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Abstract—Eye tracking is becoming an increasingly important
task domain in emerging computing platforms such as Aug-
mented/Virtual Reality (AR/VR). Today’s eye tracking system
suffers from long end-to-end tracking latency and can easily
eat up half of the power budget of a mobile VR device. Most
existing optimization efforts exclusively focus on the computation
pipeline by optimizing the algorithm and/or designing dedicated
accelerators while largely ignoring the front-end of any eye
tracking pipeline: the image sensor. This paper makes a case
for co-designing the imaging system with the computing system.

In particular, we propose the notion of “in-sensor sparse
sampling”, whereby the pixels are drastically downsampled
(by 20×) within the sensor. Such in-sensor sampling enhances
the overall tracking efficiency by significantly reducing 1) the
power consumption of the sensor readout chain and sensor-host
communication interfaces, two major power contributors, and
2) the work done on the host, which receives and operates on
far fewer pixels. With careful reuse of existing pixel circuitry,
our proposed BLISSCAM requires little hardware augmentation
to support the in-sensor operations. Our synthesis results show
up to 8.2 × energy reduction and 1.4 × latency reduction over
existing eye tracking pipelines.

Index Terms—In-Sensor Computing; Eye Tracking; Sparse
Sensing; AR/VR

I. INTRODUCTION

Eye tracking provides a fundamental utility in many fields,

ranging from medical studies [26], [28] and human-machine

interaction [32], [69], [89], [91], [116] to augmented/vir-

tual reality (AR/VR) and spatial computing [41], [63], [68],

[100], [103], [124], [134]. Accurately and efficiently tracking

eye gazes play an important role in understanding human

cognition [123], enabling gaze-based human-machine interac-

tions [113], and improving communication and computation

efficiency of AR/VR systems [31], [44], [51], [61], [101].

Despite its essentiality, eye tracking is known to be slow

and power-hungry [92]. In our measurement of commercial

eye trackers (e.g., HTC Vive Pro Eyes and Tobii), its latency is

usually in excess of 15 ms, enough to introduce visual artifacts
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(e.g., in gaze-contingent rendering), and its always-on status

constantly consumes over 2 W [18], eating up half of the

power budget of a typical VR system [2], [4], [9].

Most of today’s efforts in optimizing eye tracking focus on

the algorithm pipeline, either by optimizing the tracking algo-

rithms [21], [34], [49], [71], [75] or by designing dedicated

hardware accelerators [131], [135], while largely ignoring

the indispensable front-end of any eye tracking pipeline: the

image sensor, which generates near-eye images for the tracking

algorithms to consume.

Rationale. This paper makes a case for jointly designing

the imaging system and the tracking algorithm to significantly

reduce energy consumption while satisfying the stringent

tracking latency requirement. In particular, we propose the

notion of “in-sensor sparse sampling”, whereby the pixels

are drastically down-sampled (retaining only about 5% of

the pixels) within the sensor. The downstream eye tracking

algorithm is carefully co-designed to be robust and take

advantage of the sparse inputs.

Such sensor/algorithm co-design offers two unique oppor-

tunities. First, we can optimize a previously untapped system

component with significant power and latency implications,

namely the image sensor. Modern image sensors, along with

their communication interfaces, are power hungry; they con-

sume power upwards of a few Watts, making up half of the eye

tracking power. The sensor power is dominated by the analog

readout chain and the sensor-host data transfer, both of which

are decreased with in-sensor data reduction. Second, with

sparsely sampled sensor data, the host eye tracking algorithm

receives and, thus, operates on far few pixels, further reducing

the tracking latency and energy consumption.

Contributions. We make both algorithmic and architectural

contributions. Algorithm-wise, we show how to design the

image sampling algorithm to reduce tracking latency and

energy without hurting the accuracy. We observe that the

background in near-eye images is stationary and the only

moving pixels in an image contribute to the gaze result. This

observation leads to a two-stage sampling algorithm, which

first detects the moving parts of an image as the Region-of-
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Interest (ROI) followed by random sampling within the ROI.

