2404.15733v1 [cs.AR] 24 Apr 2024

arxiv

BlissCam: Boosting Eye Tracking Efficiency with
Learned In-Sensor Sparse Sampling

Yu Feng*"'
Shanghai Jiao Tong University
University of Rochester
y-feng @sjtu.edu.cn

Yuhao Zhu*
University of Rochester
yzhu@rochester.edu

Abstract—Eye tracking is becoming an increasingly important
task domain in emerging computing platforms such as Aug-
mented/Virtual Reality (AR/VR). Today’s eye tracking system
suffers from long end-to-end tracking latency and can easily
eat up half of the power budget of a mobile VR device. Most
existing optimization efforts exclusively focus on the computation
pipeline by optimizing the algorithm and/or designing dedicated
accelerators while largely ignoring the front-end of any eye
tracking pipeline: the image sensor. This paper makes a case
for co-designing the imaging system with the computing system.

In particular, we propose the notion of “in-sensor sparse
sampling”, whereby the pixels are drastically downsampled
(by 20x) within the sensor. Such in-sensor sampling enhances
the overall tracking efficiency by significantly reducing 1) the
power consumption of the sensor readout chain and sensor-host
communication interfaces, two major power contributors, and
2) the work done on the host, which receives and operates on
far fewer pixels. With careful reuse of existing pixel circuitry,
our proposed BLISSCAM requires little hardware augmentation
to support the in-sensor operations. Our synthesis results show
up to 8.2 X energy reduction and 1.4 x latency reduction over
existing eye tracking pipelines.

Index Terms—In-Sensor Computing; Eye Tracking; Sparse
Sensing; AR/VR

I. INTRODUCTION

Eye tracking provides a fundamental utility in many fields,
ranging from medical studies [26], [28] and human-machine
interaction [32], [69], [89], [91], [116] to augmented/vir-
tual reality (AR/VR) and spatial computing [41], [63], [68],
[100], [103], [124], [134]. Accurately and efficiently tracking
eye gazes play an important role in understanding human
cognition [123], enabling gaze-based human-machine interac-
tions [113], and improving communication and computation
efficiency of AR/VR systems [31], [44], [51], [61], [101].

Despite its essentiality, eye tracking is known to be slow
and power-hungry [92]. In our measurement of commercial
eye trackers (e.g., HTC Vive Pro Eyes and Tobii), its latency is
usually in excess of 15 ms, enough to introduce visual artifacts

*Work done while at University of Rochester
“Equal contribution
#Corresponding authors

Tianrui Ma"
Washington University in St. Louis
tianrui.ma@wustl.edu

Xuan Zhang*
Northeastern University
xuan.zhang @northeastern.edu

(e.g., in gaze-contingent rendering), and its always-on status
constantly consumes over 2 W [18], eating up half of the
power budget of a typical VR system [2], [4], [9].

Most of today’s efforts in optimizing eye tracking focus on
the algorithm pipeline, either by optimizing the tracking algo-
rithms [21], [34], [49], [71], [75] or by designing dedicated
hardware accelerators [131], [135], while largely ignoring
the indispensable front-end of any eye tracking pipeline: the
image sensor, which generates near-eye images for the tracking
algorithms to consume.

Rationale. This paper makes a case for jointly designing
the imaging system and the tracking algorithm to significantly
reduce energy consumption while satisfying the stringent
tracking latency requirement. In particular, we propose the
notion of “in-sensor sparse sampling”, whereby the pixels
are drastically down-sampled (retaining only about 5% of
the pixels) within the sensor. The downstream eye tracking
algorithm is carefully co-designed to be robust and take
advantage of the sparse inputs.

Such sensor/algorithm co-design offers two unique oppor-
tunities. First, we can optimize a previously untapped system
component with significant power and latency implications,
namely the image sensor. Modern image sensors, along with
their communication interfaces, are power hungry; they con-
sume power upwards of a few Watts, making up half of the eye
tracking power. The sensor power is dominated by the analog
readout chain and the sensor-host data transfer, both of which
are decreased with in-sensor data reduction. Second, with
sparsely sampled sensor data, the host eye tracking algorithm
receives and, thus, operates on far few pixels, further reducing
the tracking latency and energy consumption.

Contributions. We make both algorithmic and architectural
contributions. Algorithm-wise, we show how to design the
image sampling algorithm to reduce tracking latency and
energy without hurting the accuracy. We observe that the
background in near-eye images is stationary and the only
moving pixels in an image contribute to the gaze result. This
observation leads to a two-stage sampling algorithm, which
first detects the moving parts of an image as the Region-of-

Interest (ROI) followed by random sampling within the ROI.

We propose an eye tracking algorithm to take advantage
of the pixel reduction. The algorithm is based on Vision
Transformers whose accuracy is robust against pixel sparsity
and whose cost of computation naturally reduces as the pixel
volume reduces. Critically, both the data sampling algorithm
and the eye tracking algorithm are (approximately) differen-
tiable, which allows us to jointly train the in-sensor and off-
sensor operations to maximize end-to-end tracking accuracy.

The architectural contribution of the paper is to minimally
augment the sensor architecture to support various in-sensor
operations. We base our design on the increasingly popular
die-stacked Digital Pixel Sensor (DPS) architecture, where
the top layer is the usual pixel array and the bottom layer
integrates per-pixel ADC/SRAM and a DNN accelerator [23],
[47], [62], [111]. We show how to map the in-sensor sampling
algorithm to the bottom layer by time-multiplexing existing
circuit components between the sparse sampling mode and
the usual imaging mode.

Results. According to results obtained through digital logic
synthesis and analog circuit-level simulation, we show that
our eye tracking system reduces pixel volume by about 95%,
leading to an 8.2x energy reduction and a 1.4x tracking
latency reduction compared to existing eye tracking systems,
all with little degradation on the tracking accuracy. Our end-
to-end trained in-sensor sampling strategy and eye tracking
algorithm consistently outperform baselines and other variants
in accuracy across a range of sampling rates, showing the
benefits of joint design of in-sensor and off-sensor algorithms.

In summary, we present a new form of algorithm-hardware
co-design, where the hardware spans both the conventional
accelerators and, critically, the image sensor. We expand the
research scope from optimizing only for (DNN) accelerators
to the end-to-end eye tracking pipeline, which necessarily
includes the image sensor. The key in our work is to optimize
the sensor architecture jointly with the off-sensor computation
— through sparse in-sensor sampling. We hope that the paper
can inspire follow-up work on joint sensing-computing system
optimization. Our specific contributions are:

« We analyze the technology trend and pinpoint the system-

level bottleneck of today’s eye tracking pipeline.

« We propose an in-sensor sparse sampling algorithm
jointly designed with an off-sensor eye tracking algo-
rithm. They collectively reduce the pixel volume while
preserving high gaze prediction accuracy.

o We propose hardware augmentations, both analog
(Fig. 10) and digital (Fig. 11), to support in-sensor sparse
sampling for the first time. The hardware extensions
are intentionally kept minimum, enabled by intelligently
reusing existing hardware components.

« We demonstrate a systematic integration of eventification,
ROI prediction, sampling, and readout, which serves as
a reference design for future stacked image sensors that
are increasingly integrating computation capabilities.

o We propose a new timing design that schedules the hard-
ware components, within and off the sensor, to ensure that

Estimated Gaze

Near-Eye Image

Segmentation Map

Gaze
Pred.
Read-|

out

Ft-1 Exposure MIPI | Segmentation

Ft Exposure

Tracking Latency

Fig. 1: A typical eye tracking pipeline, which starts from image
sensing (exposure and readout) to obtain an near-eye image,
which is transferred to the host processor through the MIPI
CSI-2 interface. The host processor first segments important
eye parts, from which the gaze is estimated. Different frames
are overlapped to improve tracking frequency. Figure not
drawn to scale; readout delay is usually three orders of
magnitude shorter than the exposure time.

the FPS is unaffected by the addition of new computations
and hardware components (Fig. 8).

o Together, we achieve an 8.2x energy saving and 1.4x
latency reduction compared to existing eye tracking sys-
tems with negligible accuracy compromise.

II. BACKGROUND AND MOTIVATION

We first review today’s mainstream eye-tracking pipeline
(Sec. II-A) and the basics of image sensors (Sec. II-B). We
then discuss the scaling trends of eye tracking technologies in
AR/VR, motivating the paper (Sec. 1I-C).

A. Eye Tracking Basics

The goal of eye tracking is to estimate the user’s real-
time gaze—a 3D vector indicating where the eye is looking.
It provides a core utility for a variety of human-machine
interfaces. In particular, eye tracking is essential to next-
generation AR/VR systems, where the rendering is contingent
on gaze information [72], [105] and the user interface (UI)
is controlled by gaze [32], [69], [89], [91], [116]. Apart from
AR/VR, eye tracking is also widely used in vision science [26],
[67], [107], cognitive study [104], [110], and education [70].

Eye Tracking Pipeline. A typical eye tracking pipeline is
illustrated in Fig. 1. An image captured by a near-eye camera
goes through two stages: eye segmentation, which dissects
the foreground eye parts (e.g., pupil, iris, cornea), and gaze
prediction, which predicts the gaze from the segmentation map
[35], [57], [79], [129], [133], [136]. In today’s state-of-the-art
eye tracking system, the eye segmentation stage is usually
performed through Deep Neural Networks (DNNs), whereas
the gaze prediction stage employs regression models based on
the geometric model of human eyes, making eye segmentation
considerably more time-consuming than gaze estimation.

System Specifications. It is shown that the tracking
frequency needs to be around 120 Hz with a tracking latency
of sub-10 ms and an accuracy of 0.5-1.0° [5], [6], [7], [12].

120 Hz is necessary because humans frequently make rapid
eye movements (i.e., saccades) whose speed can be up to
700°/s [22], the tracking rate must be high to track such rapid
movements. Meanwhile, we must work with a tight power
envelope available on mobile AR/VR devices (around 3-6
W [2], [4], [9]) to avoid user discomfort induced by the
thermal effect. The image sensor, host processor, and sensor-
host communication all contribute to the power consumption
of eye tracking, which we will describe next.

B. Image Sensor Basics

When exposed to light, an image sensor transforms optical
signals in the scene to analog signals (using the photoelec-
tric effect [46]). The analog signals are converted to digital
pixel values through the readout chain (including the ADCs).
Through the Mobile Industry Processor Interface Camera
Serial Interface 2 (MIPI CSI-2) [55], the pixel values are then
transferred to a host processor to undergo further algorithmic
processing (e.g., eye tracking). These operations are neces-
sarily serialized within a frame but can be overlapped across
frames. Fig. 1 illustrates a typical overlapping between frames,
where the next frame can start its exposure while the previous
frame’s pixels are being transferred out.

Frame Rate. A key performance metric of image sensors
is the frame rate, quantified by Frames Per Second (FPS).
Ideally, as is the case in Fig. 1, the MIPI transfer and host
processing delay (of the current frame) is completely hidden
by the exposure and the readout delay (of the previous frame).
In this case, the frame rate is limited only by the sum of
exposure time and readout delay. Note that the readout delay
(tens of ps) is usually 3-4 orders of magnitude shorter than
the exposure time (tens of ms).

Stacked Image Sensors. Image sensors today are increas-
ingly integrating advanced computation capabilities through
3D die stacking technologies, presenting opportunities for
architectural exploration. Nowadays almost all mobile image
sensors are stacked [109]: the pixel array layer that converts
photons to analog signals and the processing layer which
contains the readout circuitry and the preprocessing image
signal processor (ISP) are located on two separate dies.

With the additional stacking dimension, computational im-
age sensors now routinely integrate digital logic (e.g., DNN ac-
celerators [23], [24], [47]) and memories (e.g. DRAMs [119],
and SRAMs [62], [111]). Moreover, stacking allows for het-
erogeneous integration, where the pixel array layer and the
processing layer can each use their respective process node. A
recent survey [40] shows that it is common for the processing
layer to adopt a process node (e.g., 22 nm) that is several
generations ahead of the one used by the pixel array layer
(e.g., 65 nm) in order to accommodate high-density energy-
efficient digital processing.

