, 27 = 2 x R and 2y = 2 x [=M, M]. Then, for every set E of the type of (A.3) with
llull Loo 2y < M, it holds that

PS(E7 QM) = Is[u] + C(M’ d, s, 2,9),

where Is[u] is given according to (2.7).

An immediate consequence of this decomposition is that, if M > ||g|[zec(oe), then the minimizer w is
independent of the truncation parameter M. Even though in the limit M — oo the fractional perimeter is
trivially equal to infinity, the function u we compute has the ‘good credentials’ to be regarded as a fractional
minimal surface in the cylinder 2. We recall that there cannot exist an s-minimal set on {2’ that coincides
with the subgraph of a bounded function in £’¢.

Remark 2.4 (Growth of Esterior Data). The functional Iy may not be well-defined for functions that
coincide with g on §2¢ unless g does not grow too fast at infinity. Nevertheless we point out that, as described
in (2.4), in this work we assume that g is bounded and with bounded support in R9.
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Our next goal is to define the correct space in which to look for minimizers of the energy functional I,.
We start with an auxiliary result.

Lemma 2.5 (Energy Bounds). Let 2 C R? be bounded. Then, there exist constants Cy(d, £2,s), Cz(d, s) and
Cs(d, s) such that, for every function v: R® — R it holds that

|v|W25(Q) <Cy+ CQI [v],

d=G //Q |z7 d+2s,)|d dy. (2.8)

Proof. From definition (2.6), it follows immediately that F,(0) = 0 and that

’ 1
() —
F‘?(p) - A (1 + 1‘2)(d+1+28)/2 d’f’, vp > O
Thus, if we set the constant C3 = fo Wdr, we deduce that

Fs(p) <Csp Vp=>0.

This implies the second inequality in (2.8).
On the other hand, the first estimate in (2.8), with constant C1 = [[,, , lx_gjﬁ% < oo because

2 ¢ R? is bounded, is a consequence of the bound
p <14 CoFy(p) Vp>0. (2.9)

It is obvious that such a bound holds for 0 < p < 1, whereas if p > 1, we have F.(p) > F.(1) and therefore,
Fs(p) > FI(1)(p — 1). The desired inequality follows with constant Cy = 1/F.(1). O

Taking into account the lemma we have just proved, we introduce the natural spaces in which to look for
nonlocal minimal graphs.

Definition 2.6 (Space V9). Given g: 2° — R, we consider
VI={v:R¢ >R : v|Q e WZ(2), v=gin 2° |vlys < oo},

equipped with the norm
[ollve = llvllL1ca) + [vlvs,

)|
|11| g.—//QQ |{E—y‘d+25 — " dx d

In the specific case where ¢ is the zero function, we denote the resulting space V9 by V°. The set V9 can
also be understood as that of functions in W2(£2) with ‘boundary value’ g. Indeed, we point out that in

where

Definition 2.6 we do not require g to be a function in W24(£2¢) (in particular, g may not decay at infinity).
The seminorm | - |ys does not take into account interactions over £2¢ x £2¢, because these are fixed for the
applications we consider.

As stated in the next Proposition, given a Dirichlet datum g, the space VY is the natural domain of the
energy I.

Proposition 2.7 (Energy Domain). Let s € (0,1/2) and §2, g be given according to (2.4). Let v: RY — R be
such that v = g in 2°. Then, v € V9 if and only if Is[v] < co.
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Proof. The claim follows easily from Lemma 2.5. Let v be a function that coincides with g in £2¢. Then, if
v € V9, the second estimate in (2.8) gives I [v] < oo, because |v|yg < oc.

Reciprocally, if I [v] < oo, the first inequality in (2.8) implies that |’U‘Q|W125(_Q) < 00. Fix R > 0 such that
2 C Bpya; because of (2.9) and the Lipschitz continuity of Fj, integrating over 2 x (Bg \ {2), we obtain

vl 10 // < < ()| )) dzdy
= < 1+F,
R2s Qx(BR\2) |z —yl |z — y|d+2s=1
1
Q2x(Br\R) \I* |

The last integral in the right hand side above is finite because ||g||L < oo. Therefore, v € L!(£2). To deduce

that |v|lys < oo, we split the integral, use the triangle inequality, integrate in polar coordinates and apply
Hardy’s inequality [39, Theorem 1.4.4.4] to derive

[vlve < |v|glwas +2// dzdy+2// —==_dxdy
|Q i 2x Qe |9C— |d+2s 2% Qe |$ - |d+2s

|v(z)|
S 1o g lwas o) + /Q Wdl’ +llgllizoo (o) S llv]gllwas o) + lgllzec(ae)-

This proves that v € V9 and concludes the proof. O

Taking into account Proposition 2.3 and Proposition 2.7, we obtain a characterization of nonlocal minimal
graphs (see also [43, Theorem 4.1.11]).

Corollary 2.8 (Relation between Minimization Problems). Let s € (0,1/2) and £2,g satisfy (2.4). Given
a function u: RY — R that coincides with g in 2¢, consider the set E given by (A.3). Then, E is locally
s-minimal in 2 = 2 X R if and only if v minimizes the energy I, in the space V9.

The functional I is strictly convex, because the weight F appearing in its definition (cf. (2.6)) is strictly
convex as well. Therefore, we straightforwardly deduce the next result.

Corollary 2.9 (Uniqueness). Under the same hypothesis as in Corollary 2.8, there exists a unique locally
s-minimal set.

We conclude this section with a result about the regularity of the minimizers of Is. In spite of being
prone to be discontinuous across the boundary, minimal graphs are smooth in the interior of the domain.
The following theorem is stated in [18, Theorem 1.1], where an estimate for the gradient of the minimal
function is derived. Once such an estimate is obtained, the claim follows by the arguments from [8] and [38].

Theorem 2.10 (Interior Smoothness of Nonlocal Minimal Graphs). Assume E C R is an s-minimal
surface in 2 = 2 x R, given by the subgraph of a measurable function u that is bounded in an open set
A D 2. Then, u e C™(12).

2.2. Weak formulation

In order to define the proper variational setting to study the nonlocal minimal graph problem, we
introduce the function G5: R — R,

p
Galp) = /0 (1+7r2) =220 — Fl(p). (2.10)
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We recall that s € (0,1/2). Clearly, G5 is an odd and uniformly bounded function:

r(%2) v
or (d+12+28) :

Ga(p)| < K = / (14 02) (29 2y = (2.11)
0

The constant K has already appeared in the proof of Lemma 2.5, under the label C3(d, s). The last equality

above follows from the substitution ¢+ = (1 + 72)~! and the basic relation between the beta and gamma
L'(@)I'(y)

Iz+y) -

Given a function u € V9, we take the bilinear form a,: V9 x V9 — R,

)= [ . (Mo =200 (o) ) of) = o), o.12)

R o =yl

functions, B(z,y) =

where G,(p) = fol(l + p2r2)~(@+1429)/2 4 and hence it satisfies pG(p) = Gs(p).
To obtain a weak formulation of our problem, we compute the first variation of (2.7), that yields

§I,[u](v) = ay(u,v) for all v e VO.
Thus, we seek a function u € V9 such that
au(u,v) =0 for all v € VO, (2.13)

Another approach — at least formal — to derive problem (2.13) is to write it as the weak form of a suitable
Euler-Lagrange equation. More precisely, assuming that the set E is the subgraph of a function w, this can
be written as the following nonlocal and nonlinear equation [8]

- 1

H,[E)(z) =PV. [ G, (“(x) “(y)> s dy =0, (2.14)
R [z =yl ) [z =yl

in a viscosity sense, for every = € 2. With some abuse of notation, we let H[u] represent H [F] when E is

the subgraph of u. Therefore, u solves the Dirichlet problem

{ Hs[u](aQ:O x € (2, (2.15)

u(z) = g(x) r e R4\ 0.

In this regard, the weak formulation of (2.15) is set by multiplying it by a test function, integrating and
taking advantage of the fact that Gy is an odd function. This corresponds to (2.13).