We propose an eye tracking algorithm to take advantage

of the pixel reduction. The algorithm is based on Vision

Transformers whose accuracy is robust against pixel sparsity

and whose cost of computation naturally reduces as the pixel

volume reduces. Critically, both the data sampling algorithm

and the eye tracking algorithm are (approximately) differen-

tiable, which allows us to jointly train the in-sensor and off-

sensor operations to maximize end-to-end tracking accuracy.

The architectural contribution of the paper is to minimally

augment the sensor architecture to support various in-sensor

operations. We base our design on the increasingly popular

die-stacked Digital Pixel Sensor (DPS) architecture, where

the top layer is the usual pixel array and the bottom layer

integrates per-pixel ADC/SRAM and a DNN accelerator [23],

[47], [62], [111]. We show how to map the in-sensor sampling

algorithm to the bottom layer by time-multiplexing existing

circuit components between the sparse sampling mode and

the usual imaging mode.

Results. According to results obtained through digital logic

synthesis and analog circuit-level simulation, we show that

our eye tracking system reduces pixel volume by about 95%,

leading to an 8.2× energy reduction and a 1.4× tracking

latency reduction compared to existing eye tracking systems,

all with little degradation on the tracking accuracy. Our end-

to-end trained in-sensor sampling strategy and eye tracking

algorithm consistently outperform baselines and other variants

in accuracy across a range of sampling rates, showing the

benefits of joint design of in-sensor and off-sensor algorithms.

In summary, we present a new form of algorithm-hardware

co-design, where the hardware spans both the conventional

accelerators and, critically, the image sensor. We expand the

research scope from optimizing only for (DNN) accelerators

to the end-to-end eye tracking pipeline, which necessarily

includes the image sensor. The key in our work is to optimize

the sensor architecture jointly with the off-sensor computation

— through sparse in-sensor sampling. We hope that the paper

can inspire follow-up work on joint sensing-computing system

optimization. Our specific contributions are:

• We analyze the technology trend and pinpoint the system-

level bottleneck of today’s eye tracking pipeline.

• We propose an in-sensor sparse sampling algorithm

jointly designed with an off-sensor eye tracking algo-

rithm. They collectively reduce the pixel volume while

preserving high gaze prediction accuracy.

• We propose hardware augmentations, both analog

(Fig. 10) and digital (Fig. 11), to support in-sensor sparse

sampling for the first time. The hardware extensions

are intentionally kept minimum, enabled by intelligently

reusing existing hardware components.

• We demonstrate a systematic integration of eventification,

ROI prediction, sampling, and readout, which serves as

a reference design for future stacked image sensors that

are increasingly integrating computation capabilities.

• We propose a new timing design that schedules the hard-

ware components, within and off the sensor, to ensure that

Fig. 1: A typical eye tracking pipeline, which starts from image

sensing (exposure and readout) to obtain an near-eye image,

which is transferred to the host processor through the MIPI

CSI-2 interface. The host processor first segments important

eye parts, from which the gaze is estimated. Different frames

are overlapped to improve tracking frequency. Figure not

drawn to scale; readout delay is usually three orders of

magnitude shorter than the exposure time.

the FPS is unaffected by the addition of new computations

and hardware components (Fig. 8).

• Together, we achieve an 8.2× energy saving and 1.4×
latency reduction compared to existing eye tracking sys-

tems with negligible accuracy compromise.

II. BACKGROUND AND MOTIVATION

We first review today’s mainstream eye-tracking pipeline

(Sec. II-A) and the basics of image sensors (Sec. II-B). We

then discuss the scaling trends of eye tracking technologies in

AR/VR, motivating the paper (Sec. II-C).

A. Eye Tracking Basics

The goal of eye tracking is to estimate the user’s real-

time gaze—a 3D vector indicating where the eye is looking.

It provides a core utility for a variety of human-machine

interfaces. In particular, eye tracking is essential to next-

generation AR/VR systems, where the rendering is contingent

on gaze information [72], [105] and the user interface (UI)

is controlled by gaze [32], [69], [89], [91], [116]. Apart from

AR/VR, eye tracking is also widely used in vision science [26],

[67], [107], cognitive study [104], [110], and education [70].