Digital Pixel Sensor. Our paper adopts the stacked Digital
Pixel Sensor (DPS), a particular form of image sensor archi-
tecture that is gaining popularity [126]. In DPS, the processing
layer has a per-pixel ADC, which inherently supports a global
shutter (critical for high-speed capturing) and a per-pixel

10 T . : .

/- Mobile GPU Se.iyet | |
0(6104’_+- DNN ***7>DengoG*i*D9”5@3NeI*:***O'**
[e] | | o Rinet i ‘ o\
iy 3 Z; + IXavidrNX Ty ! y

L _TIX2 _~ ~Bye-MS__AaVler-NX s - -~ /|
0 10 K Xayier ¥e ‘T aze
‘ ‘ Kim'gt'al.
1 2 L L L
9014 2016 2018 2020 2022 2024
Year

Fig. 2: The computational capabilities, quantified in GFLOPS,
of today’s mobile GPUs (using Nvidia Jetson series as exam-
ples) vs. the computational demands of state-of-the-art eye
tracking algorithms (assuming a tracking rate of 120 FPS).

SRAM to store the digitized pixel value and naturally act
as the input buffer to a digital accelerator. Examples of DPS
include the imager prototypes by Meta [65], Samsung [111],
OmniVision [15], and Sony [17].

The recent trend in computational image sensors suggests
that it is possible to integrate domain-specific accelerators
into the processing layer of a stacked DPS sensor with
minimal area overhead. For instance, under a 22 nm process
node, our experiment shows that integrating a DNN processor
merely introduces 5.8% of area overhead (Sec. VI-D). Many
such designs have been proposed by previous works using
Arithmetic Logic Units (ALUs) under a group of pixels [93]
and CNN processor under the entire pixel array [47], [112].

C. Scaling Trends of Eye Tracking Technologies

Tracking Frequency. Eye tracking performance is mainly
quantified by the tracking frequency: how many gaze estima-
tions can be made in a second. This paper assumes a 120 Hz
tracking rate, which is shown to be sufficient for many eye
tracking use cases (e.g., AR/VR) [33], [60] and is on par with
commodity eye trackers [5], [7], [12].

Meeting the tracking rate does not pose any issue as
technologies scale. This is because the speed of the eye
tracking algorithm on recent mobile processors with embedded
accelerators (e.g., GPUs), is already higher than that of the
image sensor’s capturing rate. Thus, the algorithm delay can
be hidden by the exposure time (Fig. 1).

To quantify this argument, Fig. 2 compares the Giga Float-
ing Point Operations per second (GFLOPs) of the mobile
GPUs on Nvidia Jetson series [8] with the GFLOPs require-
ment of a set of state-of-the-art eye tracking algorithms operat-
ing at 120 Hz [34], [49], [75], [129]. The GPUs and algorithms
are placed on the x-axis based on their release dates. As
mobile computing capabilities (unsurprisingly) increase over
the years, eye tracking algorithms also become more efficient.
Hence, the tracking rate requirement can be adequately met
by today’s mobile GPUs.

Tracking Latency. While tracking rate is unlikely an issue,
tracking latency is. Tracking latency is the delay between
the start of a frame exposure and when the eye tracking
algorithm finishes on that frame (Fig. 1). Our measurements of
commercial eye trackers (e.g., HTC Vive Pro Eyes [6]) show
that the tracking latency is usually in excess of 15 ms, enough

102 ‘ 55 100
— =< 80
8 23 60
2 lsms_ .0 | £8 40
~ [
3100 Q / S 8
5 g5 20
= [> Latency Xa g
3 R t
100 eqmremen %O q:\rg q/q/q’(b
Z20° \ng? 2K K e KA v\gec’s%»)

Fig. 3: MIPI communicating
latency under different im-
age resolutions. The red line
shows the eye tracking la-
tency requirement (15 ms).

Fig. 4: Percentage of im-
age sensor power attributed to
by the readout circuitry; data
from six recent sensors [64],
[97], [98], [99], [111], [114].

for many gaze-contingent AR/VR systems to report tracking
delay as a main cause of user-observable artifacts [20], [66]. 15
ms is roughly the end-to-end latency under a 120 Hz tracking
rate when capturing and processing are fully overlapped (as
shown in Fig. 1): 15 ms ~ ﬁ x 2.

Exposure time accounts for a large proportion of the track-
ing latency. Simply reducing the exposure time, however, has
noise implications, because the Signal to Noise Ratio (SNR) of
image sensing drops quadratically with exposure time [106].
Therefore, the downstream operations must be robust against
exposure time changes. Among other components, MIPI CSI-
2 transfer is poised to become a latency bottleneck as image
resolution increases in future. Fig. 3 shows the MIPI latency
under various image resolutions [16], [19]. As the image
resolution increases to 4K, the transmission latency (22 ms)
alone already surpasses the end-to-end latency requirement,
which means the MIPI latency can not be hidden by the
processing of the next frame.

This paper will demonstrate techniques that reduce the MIPI
transfer latency and, consequently, the subsequent eye tracking
algorithm latency while being robust against (even drastic)
changes to the exposure time.

Power Consumption. Eye tracking power consumption is
known to be high. Two recent eye tracking algorithms, RITnet
and EdGaze, consume 2.3 W and 1.9 W, respectively, on a
mobile Volta GPU [14]. Apart from the computation power,
the power consumption of image sensors has been steadily
increasing. Recent high-speed (120 FPS) image sensors rou-
tinely consume hundreds of milliwatts [3], [77] or even a few
Ws [1], [13], taking 10-60% of the total power budget of a
typical standalone VR device (around 3-6W [2], [4], [9], [78]).

The image sensor’s power is dominated by two components:
the sensor-host data transfer and the readout circuitry. Mea-
surements show that transmitting one byte from the image
sensor via MIPI CSI-2 interface consumes about 100 pJ
energy [83] which translates to 300 mW when transmitting 4K
images at 120 FPS. The readout peripheral circuit that converts
the analog pixel value to locally stored digital bits is another
dominating component in the image sensor [38]. While power-
efficient ADC design is an active area of research, a survey
on the recent image sensors from the past decade [85] shows

that the readout circuitry still consumes 66% of the sensor’s
power on average, as shown in Fig. 4.

Summary. Our goal is to significantly reduce the power
consumption and latency of eye tracking without hurting
the (already sufficient) tracking frequency. We focus on co-
designing the computational image sensor front-end with the
eye tracking algorithm, while leaving further optimization of
the host SoC hardware to future work. Optimizing the image
sensor not only directly reduces the sensor readout and sensor-
host communication power, but also indirectly reduces the
amount of work off-sensor algorithms perform.

Hardware acceleration of the off-sensor operations (e.g.
segmentation) is orthogonal and complementary to our front-
end solution and, thus, out of scope. In this paper, we assume
a standard systolic array architecture to execute any DNNs and
claim no novelty for the neural processing unit (NPU) design.

III. SPARSE SAMPLING-BASED EYE TRACKING

We first describe the sparse sampling algorithm (Sec. III-A),
followed by an eye segmentation algorithm that is robust
against sparse inputs (Sec. III-B). We then discuss how two
algorithms are jointly trained (Sec. III-C). This section focuses
on the algorithm and leave hardware design to the next section.

A. Sparse Sampling Algorithm

Intuition and Overview. To reduce latency and power
consumption, our idea is to perform sparse sampling inside
the sensor. In-sensor sampling has two advantages. First, it
reduces the amount of pixels that have to be read out and
transferred to the host, two of the main contributors to sensor
power consumption. Second, by reducing the data volume, we
also reduce the cost of the downstream eye tracking algorithm.

The overall algorithm pipeline is shown in Fig. 5. Each
frame first gets sparsely sampled by inside the sensor; the
sampled pixels are then transmitted to the host, which executes
the eye segmentation and gaze prediction to produce the
ultimate gaze information.

Conventional image sampling aims to maximize image
reconstruction quality for human vision [45], [76]. Instead,
our sampling strategy leverages the unique characteristics of,
and is thus tailored to, the eye tracking task. In particular, in
eye tracking only the fore-ground eye parts (e.g., pupil, iris,
cornea) contribute to the final gaze information. Naturally, we
can approach sampling in two stages: first localizing the fore-
ground parts of the eye as the region-of-interest (ROI), fol-
lowed by sampling within the ROIL. The ROI prediction DNN
is jointly learned with subsequent sampling and downstream
eye segmentation to minimize end-to-end loss.

Our two-stage sampling algorithm consists of three serial-
ized stages: eventification, ROI prediction, and sampling. Let
us describe the three stages in detail.

Eventification. While one could apply generic, heavy-
duty object detection DNNs to detect ROIs (e.g., Mask R-
CNN [56]), the cost of executing such networks would be
prohibitively high for in-sensor computing.

Gradient Flow

—— Computation Flow |

Segmentation

Previous Seg. Map

- ROI

LR
->| Eventification |—> Rl FPI andomyier
Prediction Sampling

Sparse Sampling Algorithm

Pixels

Sparse Sampled

Loss
.

Gaze Prediction

Gaze
Prediction

Segmentation
maps
[]

== Sparse -
Segmentation

I I Off-Sensor I

I In-Sensor

Fig. 5: Our sparse sampling-based eye tracking pipeline. Each frame first gets sampled by our sparse sampling algorithm inside
the sensor to dramatically reduce the sensor-host data volume (Sec. III-A); the sampled pixels then go through a sparse eye
segmentation algorithm on the host, which is designed to be robust against sparse inputs (Sec. III-B). The ROI prediction
algorithm and the sparse segmentation algorithm are jointly trained to maximize end-to-end tracking accuracy (Sec. III-C).

To design a lightweight ROI detection algorithm, the key
observation we leverage [49] is that in virtually any eye
tracking scenario (e.g., AR/VR), the near-eye camera is tightly
mounted on the headset, which is in turn tightly mounted on
the head. This means the background in eye images is station-
ary: there is no relative motion between the camera and the eye
background. Therefore, any pixel intensity changes between
consecutive frames inherently indicate the foreground, moving
eye parts. The inter-frame pixel differences, thus, provide a
natural guide to ROI prediction.

Therefore, the first step in our sampling algorithm is to
obtain inter-frame pixel difference, which is expressed as:

Erpi(z,y) = O(|Frsa(2,y) — Filz,y)],0) (D

where Fi(z,y) and Fyiq(x,y) are the pixel values at the
(x,y) coordinates at time 7 and (T + 1), respectively; ®
is an activation function which outputs 1 if the difference is
greater than the threshold o (and O otherwise). The threshold
is a parameter that can be tuned for a specific application or
scenario. We empirically find that o = 15 yields good results.

The resulting F is essentially a binary event map, where
each pixel value indicates whether the corresponding pixel
has changed significantly across frames (i.e., an event has
occurred) and, thus, belongs to the foreground eye parts.

ROI Prediction. With the guidance of the event map,
we design a lightweight ROI prediction network. Our ROI
prediction network is intentionally small; it contains three
convolution (Conv) layers followed by two full-connected
(FC) layers, amounting to only 2.1 x 107 MAC operations.
The event map is used as the input to Conv layers.

While event maps are generally effective, there are corner
cases where events are not indicative of foreground parts
(e.g., blinks, saccades). To improve the robustness of our
ROI prediction, we feed back the segmentation map from the
previous frame as a corrective cue similar to prior work [49].

Random Sampling. Given an ROI, we randomly sample
the pixels inside the ROI. We find that random sampling is
effective even at high sampling rates (Sec. VI-F). There are
many other sampling alternatives we consider; none works as
well. We will quantitatively compare across different sampling
strategies in Sec. VI-E; here we provide an intuitive account.

For instance, one can sample the entire image rather than
just the ROI, but the non-ROI regions of an eye image
make no contribution to eye tracking result, wasting precious
sampling budget. Alternatively, one can uniformly, rather than
randomly, sample the ROI, which would simplify the hard-
ware. Our results, consistent with prior findings in compressed
sensing [29], [30], show that uniform sampling significantly
reduces the eye segmentation accuracy, suggesting the diffi-
culty of reconstructing the eye parts from uniformly sparse
samples. Finally, one can consider using an additional network
to predict which pixels to sample. The computation cost of
doing so is prohibitively high with little accuracy benefit.