We finally point out that (2.13) can be interpreted as a fractional diffusion problem of order s+ 1/2 with
weights depending on the solution u and fixed nonhomogeneous boundary data; this is in agreement with
the local case (2.2). Like for the classical minimal graph problem, the nonlinearity degenerates wherever the
Lipschitz modulus of continuity of u blows up. We expect this to be the case as dist(z, 9§2) — 0, as this has
been shown to be the generic behavior in one-dimensional problems [33].

3. Numerical method

This section introduces the framework for the discrete nonlocal minimal graph problems under considera-
tion. We set the notation regarding discrete spaces and analyze their approximation properties by resorting to
a quasi-interpolation operator of Clément type. We include a brief discussion on the solution of the resulting

nonlinear discrete problems.
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3.1. Finite element discretization

As discussed in Remark 2.1, in this work we assume that g is a function with bounded support. Concretely,
we assume that
supp(g) C 4 for some bounded set A. (3.1)

Approximations for unboundedly supported data are discussed in a forthcoming paper by the authors [12].
Without loss of generality, we may assume that 4 = Bgr(0) is a ball of radius R centered at the origin.

We consider a family {7 }r>0 of conforming and simplicial meshes of A, that we additionally require to
exactly mesh (2. Moreover, we assume this family to be shape-regular, namely:

T
o = sup max — < 00,
r>0T€Th PT

where hr = diam(T") and pr is the diameter of the largest ball contained in T'. As usual, the subindex h
denotes the mesh size, h = maxreT;, hr. The set of vertices of 7, will be denoted by N, and ¢; will denote
the standard piecewise linear Lagrangian basis function associated to the node x; € Nj. In this work we
assume that the elements are closed sets. Thus, the star or first ring of an element T' € T}, is given by

Sp= {1 e Th: TnT #0}.
We also introduce the star or second ring of Sk,

St =UJ{T" e Th: Sp 0T £ 0},
and the star of the node x; € N, S; = supp(p;). We split the mesh nodes into two disjoint sets, consisting
of either vertices in {2 and in £2°,

Ny ={x;: x; € 2}, NE = {z;: x; € 2°}.

We emphasize that, because 2 is an open set, nodes on 92 belong to Nf.
The discrete spaces we consider consist of continuous piecewise linear functions in A. Indeed, we set

VhZ{’UGC(A): U|T eP VTEE}.

For this work, we make use of certain Clément-type interpolation operators on V;. To account for boundary
data, given an integrable function g: A\ 2 — R, we define

Vi ={veVp: vlpne = Ig}.
Here, II denotes the exterior Clément interpolation operator in (2¢, defined as

Tgg = > (Ig)(x:) @i,
X»L‘EN;

where II,g is the L2?-projection of g|SimQC onto P1(S; N £2°). Thus, IIg(x;) coincides with the standard
Clément interpolation of g on x; for all nodes x; such that S; C R? \ £2. On the other hand, for nodes on
the boundary of (2, II only averages over the elements in S; that lie in 2¢. Although IIg only takes into
account values of g in {2¢, the support of Ifg is not contained in §2¢, because ¢, attains nonzero values in
2 for x; € 012.

Using the same convention as before, in case g is the zero function, we write the corresponding space as
V9. Also, we define the interior Clément interpolation operator I : L'(§2) — VY,

IIpv = Z (I v) (%) i,
X,‘EN;;

where H;iv is the L?-projection of v|Q onto P (S;).
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Remark 3.1 (Discrete Functions are Continuous). Even though nonlocal minimal surfaces can develop
discontinuities across 0f2 — recall the sticky behavior commented in Remark A.3 — the discrete spaces we
consider consist of continuous functions. This does not preclude the convergence of the numerical scheme we
propose in ‘trace blind’ fractional Sobolev spaces. Furthermore, the strong imposition of the Dirichlet data
simplifies both the method and its analysis. The use of discrete spaces that capture discontinuities across
the boundary of the domain is subject of ongoing work by the authors.

With the notation introduced above, the discrete counterpart of (2.13) reads: find u, € V{ such that
ay,, (up,vy) =0 for all v, € V. (3.2)

Due to our assumption (2.4) on the datum g, it follows immediately that wy, is a solution of (3.2) if and
only if uj, minimizes the strictly convex energy Is[uy] over the discrete space V. This leads to the existence
and uniqueness of solutions to the discrete problem (3.2).

3.2. Localization

An obvious difficulty when trying to prove interpolation estimates in fractional Sobolev spaces is that
their seminorms are non-additive with respect to disjoint domain partitions. Here we state a localization
result, proved by Faermann [35,36] in the case p = 2. For brevity, since the proof for p # 2 follows by the
same arguments as in those references, we omit it.

Proposition 3.2 (Localization of Fractional-Order Seminorms). Let s € (0,1), p € [1,00), and 2 be a
bounded Lipschitz domain. Let Ty, denote a mesh as above. Then, for any v € W;(Q) there holds

1/p
) 2pwd 1

( )| -
Vlws < E —————dydx + C 5 . 3.3
| |WP(Q) /]x( 1r‘] ) |£C y‘d-ﬁ-sp ( ) sph D || Hlp(T ( )

Above, wq—1 denotes the measure of the (d — 1)-dimensional unit sphere.

This localization of fractional-order seminorms is instrumental for our error analysis. It implies that, in
order to prove approximability estimates in W5 (§2), it suffices to produce local estimates in patches of the
form T' x Sk and scaled local LP(T) estimates for every T € Tp,.

3.8. Interpolation operator

Here we define a quasi-interpolation operator that plays an important role in the analysis of the discrete
scheme proposed in this paper. Such an operator combines the two Clément-type interpolation operators
introduced in the previous subsection. More precisely, we set Zp,: L*(R?) — V¥,

Ty = I (v],) + I g. (3.4)

Using standard arguments for Clément interpolation, we obtain local approximation estimates in the
interior of f2.

Proposition 3.3 (Local Interpolation Error). Lets € (0,1), p > 1, s <t < 2. Then, for allT € T}, it holds

lv = Znvllocry S Aol st
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and

1
(v = Znv(z)) = (v = Zno(y) P
dydx | S A% .
(//sz; iz — | P y [lwis2)

From Corollary 2.8 and Theorem 2.10 we know that, under suitable assumptions, minimal graphs are
W2s-functions that are locally smooth in 2. These conditions are sufficient to prove the convergence of the
interpolation operator Zj,.

Proposition 3.4 (Interpolation Error). Let s € (0,1), and p > 1 be such that sp < 1. Assume that 2 and
g satisfy (2.4) and (3.1). Then, for all v: R? — R satisfying ’U‘Q € W3 () and v =g in 02°,

|(Zpv — Thv — P
// v = v)(@) = ghv V)l dxdy — 0 as h — 0.
Qo |z — y|dter

Proof. In first place, we split

(Znv = v)(2) = (Znv —v)(y)] // Zho(z) — v(@)[”
dmdy dxdy
//QXQC |x*y|d+5p x0¢ |x*y|d+8p

59(y) — g()”
dxdy.
/~/Q><QC |1‘ - |d+3p

Given x € £2, we have [, mdy S d(z,00)7°P, and since Zpv — v € W (£2), we invoke the Hardy
inequality [39, Theorem 1.4.4.4] to deduce that

(Znv = v)(2)[” |(Znv — v) ()P )
//me T g B </ —)S" do 5 1Znv = vl o)-

Since g is uniformly bounded, we first claim that II‘g — g a.e. in £2¢ as h — 0. Indeed, for every y € T' C £2¢,

we express IISg(y) as a linear combination of II°g(x;), where {x;} are the vertices of 7', and deduce that
igw) = [ vi(0)gla)da,
ST

for some function ¢ satisfying fsl @y (r)dr = 1 and H(pZHLoo(S%) < C(d,o)h=9. Since S* C Ba(y), for
every Lebesgue point y of g we have

[(I59)(y) — 9(y)| = (z)(g9(z) — g(y))dz

<leilloecspy [, 1)~ gl
2h

1

lg(z) — g(y)|dz — 0 as h — 0.
‘Bzh( )l Ban(y)

By the Lebesgue differentiation theorem, almost every y € 2¢ is a Lebesgue point of g, and therefore
IIfg — g a.e.in 2°as h — 0. (3.5)