Eye Tracking Pipeline. A typical eye tracking pipeline is

illustrated in Fig. 1. An image captured by a near-eye camera

goes through two stages: eye segmentation, which dissects

the foreground eye parts (e.g., pupil, iris, cornea), and gaze

prediction, which predicts the gaze from the segmentation map

[35], [57], [79], [129], [133], [136]. In today’s state-of-the-art

eye tracking system, the eye segmentation stage is usually

performed through Deep Neural Networks (DNNs), whereas

the gaze prediction stage employs regression models based on

the geometric model of human eyes, making eye segmentation

considerably more time-consuming than gaze estimation.

System Specifications. It is shown that the tracking

frequency needs to be around 120 Hz with a tracking latency

of sub-10 ms and an accuracy of 0.5-1.0◦ [5], [6], [7], [12].
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120 Hz is necessary because humans frequently make rapid

eye movements (i.e., saccades) whose speed can be up to

700°/s [22], the tracking rate must be high to track such rapid

movements. Meanwhile, we must work with a tight power

envelope available on mobile AR/VR devices (around 3-6

W [2], [4], [9]) to avoid user discomfort induced by the

thermal effect. The image sensor, host processor, and sensor-

host communication all contribute to the power consumption

of eye tracking, which we will describe next.

B. Image Sensor Basics

When exposed to light, an image sensor transforms optical

signals in the scene to analog signals (using the photoelec-

tric effect [46]). The analog signals are converted to digital

pixel values through the readout chain (including the ADCs).

Through the Mobile Industry Processor Interface Camera

Serial Interface 2 (MIPI CSI-2) [55], the pixel values are then

transferred to a host processor to undergo further algorithmic

processing (e.g., eye tracking). These operations are neces-

sarily serialized within a frame but can be overlapped across

frames. Fig. 1 illustrates a typical overlapping between frames,

where the next frame can start its exposure while the previous

frame’s pixels are being transferred out.

Frame Rate. A key performance metric of image sensors

is the frame rate, quantified by Frames Per Second (FPS).

Ideally, as is the case in Fig. 1, the MIPI transfer and host

processing delay (of the current frame) is completely hidden

by the exposure and the readout delay (of the previous frame).

In this case, the frame rate is limited only by the sum of

exposure time and readout delay. Note that the readout delay

(tens of µs) is usually 3-4 orders of magnitude shorter than

the exposure time (tens of ms).
Stacked Image Sensors. Image sensors today are increas-

ingly integrating advanced computation capabilities through

3D die stacking technologies, presenting opportunities for

architectural exploration. Nowadays almost all mobile image

sensors are stacked [109]: the pixel array layer that converts

photons to analog signals and the processing layer which

contains the readout circuitry and the preprocessing image

signal processor (ISP) are located on two separate dies.

With the additional stacking dimension, computational im-

age sensors now routinely integrate digital logic (e.g., DNN ac-

celerators [23], [24], [47]) and memories (e.g. DRAMs [119],

and SRAMs [62], [111]). Moreover, stacking allows for het-

erogeneous integration, where the pixel array layer and the

processing layer can each use their respective process node. A

recent survey [40] shows that it is common for the processing

layer to adopt a process node (e.g., 22 nm) that is several

generations ahead of the one used by the pixel array layer

(e.g., 65 nm) in order to accommodate high-density energy-

efficient digital processing.

Digital Pixel Sensor. Our paper adopts the stacked Digital

Pixel Sensor (DPS), a particular form of image sensor archi-

tecture that is gaining popularity [126]. In DPS, the processing

layer has a per-pixel ADC, which inherently supports a global

shutter (critical for high-speed capturing) and a per-pixel

Fig. 2: The computational capabilities, quantified in GFLOPS,

of today’s mobile GPUs (using Nvidia Jetson series as exam-

ples) vs. the computational demands of state-of-the-art eye

tracking algorithms (assuming a tracking rate of 120 FPS).

SRAM to store the digitized pixel value and naturally act

as the input buffer to a digital accelerator. Examples of DPS

include the imager prototypes by Meta [65], Samsung [111],

OmniVision [15], and Sony [17].