B. Robust Eye Segmentation From Sparse Inputs

Unlike existing eye segmentation algorithms that operate on
full eye images [34], [73], [75], [129], our algorithm operates
on sparse images (about 5% of the pixels as Sec. VI-A shows).
Using sparse images means the inputs are susceptible to noise,
hurting the accuracy of the algorithm [42].

Specifically, our experiment (Sec. VI-A) shows that existing
Convolutional Neural Network (CNN)-based algorithms often
struggle to retain high accuracy at low sampling rates. CNN-
based algorithm’s accuracy drops rapidly once the sampling
rate (the percentage of pixels that are retained) is below 50%.
This is because CNNs inherently rely on local information
rather than global information to make predictions. Conse-
quently, as the sampling rate increases (i.e., fewer pixels), less
local information is retained, which leads to accuracy drops.

Instead, we propose a Vision Transformer (ViT)-based
segmentation algorithm. Unlike CNN-based algorithms, ViT
leverages an attention-based mechanism that takes into account
information from all valid pixels within the input image [121].
Even when the sampling rate is low, ViT still can extract the
relationship among pixels that are far away from each other.

Our ViT algorithm consists of an encoder and a decoder
(Fig. 6). The ViT encoder uses 12 multi-head attention (MHA)
modules, similar to the network architecture in Strudel et
al. [117]. Each MHA layer has three heads with a channel size
of 192. To correlate global information, the MLP operations in
MHA module compute across all image tokens. Similarly, ViT
decoder uses two MHA layers with the same setting and ends
with an argmax layer for the final segmentation prediction.

Input

o
< . o
57 g s 2 £
= 0O b= i+l = =
© g < @ 9 <
tolrs] Ko} (9] x =
<@ o Q o] 5
o © = I+ e a
= c O o |+ € B =
n'O ag ® L T o >
T = L 4 » T P4 o
o B = = @ =
€O E} T K S
o = 0 o =
+

MHA Module x 2

MHA Module x 12

I Encoder | I Decoder {

Fig. 6: Overall architecture of our ViT segmentation, consist-
ing of an encoder and a decoder. The encoder is composed
of a linear projection and 12 MHA modules. The decoder
comprises two MHA modules and an argmax layer.

Pixel Array
Host NPU /

Fig. 7. High-level architecture of our eye tracking system.
The image sensor is connected to the host NPU through the
MIPI interface. The sensor has a 2-layer DPS pixel array (as
with many recent image sensors [109]), an in-sensor NPU,
and an output buffer. Our architectural augmentations lie in
augmenting the bottom layer of the pixel array.

_MIPI

In-sensor NPU

Note that a ViT network can be readily executed on a typical
DNN accelerator (e.g., a systolic array) [36], [128]. Optimizing
the accelerator architecture for ViT networks is an active area
of reasearch [82], [122]; we leave it to future work to co-design
the accelerator with our ViT network.

C. Training Procedure

The end-to-end tracking algorithm contains two DNNs, one
for ROI prediction and the other for ViT segmentation. We
propose a joint training procedure to improve the overall
accuracy. Two loss terms guide our training: a segmentation
loss and an ROI loss. The segmentation loss is a cross-entropy
loss that governs the accuracy of eye segmentation [34], while
the ROI loss uses the conventional mean-square-error loss
that governs the ROI prediction accuracy. During training,
the segmentation loss is back-propagated to both the ROI
prediction and the sparse segmentation DNN. We explicitly
mask the gradients belonging to the pixels that are not selected
by the random sampling. That is, only the unmasked gradients
are used to update the ROI prediction DNN.

IV. ARCHITECTURAL SUPPORT

We first introduce the overall BLISSCAM system operation
(Sec. IV-A) and present an overview of the sensor architecture
(Sec. IV-B), followed by the detailed description of the sensor
hardware designs (Sec. IV-C).

A. BLISSCAM System Overview

We co-design BLISSCAM to support the learned sparse
sampling algorithm. The system consists of a computational
image sensor and a host NPU connected by the MIPI CSI
interface. The system organization is illustrated in Fig. 7.
Our main contribution is to architecturally augment the image
sensor to support in-sensor sparse sampling (Sec. III) with
minimum hardware overhead while leaving the host NPU as
is to perform the eye segmentation and gaze estimation tasks.

Fig. 8 depicts the system timing diagram of BLISSCAM,
which has two main differences when compared with the
original eye tracking pipeline in Fig. 1. First, each frame
now goes through three additional in-sensor processing stages:
eventification, ROI prediction, and in-ROI sampling. Second,
there is a new constraint when pipelining across frames:
Frame,’s ROI prediction must wait for the segmentation map
of Frame;_; to be sent back from the host via the MIPI
CSI interface. This dependency is purely algorithmic: the
previous frame’s segmentation map is used as an input to
the ROI prediction of the current frame (Sec. III-A). The two
dependencies are denoted by the arrows in Fig. 8.

Observing Fig. 8, it would seem that additional in-sensor
operations would increase the eye tracking energy and latency.
As we will describe in the rest of this section, however,
the hardware design is such that the additional in-sensor
operations introduce negligible latency and energy overhead
(2-3 orders of magnitude lower) compared to that of a baseline
frame; meanwhile, in-sensor sampling significantly reduces
the data volume involved in readout, MIPI CSI transfer as
well as the off-sensor segmentation work which now operates
on far fewer pixels. Since both the readout and the MIPI
transfer contribute the major sensor energy, and the MIPI
transfer contributes the major sensor latency, the sensor’s
overall energy and latency are notably reduced.

B. Sensor Architecture

The main design consideration for the BLISSCAM sensor
chip is to support the various in-sensor operations in addition
to the normal imaging mode. Although prior works have
introduced designs that could meet one or two of the required
operations (see summary in Sec. VII), none supports the
full gamut of the required in-sensor operations. Instead of
employing dedicated hardware for each function which would
incur intolerable area costs at the pixel level, our design prin-
ciple, is to maximally reuse existing hardware across multiple
operations while introducing only minimal augmentation.

As shown in Fig. 7, the proposed BLISSCAM sensor consists
of a pixel array, an in-sensor NPU, and an output buffer.
Our hardware augmentation is limited to the pixel array
while adopting the standard design strategies for the in-sensor
NPU (i.e. systolic array) and the output buffer (i.e. parallel-
in-serial-out shift register). For each frame, the pixel array
captures an array of pixels and generates a binary event map
(i.e., eventification). The event map is transferred to the in-
sensor NPU, where the ROI prediction DNN resides. The
ROI bounding box is then fedback to the pixel array, which

!

f In-Sensor Operations

{ == Sensor-Host = =—— Off-Sensor Operations —=

Hegend | ROl Prediction | [samping | [Readout | | MmiPicsl | [[Segmentation | [Gaze Prediction]
End-to-End Latency
Timing Ft-1 Exposure [E| ROI [S]R M| Segmentation |M Gaze]
Diagram Ft Exposure I?i ROI [S]R,)M | Segmentation |M Gaze
<— Frame t starts S* Ft+1 Exposure I?i ROI

<— Frame t+1 starts

Fig. 8: Timing diagram of our eye tracking system, which includes operations both in sensor (Exposure, Eventification, ROI
Prediction, Sampling, Readout) and off sensor (Eye Segmentation and Gaze Prediction). We overlap processing of different
frames to ensure high frame rate while respecting data dependencies (indicated by filled arrows). The figure is not drawn to
scale; the additional latency introduced by the new in-sensor operations is much smaller compared to the exposure time, so

the overall tracking rate is minimally impacted.

Row-Select Column-Select Pixel Output

0

] If Skip ADC? \<—| Counter [,/ 10-bit SRAM |
1

Vp\xel

Hold

CRST14

Top

Fig. 9: The circuit diagram of the proposed DPS; the red
components are new hardware added to a conventional DPS.
The top layer is a standard pixel design (4T APS) that converts
photons to charges, and the bottom layer performs eventifica-
tion, analog memory, ADC, and sparse readout by reusing the
same circuitry. Blue arrows: signals used to determine if the
pixel performs ADC. Green arrows: signals that output O if
the pixel skips ADC. Black arrow: output analog pixel value
if the pixel performs ADC (sampled).

randomly samples pixels in the ROI and reads out only those
sampled pixels to the output buffer. The output buffer connects
to the MIPI interface, which transfers the pixels to the host.

The pixel array is implemented following a typical two-
layer DPS architecture where the top layer is the array of
pixel cells (e.g. a 4-transistor Active Pixel Sensor [95]), and the
bottom layer consists of an array of per-pixel ADC and SRAM.
The two layers are connected by per-pixel hybrid bonds. In
Sec. IV-C, we will dive into our novel augmentation to each
DPS pixel at the bottom logic layer to support additional
operations (i.e., eventification and sampling).

C. Design

The detailed design of the pixel circuits, which are based on
the standard DPS design, is illustrated in Fig. 9. For each pixel,

a standard 4T Active Pixel Sensor (APS) circuit (responsible
for converting photons to charges based on the photoelectric
effect [46]) resides in the top layer; the bottom layer contains
a 10-bit SRAM and a configurable analog readout circuit.

In a standard DPS, the pixel readout is performed by an
Single-Slope ADC (SS ADC) for pixel quantization. The SS
ADC operates as follows: a comparator receives the ana-
log pixel value and a monotonically decreasing ramp signal
(Vramp) at its two input Auto-Zero (AZ) capacitors (Cy.4 and
Cy,.—), respectively; the comparator’s output will not toggle
until the ramp signal crosses the analog pixel value; a counter
counts the number of cycles it takes for the toggle of the
comparator’s output, and the counted cycles is the quantized
pixel value.

Conventional SS ADC is a fixed-function unit that performs
just the quantization. To perform the in-sensor operations
required by our learned sampling algorithm, BLISSCAM aug-
ments the SS ADC with a few extra switch transistors and a
simple logic unit (highlighted in red in Fig. 9) while reusing
many existing ADC components—the AZ capacitors/switches,
the comparator, and the counter. In a sense, we time-multiplex
the same analog readout circuit between different operations,
e.g., analog buffering, eventification, and normal quantization.
Fig. 10 shows different configurations of the readout circuit.

We also minimally augment the circuitry to support sparse
readout, where only sampled pixels within an ROI go through
the ADC and MIPI interface. This is achieved by the “If Skip
ADC” logic in Fig. 9, which is conditioned upon the row-
select and column-select signals. Finally, we reuse the per-
pixel SRAM for storing the eventification result and for in-ROI
random sampling. We now discuss the circuit-level behaviors.

Eventification. Eventification generates a binary map as
the input to the ROI prediction DNN. According to Eqn. 1,
eventification requires the retention of the previous frame
Frame;_q, the subtraction between the current frame Frame;
and the previous frame Frame;_;, and comparing the frame
difference with predefined bipolar thresholds +o.

To hold Frame;_; during the exposure of Frame;, we

Viixe Analog Memory Vp xel
Hold

L 2

Cazt

Subtractor Vp ol

E)r

Subtractor

Cazt
(\

' ' '_| '
Vet O Ve Vet
Holding Frame(t-1) During — Eventification of Frame(t) and Frame(t-1) > ADC of Frame(t)

Exposure of Frame(t)

Fig. 10: Different configurations of the pixel’s analog readout circuit. The quantization is only performed for sampled pixels.

Column Decoder
3 7
1110000000
Simultaneously ! Sequentially |Column-wise I
Activated & (= Activated Readout 1307
/ BNaERd : =
f = 2
g - ROI_v.1 +(X2,Y5) 3]]
O[T O 5 T g
w =
8 H al ¢ g
a u sl & [TE
5 = s & |z
= *1,¥1) sampled Pixels Qlff £ =
E i
. -
12 In-sensor NPU A

Fig. 11: The pixel array architecture that allows sparse readout.
The in-sensor NPU generates the coordinates the two ROI
corners (x1,y1) and (x2,¥y2). The coordinates are used to
driven the row/column decoders to select the ROI. All pixels
inside the ROI are read to the output buffer (in a column-wise
manner), but only the sampled pixels are quantized while the
unsampled pixels output Os. The output buffer transmits the
bits to the MIPI interface through a run-length encoder.

configure the comparator as an analog buffer by closing the
Hold switch to form a negative feedback loop, as shown in
Fig. 10 @. Frame;_; is held on C,,_, one of the two input
AZ capacitors of the analog readout circuit.