In addition, it follows from H‘PZ”LOO(S%) < C(d,o)h=? that [115;9]l oo (may < [|9]|Loe(2¢), and hence

P
// () — 9w’ dy < // 91170 (e e
oxoe |- y|d+5” axqe | —yldtsp

Applying the Lebesgue Dominated convergence theorem, we obtain

7€ p
// |29ty d+( v)| dxdy — 0 as h — 0.
axae |z —yliter
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Therefore, we have shown that

|(Znw —v) (@) = @0 =)@, o~ ,
//gmc |z — y| &P drdy < (| Zho = vl o) + o(1),

and thus we just need to bound the interpolation error in Wy (£2).
We write Zpv —v = (H}f (v|9) — v) + II g, and split

[ Znw — ”||€VS(Q) < 3 (v] ) = ”||€V,§(Q) + ||Hifg||€vg(o)

Using the localization estimate (3.3), we bound HthHp () by

P [ i7g(x) — Mg (y)[”
HthH 5 (2) |://T sLne) |z — yld+sp dyde
T:TCQ x(Spn
2Pwg_1q c
+ (1 o) 2t ol |
Recalling [[1I;7g|| ;oo (ray < 1|9]lLo0(@c) and using an inverse inequality, we have

p —sp+d —sp+d
LD SR [Cas L A 7 PRI SR s
TCR: Shnee£0 TCR: SLNNC#D

for h small enough. The sum in the right hand side above can be straightforwardly estimated by
Z h;sm'd < Z h;szﬁd < pl-sp Z h%_l
TCR: SENNCAD TCR: TNREAD TCR: TNREAD
< B HI(09),

where H?! is the (d — 1)-dimensional Hausdorff measure. This establishes that HH,ngp s() 0ash — 0.
P

It only remains to show that HH;; (v’Q) va — 0 as h — 0. For simplicity, we write II;v instead

5(2)
of IIy (v’n). Since II;v is a continuous linear operator from W (£2) to W, ({2) with

[e]
I v|ws (o) < C(d, s, p, 0, 2)|[vllws (o),
it suffices to prove the convergence for v € C*° (ﬁ) We use the localization estimate (3.3) for || H,fv—vnzvs
P

_ — (IT°v — P
HH;;U_UHP () < // R —v)(z) — (v —v)(y)| dydz
Wi (2 Tx(slrm) |z — y|dtep

T: TCR

(2)
and write

2Pwq—1 o
+ <1+C(O’) o ) 11150 — ol Ty

= Z IT(”U) + Z IT(U).

T: S2,C0 TCR: S2N0CH#D

On the one hand, we point out that, because

U T| ~h,

TCQ: SANQCHD

and v € W7 (£2), we have

> Ir(v) < C(d,s,p,0) > ||v||§V5(S%m) —0, as h — 0.
TCQ: S2N0°H0 TCQ: S2NQeAD
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On the other hand, over the elements T such that S% C 2, Proposition 3.3 gives

p(t—s) P p(t—s)|,,|P
Z ~IT(U) S h Z N |U|WZ§(5’%) S h ‘U|WI§(Q)7
T: S2CQ T: SZCQ

for every v smooth in 2. This finishes the proof. [

If, under the same conditions as in Proposition 3.4, we add the hypothesis that v is smoother than W (2),
then it is possible to derive interpolation rates.

Proposition 3.5 (Interpolation Rate). Assume that v € W} (A) for some t € (s,2]. Then,

// (Thv — v)(z) — (Tpv — v)(y)° dzdy < B[P
Qo | ~

T — y|d+sp WE(A)

Proof. We split (), into the sets
Qa € (Ax AU ((2°\4) x ) U (2x (2°)4)).

The estimate in A x A is standard and follows along the lines of the estimates for || Zyv — v[lw; (o) in
Proposition 3.4. The estimate in (£2°\ A) x £ reduces to ||Z,v — v||1p(0) because dist(2°\ 4,£2) > 0
and v is zero in 2\ A. O

3.4. Numerical schemes

We briefly include some details about the implementation and solution of the discrete problem (3.2). In
first place we point out that we can compute a., (us,vy) for any given u; € Vi, v, € V9 by following the
implementation techniques from [1,2]. Further details on the quadrature rules employed and the treatment
of the discrete form a.,, (un,vy) can be found in [12].

In order to solve the nonlinear discrete problem we resort to two different approaches: a semi-implicit H“-
gradient flow and a damped Newton algorithm. For the former, we consider «a € [0,1) (with the convention
that HY(2) = L%(12)), fix a step size 7 > 0 and, given an initial guess u), we solve the following equation
in every step,

L ket

;(uﬁ“ —up | Up)pa(g) = —ayk (up, ™, vp), Yoy, € V9. (3.6)

.. day, )
For the damped Newton method, we take the first variation of a., (us,vn), %:Uh)

well-defined for all uj, € VY, vy, wp, € V9. We point out that the analogue of this variation at the continuous

(wp,), which is

level is not well-defined. The resulting step is obtained by solving for wfl the equation

Oy, (uﬁ7 vp)

Sl (wy) = —ayk (uf,vp), Yoy, € V9 (3.7

and performing a line search to determine the step size. We refer the reader to [12] for full details on these
algorithms and further discussion on their performance.

4. Convergence

In this section, we prove the convergence of the discrete solution uy without assumptions on the regularity
of the nonlocal minimal graphs. We first prove that the discrete approximations are uniformly bounded with
respect to the L ({2) norm.
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Lemma 4.1 (Uniform Boundedness of ||un||poo(0)). Let s € (0,1/2) and £2 and g satisfy (2.4) and (3.1).
Let up, be the solution to (3.2). Then,

inf g(y) :=m <up(x) < sup g(y) = M, Yz € {2
yEene° yene

Proof. Consider the following truncation of uy,

up(z), ifm<up(z) <M,
up(x) =< m, if up () <m,
M, if up(z) > M.

Tt suffices to prove uy, = uy, for our purpose. Clearly, for a.e. x, y it holds that |uy, (x)—ap (v)| < |up(x)—un(y)].
Taking into account the definition (2.7) and the fact that Fy is increasing in [0, 00), this implies Is[up] <
I [up]. Since wy, € VY, this leads to uy, = uy, and thus finishes the proof. O

Next, we show that the discretization proposed in Section 3.1 is energy-consistent. Due to our assumption
that g € C.(22°), we know from Proposition 2.7 that the energy minimizing function u € W32*(£2), while
Theorem 2.10 guarantees that for any region Qe 2, ue Wft(ﬁ) for every t € R. These two properties are
sufficient to guarantee the consistency of the discrete energy.

Theorem 4.2 (Energy Consistency). Let s € (0,1/2), and assume that 2 and g satisfy (2.4) and (3.1). Let
u and uy, be, respectively, the solutions to (2.13) and (3.2). Then,

lim I = I.[ul.
hlg}) s[un] slul

Proof. Let 7, be defined according to (3.4). Since Zpu € V9, it follows that I[Z,u] > I[us] and hence
0 < IL[up] — Is[u] < Is[Zhu] — Is[u]

[ ( (B (M) e

Because Fy is Lipschitz continuous, we deduce

o5 tiul - 5 [ (B0 =0,y

y|d+25
and using Proposition 3.4 we conclude that limy,_,q I [uh} = ILu]. O

Finally, we prove the convergence of the finite element approximations to the nonlocal minimal graph as
the maximum element size h — 0.

Theorem 4.3 (Convergence). Under the same hypothesis as in Theorem 4.2, it holds that
%%HU fuh||W12r(Q) =0 Vrelo,s).
Proof. Due to our assumptions on g, we apply Theorem 4.2 to deduce that the finite element discretization

is energy-consistent. Thus, the family {Is[up]}n>o is uniformly bounded.
Similarly to the first formula in (2.8), we obtain

|uh|W125(Q) <Ci+ C2Is[uh]7

and because of Lemma 4.1, it follows that HuhHW12S( @) is uniformly bounded.
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This fact, combined with the compactness of the embedding W2*(2) C L(£2), allows us to extract a
subsequence {uy,, }, which converges to some @ in L'(2). According to (3.5) in the proof of Proposition 3.4,
{up,, } converges to g a.e. in 2¢; then, extending u as g onto 2°, we have by Fatou’s Lemma that

L[] < liminf I[up, ] = Is[u).
n—oo

As a consequence, I[u] is finite and, by Proposition 2.7, it follows that & € V9. Because & minimizes the

energy I, it is a solution of (3.2), and by uniqueness it must be % = u. Since any subsequence of {uy} has

a subsequence converging to u in L1(2), it follows immediately that uj, converges to u in L*(£2) as h — 0.