The recent trend in computational image sensors suggests

that it is possible to integrate domain-specific accelerators

into the processing layer of a stacked DPS sensor with

minimal area overhead. For instance, under a 22 nm process

node, our experiment shows that integrating a DNN processor

merely introduces 5.8% of area overhead (Sec. VI-D). Many

such designs have been proposed by previous works using

Arithmetic Logic Units (ALUs) under a group of pixels [93]

and CNN processor under the entire pixel array [47], [112].

C. Scaling Trends of Eye Tracking Technologies

Tracking Frequency. Eye tracking performance is mainly

quantified by the tracking frequency: how many gaze estima-

tions can be made in a second. This paper assumes a 120 Hz
tracking rate, which is shown to be sufficient for many eye

tracking use cases (e.g., AR/VR) [33], [60] and is on par with

commodity eye trackers [5], [7], [12].

Meeting the tracking rate does not pose any issue as

technologies scale. This is because the speed of the eye

tracking algorithm on recent mobile processors with embedded

accelerators (e.g., GPUs), is already higher than that of the

image sensor’s capturing rate. Thus, the algorithm delay can

be hidden by the exposure time (Fig. 1).

To quantify this argument, Fig. 2 compares the Giga Float-

ing Point Operations per second (GFLOPs) of the mobile

GPUs on Nvidia Jetson series [8] with the GFLOPs require-

ment of a set of state-of-the-art eye tracking algorithms operat-

ing at 120 Hz [34], [49], [75], [129]. The GPUs and algorithms

are placed on the x-axis based on their release dates. As

mobile computing capabilities (unsurprisingly) increase over

the years, eye tracking algorithms also become more efficient.

Hence, the tracking rate requirement can be adequately met

by today’s mobile GPUs.

Tracking Latency. While tracking rate is unlikely an issue,

tracking latency is. Tracking latency is the delay between

the start of a frame exposure and when the eye tracking

algorithm finishes on that frame (Fig. 1). Our measurements of

commercial eye trackers (e.g., HTC Vive Pro Eyes [6]) show

that the tracking latency is usually in excess of 15 ms, enough
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Fig. 4: Percentage of im-

age sensor power attributed to

by the readout circuitry; data

from six recent sensors [64],

[97], [98], [99], [111], [114].

for many gaze-contingent AR/VR systems to report tracking

delay as a main cause of user-observable artifacts [20], [66]. 15

ms is roughly the end-to-end latency under a 120 Hz tracking

rate when capturing and processing are fully overlapped (as

shown in Fig. 1): 15 ms ≈ 1s

120
× 2.

Exposure time accounts for a large proportion of the track-

ing latency. Simply reducing the exposure time, however, has

noise implications, because the Signal to Noise Ratio (SNR) of

image sensing drops quadratically with exposure time [106].

Therefore, the downstream operations must be robust against

exposure time changes. Among other components, MIPI CSI-

2 transfer is poised to become a latency bottleneck as image

resolution increases in future. Fig. 3 shows the MIPI latency

under various image resolutions [16], [19]. As the image

resolution increases to 4K, the transmission latency (22 ms)
alone already surpasses the end-to-end latency requirement,

which means the MIPI latency can not be hidden by the

processing of the next frame.

This paper will demonstrate techniques that reduce the MIPI

transfer latency and, consequently, the subsequent eye tracking

algorithm latency while being robust against (even drastic)

changes to the exposure time.

Power Consumption. Eye tracking power consumption is

known to be high. Two recent eye tracking algorithms, RITnet

and EdGaze, consume 2.3 W and 1.9 W, respectively, on a

mobile Volta GPU [14]. Apart from the computation power,

the power consumption of image sensors has been steadily

increasing. Recent high-speed (120 FPS) image sensors rou-

tinely consume hundreds of milliwatts [3], [77] or even a few

Ws [1], [13], taking 10-60% of the total power budget of a

typical standalone VR device (around 3-6W [2], [4], [9], [78]).