The subtraction is done through a switched-capacitor con-
figuration of the comparator circuit. As shown in Fig. 10 @,
with Hold open to disconnect the negative feedback loop,
the charges of the new frame Frame; are thus transferred
onto C,,_ and the result is naturally the frame difference
(Frame;_; — Framey).

To compare against a threshold, we utilize the comparison
function that an ADC intrinsically performs by simply con-
necting the other input AZ capacitor, Cy 1, to the thresholding
value o. The comparison result is naturally the output of the
analog readout circuit, as shown in Fig. 10 @. Note, however,
that the mathematical formulation (Eqn. 1) requires comparing
against the absolute value of the threshold, so we apply o
sequentially through V;1 and Vipo (Fig. 9).

ROI Prediction. Following the eventification step, the
output of the frame difference compared with the thresholds
forms the binary event map and is stored using the per-pixel
SRAM. The SRAM is read by the in-sensor NPU to execute
the ROI prediction DNN. Our design uses a systolic array-like

accelerator, and we claim no novelty here (see Sec. V).

The output of the ROI prediction is four numbers
(x1,2x2,Yy1,Y2), representing the xy-coordinates of the two
opposing corners of the ROI box. Fig. 11 shows how these
values are used to drive the ROI selection. The two row
coordinates (yp,y2) are sent to the row decoder and the
output buffer, and the two column coordinates (xi,xzs) are
sent to the column decoder. The row decoder activates all
the rows between y; and y, simultaneously, whereas the
column decoder activates all the columns between x; and
xo9 sequentially because the read-out to the output buffer is
necessarily column-by-column. Note that not all the pixels in
the ROI will be read out; only those that are sampled do, the
mechanism of which will be discussed next.

Random Sampling. A random bit is generated locally at
every pixel to determine whether the pixel will be quantized
and read-out. To avoid additional in-pixel circuitry, we utilize
the metastability [118] of the inherent 10-bit SRAM for
random bit generation. The randomness comes from the meta-
stability of a typical 6-transistor (6T) SRAM cell when the
SRAM is powered-up. The meta-stable state will randomly
latch to a 1 or a O due to random noise when the cell is
powered-up [120]. The randomness is not spatially correlated
due to the differential signaling of the cross-coupled pair.

Although using SRAM for random bit generation requires
intermittent SRAM power-up/down, it does not affect the
system timing nor the SRAM’s memory function (i.e. storing
the result of eventification and ADC). This is because the
SRAM is intrinsically power-gated during its inactive periods
in the normal functional pipeline: the SRAM is powered-down
after the event map is used by the ROI prediction DNN,
and will then be powered up to store the quantized pixels.
We leverage the SRAM’s intrinsic duty cycle to generate the
random bits for every frame.

To control the sample rate, during a one-time offline cali-
bration all the SRAM cells are powered up and down multiple
cycles to profile the distribution of the sum of the 10 power-up
bits in each pixel. From the profiling result, we build a look-
up table that translates a sampling rate to a threshold 6. The 6
is in 4-bit, thus the table has only 2*=16 entries to cover the
sum which ranges from O to 10. In our simulation, we use the
statistics from measurements in prior work [58], [125].

During run time, at each power-up event the counter of each
pixel sums the 10 power-up bits by counting the number of 1s

in that pixel. This (4-bit) number is compared with 6 in the “If
Skip ADC” logic in Fig. 9. Only when the sum surpasses 6 will
the pixel be actively sampled. Summing the power-up bits of
all the 10 bits in a pixel mitigates the non-uniform randomness
across SRAM cells due to the process variation [58].

Sparse Readout. At this stage, the sampled pixels must
be read out. Fig. 11 shows that all the pixels within the ROI
are transferred to the output buffer in a column-wise manner,
where the column select signals are sequentially activated (as
is in the baseline DPS). However, only when a pixel is sampled
will it be quantized by the ADC, which is controlled by the
“If Skip ADC” logic in Fig. 9. If the pixel is sampled, its
comparator is configured to the normal SS ADC (Fig. 10 @).
If a pixel is not selected, the “If Skip ADC” logic connects a
constant 0 to the pixel’s output port.

The output buffer thus contains both the sampled pixels and
the un-selected ones within the ROI. Since only approximately
20% of the pixels within the ROI are sampled, we use the
run-length encoder [54] to compress the data. For example, a
sequence of 1110000000 is compressed to 1307 where 3 and 7
denote the number of 1s and Os in the sequence, respectively.
A corresponding run length decoder is implemented in the host
NPU to decompress the ROI images before being processed
by the eye segmentation algorithm.

V. EXPERIMENTAL SETUP

Hardware Configurations. The overall hardware system
consists of a custom designed image sensor and a conventional
DNN accelerator (NPU); we claim no contribution in the
latter. Without losing generality, we assume a systolic array-
like NPU, which consist of a 32 x 32 MAC array operating
at 1 GHz. This NPU is responsible for computations outside
the sensor. The NPU’s global buffer is sized at 2 MB and
is banked at a 128 KB granularity. We also assume a systolic
array-style NPU sitting at the bottom layer of the image sensor.
The NPU is consists of an 8 x 8 MAC array clocked at 0.5
GHz with a 512 KB SRAM, which is sized to hold the input
and intermediate feature maps needed for ROI prediction.

Experimental Methodology. All the digital logic is im-
plemented in RTL. We synthesize, place, and route the design
using an EDA flow consisting of Synopsys and Cadence tools.
The SRAMs are compiled by an ARM memory compiler.
Power is simulated using Synopsys PrimeTimePX, with fully
annotated switching activity. The pixel design on the sensor
top layer follows that in Seo et al. [111]. The analog circuit
on the bottom layer is implemented in standard CMOS 65 nm
technology and simulated using Cadence Virtuoso.

Following the typical technology nodes in today’s image
sensors, we assume that the top layer of the image sensor
uses a standard CMOS 65 nm process node, the bottom analog
and logic layer uses a 22 nm process node, and the off-sensor
NPU uses a 7 nm process node. We use the synthesis results
from a TSMC 16 nm FinFET library and scale the results to
other process nodes using the DeepScaleTool [108], [115],
which models the classic CMOS scaling by “fitting published

data by a leading commercial fabrication company for silicon
fabrication technology generations from 130 nm to 7 nm.”

We model noises in the image sensor, following classic ana-
lytical models of various noise sources [27], [48], [95], [106].
Specifically, the analog readout circuits (on the bottom layer
of the sensor) are carefully designed such that its read noise
does not introduce functional errors to the binary eventification
and ADC quantization. We model the photon shot noise using
the classic method (drawing from a Poisson distribution) [95]
and considered it during training and evaluation.

The DRAM parameters are modeled after Micron 16 Gb
LPDDR3-1600 (4 channels) as detailed in its datasheet [10].
The calculation of DRAM energy is based on Micron’s System
Power Calculators [11] using the memory traffic, including
kernels and activations of segmentation ViT. We use the energy
per byte over the MIPI CSI interface from Liu et al. [83].

Algorithm Baselines. To evaluate the accuracy of our ViT-
based eye segmentation algorithm (specifically designed to
leverage the sparse eye image input; Sec. III-B), we compare
against two state-of-the-art eye segmentation algorithms, both
operate on dense eye images: RITNET [34], which uses an
encoder-decoder architecture, and EDGAZE [49], which uses
depthwise separable convolution network.

We follow the same training procedure in prior work [49],
[75] and use OpenEDS [53], a widely-used eye tracking
dataset. We train the eye segmentation algorithm using a batch
size of 4 with 250 epochs. We train the ROI prediction network
for 100 epochs with a batch size of 8.

System Variants. To tease apart the contribution of differ-
ent components in our system and to support ablation studies,
we compare against the following variants:

« NPU-FULL: represents a conventional eye tracking sys-

tem: a non-computational image sensor with a host NPU.
The sensor transmits the full-size eye images to the host
NPU, which executes the eye segmentation algorithm.

e NPU-ROI: this variant has the same hardware configu-
ration as NPU-FULL, except the host NPU executes the
ROI prediction DNN to extract the ROI, on which the
subsequent eye segmentation algorithm operates.

« S+NPU: same as our proposed design except it executes
sparse sampling in the digital domain inside the sensor.

VI. EVALUATION

This section starts by demonstrating that BLISSCAM
achieves adequate accuracy against baselines even when sig-
nificantly reducing the pixels (Sec. VI-A). Following this, we
demonstrate that our sensor design reduces the overall energy
consumption (Sec. VI-B) and tracking latency (Sec. VI-C).
We show that our hardware augmentation introduces little
area overhead (Sec. VI-D) and that our sampling strategy
out-performs alternatives (Sec. VI-E). Finally, we conduct a
sensitivity study to understand how BLISSCAM’s performance
and energy savings vary under diverse settings (Sec. VI-F).

A. Accuracy vs. Compression Rate

Our eye tracking algorithm achieves higher accuracy com-
pared to existing eye tracking algorithms across a range of

A - EdGaze -@ - RITnet -8 - Ours
3.5

%’Tslot | | | ‘ | j
[o) Re)]
c o 15 T T T T 3
< PU-Full NPU-ROI | _4 |

L | - . -=-=-"" E
2 0.5 .S g NPU-ROItSample

| | |

10 15
Compression Rate

0 1

(a) Vertical angular error.

A - EdGaze -@ - RITnet -8 - Ours

- 35
S a0l ‘ T
3~ 3.
£% 45 ‘ ‘ ‘ ‘
= S PU-Full NPU-ROI i | |
€5 1F-fp--T-4~-"--F-----+@0_______]
O & | | - - | [=
Nuw g5 { T PRt il I ﬂ
£ 0 ,¢§_28/ ! NPU-ROlSample /

01 10 15 20 25

Compression Rate
(b) Horizontal angular error.

Fig. 12: End-to-end gaze prediction vs. compression rate (uncompressed size over compressed size; 1 for full frame). The error
bars denote one standard deviation. We annotate different variants of our method for ablation studies. NPU-Full opeates on
full eye images. NPU-ROI applies operates on ROI images. NPU-ROI-Sample is our full-fledged pipeline.

compression rates (uncompressed size over compressed size).
Fig. 12 presents the accuracy-vs-compression-rate compar-
isons on both vertical angular error (Fig. 12a) and horizontal
angular error (Fig. 12b). The input images to the two baseline
algorithms are downsampled by different amounts to achieve
different compression rates.

Across all compression ratios, our algorithm consistently
maintains the gaze estimation accuracy within the accept-
able error threshold (1°) in both directions [5], [6], [7], [12].
Specifically, we achieve a 20.6x data reduction with 0.8°
vertical angular error and 0.7° horizontal angular error. Unless
otherwise noted, this is the compress rate we will use in
the rest of the evaluation. Our algorithm also consistently
outperforms existing algorithms across all compression rates
with much higher robustness. The robustness can be seen by
comparing the standard deviation of our method with that of
the two baselines: our method has a much smaller accuracy
variation, showing a stronger ability to tolerate temporal drifts.
While not shown in the figure, our algorithm is also more
computationally efficient compared to RITNET and EDGAZE.
For instance, compared to RITNET, we reduce the MAC
operation counts by a factor of 4.

B. Energy Reduction

BLISSCAM also significantly reduces the eye tracking en-
ergy consumption. Fig. 13 compares BLISSCAM with three
variants disucssed as the end of Sec. V using a stacked bar plot,
dissecting the contributions of different hardware components.

Compared to NPU-FULL, BLISSCAM achieves a 4.0x
energy reduction. The reduction comes from three sources:
the analog readout energy, MIPI data transfer energy, and the
off-sensor work (e.g., eye segmentation NPU and accessing
the on-chip buffer). The latter is especially significantly, con-
tributing to 60.1% energy of NPU-FULL. By predicting ROIs
and operating only on sampled pixels, BLISSCAM reduces the
off-sensor work significantly.