Finally, the convergence in the W2" (£2)-norm for r € (0, s) is obtained by interpolation between the spaces
LY(02) and W25(22). O

5. A geometric notion of error

In this section, we introduce a geometric notion of error and prove the convergence of the discrete
approximations proposed in Section 3.1 according to it. The error estimate for this novel quantity mimics
the estimates in the classical Plateau problem for the error

¢ (u, up) = /Q ‘D(Vu) _ 9(Vuh)’2 Q(Vu) ";Q(sz) dr,

= U(Vu) = 0(Vuy) ) - (V(uw—up),0)dz,
2

(5.1)

where Q(a) = /1 + |a]?, U(a) = (‘Zj(_a;). Since, in this context, 7(Vu) is the normal unit vector on the graph

of u, e(u,up) represents a weighted L?-error for the normal vectors of the corresponding graphs given by

u and wuy, where the weight is the average of the area elements of the graphs of u and uj;. An estimate for
e(u, up,) was derived by Fierro and Veeser [37] in the framework of a posteriori error estimation for prescribed
mean curvature equations. Geometric notions of errors like e(u, up) have also been considered in the setting
of mean curvature flows [26,27] and surface diffusion [7].

For the nonlocal minimal surface problem, let u and u; be the solutions to (2.13) and (3.2), respectively.
We introduce the quantity

es(u,up) = (Cd,s //Q (Gs (dy(z,y)) — Gs (duh(x,y))) dedy> 1/2’ (5.2)

where G, is given by (2.10), the constant Cy s = 1;387 with ag denoting the volume of the d-dimensional

unit ball and, for any function v, d,(x,y) is defined as

(5.3)
The term in parenthesis in (5.2) is non-negative because G is non-decreasing on R. We include the constant
C4,s in the definition of e, in order to have asymptotic compatibility in the limit s — %_ (cf. Theorem 5.12).

Section 5.1 derives an estimate for es(u,uy) that does not rely on regularity assumptions. Although
the proof of such an error estimate is simple, providing an interpretation of the quantity es is not a
straightforward task. Thus, in Section 5.2 we study the behavior of e, and related quantities in the limit
s 3 .
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5.1. Error estimate

In this section we derive an upper bound for the geometric discrepancy es(u, up) between the continuous
and discrete minimizers v and wj,, without additional assumptions on the regularity of u. More precisely,
the next theorem states that es(u,up,) can be bounded in terms of the approximability of v by the discrete
spaces V7 in terms of the V9-seminorm.

Theorem 5.1 (Geometric Error). Let s € (0,1/2) and let £2 and g satisfy (2.4) and (3.1). Let u and up, be
the solutions to (2.13) and (3.2) respectively. Then, it holds that

es(u,up) < inf V2Cq K |u — vplve

vp, EV

o . . 1/2
= inf <20d,sK / / [ = on)(@) 5“2, ”h)(y)da;dy> :
vp VY Qo |z — y|dt2s

where K is the constant from (2.11).

Proof. The proof follows by ‘Galerkin orthogonality’. Indeed, let v, € V{ and use uj — v, as test function
n (2.13) and (3.2) to obtain

duy, (2,Y) — dy, (2, y)
s (dy, (x, h h 7 dedy = 0.
//QQ (z,y)) -G ( h(x y))) |z — y[d—1+2s zdy =0
The identity above immediately implies that
e2(u, up) Cds// x,y)) — Gy (duh(x,y))) = |d71h+25 dxdy
Qo Y (5 5)
du(xvy)_dv (iE?y) .
—C’ds// (z,9)) — Gs (du, (z,y) h dxdy.
Qo ( h )) |£L' _ y|d71+25

Estimate (5.4) follows immediately from the bound |G| < K (cf. (2.11)). O

In case the fractional minimal graph possesses additional regularity, a convergence rate follows straight-
forwardly by applying Proposition 3.5.

Corollary 5.2 (Convergence Rate). Let the same conditions as in Theorem 5.1 be valid and further assume
that u € W{(A) for some t € (2s,2], where A is given by (3.1). Then,

es(u,upn) S ht/Qis‘uH/é?(A)'
Remark 5.3 (BV Regularity). Although minimal graphs are expected to be discontinuous across the
boundary, they are smooth in the interior of {2 and, naturally, possess the same regularity as the datum
g over 2¢. Therefore, in general, we expect that u € BV (A) whence the error estimate

h1/2—s|u|1/2

es(u,up) < BV(A)-

5.2. Asymptotic behavior
Our goal in this section is to show that, for u and v smooth enough, es(u,v) converges to the geometric

notion of error e(u,v) defined in (5.1) in the limit s — 1. To this aim, we first introduce a nonlocal normal
vector.
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Definition 5.4 (Nonlocal Normal Vector). Let s € (0,1/2) and E C R? be an open, bounded, measurable
set. The nonlocal inward normal vector of order s at a point x € OF is defined as

Ci-1s . / x5(Y) — xpe(y)
vo(z: B) = =12 i XBNY) 7 XEXY) (4 _ ) dy, 5.6
( ) 2 R—00 Bg(z) ‘Jf — y|d+2s ( ) ( )
where Cy_1,s = iﬁf as in (5.2), except that d is replaced by d — 1.

Remark 5.5 (Dimensions). We point out that, definition (5.2) aims to measure the normal vector
discrepancies over graphs in R?*!, whereas Definition 5.4 deals with the normal vector to a subset of R?.
This is why in (5.6) we use the constant Cy_1 s instead of Cys.

Notice that, by symmetry,
y—x
OB p(x) T — yldT2s
Consequently, because xge =1 — xg, if E C Br(z) for some R > 0, then

Ca-1,s XE(Y) — XEe(y)
(1, F) = == g W) d
vs(: B) 2 /Bm) |z — yl|d+2s =) dy

dS(y) =0 VR > 0.

_ XE(Y)
= Cd71,s/B W(y — ) dy.

r@) |7 =
The following lemma justifies that the nonlocal normal vector defined in (5.6) is indeed an extension of
the classical notion of normal vector. The scaling factor in the definition of v, yields the convergence to the
normal derivative as s — § .

Lemma 5.6 (Asymptotic Behavior of v,). Let E be a bounded set in R?, x be a point on OE, the surface OF
be locally C1Y for some v > 0 and v(z) be the inward normal vector to OF at x. Then, the following holds:

lim vs(z; F) = v(x). (5.7)

-
s—5

Proof. Without loss of generality, we assume x = 0. Let E = {y : y-v(z) > 0} and for simplicity we write
B, = B,(z). Then, since OF is locally C!+7, there exists some ry > 0 such that

/ el ds<y>\ < et (5.8)

for any r € (0,7¢], where A denotes the symmetric difference between sets. Fix R > r( large enough so that
E C Bgr(x). Then, we can write vy(x; E) as

xE(y)
vs(x; B) = Cy_ ,‘/ y dy
9( ) 1,s B |y|d+23

) ) 59)
XE\Y XEY

=Cg_1,5 / ,ydy+/ -y dy | .