The image sensor’s power is dominated by two components:

the sensor-host data transfer and the readout circuitry. Mea-

surements show that transmitting one byte from the image

sensor via MIPI CSI-2 interface consumes about 100 pJ
energy [83] which translates to 300 mW when transmitting 4K

images at 120 FPS. The readout peripheral circuit that converts

the analog pixel value to locally stored digital bits is another

dominating component in the image sensor [38]. While power-

efficient ADC design is an active area of research, a survey

on the recent image sensors from the past decade [85] shows

that the readout circuitry still consumes 66% of the sensor’s

power on average, as shown in Fig. 4.

Summary. Our goal is to significantly reduce the power

consumption and latency of eye tracking without hurting

the (already sufficient) tracking frequency. We focus on co-

designing the computational image sensor front-end with the

eye tracking algorithm, while leaving further optimization of

the host SoC hardware to future work. Optimizing the image

sensor not only directly reduces the sensor readout and sensor-

host communication power, but also indirectly reduces the

amount of work off-sensor algorithms perform.

Hardware acceleration of the off-sensor operations (e.g.

segmentation) is orthogonal and complementary to our front-

end solution and, thus, out of scope. In this paper, we assume

a standard systolic array architecture to execute any DNNs and

claim no novelty for the neural processing unit (NPU) design.

III. SPARSE SAMPLING-BASED EYE TRACKING

We first describe the sparse sampling algorithm (Sec. III-A),

followed by an eye segmentation algorithm that is robust

against sparse inputs (Sec. III-B). We then discuss how two

algorithms are jointly trained (Sec. III-C). This section focuses

on the algorithm and leave hardware design to the next section.

A. Sparse Sampling Algorithm

Intuition and Overview. To reduce latency and power

consumption, our idea is to perform sparse sampling inside

the sensor. In-sensor sampling has two advantages. First, it

reduces the amount of pixels that have to be read out and

transferred to the host, two of the main contributors to sensor

power consumption. Second, by reducing the data volume, we

also reduce the cost of the downstream eye tracking algorithm.

The overall algorithm pipeline is shown in Fig. 5. Each

frame first gets sparsely sampled by inside the sensor; the

sampled pixels are then transmitted to the host, which executes

the eye segmentation and gaze prediction to produce the

ultimate gaze information.

Conventional image sampling aims to maximize image

reconstruction quality for human vision [45], [76]. Instead,

our sampling strategy leverages the unique characteristics of,

and is thus tailored to, the eye tracking task. In particular, in

eye tracking only the fore-ground eye parts (e.g., pupil, iris,

cornea) contribute to the final gaze information. Naturally, we

can approach sampling in two stages: first localizing the fore-

ground parts of the eye as the region-of-interest (ROI), fol-

lowed by sampling within the ROI. The ROI prediction DNN

is jointly learned with subsequent sampling and downstream

eye segmentation to minimize end-to-end loss.

Our two-stage sampling algorithm consists of three serial-

ized stages: eventification, ROI prediction, and sampling. Let

us describe the three stages in detail.

Eventification. While one could apply generic, heavy-

duty object detection DNNs to detect ROIs (e.g., Mask R-

CNN [56]), the cost of executing such networks would be

prohibitively high for in-sensor computing.
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Fig. 5: Our sparse sampling-based eye tracking pipeline. Each frame first gets sampled by our sparse sampling algorithm inside

the sensor to dramatically reduce the sensor-host data volume (Sec. III-A); the sampled pixels then go through a sparse eye

segmentation algorithm on the host, which is designed to be robust against sparse inputs (Sec. III-B). The ROI prediction

algorithm and the sparse segmentation algorithm are jointly trained to maximize end-to-end tracking accuracy (Sec. III-C).

To design a lightweight ROI detection algorithm, the key

observation we leverage [49] is that in virtually any eye

tracking scenario (e.g., AR/VR), the near-eye camera is tightly

mounted on the headset, which is in turn tightly mounted on

the head. This means the background in eye images is station-

ary: there is no relative motion between the camera and the eye

background. Therefore, any pixel intensity changes between

consecutive frames inherently indicate the foreground, moving

eye parts. The inter-frame pixel differences, thus, provide a

natural guide to ROI prediction.