While performing ROI prediction reduces overall energy,
where ROI prediction is executed also matters. NPU-ROI ex-
ecutes ROI prediction on the host SoC, taking advantage of the
more advanced process nodes, thus reducing the energy spent

10

on executing ROI prediction. In contrast, S+NPU executes
ROI prediction inside the sensor, which has the advantage
of reducing readout and MIPI energy but increases the ROI
prediction and buffer energy, because the process node of
the sensor uses an older process node. As a result, S+ NPU
actually increases the energy by 1.1x over NPU-ROI, mainly
due to the high leakage power of the in-sensor frame buffer.
The leakage power of the frame buffer can not be eliminated
by power gating because the frame buffer must continuously
retain the previous frames for eventification.

BLISSCAM combines the benefits of both S+NPU and
NPU-ROI by storing the previous frames in analog memory
and executes eventification in the analog domain. That way,
BLISSCAM reduces both the in-sensor frame buffer energy
and the MIPI data transfer. As a result, BLISSCAM achieves
1.7x and 1.6x energy reduction compared to S+NPU and
NPU-ROI, respectively.

Overhead. The results above show that the overhead intro-
duced by BLISSCAM is clearly out-weighted by its benefits. In
particular, there are two main energy overhead: the additional
transfer of the previous frame’s segmentation map from the
host SoC (in assisting ROI prediction; see Fig. 8) and the
RLE (see Fig. 11). The two sources account for only 0.6%
and 0.04% of the overall energy, respectively.

C. Tracking Latency and Frequency

The energy saving of BLISSCAM comes with little impact
on the overall tracking frequency while significantly reducing
the tracking latency. To ensure a fair comparison, we choose
the same process node combination across all variants, and the
clock rates of sensors and host SoCs are set to 0.5 GHz and
1 GHz, respectively, across all variants.

Fig. 14 compares the end-to-end tracking latency under the
120 FPS requirement. BLISSCAM reduces the tracking latency
by 1.4 x over NPU-FULL, primarily because the segmentation
DNN latency is accelerated by 7.7 x, since it operates only on a
small amount of pixels (10.8%). The average execution time of
eye segmentation is 0.87 ms with a standard deviation of 0.48
ms. The latency varies across frames, because different frames

Eventification Sampling MIPI [l Frame Buffer SoC Buffer
ROI Pred. Readout EEEHH CIS Buf. Eye Seg.

Ours (65nm/22nm/7nm) ! ! ! E
S+NPU (65nm/22nm/7nm) I [E | | ” 9
NPU-ROI (65nm/N.A./7nm) RHAIE] ! | 24085
NPU-Full (65nm/N.A./7nm) £ B B 1

0 200 400 600 800 1800 2000

Energy per Pixel @ 120FPS (pJ)

Fig. 13: Comparison of energy savings across different sensor-
SoC designs at 120 FPS. Numbers inside each parenthesis
represent the process node of sensor analog layer, sensor
digital logic layer and host SoC, respectively.

ESX] Exposure ROI Pred. Readout Eye Seg
Eventification Sampling MIPI
Ours (65nm/22nm/7nm) S '] : :
S+NPU (65nm/22nm/7nm)) 1 |] | |
NPU-ROI (65nm/N.A./7nm) S | | |
NPU-Full (65nm/N.A./7nm) \ = E E | E
0 8 9 10 15 16

Latency (msec.)

Fig. 14: End-to-end latency comparison across different
sensor-SoC designs at 120 FPS. Our sensor design does not
affect the sensor exposure and achieves similar latency as
S+NPU and NPU-ROI. Numbers inside each parenthesis
represent the process node of sensor top layer, sensor bottom
logic layer and the host SoC, respectively.

have different ROI sizes: the average ROI size is 34257.8
pixels with a standard deviation of 18803.6.

Even with additional work in the analog domain, our latency
is similar to that of S+NPU and NPU-ROI. This is because
the latency in all three schemes is by far dominated by the
exposure time, which is held constant. The additional compu-
tations introduce a latency overhead that is orders of magnitude
shorter than the exposure time. For instance, compared to a 8.3
ms exposure time, eventification and ROI prediction introduce
an overhead of 5 ps and 150 ps, respectively.

Because the in-sensor analog operations are much faster
than the exposure time, BLISSCAM also has little effect on
the exposure time (see Fig. 8). Overall, BLISSCAM reduces
the overall exposure time by only 1.8%, which has a minimal
impact on the overall eye tracking accuracy (as results in
Fig. 12 factor in this exposure time change).

D. Area Estimation

While the power and the timing of the proposed DPS are
directly obtained from circuit simulations, the area has to be
estimated: DPS consists mostly of analog circuitry whose area
is sensitive to manual layout and, thus, is not directly available
from synthesis. Our pixel area estimation is based on previous
DPS designs that have similar complexity.

Specifically, compared to a typical DPS with the ADC func-
tion only, our hardware augmentation to support functional
multiplexing takes up only 7 extra switching transistors and
simple digital logic (red components in Fig. 9), whose area is
estimated to be comparable to 12 single-bit SRAM cells. The
bottom layer of our design has 2 capacitors (233 fF each),

11

$ Ful+Random <> Skip -A ROI+Fixed -¥ Ours
. 30 _Ful+DS @ ROI+DS @ __ROl+Learned
% : % : :
c
<o o
— 0 2}]
s o
=
OO0 M- O —=OA]
N & -
B0 | g oo _%_a- == P %
T 9 . ‘ ‘
0 5 10 15 20 25

Compression Rate

Fig. 15: Comparison between our sparse sampling and other
sampling alternatives. Our method can retain acceptable accu-
racy even at high compression rates.

one comparator, 13 switching transistors, 10 6T SRAM cells,
and trivial digital logic (a 4-bit digital comparator, 21 gates)
in 22 nm technology.

Comparably, a stacked DPS by Meta [65] has 2 capacitors,
one comparator, 28 switching/logic transistors, and 10 6T
SRAM cells on its bottom layer, achieving 4.6 pm pixel size
in 65 nm node. Another stacked DPS by Samsung [111] has
one comparator, one positive-feedback amplifier, and 22 6T
SRAM cells on its bottom layer, achieving 4.95 pm pixel size
in 28 nm node. Thus, we choose a pixel pitch of 5 ym x5 pm.

With this pixel size, the pixel array (640 x 400), the in-
sensor NPU, and the output buffer (including run-length
encoder) attribute to 6.4 mm?, 0.4 mm?, and 0. mm?,
respectively. The run-length decoder area on the host is also
negligible; it is estimated to be less than 0.1% of the host area.

E. Comparison with Sampling Alternatives

We show that the in-ROI pseudo-random sampling strategy
outperforms other sampling alternatives:

o FULL+RANDOM: a method that uniformly at random
samples the full-size frame without ROI prediction
FULL+DS: a method that uniformly downsamples the
full-size frame without ROI prediction
SKIP: a method that detects the event density within each
frame to determine whether to skip subsequent eye seg-
mentations and reuse previous segmentation results [49]
ROI+DS: a method that uniformly downsamples within
the predicted ROI
ROI+FIXED: a method that uses dataset statistics to
overfit a fixed ROI sampling mask offline
ROI+LEARNED: a method that uses an additional ViT
network to learn the pixel sampling within the ROI

Fig. 15 compares the horizontal angular error under differ-
ent compression rates. BLISSCAM consistently outperforms
all other methods across all compression rates. The highest
accuracy gains are achieved against the full-frame methods,
showing the benefits of ROI prediction. At a 21x compress
rate, only ours and ROI+LEARNED can achieve an accuracy
below the tolerable threshold of 1°. ROI+LEARNED, however,
requires an additional in-sensor DNN to predict the sampling
pattern, introducing intolerable pixel-wise overhead.

FE Sensitivity Study

Frame Rate. Fig. 16 shows how the end-to-end horizontal
gaze accuracy (left y-axis) and energy saving over NPU-FULL

512 — 8 @ 6.5

g 1.0} (.2 %

S s o--® J6£ ELeof A |
o | - >

e i Xs 4 & @ T @®---
5osef- 8- a-4A 149 o550 __@- ®- -4
= 04} , 5 550P A- 7nm
302t 192 2% -@- 22nm (]
COO L L L w LIJ45 L L

Z 3060 120 250 500 65 40 22 16

FPS Sensor Logic Layer (nm)

Fig. 16: Sensitivity of end-
to-end gaze error and energy
saving over NPU-FULL with
respect to frame rate.

Fig. 17: Energy saving over
NPU-FULL with respect to
logic layer’s process node un-
der two SoC process nodes.

TABLE I: Sensitivity of gaze error, standard deviation, and
energy savings (over NPU-ROI) to ROI reuse window.

Reuse Window 1 4 16
Vertical Angular Error (std.) 0.25 (0.15) 0.49 (0.30) 0.75 (0.69)
Energy Savings 0% 0.023% 0.029%

(right y-axis) change with the prescribed frame rate. The
overall gaze error slightly increases by 0.03° as the frame rate
increases from 30 FPS to 500 FPS. The primary contributor
to the accuracy drop is that a higher frame rate reduces
exposure time, which leads to a lower SNR (primarily driven
by the photon shot noise [106]). Nevertheless, BLISSCAM
retains tolerable gaze accuracy (1°) even at 500 FPS. As the
frame rate increases from 30 FPS to 500 FPS, the energy
saving over NPU-FULL increases from 3.6x to 6.7x. The
energy reduction is because a higher frame rate means shorter
exposure time, which reduces the retention time of the analog
frame buffer and reduces the leakage energy.

Process Node. Throughout the sensitivity study we keep
the process nodes for both the top layer and the bottom analog
circuits fixed; and we synthesize the logic layer and off-
sensor NPU with a TSMC 16 nm FinFET library, and use
DeepScaleTool [108], [115] to scale them to different nodes.
We note that mixing technology nodes is the norm in image
sensors, as discussed in Sec. II-B.

Fig. 17 shows the sensitivity of the energy saving (over
NPU-FULL) as the sensor and SoC process nodes change.
We study two SoC process nodes (the two curves), 7 nm and
22 nm, and sweep (on the z-axis) the process node of the
sensor’s logic layer from 16 nm to 65 nm.

The overall energy saving is more sensitive to the processor
node of the logic layer when the SoC uses a 7 nm node over
that of a 22 nm node. This reason is simple: when the SoC
uses a 22 nm node, the off-sensor work tends to dominates
the total energy, leaving less room for optimization.

ROI Reuse. Instead of predicting an ROI for each frame,
one can also reuse a previously ROI. We implement a ROI-
reuse version of NPU-ROI, where a previously predicted ROI
is reused over a number of subsequent frames quantified by
the reuse window. Tbl. 1 shows how the gaze error and energy
savings of the ROI-reused version of NPU-ROI over itself
without ROI reuse change with the reuse window.

Overall, reusing previous ROIs leads to a significant accu-
racy drop with negligible energy savings. For instance, when
we reuse an ROI for the next consecutive 16 frames, there
is only a 0.03% energy saving but an 0.75° error increase.
Worse, the standard deviation of the angular error increases
with the reuse window, showing a decrease in robustness. The
reason the energy gain is small from ROI reuse is because
the prediction network’s energy consumption is insignificant
(1.04% of the total in-sensor energy).

VII. RELATED WORK

Computational Image Sensors. Image sensors are in-
creasingly integrating computation capabilities. The compu-
tation is conventionally done in the digital domain, such as
Sony IMX 500 CIS [47], which integrates DNN accelerator
inside the sensor. Recent proposals move computation into the
analog domain to, e.g., computes logarithmic gradients [132],
extract HOG features [86], eventification [50], [80], random
sampling [96], ROI-based readout [37], and even analog
DNNs [39], [127]. BLISSCAM performs eventification, ran-
dom sampling, and ROI-based readout inside the sensor with
little area overhead by reusing existing in-sensor hardware.

RedEye [81] is proposed as an analog ConvNet image sen-
sor architecture. BLISSCAM exhibits three major differences.
First, most importantly, the two works differ in high-level
system design strategies: RedEye splits pre-trained DNNs
to execute early DNN layers inside the sensor. It does not
consider co-design or joint training of the algorithm with the
hardware and is highly constrained in the type and size of
the DNN layers it can accommodate. In contrast, BLISSCAM
co-designs the in-sensor operations (sparse sampling) with the
off-sensor downstream DNN, and therefore works more flex-
ibly with diverse downstream vision algorithms and network
architectures. Second, they have different hardware implemen-
tations: RedEye assumes a conventional analog image sensor
and implements the DNN layers in the analog domain whereas
BLI1SSCAM adopts a stacked DPS, where the DNN executes in
the digital layer, naturally mitigating the noise issue in analog
processing. Finally, BLISSCAM also proposes in-sensor sparse
sampling and readout, which are unconcerned with in RedEye.