( BR\Br, |y|d+2s By, Y|4

70

For the first integral in the right hand side, since the surface area of the (d — 1)-dimensional unit ball equals

dag, we have
xe(Y) /R / XE(Y)
y dy dr y dS(y
/BR\BTO |y|d+2s 0 op, Tt )

R 1 R
< / dr/ 5 rdds = dad/ r2 dr
0 OBy r T0

— 7(R172s _ Té_QS).
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Therefore, in the limit s — %7, we obtain

XE(Y)
/ |y|d+2s ydy
Bpr\Br, 1Y

We now deal with the second term in the right hand side in (5.9). Without loss of generality, we
additionally assume v(z) = e;. If we replace E by the set E defined above, that coincides with the half-space
{y: y1 > 0}, it follows by symmetry that all components but the first one in the integral vanish. The first

d
< S0 (Riozs _plo2) L, (5.10)

C'd—l,s = o
d—1

component can be calculated explicitly by writing it as an iterated integral along the (d — 1)-dimensional
slices II; = {y1 =t} and integrating in polar coordinates on these:

/B ly |d+25 mn{|z2<r2 12} (t2+ 2|2 )
/mdt/ Ve d / s
= r z
aB(d72) (t2 +r2)d+25
Fd—2
= flozdl/ dt/ 25dr.
(t2 +r2)

The iterated integral above can be calculated with elementary manipulations (Fubini’s theorem, change

of variables t — w = (5)2 and explicit computation of integrals) to give

—t2 rd—2 ré 2s
dt/ dr = ,
/ (2 + 7 )d+22s (d—1)(1—2s)

70

and therefore, as s — 3,

X5 ro” %
Cd—l,s/ B yidy=Cy 16 (d—Dog 1 ——"2— =173 5 1.
By, Y1712 d-1)(1-2s) °
This shows that 2 =(y)
. Xz\Y
hm / ||§ﬁ y1 dy = v(zx). (5.11)
S—>2 BTO

Using (5.8), the difference between the integrals over E and E can be bounded as

xe(y) = xz) 0 g
Ca-1,s / — = —ydy| < Cd—l,s/ d?“/ X n=(y) 779725 dS(y)
By ly|d+2s 0 op, AP
0 7;7+1 2s
S Cd—Ls/ T dr = Cyoy g —2—r,
0 T y4+1-2s

where the right hand side above tends to 0 because C(d — 1,s) = ;;—Ej and v > 0 is fixed. Combining this
estimate with (5.9), (5.10) and (5.11), we finally get
lim vy(z; F) = v(x),

1—
S—)2

thereby finishing the proof. O

Remark 5.7 (Localization). From the preceding proof, it follows that only the part of the integral near x
remains in the limit when s — %_. Thus, for any neighborhood N, of z, we could similarly prove

lim C’d;,s /N XEY) — xEc(y) (y— 2) dy = v(z)

asl™ |z — y|d+2s

without the assumption of the boundedness of F.



J.P. Borthagaray, W. Li and R.H. Nochetto / Nonlinear Analysis 189 (2019) 111566 19

We now go to the graph setting and consider
E={(z,2441) : Tat1 < u(z),z € RY} C R,

where u € L (R%). For such a set E it is clear that our definition (5.6) is not adequate: the limit of the
integral therein does not exist. However, the only issue in such a definition is that the last component of
the nonlocal normal vector in R4 tends to —oo, and thus it can be solved in a simple way. Indeed, we
introduce the projection operator P that maps

R 5 F = (2,2401) — P(Z) =z € R

Then we could actually define the normal vector for this type of unbounded set E as the projection

P (vs(z; EB)).
More precisely, given & = (x,u(x)), we define the projection of nonlocal normal vector, U4(Z; E) =
P (vs(7; E)), as
= oy - Cas XEW) =X (¥) e~y g
Vs(T; B) = 5 A /BR@) R gl P(y—2) dy, (5.12)

where x = P(Z) and y = P(y). To show that this limit exists, consider the sets

B_R‘; (i) = {g: (y’derl) € RdJrl : |g7 §| < Ra Yd+1 > u(l')}a
By (7) == Br(z) \ B% ().
Since both Bj; (Z) and Bj () are half balls, by symmetric cancellation, we have
1 1
/B;(Z;) |z — gttt B @) |7 —yliries
in the principal value sense. Therefore, using that yg = 1 — xgc, we can express

/ XE () — x5 (Y) p
Br()

|7 — g|arites (y—2)dy

y—=z) - / y—=z)
= 2/ fdy -2 7@;.
B @ne [T —yldrites B @\ [T =yl
The two integrands above have enough decay at infinity because we are assuming u € L (R?). Thus, as
R — oo, we may replace By (Z) by the half space H~ (%) :== {(y,ya+1) € R¥*! : y4p1 < u(z)}. Thus, the
vector defined in (5.12) can be written as

ve(T; = & 7 — w ~
(@ E) = Ca [ 45— Cu | ; i

B\H-(7) |7 — gld+i+es e |7 — g|dtites

u(y)
y—x
= G /d dy/ ( ) arires Wit
R w@) (Jz = yl> + (Ya+1 —u(®))?) 2

Making the substitution ¢t = yd‘lk;f_:‘(z), recalling the definitions of G, and d,, (cf. (2.10) and (5.3),

respectively), and noticing that d,(z,y) = —d.(y,x), we conclude that
u(y) —u(z)
T 1

~ i~ lz—yl
AT E) = Cas [ (w-a)dy [ o
R 0 |z — y|d+2s (1 4+42)" 2

~Ca [ BB oy ay

d |.T _ y‘d+l+25

As we mentioned above, U4(T; E) can be regarded as the projection of vg(Z; E) under P. Therefore,
following similar steps as in Lemma 5.6 and Remark 5.7, it is possible to prove the following result.
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Lemma 5.8 (Asymptotics of Us). Let E = {(#,2441) : Ta41 < u(z),x € R}, where u € L™ (R?) and u is
locally C*7 around a point = for some v > 0. Then, the following asymptotic behavior holds

lim 74(z; E) = lim Cd7s/ Gs ([du(@.y)) (x —y) dy
R4

s—iT s—iT |x_y‘d+2s
e e (5.13)
B Vu(x)
1+ [Vu(z)]?’
where T = (x,u(x)). In addition, we also have
. G (dy(x, Vu(x
lim C’d75/ % (x—y)dy = %, (5.14)
ool N, T =yl 1+ [Vu(z)]

for any neighborhood N, of x.

Our next lemma deals with the interaction between the nonlocal normal vector to the graph of u: R — R
and a function v: R* — R. For that purpose, we redefine a, so as to include the proper scaling factor for
s — %7. Indeed, given u € V9, we set a,: VI x VO — R to be

—u() ) (wz) —w(y))(v(z) —vy))
(w,v) :==Cyqs //QQ < > 7 y|iriee dxdy. (5.15)

|z -y

Lemma 5.9 (Asymptotics of a, with Holder Regularity). Let u,v € CYY(A) for some v > 0 and a bounded
set A containing 2 C R%. Then, it holds that

lim ag(u,v) = [ &) Vo)

= .’L"
e o 1+ Vu@)P

where a,(u,v) s the form defined in (5.15).

Remark 5.10 (Heuristic Interpretation of Lemma 5.9). Suppose v was a linear function. Then, for all z,y
we have v(z) —v(y) = (z —y) - Vu(z), and thus we can write

ay, (U, V) :Cd’S/Q Gs (du(%i‘/))W dzdy,

while G (4

%3 ) - Vo(z) = Cas ( | e ) dy) V().
Therefore, taking into account the asymptotic behavior in (5.14), Lemma 5.9 would follow upon integration
of the identity above over {2. However, for an arbitrary (nonlinear) v, we can only interpret a,(u,v) as a
certain interaction between the nonlocal normal vector U5 and the ‘nonlocal gradient’ d,. Nevertheless, in
the limit s — %_, only the interaction for z,y close remains, and the asserted result follows because any C*
function is locally linear.

Proof of Lemma 5.9. We first split the domain of integration using symmetry:

dy(z,y)
=Cys — 7 dxd
(w,v) = Ca //M (@9)) =yt Y

(5.16)
dy
+ 2Cds// (z,9)) %dxdy
2x ¢ | |
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Consider the first integral in (5.16). For a fixed x € £2, we expand v(y) = v(z) + Vo(z) - (x —y) + O(Jx —
y|1T7) and exploit the fact that |G| is uniformly bounded (cf. (2.11)) to obtain

[ Gl 2

/ G (g T =) + 0 (l2 = yl)

|.Z‘ _ ‘d+2s

= (/QG (du(z, y))x|d+28dy) ~Vv(z)+0(/(zmdy>.