Therefore, the first step in our sampling algorithm is to

obtain inter-frame pixel difference, which is expressed as:

Et+1(x, y) = Φ(|Ft+1(x, y)− Ft(x, y)|, σ) (1)

where Ft(x, y) and Ft+1(x, y) are the pixel values at the

(x, y) coordinates at time T and (T + 1), respectively; Φ
is an activation function which outputs 1 if the difference is

greater than the threshold σ (and 0 otherwise). The threshold

is a parameter that can be tuned for a specific application or

scenario. We empirically find that σ = 15 yields good results.

The resulting E is essentially a binary event map, where

each pixel value indicates whether the corresponding pixel

has changed significantly across frames (i.e., an event has

occurred) and, thus, belongs to the foreground eye parts.

ROI Prediction. With the guidance of the event map,

we design a lightweight ROI prediction network. Our ROI

prediction network is intentionally small; it contains three

convolution (Conv) layers followed by two full-connected

(FC) layers, amounting to only 2.1 × 107 MAC operations.

The event map is used as the input to Conv layers.

While event maps are generally effective, there are corner

cases where events are not indicative of foreground parts

(e.g., blinks, saccades). To improve the robustness of our

ROI prediction, we feed back the segmentation map from the

previous frame as a corrective cue similar to prior work [49].

Random Sampling. Given an ROI, we randomly sample

the pixels inside the ROI. We find that random sampling is

effective even at high sampling rates (Sec. VI-F). There are

many other sampling alternatives we consider; none works as

well. We will quantitatively compare across different sampling

strategies in Sec. VI-E; here we provide an intuitive account.

For instance, one can sample the entire image rather than

just the ROI, but the non-ROI regions of an eye image

make no contribution to eye tracking result, wasting precious

sampling budget. Alternatively, one can uniformly, rather than

randomly, sample the ROI, which would simplify the hard-

ware. Our results, consistent with prior findings in compressed

sensing [29], [30], show that uniform sampling significantly

reduces the eye segmentation accuracy, suggesting the diffi-

culty of reconstructing the eye parts from uniformly sparse

samples. Finally, one can consider using an additional network

to predict which pixels to sample. The computation cost of

doing so is prohibitively high with little accuracy benefit.

B. Robust Eye Segmentation From Sparse Inputs

Unlike existing eye segmentation algorithms that operate on

full eye images [34], [73], [75], [129], our algorithm operates

on sparse images (about 5% of the pixels as Sec. VI-A shows).

Using sparse images means the inputs are susceptible to noise,

hurting the accuracy of the algorithm [42].

Specifically, our experiment (Sec. VI-A) shows that existing

Convolutional Neural Network (CNN)-based algorithms often

struggle to retain high accuracy at low sampling rates. CNN-

based algorithm’s accuracy drops rapidly once the sampling

rate (the percentage of pixels that are retained) is below 50%.

This is because CNNs inherently rely on local information

rather than global information to make predictions. Conse-

quently, as the sampling rate increases (i.e., fewer pixels), less

local information is retained, which leads to accuracy drops.

Instead, we propose a Vision Transformer (ViT)-based

segmentation algorithm. Unlike CNN-based algorithms, ViT

leverages an attention-based mechanism that takes into account

information from all valid pixels within the input image [121].

Even when the sampling rate is low, ViT still can extract the

relationship among pixels that are far away from each other.

Our ViT algorithm consists of an encoder and a decoder

(Fig. 6). The ViT encoder uses 12 multi-head attention (MHA)

modules, similar to the network architecture in Strudel et

al. [117]. Each MHA layer has three heads with a channel size

of 192. To correlate global information, the MLP operations in

MHA module compute across all image tokens. Similarly, ViT

decoder uses two MHA layers with the same setting and ends

with an argmax layer for the final segmentation prediction.
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Fig. 6: Overall architecture of our ViT segmentation, consist-

ing of an encoder and a decoder. The encoder is composed

of a linear projection and 12 MHA modules. The decoder

comprises two MHA modules and an argmax layer.

Pixel ArrayPixel Array

In-sensor NPU

Host NPUHost NPU

MIPI

Fig. 7: High-level architecture of our eye tracking system.