BLISSCAM not only augments the sensor hardware but
jointly designs the in-sensor work (sampling) with off-sensor
algorithm (segmentation) to ensure high task accuracy. Prior
work explored such co-designs. LeCA [85] jointly trains an in-
sensor encoder with downstream tasks; Bong et al. construct
image sensor-processor systems for eye tracking [25] and face
recognition [24], respectively; their eye tracking system only
achieves 30 FPS and consumes 4.3 nJ per pixel, which is more
than 10 x higher than that of BLISSCAM.

Random Sampling Image Sensors. The concept of ran-
dom sampling in image sensors has been explored in com-
pressive sensing and HDR imaging applications. In com-
pressive sensing, random numbers are spatially assigned to
the pixel array. However, the random number generator is
either off-chip in the optical domain [43] or on-chip but
resides beside the pixel array for row-wise processing [96]

12

or requires complicated in-pixel logic [88]. Thus, none meets
the requirement for compact DPS in BLISSCAM. In HDR
imaging, random numbers are temporally assigned to each
pixel’s sub-exposure slots. However, the random numbers are
generated with coarse granularity (in pixel tiles) [130] or
complicated in-pixel logic [90]. More crucially, such coded
exposure scheme destroys the original pixel value, making it
unsuitable for our design.

In contrast, BLISSCAM exploits existent in-pixel SRAMSs
with simple logic to realize fine-granular random sampling
with a compact design, and buffer the necessary pixel values
for eventification. The sampling method implemented in our
sensor is customized to eye tracking, but prior work [84] has
shown that other computer vision tasks such as classification
can also benefit from sparse sampling. While our sampling
network will have to adapt to different tasks, the actual hard-
ware support for random sampling (Fig. 11) readily applies.

Eye Tracking Acceleration. Researchers explored dedi-
cated accelerators to accelerate eye tracking. Bong et al. [25]
and Hong et al. [59] design accelerators for in-sensor gaze es-
timation. They target non-DNN algorithms with much inferior
accuracy as compared to the state of art DNN-based algo-
rithms. I-flatcam [135] and EyeCoD [131] design accelerators
for an eye tracking algorithm targeting lensless cameras while
leaving the sensor front-end un-optimized. BLISSCAM shows
that reducing sensor readout and sensor-host communication
leads to significant overall energy reduction.

Prior studies have explored lightweight eye segmentation
algorithms [49], [87], [131], [135]. For instance, EdGaze [49]
predicts the ROI of an image before segmentation. Previ-
ous work has also explored ROI-based machine vision sys-
tems [50], [74], [87]. Built on top of the ROI prediction idea,
we show that pseudo-random sampling within the ROI can
further reduce energy consumption with minimal hardware
support. We also co-design a ViT-based segmentation DNN
to be robust against sparse inputs, as the accuracy of previous
eye segmentation algorithms tends to drop under sparse inputs.

Event Cameras. Readers familiar with event cam-
eras [52] might recognize that our eventification algorithm
(Eqgn. 1) is an emulation of an event camera. Indeed, our idea
is inspired by event cameras — with one crucial difference:
classic event cameras normalize pixel difference with respect
to the previous value. We simplify the design to remove the
normalization operation, which only complicates the sensor
hardware design without providing noticeable accuracy bene-
fits for eye tracking as we empirically find.

While there are generic object/ROI detection algorithms in
event cameras [94], [102], our lightweight ROI detection can
be seen as a specialized algorithm tailored for eye tracking,
based on the observation that background pixel values in
eye tracking do not change much over frames, so a very
lightweight frame differencing would reveal ROIL.

VIII. CONCLUSION

Sparse in-sensor sampling is critical to reducing the energy
consumption and end-to-end latency of eye tracking, a crucial

13

component in emerging domains such as AR/VR. Sampling
within an image sensor dramatically reduces the amount
of data that has to go through the energy-intensive image
readout chain and sensor-host communication interface, two
major power contributors to image sensors. The host, as a
result, also operates on far fewer pixels, further reducing the
computation cost. To support in-sensor sparse sampling with
little hardware augmentation, BLISSCAM reuses the existing
pixel-level analog readout circuitry to support eventification,
random sampling, and sparse readout; and BLISSCAM uses a
small in-sensor NPU to support ROI prediction. BLISSCAM
reduces pixel volume by about 95% and thus achieves an 8.2 x
energy reduction and a 1.4 x tracking latency reduction with
little tracking accuracy degradation, compared to existing eye
tracking systems.

IX. ACKNOWLEDGEMENT

We thank anonymous reviewers from ISCA 2024 for their
valuable comments. The work is partially supported by NSF
Awards #2328856, #2416375, #1942900.

REFERENCES

“1/1.395” Color CMOS 200 Megapixel (16384x12288) Image Sensor
with PureCel®Plus-S Technology,” https://www.ovt.com/products/ovb
Oa/.

“Battery capacity, battery life and charging time of the oculus quest
2. [Online]. Available: https://www.sir-apfelot.de/en/battery-capacit
y-battery-life-and-charging-time-of-the-oculus-quest-2-38530/
“Canon High Speed Global Shutter,” https://asia.canon/en/campaign/c
mos-image-sensors/high-speed- global-shutter.

“Does vr use a lot of energy?” [Online]. Available:
//blog.constellation.com/2022/02/22/vr-power-consumption/
“Eyelink 1000 plus.” [Online]. Available: https://www.sr-research.co
m/eyelink-1000-plus/

“HTC VIVE PRO EYE: Next-generation virtual reality,” https://www.
tobii.com/products/integration/xr-headsets/device-integrations/htc-viv
e-pro-eye.

“Introducing smart eye pro 10: Streamlined set up with enhanced
user-friendly experience.” [Online]. Available: https://smarteye.se/ne
ws/introducing-smart-eye- pro- 10-streamlined- set-up- with-enhance
d-user-friendly-experience/

“Jetson modules.” [Online]. Available: https://developer.nvidia.com/e
mbedded/jetson-modules

“Meta quest 3 release date, price, and specs.” [Online]. Available:
https://www.pcgamesn.com/meta/quest-3-release-date-price-specs
“Micron 178-Ball, Single-Channel Mobile LPDDR3 SDRAM
Features.” [Online]. Available: https://www.micron.com/-/media/
client/global/documents/products/data-sheet/dram/mobile-dram/low-p
ower-dram/lpddr3/178b_8-16gb_2c0f_mobile_lpddr3.pdf

“Micron System Power Calculators.” [Online]. Available: https:
//www.micron.com/support/tools-and-utilities/power-calc

“Most advanced eye tracking system — tobii pro spectrum.” [Online].
Available: https://www.tobii.com/products/eye-trackers/screen-based/t
obii-pro-spectrum

“MST Family of Products,” https://www.baesystems.com/en/product/
mst-Sensors.

“Nvidia reveals xavier soc details.” [Online]. Available: https:
/Iwww.forbes.com/sites/moorinsights/2018/08/24/nvidia-reveals-xavie
r-soc-details/amp/

“OMNIVISION Launches World’s First Image Sensor for Automotive
Viewing Cameras with 140 dB HDR and Top LED Flicker Mitigation
Performance,” https://www.ovt.com/press-releases/omnivision-launche
s-worlds-first-image- sensor- for-automotive- viewing-cameras- with- 1
40-db-hdr-and-top-led-flicker- mitigation- performance/.

“Real Examples of MIPI Interfaces in AR/VR, Mobile, and Other
Image Applications.” [Online]. Available: https://2384176.fs1.hubspo
tusercontent-nal.net/hubfs/2384176/DevCon-2022/2022-MIPI-DevCo
n-Real-Examples-of-MIPI-IF-in- ARVR-Mobile-.pdf

(1]

(2]

[3]
[4] https:
[5]

(6]

(71

(8]

[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

“Sony to Release World’s First Intelligent Vision Sensors with Al
Processing Functionality,” https://www.sony.com/en/SonyInfo/New
s/Press/202005/20-037E/.

“Specifications for Eye Tracker 5.” [Online]. Available: https:
//help.tobii.com/hc/en-us/articles/360012483818-Specifications-for-E
ye-Tracker-5

“The Impact of Higher Data Rate Requirements on MIPI CSI and
MIPI DSI Designs.” [Online]. Available: https://www.rambus.com/w
p-content/uploads/2020/09/MIPI_DEVCON_Presentation_1_01.pdf

I. B. Adhanom, P. MacNeilage, and E. Folmer, “Eye tracking in virtual
reality: A broad review of applications and challenges,” Virtual Reality,
pp. 1-25, 2023.

A. N. Angelopoulos, J. N. Martel, A. P. Kohli, J. Conradt, and
G. Wetzstein, “Event based, near eye gaze tracking beyond 10,000
hz,” arXiv preprint arXiv:2004.03577, 2020.

M. D. Binder, N. Hirokawa, and U. Windhorst, Eds., Saccade, Saccadic
Eye Movement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 3557-3557.

K. Bong, S. Choi, C. Kim, D. Han, and H.-J. Yoo, “A low-power
convolutional neural network face recognition processor and a cis
integrated with always-on face detector,” IEEE Journal of Solid-State
Circuits, vol. 53, no. 1, pp. 115-123, 2017.

K. Bong, S. Choi, C. Kim, S. Kang, Y. Kim, and H.-J. Yoo,
“14.6 a 0.62 mw ultra-low-power convolutional-neural-network face-
recognition processor and a cis integrated with always-on haar-like face
detector,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, 2017, pp. 248-249.

K. Bong, I. Hong, G. Kim, and H.-J. Yoo, “A 0.5 error 10 mw cmos
image sensor-based gaze estimation processor,” IEEE Journal of Solid-
State Circuits, vol. 51, no. 4, pp. 1032-1040, 2016.

M. Borys and M. Plechawska-Wojcik, “Eye-tracking metrics in per-
ception and visual attention research,” EJMT, vol. 3, pp. 11-23, 2017.
T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Barron,
“Unprocessing images for learned raw denoising,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 11036-11045.

T. T. Brunyé, T. Drew, D. L. Weaver, and J. G. Elmore, “A review of eye
tracking for understanding and improving diagnostic interpretation,”
Cognitive research: principles and implications, vol. 4, no. 1, pp. 1-
16, 2019.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation,” IEEE Transactions on information theory, vol. 52, no. 2, pp.
489-509, 2006.

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, vol. 59, no. 8, pp. 1207-1223, 2006.

P. Chakravarthula, Z. Zhang, O. Tursun, P. Didyk, Q. Sun,
and H. Fuchs, “Gaze-contingent retinal speckle suppression for
perceptually-matched foveated holographic displays,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 27, no. 11, p.
4194-4203, 2021.

S. Chandra, G. Sharma, S. Malhotra, D. Jha, and A. P. Mittal,
“Eye tracking based human computer interaction: Applications and
their uses,” in 2015 International Conference on Man and Machine
Interfacing (MAMI). 1EEE, 2015, pp. 1-5.

Y. Chang, C. He, Y. Zhao, T. Lu, and N. Gu, “A high-frame-rate eye-
tracking framework for mobile devices,” in ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2021, pp. 1445-1449.

A. K. Chaudhary, R. Kothari, M. Acharya, S. Dangi, N. Nair, R. Bailey,
C. Kanan, G. Diaz, and J. B. Pelz, “Ritnet: Real-time semantic segmen-
tation of the eye for gaze tracking,” in 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW). IEEE, 2019, pp.
3698-3702.

J. Chen and Q. Ji, “3d gaze estimation with a single camera without
ir illumination,” in 2008 19th International Conference on Pattern
Recognition. 1EEE, 2008, pp. 1-4.

Y. Chen, T. Li, X. Chen, Z. Cai, and T. Su, “High-frequency systolic
array-based transformer accelerator on field programmable gate arrays,”
Electronics, vol. 12, no. 4, p. 822, 2023.

J. Choi, S.-W. Han, S.-J. Kim, S.-I. Chang, and E. Yoon, “A spatial-
temporal multiresolution cmos image sensor with adaptive frame rates

14

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

for tracking the moving objects in region-of-interest and suppressing
motion blur,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp.
2978-2989, 2007.