Let us define D = sup,, , 4 [z —y|. Then, it is clear that 2 C A C Bp(x) and integrating in polar coordinates

we get b
1 1—2s
Cy / ———dy < / ro25 gy
,8 P ‘(ﬂ _ y|d+23717v Qg 0

iDV""l_zs -0 as s — 17.
~(v+1-28)ay ’ 2

dy (5.17)

Identity (5.14) guarantees that
lim Ci, ( [ e dy) Vola) = V) Vol@)
Ry ) g T Va(o)P?
so that it follows from (5.17) that
dy(,y) Vu(z) - Vo(a)
hm CS/GS dy(z,y)) — s dy = —F——,
862 d o ( ( y)) |$_y|d_1+23 Y 1+ ‘vu(l‘)|2

for every = € {2. Since for all x € 2 we have

(@) 1
D
<d(1 - 25)/ r**dr = dD'"%,
0

we can apply the Lebesgue Dominated Convergence Theorem to deduce that

. dy(,y) Vu(z) - Vou(z)
lim C ,S/ Gs (dy(z,y)) —————=dxdy = ——=dx 5.18
o Cas [ o G o) 5 e o VIt Vu)? 19

It remains to prove that the last term in (5.16) converges to 0 as s — %7. This is a consequence of the
Dominated Convergence Theorem as well. For z € {2, we write §(z) = dist(x, 942). We first use that |G| is
uniformly bounded, according to (2.11), and integrate in polar coordinates to obtain, for every x € {2,

dy(7,y)
y|d71+23

Cd,s Gs (du (LL', y))

dy
Qe |x -

D
< (1-2s) |U|Co,1(§) /6( )7‘_25 dr — 0.
xT

To prove that the integrands are uniformly bounded, we invoke again the uniform boundedness of G4 and
split the integral with respect to y into two parts:

Ca,s G (du(, ))| (TZ y1)+25dy S(1—-2s )/Cmdy

du(,y) dy(z,y)
(1-2s) / dy+/ (g
{y: ly—al<1y |2 —y|71F20 (i ly—a|>1} |7 —y|d=1+2s

V|c0,1 2|v| ;00
e [ e,
{y: |ly—z|<1} |5L' - | {y: |ly—=z|>1} |£C - y|

& 1-2
(1-2s) / r 25dr+ 25— 1dr) =1+ S.
0 1 2

S
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Consequently, we have proved that

dy(z,y)
lim Cg,s // G (dy(z,y)) ——————dady = 0.
s—d 2xoe |z — y|d-tt2e
This, together with (5.16) and (5.18), finishes the proof. O

Actually, the regularity assumptions in Lemma 5.9 can be weakened by a density argument. To this aim,

we recall the following stability result proved in [14, Theorem 1]: given f € Wr}(Q)7 1 < p < o0 and
p € LY(R?) such that p > 0,

— p
//Q ) Wp(m — ) dady < C|F1 g 1Pl 2 ). (5.19)

The constant C' depends only on p and {2. We next state and prove a modified version of Lemma 5.9.

Lemma 5.11 (Asymptotics of a,, with Sobolev Regularity). Let u,v € HE(A), for some bounded set A
containing §2. Then, it holds that

lim  ay(u,v) = Vu(z) - Vo(r)

) - —————— AT
) o VIt V@)

Proof. First we point out that the double integral in the definition of a,, is stable in the H'-norm. More
specifically, for uy, uz,v1,ve € Hg(A), we have

|Gy (U1, v1) = Quy (U2, V2)| < Jayy (W1, V1) — Gy (U1, V2) + Gy, (U1, V2) — Gyy (U2, V2)]

R T I L A T R
R x R4 |z — yl|dmrtes

As before, set D = sup, ,¢ 4 |7 — y|. Using the Cauchy—Schwarz inequality and choosing

(z) = |lz|~H1=2s |z < D
PEI=9 0, x| > D

n (5.19), we obtain that
|@y, (U1, 1) = Guy (U2, 2)]
S (1-2s) <|U1|H1(Rd)\7)1 — V2| g1 (ray + U — u2|H1(Rd)|U2|H1(Rd)) 1ol L1 (ra)-
For the function p we have chosen, it holds that

dale 2s
HPHLl(Rd) 1925

Thus, we obtain the following stability result for the form a:
|@uy (U1, 01) = Quy (u2,v2)| < C (|U1\H1(Rd)|vl — V2|1 (pay + w1 — u2|H1(Rd)|vz|H1(Rd)) ; (5.20)

where the constant C is independent of s € (0, ) and the functions involved.

A standard argument now allows us to conclude the proof. Given u,v € HE(A), consider sequences
{un}, {vn} € CX(A) such that u,, — u and v, — v in H'(R?). Due to Lemma 5.9, we have, for every
n,

Vuy(z) - Vo, (z
lim  ay,, (Un,vn) n(2) n(2)

= l‘
s 2 1+ [Vuu(z)[?

Applying (5.20), the claim follows. O
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We are finally in position to show the asymptotic behavior of the notion of error e, introduced at the
beginning of this section (cf. (5.2)). Notice that, with the rescaling (5.15),
e2(u,v) = ay(u, 1) — ay(u,v) — ay(v,u) + ay (v, v),

while for its local counterpart (5.1),

_ Vu(z) - Vu(z)  Vu(z) Vo(z)  Vu(z) Vu(z) = Vu(z)- Vo(z) .
o I+ [Vu@)P 1+ [Vu@)P  1+[Ve@)]? 1+ ][Vo(@))

e (u,v)

Applying Lemma 5.11 term by term in the expansions above, we conclude that effectively, es recovers e in
the limit.

Theorem 5.12 (Asymptotics of e5). Letu,v € H(A), for some bounded set A containing 2. Then, we have

lim eq(u,v) = e(u,v).
s—5

6. Numerical experiments

This section presents some numerical results that illustrate the properties of the algorithms discussed in
Section 3.4. As an example, we consider 2 = B\ B; /2, where B,. denotes an open ball with radius r centered
at the origin. For the Dirichlet data, we simply let g = 0 in R?\ B; and g = 0.4 in El/g. Our computations
are performed on an Intel Xeon E5-2630 v2 CPU (2.6 GHz), 16 GB RAM using MATLAB R2016b. More

numerical experiments will be presented in an upcoming paper by the authors [12].

Remark 6.1 (Classical Minimal Graph in a Symmetric Annulus). We consider the classical graph Plateau
problem in the same domain as our example above, with g = 0 on 9B and g = 7 on 9By /. When v > 7" =
% In(2++/3) ~ 0.66, the minimal surface consists of two parts. The first part is given by the graph of function
u(z,y) =~* — & cosh™"(2y/22 + y2) and the second part is given by {(z,y,2) : v* < 2 <7, (z,y) € 9By 2}
In this situation, a stickiness phenomenon occurs and u is discontinuous across B /2. Notice with our choice
of Dirichlet data v = 0.4 < ~+*, stickiness should not be observed for the classical minimal graph.

We first compute the solution u; of nonlinear system (3.2) using the L2-gradient flow mentioned in
Section 3.4. For s = 0.25 and mesh size h = 274, we choose the initial solution u% = 0 and time step 7 = 1.
The computed discrete solution wuy, is plotted in Fig. 1. By symmetry we know the continuous solution
should be radially symmetric, and we almost recover this property on the discrete level except in the region
very close to 0B /o where the norm of Vuy, is big. It is also seen that 0 < u; < 0.4 computationally, which
is a consequence of Lemma 4.1. To justify convergence of the L?-gradient flow, we consider the hat functions
{pi}}¥, forming a basis of V) where N is the degrees of freedom. Consider residual vector {r;}}¥; where
r; = aux (uf,¢;), we plot the Euclidean norm ||r|;2 along the iteration for different time step 7 in Fig. 2
(left). In the picture, the line for 7 = 1 and 7 = 10 almost coincide and we get faster convergence (fewer
iterations) for larger time step 7. For every choice of time step, we observe the linear convergence for the
gradient flow iteration computationally. We have also tried different choices of initial solution u}, and always
end up observing the similar linear convergence behavior. We also plot the energy I[u¥] along the iterations
in Fig. 2 (right); this shows that the energy I [uﬁ] monotonically decreases along the gradient flow iterations
independently of the step size 7 > 0. This energy decay property will be proved in the upcoming paper [12].