J. Choi, S. Park, J. Cho, and E. Yoon, “An energy/illumination-adaptive
cmos image sensor with reconfigurable modes of operations,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1438-1450, 2015.
J. Choi, S. Lee, Y. Son, and S. Y. Kim, “Design of an always-on image
sensor using an analog lightweight convolutional neural network,”
Sensors, vol. 20, no. 11, p. 3101, 2020.

J. Chossat, “Image sensors in 3d stacking technology: Retrospective
and perspectives from a digital architect’s point of view,” in 2023
International Image Sensor Workshop, 2023.

V. Clay, P. Konig, and S. Koenig, “Eye tracking in virtual reality,”
Journal of Eye Movement Research, vol. 12, no. 1, 2019.

S. Dodge and L. Karam, “A study and comparison of human and
deep learning recognition performance under visual distortions,” in
2017 26th international conference on computer communication and
networks (ICCCN). 1EEE, 2017, pp. 1-7.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.
Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE signal processing magazine, vol. 25, no. 2, pp. 83-91,
2008.

B. Duinkharjav, K. Chen, A. Tyagi, J. He, Y. Zhu, and Q. Sun, “Color-
perception-guided display power reduction for virtual reality,” ACM
Transactions on Graphics (TOG), vol. 41, no. 6, pp. 1-16, 2022.

K. Egiazarian, A. Foi, and V. Katkovnik, “Compressed sensing image
reconstruction via recursive spatially adaptive filtering,” in 2007 IEEE
International Conference on Image Processing, vol. 1. IEEE, 2007,
pp. 1-549.

A. Einstein, “Uber die von der molekularkinetischen theorie der wirme
geforderte bewegung von in ruhenden fliissigkeiten suspendierten
teilchen,” Annalen der physik, vol. 4, 1905.

R. Eki, S. Yamada, H. Ozawa, H. Kai, K. Okuike, H. Gowtham,
H. Nakanishi, E. Almog, Y. Livne, G. Yuval et al., “9.6 a 1/2.3 inch
12.3 mpixel with on-chip 4.97 tops/w cnn processor back-illuminated
stacked cmos image sensor,” in 2021 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 64. 1EEE, 2021, pp. 154-156.

J. E. Farrell, P. B. Catrysse, and B. A. Wandell, “Digital camera
simulation,” Applied optics, vol. 51, no. 4, pp. A80-A90, 2012.

Y. Feng, N. Goulding-Hotta, A. Khan, H. Reyserhove, and Y. Zhu,
“Real-time gaze tracking with event-driven eye segmentation,” in 2022
IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, 2022, pp. 399-408.

Y. Feng, T. Ma, A. Boloor, Y. Zhu, and X. Zhang, “Learned in-sensor
visual computing: From compression to eventification,” in International
Conference on Computer-Aided Design, 2023.

Y. Feng, P. Whatmough, and Y. Zhu, “Asv: Accelerated stereo vision
system,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 643—656.

G. Gallego, T. Delbriick, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 44, no. 1, pp. 154-180, 2020.

S.J. Garbin, Y. Shen, I. Schuetz, R. Cavin, G. Hughes, and S. S. Talathi,
“Openeds: Open eye dataset,” arXiv preprint arXiv:1905.03702, 2019.
S. Golomb, “Run-length encodings (corresp.),” IEEE transactions on
information theory, vol. 12, no. 3, pp. 399401, 1966.

C. W. Group, “Mipi white paper: An introductory guide to mipi
automotive serdes solutions (mass),” 2021. [Online]. Available:
https://www.mipi.org/introductory- guide-to-mass

K. He, G. Gkioxari, P. Dolldar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

C. Hennessey, B. Noureddin, and P. Lawrence, “A single camera eye-
gaze tracking system with free head motion,” in Proceedings of the
2006 symposium on Eye tracking research & applications, 2006, pp.
87-94.

D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up sram state as
an identifying fingerprint and source of true random numbers,” IEEE
Transactions on Computers, vol. 58, no. 9, pp. 1198-1210, 2008.

1. Hong, K. Bong, D. Shin, S. Park, K. J. Lee, Y. Kim, and H.-J. Yoo,
“A 2.71 nj/pixel gaze-activated object recognition system for low-power
mobile smart glasses,” IEEE Journal of Solid-State Circuits, vol. 51,
no. 1, pp. 45-55, 2015.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

I. T. Hooge, D. C. Niehorster, R. S. Hessels, J. S. Benjamins, and
M. Nystrom, “How robust are wearable eye trackers to slow and fast
head and body movements?” Behavior Research Methods, pp. 1-15,
2022.

X. Hou, J. Liu, X. Tang, C. Li, J. Chen, L. Liang, K.-T. Cheng,
and M. Guo, “Architecting efficient multi-modal aiot systems,” in
Proceedings of the 50th Annual International Symposium on Computer
Architecture, 2023, pp. 1-13.

T.-H. Hsu, G.-C. Chen, Y.-R. Chen, R.-S. Liu, C.-C. Lo, K.-T. Tang,
M.-F. Chang, and C.-C. Hsieh, “A 0.8 v intelligent vision sensor with
tiny convolutional neural network and programmable weights using
mixed-mode processing-in-sensor technique for image classification,”
IEEE Journal of Solid-State Circuits, 2023.

Z. Hu, “Gaze analysis and prediction in virtual reality,” in 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW). 1EEE, 2020, pp. 543-544.

R. Ikeno, K. Mori, M. Uno, K. Miyauchi, T. Isozaki, H. Abe, M. Naga-
matsu, I. Takayanagi, J. Nakamura, S.-G. Wuu et al., “Evolution of a
4.6 pm, 512x 512, ultra-low power stacked digital pixel sensor for

performance and power efficiency improvement,” in Proceedings of

the 2023 International Image Sensor Workshop, Scotland, UK, 2023,
pp. 21-25.

R. Ikeno, K. Mori, M. Uno, K. Miyauchi, T. Isozaki, I. Takayanagi,
J. Nakamura, S.-G. Wuu, L. Bainbridge, A. Berkovich et al., “A 4.6-
pm, 127-db dynamic range, ultra-low power stacked digital pixel sensor
with overlapped triple quantization,” IEEE Transactions on Electron
Devices, vol. 69, no. 6, pp. 2943-2950, 2022.

Y. Imaoka, A. Flury, and E. D. De Bruin, “Assessing saccadic eye
movements with head-mounted display virtual reality technology,”
Frontiers in Psychiatry, vol. 11, p. 572938, 2020.

J. Intoy and M. Rucci, “Finely tuned eye movements enhance visual
acuity,” Nature communications, vol. 11, no. 1, p. 795, 2020.

Y. Itoh and G. Klinker, “Interaction-free calibration for optical see-
through head-mounted displays based on 3d eye localization,” in 2014
IEEE symposium on 3d user interfaces (3dui). 1EEE, 2014, pp. 75-82.
R. J. Jacob and K. S. Karn, “Eye tracking in human-computer inter-
action and usability research: Ready to deliver the promises,” in The
mind’s eye. Elsevier, 2003, pp. 573-605.

H. Jarodzka, 1. Skuballa, and H. Gruber, “Eye-tracking in educational
practice: Investigating visual perception underlying teaching and learn-
ing in the classroom,” Educational Psychology Review, vol. 33, no. 1,
pp. 1-10, 2021.

H. Kim, S. Leutenegger, and A. J. Davison, “Real-time 3d reconstruc-
tion and 6-dof tracking with an event camera,” in Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part VI 14. Springer, 2016, pp.
349-364.

H. Kim, J. Yang, J. Lee, S. Yoon, Y. Kim, M. Choi, J. Yang, E.-S.
Ryu, and W. Park, “Eye tracking-based 360 vr foveated/tiled video
rendering,” in 2018 IEEE International Conference on Multimedia &
Expo Workshops (ICMEW). 1EEE Computer Society, 2018, pp. 1-1.
S.-H. Kim, G.-S. Lee, H.-J. Yang et al., “Eye semantic segmentation
with a lightweight model,” in 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW). 1EEE, 2019, pp. 3694-3697.
V. Kodukula, A. Shearer, V. Nguyen, S. Lingutla, Y. Liu, and
R. LiKamWa, “Rhythmic pixel regions: multi-resolution visual sensing
system towards high-precision visual computing at low power,” in Pro-
ceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021,
pp. 573-586.

R. S. Kothari, A. K. Chaudhary, R. J. Bailey, J. B. Pelz, and G. J. Diaz,
“Ellseg: An ellipse segmentation framework for robust gaze tracking,”
IEEE Transactions on Visualization and Computer Graphics, vol. 27,
no. 5, pp. 2757-2767, 2021.

V. Kravets and A. Stern, “Progressive compressive sensing of large
images with multiscale deep learning reconstruction,” Scientific reports,
vol. 12, no. 1, p. 7228, 2022.

M. Kwon, S. Lim, H. Lee, I.-S. Ha, M.-Y. Kim, L.-J. Seo, S. Lee,
Y. Choi, K. Kim, H. Lee et al., “A low-power 65/14nm stacked cmos
image sensor,” in 2020 IEEE International Symposium on Circuits and
Systems (ISCAS). 1EEE, 2020, pp. 1-4.

Y. Leng, C.-C. Chen, Q. Sun, J. Huang, and Y. Zhu, “Energy-
efficient video processing for virtual reality,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019, pp. 91-103.

15

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

B. Li, H. Fu, D. Wen, and W. Lo, “Etracker: A mobile gaze-tracking
system with near-eye display based on a combined gaze-tracking
algorithm,” Sensors, vol. 18, no. 5, p. 1626, 2018.

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120db 15us
latency asynchronous temporal contrast vision sensor,” IEEE journal
of solid-state circuits, vol. 43, no. 2, pp. 566-576, 2008.

R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, ‘“Redeye:
analog convnet image sensor architecture for continuous mobile vi-
sion,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 255-266, 2016.

Z. Lit, M. Sun, A. Lu, H. Ma, G. Yuan, Y. Xie, H. Tang, Y. Li,
M. Leeser, Z. Wang et al., “Auto-vit-acc: An fpga-aware automatic ac-
celeration framework for vision transformer with mixed-scheme quanti-
zation,” in 2022 32nd International Conference on Field-Programmable
Logic and Applications (FPL). 1EEE, 2022, pp. 109-116.

C. Liu, S. Chen, T.-H. Tsai, B. De Salvo, and J. Gomez, “Augmented
reality-the next frontier of image sensors and compute systems,” in
2022 IEEE International Solid-State Circuits Conference (ISSCC),
vol. 65. 1IEEE, 2022, pp. 426-428.

Y. Liu, C. Matsoukas, F. Strand, H. Azizpour, and K. Smith, “Patch-
dropout: Economizing vision transformers using patch dropout,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 3953-3962.

T. Ma, A. J. Boloor, X. Yang, W. Cao, P. Williams, N. Sun,
A. Chakrabarti, and X. Zhang, “Leca: In-sensor learned compressive
acquisition for efficient machine vision on the edge,” in Proceedings of
the 50th Annual International Symposium on Computer Architecture,
2023, pp. 1-14.

T. Ma, W. Cao, F. Qiao, A. Chakrabarti, and X. Zhang, “Hogeye:
neural approximation of hog feature extraction in rram-based 3d-
stacked image sensors,” in Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, 2022, pp. 1-6.

T. Ma, Y. Feng, X. Zhang, and Y. Zhu, “Camj: Enabling system-level
energy modeling and architectural exploration for in-sensor visual com-
puting,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, 2023, pp. 1-14.

V. Majidzadeh, L. Jacques, A. Schmid, P. Vandergheynst, and
Y. Leblebici, “A (256 256) pixel 76.7 mw cmos imager/compressor
based on real-time in-pixel compressive sensing,” in Proceedings of
2010 IEEE International Symposium on Circuits and Systems. 1EEE,
2010, pp. 2956-2959.