The solution uy, of nonlinear system (3.2) can also be solved using the damped Newton method mentioned
in Section 3.4. We choose initial solution u9 = 0 and the plots of uy, for several different s € (0,1/2) are
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Up,
4.0e-01

[ 0.3

—02

0.1
[ 0.0e+00

Fig. 1. Plot of u;, computed by L2?-gradient flow for s = 0.25 and h = 274,

102 T T T T
—71 =10

10° —T — 1 'I
_ —7=1le—1
& 2
g f —71=1le-21 =
° =
7, —7=1le—3|] =
S r 5
g . &
BB | 1

-8
10 l' 'I
10-10 L L L L 22 . . T . . .
0 10 20 30 40 50 0 2 4 6 8 10 12 14
Number of Iterations Number of Iterations

Fig. 2. Gradient flow for s = 0.25 for different choices of 7. Left: norm of residual vector r in the iterative process. Right: energy of

I,[uf] in the iterative process.
Uy,
4.0e-01
[ 03
—02
01
[ 0.0e+00

Fig. 3. Plot of u; computed by damped Newton method for s = 0.05,0.15,0.25,0.35,0.45 (from left to right) and h = 274,

shown in Fig. 3. The computed discrete solution for s = 0.25 is almost the same as the one computed by
gradient flow in Fig. 1. However, the damped Newton method is more efficient than the gradient flow since
we only need 4 iterations and 243 seconds compared with 26 iterations and 800 seconds when using the
gradient flow with 7 = 1.

As shown in Fig. 3, the graph of uj near 0B/, is steeper, and the norm of Vuy, larger for smaller s,
while it becomes smoother, and the norm of Vuy, smaller as s increases. This seems to suggest a stickiness
phenomenon (see Remark A.3) (stickiness) for small s in this example. We also notice that on the other part
of boundary 9By, the stickiness seems to be small or vanish (i.e. the gap of u on both sides of 92 is small
or zero), which is kind of expected since there is no stickiness on 9B; for the classical case Remark 6.1.

Due to the Gamma-convergence result of fractional perimeter in [5, Theorem 3], s—nonlocal minimal
graph u converges to the classical minimal graph u* in L!(§2) as s — %_. Since we know the analytical
solution of classical minimal graph u* in our example, to verify our computation, we could compare the
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1072 T
o lun —u*||Lio
—Ileast square of error o
o
= 107 E
S °
|
<
=
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102 107"
h
Fig. 4. Plot of |lup — u*||L1(p) for different mesh size h, where w;, is the discrete solution for s = 0.499999 and u”™ is the exact

solution of classical minimal graph. Least square regression suggests a convergence rate 1.96, which is close to O(h?).

discrete nonlocal minimal graph uy, for s = 0.499999 ~ % with u*. Fig. 4 shows that at least |lu, — u*||
converges for L' norm to a small number, which indicates the convergence of u;, as h — 0, and a second
order convergence rate. Although we could not prove this theoretically, this second order convergence might
be due to the fact that s is too close to 0.5, and the nonlocal graph is almost the same as the classical one.
In fact, this O(h?) convergence rate has been proved for the classical minimal graph problems in L' norm
under proper assumptions for dimension d = 2 in [41, Theorem 2].

Appendix A. Fractional perimeter and minimal sets

The concept of fractional perimeter, that leads to fractional minimal sets, was introduced in [19] and has
been further developed in [15,16,29,31-33,42,43]. Since this justifies the choice of functional Is[u] in (1.1),
we review this rather technical development with emphasis on fractional graphs.

A.1. Fractional perimeters and minimal sets

Here we present the definitions of fractional perimeter and fractional minimal sets and discuss their
properties.

Definition A.1 (s-Perimeter). Given a domain £’ C R?*! and s € (0,1/2), the s-perimeter of a set
E C R¥!in 2’ is defined as

Py(E, Q") =L(ENX,E°)+ Ly(E\ 2,2\ E), (A1)

where E¢ := R\ E and for any sets A, B C R¥*!, the interaction between them is defined as

dxdy
(A, B)
//AXB |z — yldtites

Formally, definition (A.1) coincides with

1
Py(B, ') = 5 ([XE]WfS(]RdH) - [XE]WfS(Q’C)) ;

s = (f], ()

is the standard Gaglial‘dO*AI‘OHSZ&_]Il*SlObOdeCkl_] seminorm.

where
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It is known that, as s — %7, the scaled s-perimeter P;(F, {2') converges to the classical perimeter, see
[16, Theorem 6.0.5] and references therein. Indeed, for all R > 0 and all sets E with finite perimeter in the

ball BR,
1
lim (2 — s) P,(E,B,) = cq41P(E, B,),

1
s—5

for almost every r € (0, R), where cgq11 is a renormalizing constant and P(FE, 2') is defined as

P(E, ) = sup{/ div o dz: ¢ € CHQ', R, |p| < 1}.
E

On the other hand, the behavior of Py as s — 0 is investigated in [29], where it is shown that if
P, (E, ") < oo for some sg € (0,1/2), and the limit

. 1

exists, then
lir% 25|0B1|Ps(E, 2') = (|0B1| — a(E)) |[EN 2'| + a(E) | 2"\ E|.
s—

In particular, if F is a bounded set and Py, (E, £2') < oo for some sg, then o(E) = 0 and lims_,g 2sPs(E, ')
= |E N §2'|. Therefore, the scaled limit of P;(FE, 2') is the measure of F within {2’ provided E is bounded.

We are now in position to define s-minimal sets in {2/, which are sets that minimize the s-fractional
perimeter among those that coincide with them outside (2’. It is noteworthy that this definition does not
only involve the behavior of sets in 2’ but rather in the whole space R4*1.

Definition A.2 (s-Minimal Set). A set E is s-minimal in an open set £/ C R4t if P,(E, ') is finite and
Py(E, 2") < Py(F, ) among all measurable sets F' C R4 such that F\ 2’ = E\ £'. The boundary OF
of a s-minimal set E is then called a s-minimal surface in 2.

Given an open set 2’ and a fixed set Ej, the Dirichlet or Plateau problem for nonlocal minimal surfaces
aims to find a s-minimal set F such that F\ 2/ = Ey\ §2’. For a bounded Lipschitz domain {2’ the existence
of solutions to the Plateau problem is established in [19].

Remark A.3 (Stickiness). A striking difference between nonlocal minimal surface problems and their
local counterparts is the emergence of stickiness phenomena [32]: the boundary datum may not be attained
continuously. Stickiness is indeed the typical behavior of nonlocal minimal surfaces over bounded domains
2. Reference [15] proves that when s is small and the Dirichlet data occupies, in a suitable sense, less than
half the space at infinity, either s-minimal sets are empty in {2’ or they satisfy a density condition. The
latter entails the existence of a 6 = §(s) > 0 such that for every x € {2’ satisfying Bs(x) € £/, it holds that
|EN Bs(x)| > 0. The recent work [33] shows that, in the 1d graph setting, there is no intermediate behavior:
minimizers either develop jump discontinuities or have a Holder continuous first derivative across 02’.

A.2. Fractional minimal graphs

Since we are concerned with graphs, the set 2 = 2 xR is a cylinder and E\ {2’ is a subgraph. Lombardini
points out in [42, Remark 1.14] that, in this case, the definition of minimal set as a minimizer of the
fractional perimeter is meaningless because Ps(FE, 2') = oo for every set E. This issue can be understood
by decomposing the fractional perimeter

P,(E, ") = PXE, ")+ PNY(E, '),
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with 1
PHE, ) = LS(E N, ENR) = f|XE|W25 (@)

S

PYHE, Q) =L(EN, E“\Q)JrL(E\Q’ '\ E)
|XE XE( )

and realizing that PNY(E, ') is trivially infinite independently of E. This problem can be avoided by,
instead of s-minimal sets, seeking for locally s-minimal sets.

Definition A.4 (Locally s-Minimal Set). A set E is locally s-minimal in 2’ if it is s-minimal in every
bounded open subset compactly supported in (2.

For bounded sets with Lipschitz boundary, the notions of s-minimality and local s-minimality coin-
cide [42]. However, as also shown in [42], the Plateau problem (in terms of locally s-minimal sets) admits
solutions even when the domain is unbounded.

Proposition A.5 (Eristence of Locally s-Minimal Sets). Let 2’ C R be an open set and let Ey C RI*1.
Then, there exists a set E C R locally s-minimal in £2', such that E\ ' = Ey \ £2'.

We now consider the minimal graph problem: we assume 2/ = 2 x R is a cylinder with 2 C R? being
a Lipschitz domain, and the Dirichlet datum to be the subgraph of some function g that is bounded and
compactly supported (cf. (2.3) and (2.4)). In this setting, Dipierro, Savin and Valdinoci [31] proved that for
every locally s-minimal set in {2’ there exists My > 0 such that

0 x (—00,—~My) € ENQ' C 2 x (—00, My). (A.2)

As pointed out in [43, Proposition 2.5.3], a consequence of this estimate is that a set E is locally s-minimal
in ' = 2 x R if and only if it is s-minimal in 2y = 2 x (=M, M) for every M > M.

Additionally, once the a priori bound (A.2) on the vertical variation of locally s-minimal sets is known,
it can be shown that minimal sets need to be subgraphs, that is,

ENQ ={(/,2441): 2441 <u(a’), 2’ € 2} (A-3)

for some function u (cf. [43, Theorem 4.1.10]). We refer to such a set E as a nonlocal minimal graph in (2.
Thus, as expressed in Remark 2.2, the Plateau problem for nonlocal minimal graphs consists in finding a
function v : R? — R, with the constraint u = g in £2¢, such that the resulting set E is a locally s-minimal
set.

Appendix B. Derivation of the energy (1.1) for graphs: proof of Proposition 2.3

In this appendix, we establish the relation between the fractional s-perimeter Ps(FE, 2') of the subgraph
of a certain function u given by (A.3) and the energy functional Is[u] defined in (1.1). This will also prove
Proposition 2.3.

We recall our basic assumptions (2.4): 2 C R? is a bounded Lipschitz domain and g € L*°(2¢). Given
M > 0 sufficiently large depending on s,d, 2, g, we let 2y = 2 x [-M, M]. We note that, according to
(A.2) and (A.3), the problem of nonlocal minimal graphs in {2 reduces to finding a function u in the class

{u: R? 5 R: llull ooy < M, u =g in QC}
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such that the set E = {(2/,2441) € R! : 24,1 < u(z’)} satisfies
P,(E, ) < Ps(F, 2a)
for every set F' that coincides with F outside {2);. Our goal is to prove Proposition 2.3, namely to show that
Py(E, ) = I[ul+ C(M,d, s, 22,9),

where I is given (1.1) and (2.7) and reads

U(y)> 1
dxdy.
//Q ( -y ) Jo—yerest Y

This identity will follow by elementary arguments, inspired in Lombardini [42]; further details can be
found in [43, Chapter 4]. Definition (A.1) yields

PS(E, \QM):LS(EQQM,EC)—FLS(E\QM,ECQ.QM). (Bl)

For the first term I on the right hand side above, we write I = I; + I where

L . u(z) dr
En 2y, E°) // dxdy/ dt/
QxR u(y) (= 1)2 4 | — y|2)dF1T29/2

u(z)—u(y) dr
I = // dxdy/ dt / ,
02x 02 M—u(y) + |l‘ | )(d+1+28)/2
u(z)—u(y) dr
Iy = // dmdy/ dt / —.
Ox0c M—u(y) 24 |z — y|? )(d+1+25)/2

Recalling that £’ = 2 x R, the second term I7 in (B.1) can be split as

and

IT == L(E\ @, E° N0 2) = I, + I,

where
Il = L;,(ENQ2)\ 20, E°N 2y), Il =Ly (E\ 2',E°N Q). (B.2)

Applying Fubini’s Theorem and the change of variables (r,t) = (=7 — t, —# — M), we obtain

1 t T
2% N u(y) i _,,, _|_ |.CL' y|z)(d+1+25)/2

—u(y)— 0o dr
= dxdy / dt / .
//IZXQ —oM ¢ (7’2 + ‘x o y|2)(d+1+23)/2
Therefore, we have

w@)-uly) oo dr
L+ 1L = dad dt
P //.QXQ ) y/_gM /—t (r? + |z — y[?)(dH1t20)/2

w@)—u(y)

dady EX i ° dr
oxa |z — |d 12 ) _am ¢ (r2 4 1)(d+142s)/27

[z—yl
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and using the symmetry in (z,y) of the integral over {2 x {2, we arrive at

u(z)—u(y)
dxdy [o=y] > dr
nem=y ff oyl +</ af, (% + 1)@z

lz—yl
u(y)—u(z)
?\szyl gt o dr
+ ‘,21\4‘ ¢ (T2 + 1)(d+1+28)/2 :
z—y

Next, the splitting

u(x)—u(y)

=N gt ° dr
FQIW‘ ¢ (T2+1)(d+1+28)/2
T—Y

uw(y)—u(=)

Tle—yl it e dr
oM (r2 +1) d+1+2s)/ - 0 . (r2 + 1)(d+1+25)/2

Tz—yl

gives
u(@)—u(y) u(y)—u(x)

Te—yl dt o dr Te—y] dt o dr
oM , (12 1 1)@+129)/2 o , (21 1)@+129)/2

lz—yl lz—yl
u(y)—u(=)
_9 \wayl dt ¢ dr
= ot 2 4 1 (d+1+23)/2 0 4 (1"2 + 1)(d+1+25)/2'

lz—yl

Thus, collecting the estimates above and recalling definition (2.6), we deduce

z) — u(y) 1
Il +IIl Cl +// S ( ) d.l?dy,
2x0 lz —yl |z — y|d—1t2s

C) = //ngdxdy/fm dt/ 211) (d+1+2s)/2

lz—yl

where

is a finite number that only depends on M, d, s, £2. The finiteness of C; is due to the boundedness of {2 and
the bound

2M

[o—yl dt e dr
0 t ( )(d+1+25)/2

dt Y e rdr
d+1+2s)/2 - 0 (7,2_|_1)(d+1+2s)/2 < oo.

Applying the change of variables (t,r) = (=7 + u(y),7 — ©), the term IIy = L (E \ £, E¢ N 2y) from

(B.2) can be expressed as

@ 7
II, =// d:z:dy/ / :

xR u(y) t—f)Q + ‘(E—y|2)(d+1+2 )/2

v di

= dzdy / /

/_/_QXQC t*’f’) + ‘m7y|2)(d+1+28)/2
u(y ’U«(I) (o) d?"
= dzdy/ / '
//anc Mtu(y ¢ (1?4 |z — y[2)(d+142s)/2




30

J.P. Borthagaray, W. Li and R.H. Nochetto / Nonlinear Analysis 189 (2019) 111566

We next combine I and I5 to obtain

w(@)—u(y)
_dedy [ [T [ dr
Iy + 11 //ngc |z — y[d—1+2s /_A/i:;fy) dt/_t (r2 + 1)(@+1425)/2
uw(y)—u(z)
?IJz Yl /°° dr
+ t
S A el
w(@)—u(y)
dzdy Ix*y\y gt 0 dr
axqe [T — |d 12s —M—u(y) _¢ (12 4+ 1)(d+1+25)/2
lz—y]
u(y)—u(x)
n o= a [ dr LM
M L (r2 4+ 1)(d+1+23)/2 lz —
=y

where K = [®(r? 4+ 1)~ (@+1429)/24r_ Therefore, recalling once again (2.6), we deduce

L+ 1L //QXQC E _d75y1+2s <2FS (%)
R

with Cy = 2MK [[,,, e |z — y| 74429 dzdy < oo, because 2 is bounded Lipschitz. Additionally, note that
because g € L>®(£2¢), we have

[, (o () e ()

Since Ps(FE, 23) = I1 + Is + II; + 115, collecting the estimates above yields

- 1
(B, Qur) // < “(y)> dzdy + C(M,d, s, 2, g).
Qo =yl ) |z -yt ( )

This finishes the proof of Proposition 2.3, and shows that the function u, whose subgraph solves the nonlocal

Plateau problem in {2/, minimizes the energy (2.7).
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