K. Mania, A. McNamara, and A. Polychronakis, “Gaze-aware displays
and interaction,” in ACM SIGGRAPH 2021 Courses, 2021, pp. 1-67.
J. N. Martel, L. K. Mueller, S. J. Carey, P. Dudek, and G. Wetzstein,
“Neural sensors: Learning pixel exposures for hdr imaging and video
compressive sensing with programmable sensors,” IEEE transactions
on pattern analysis and machine intelligence, vol. 42, no. 7, pp. 1642—
1653, 2020.

P. Mathur, T. Mittal, and D. Manocha, “Dynamic graph modeling of
simultaneous eeg and eye-tracking data for reading task identification,”
in ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 1EEE, 2021, pp. 1250-1254.
A. Mayberry, P. Hu, B. Marlin, C. Salthouse, and D. Ganesan,
“ishadow: design of a wearable, real-time mobile gaze tracker,” in
Proceedings of the 12th annual international conference on Mobile
systems, applications, and services, 2014, pp. 82-94.

L. Millet, S. Chevobbe, C. Andriamisaina, L. Benaissa, E. De-
schaseaux, E. Beigne, K. B. Chehida, M. Lepecq, M. Darouich,
F. Guellec et al., “A 5500-frames/s 85-gops/w 3-d stacked bsi vision
chip based on parallel in-focal-plane acquisition and processing,” IEEE
Journal of Solid-State Circuits, vol. 54, no. 4, pp. 1096-1105, 2019.
A. Mitrokhin, C. Fermiiller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1-9.

J. Ohta, Smart CMOS image sensors and applications.
2020.

Y. Oike and A. El Gamal, “Cmos image sensor with per-column o§ adc
and programmable compressed sensing,” IEEE Journal of Solid-State
Circuits, vol. 48, no. 1, pp. 318-328, 2012.

I. Park, W. Jo, C. Park, B. Park, J. Cheon, and Y. Chae, “A 640x640
fully dynamic cmos image sensor for always-on operation,” IEEE
Journal of Solid-State Circuits, vol. 55, no. 4, pp. 898-907, 2019.

CRC press,

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

K. Park, S. Yeom, and S. Y. Kim, “Ultra-low power cmos image sensor
with two-step logical shift algorithm-based correlated double sampling
scheme,” IEEE Transactions on Circuits and Systems 1: Regular Papers,
vol. 67, no. 11, pp. 3718-3727, 2020.

W. Park, C. Piao, H. Lee, and J. Choi, “Cmos image sensor with two-
step single-slope adcs and a detachable super capacitive dac,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3,
pp. 849-853, 2021.

A. Patney, J. Kim, M. Salvi, A. Kaplanyan, C. Wyman, N. Benty,
A. Lefohn, and D. Luebke, “Perceptually-based foveated virtual real-
ity,” in ACM SIGGRAPH 2016 Emerging Technologies, 2016, pp. 1-2.
A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty,
D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-
tracked virtual reality,” ACM Trans. Graph., vol. 35, no. 6, Nov. 2016.
[Online]. Available: https://doi.org/10.1145/2980179.2980246

E. Perot, P. De Tournemire, D. Nitti, J. Masci, and A. Sironi, “Learning
to detect objects with a 1 megapixel event camera,” Advances in Neural
Information Processing Systems, vol. 33, pp. 16639-16 652, 2020.

A. Plopski, J. Orlosky, Y. Itoh, C. Nitschke, K. Kiyokawa, and
G. Klinker, “Automated spatial calibration of hmd systems with un-
constrained eye-cameras,” in 2016 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). 1EEE, 2016, pp. 94-99.
R.-M. Rahal and S. Fiedler, “Understanding cognitive and affective
mechanisms in social psychology through eye-tracking,” Journal of
Experimental Social Psychology, vol. 85, p. 103842, 2019.

T. Roth, M. Weier, A. Hinkenjann, Y. Li, and P. Slusallek, “A quality-
centered analysis of eye tracking data in foveated rendering,” Journal
of eye movement research, vol. 10, no. 5, 2017.

A. Rowlands, Physics of digital photography. 10P Publishing, 2017.
M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye move-
ments enhance fine spatial detail,” Nature, vol. 447, no. 7146, pp. 852—
855, 2007.

S. Sarangi and B. Baas, “Deepscaletool: A tool for the accurate
estimation of technology scaling in the deep-submicron era,” in 2021
IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2021, pp. 1-5.

J. Scott-Thomas, “Trends and developments in state-of-the-art cmos
image sensors,” in 2023 International Image Sensor Workshop, 2023.
K. Semmelmann and S. Weigelt, “Online webcam-based eye tracking
in cognitive science: A first look,” Behavior Research Methods, vol. 50,
pp. 451465, 2018.

M.-W. Seo, M. Chu, H.-Y. Jung, S. Kim, J. Song, D. Bae, S. Lee, J. Lee,
S.-Y. Kim, J. Lee et al., “2.45 e-rms low-random-noise, 598.5 mw low-
power, and 1.2 kfps high-speed 2-mp global shutter cmos image sensor
with pixel-level adc and memory,” IEEE Journal of Solid-State Circuits,
vol. 57, no. 4, pp. 1125-1137, 2022.

J. Sharda, W. Li, Q. Wu, S. Chang, and S. Yu, “Temporal frame filtering
for autonomous driving using 3d-stacked global shutter cis with iwo
buffer memory and near-pixel compute,” IEEE Transactions on Circuits
and Systems I: Regular Papers, 2023.

L. Sidenmark, M. Parent, C.-H. Wu, J. Chan, M. Glueck, D. Wigdor,
T. Grossman, and M. Giordano, “Weighted pointer: Error-aware gaze-
based interaction through fallback modalities,” IEEE Transactions on
Visualization and Computer Graphics, vol. 28, no. 11, pp. 3585-3595,
2022.

R. Singh, S. Bailey, P. Chang, A. Olyaei, M. Hekmat, and R. Winoto,
“34.2 a 21pj/frame/pixel imager and 34pj/frame/pixel image processor
for a low-vision augmented-reality smart contact lens,” in 2021 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 64. 1EEE,
2021, pp. 482-484.

A. Stillmaker and B. Baas, “Scaling equations for the accurate predic-
tion of cmos device performance from 180 nm to 7 nm,” Integration,
vol. 58, pp. 74-81, 2017.

T. Strandvall, “Eye tracking in human-computer interaction and us-
ability research,” in IFIP Conference on Human-Computer Interaction.
Springer, 2009, pp. 936-937.

R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Trans-
former for semantic segmentation,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 7262-7272.
Y. Su, J. Holleman, and B. Otis, “A 1.6 pj/bit 96% stable chip-id
generating circuit using process variations,” in 2007 IEEE International
Solid-State Circuits Conference. Digest of Technical Papers. 1EEE,
2007, pp. 406-611.

16

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

H. Tsugawa, H. Takahashi, R. Nakamura, T. Umebayashi, T. Ogita,
H. Okano, K. Iwase, H. Kawashima, T. Yamasaki, D. Yoneyama et al.,
“Pixel/dram/logic 3-layer stacked cmos image sensor technology,” in
2017 IEEE International Electron Devices Meeting (IEDM). 1EEE,
2017, pp. 3-2.

V. Van der Leest, E. Van der Sluis, G.-J. Schrijen, P. Tuyls, and
H. Handschuh, “Efficient implementation of true random number
generator based on sram pufs,” in Cryptography and Security: From
Theory to Applications: Essays Dedicated to Jean-Jacques Quisquater
on the Occasion of His 65th Birthday. Springer, 2012, pp. 300-318.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

T. Wang, L. Gong, C. Wang, Y. Yang, Y. Gao, X. Zhou, and H. Chen,
“Via: A novel vision-transformer accelerator based on fpga,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 11, pp. 4088-4099, 2022.

Y. Wang, S. Lu, and D. Harter, “Multi-sensor eye-tracking systems and
tools for capturing student attention and understanding engagement in
learning: A review,” IEEE Sensors Journal, vol. 21, no. 20, pp. 22 402—
22413, 2021.

E. Whitmire, L. Trutoiu, R. Cavin, D. Perek, B. Scally, J. Phillips, and
S. Patel, “Eyecontact: scleral coil eye tracking for virtual reality,” in
Proceedings of the 2016 ACM International Symposium on Wearable
Computers, 2016, pp. 184-191.

M. Wieckowski, D. Sylvester, D. Blaauw, V. Chandra, S. Idgunji,
C. Pietrzyk, and R. Aitken, “A black box method for stability analysis
of arbitrary sram cell structures,” in 2010 Design, Automation & Test
in Europe Conference & Exhibition (DATE 2010). 1EEE, 2010, pp.
795-800.

S.-G. Wuu, H.-L. Chen, H.-C. Chien, P. Enquist, R. M. Guidash,
and J. McCarten, “A review of 3-dimensional wafer level stacked
backside illuminated cmos image sensor process technologies,” IEEE
Transactions on Electron Devices, vol. 69, no. 6, pp. 2766-2778, 2022.
H. Xu, N. Lin, L. Luo, Q. Wei, R. Wang, C. Zhuo, X. Yin, F. Qiao, and
H. Yang, “Senputing: An ultra-low-power always-on vision perception
chip featuring the deep fusion of sensing and computing,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1,
pp. 232-243, 2021.

W. Ye, X. Zhou, J. T. Zhou, C. Chen, and K. Li, “Accelerating attention
mechanism on fpgas based on efficient reconfigurable systolic array,”
ACM Transactions on Embedded Computing Systems (TECS), 2022.
Y.-H. Yiu, M. Aboulatta, T. Raiser, L. Ophey, V. L. Flanagin, P. Zu Eu-
lenburg, and S.-A. Ahmadi, “Deepvog: Open-source pupil segmentation
and gaze estimation in neuroscience using deep learning,” Journal of
neuroscience methods, vol. 324, p. 108307, 2019.

M. Yoshida, T. Sonoda, H. Nagahara, K. Endo, Y. Sugiyama, and R.-i.
Taniguchi, “High-speed imaging using cmos image sensor with quasi
pixel-wise exposure,” IEEE Transactions on Computational Imaging,
vol. 6, pp. 463-476, 2019.

H. You, C. Wan, Y. Zhao, Z. Yu, Y. Fu, J. Yuan, S. Wu, S. Zhang,
Y. Zhang, C. Li et al., “Eyecod: eye tracking system acceleration via
flatcam-based algorithm & accelerator co-design,” in Proceedings of
the 49th Annual International Symposium on Computer Architecture,
2022, pp. 610-622.

C. Young, A. Omid-Zohoor, P. Lajevardi, and B. Murmann, “A data-
compressive 1.5/2.75-bit log-gradient qvga image sensor with multi-
scale readout for always-on object detection,” IEEE Journal of Solid-
State Circuits, vol. 54, no. 11, pp. 2932-2946, 2019.

X. Zhang, Y. Sugano, and A. Bulling, “Evaluation of appearance-based
methods and implications for gaze-based applications,” in Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,
2019, pp. 1-13.

X. Zhang, X. Liu, S.-M. Yuan, and S.-F. Lin, “Eye tracking based
control system for natural human-computer interaction,” Computational
intelligence and neuroscience, vol. 2017, 2017.

Y. Zhao, Z. Li, Y. Fu, Y. Zhang, C. Li, C. Wan, H. You, S. Wu,
X. Ouyang, V. Boominathan et al., “I-flatcam: A 253 fps, 91.49
pj/frame ultra-compact intelligent lensless camera for real-time and
efficient eye tracking in vr/ar,” in 2022 [EEE Symposium on VLSI
Technology and Circuits (VLSI Technology and Circuits). 1EEE, 2022,
pp. 108-109.

Z. Zhu and Q. Ji, “Eye gaze tracking under natural head movements,”

in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp. 918-923.

17

	Introduction
	Background and Motivation
	Eye Tracking Basics
	Image Sensor Basics
	Scaling Trends of Eye Tracking Technologies

	Sparse Sampling-Based Eye Tracking
	Sparse Sampling Algorithm
	Robust Eye Segmentation From Sparse Inputs
	Training Procedure

	Architectural Support
	BlissCam System Overview
	Sensor Architecture
	Design

	Experimental Setup
	Evaluation
	Accuracy vs. Compression Rate
	Energy Reduction
	Tracking Latency and Frequency
	Area Estimation
	Comparison with Sampling Alternatives
	Sensitivity Study

	Related Work
	Conclusion
	Acknowledgement
	References