The image sensor is connected to the host NPU through the

MIPI interface. The sensor has a 2-layer DPS pixel array (as

with many recent image sensors [109]), an in-sensor NPU,

and an output buffer. Our architectural augmentations lie in

augmenting the bottom layer of the pixel array.

Note that a ViT network can be readily executed on a typical

DNN accelerator (e.g., a systolic array) [36], [128]. Optimizing

the accelerator architecture for ViT networks is an active area

of reasearch [82], [122]; we leave it to future work to co-design

the accelerator with our ViT network.

C. Training Procedure

The end-to-end tracking algorithm contains two DNNs, one

for ROI prediction and the other for ViT segmentation. We

propose a joint training procedure to improve the overall

accuracy. Two loss terms guide our training: a segmentation

loss and an ROI loss. The segmentation loss is a cross-entropy

loss that governs the accuracy of eye segmentation [34], while

the ROI loss uses the conventional mean-square-error loss

that governs the ROI prediction accuracy. During training,

the segmentation loss is back-propagated to both the ROI

prediction and the sparse segmentation DNN. We explicitly

mask the gradients belonging to the pixels that are not selected

by the random sampling. That is, only the unmasked gradients

are used to update the ROI prediction DNN.

IV. ARCHITECTURAL SUPPORT

We first introduce the overall BLISSCAM system operation

(Sec. IV-A) and present an overview of the sensor architecture

(Sec. IV-B), followed by the detailed description of the sensor

hardware designs (Sec. IV-C).

A. BLISSCAM System Overview

We co-design BLISSCAM to support the learned sparse

sampling algorithm. The system consists of a computational

image sensor and a host NPU connected by the MIPI CSI

interface. The system organization is illustrated in Fig. 7.

Our main contribution is to architecturally augment the image

sensor to support in-sensor sparse sampling (Sec. III) with

minimum hardware overhead while leaving the host NPU as

is to perform the eye segmentation and gaze estimation tasks.

Fig. 8 depicts the system timing diagram of BLISSCAM,

which has two main differences when compared with the

original eye tracking pipeline in Fig. 1. First, each frame

now goes through three additional in-sensor processing stages:

eventification, ROI prediction, and in-ROI sampling. Second,

there is a new constraint when pipelining across frames:

Framet’s ROI prediction must wait for the segmentation map

of Framet−1 to be sent back from the host via the MIPI

CSI interface. This dependency is purely algorithmic: the

previous frame’s segmentation map is used as an input to

the ROI prediction of the current frame (Sec. III-A). The two

dependencies are denoted by the arrows in Fig. 8.

Observing Fig. 8, it would seem that additional in-sensor

operations would increase the eye tracking energy and latency.

As we will describe in the rest of this section, however,

the hardware design is such that the additional in-sensor

operations introduce negligible latency and energy overhead

(2-3 orders of magnitude lower) compared to that of a baseline

frame; meanwhile, in-sensor sampling significantly reduces

the data volume involved in readout, MIPI CSI transfer as

well as the off-sensor segmentation work which now operates

on far fewer pixels. Since both the readout and the MIPI

transfer contribute the major sensor energy, and the MIPI

transfer contributes the major sensor latency, the sensor’s

overall energy and latency are notably reduced.

B. Sensor Architecture

The main design consideration for the BLISSCAM sensor

chip is to support the various in-sensor operations in addition

to the normal imaging mode. Although prior works have

introduced designs that could meet one or two of the required

operations (see summary in Sec. VII), none supports the

full gamut of the required in-sensor operations. Instead of

employing dedicated hardware for each function which would

incur intolerable area costs at the pixel level, our design prin-

ciple, is to maximally reuse existing hardware across multiple

operations while introducing only minimal augmentation.

As shown in Fig. 7, the proposed BLISSCAM sensor consists

of a pixel array, an in-sensor NPU, and an output buffer.

Our hardware augmentation is limited to the pixel array

while adopting the standard design strategies for the in-sensor

NPU (i.e. systolic array) and the output buffer (i.e. parallel-

in-serial-out shift register). For each frame, the pixel array

captures an array of pixels and generates a binary event map

(i.e., eventification). The event map is transferred to the in-

sensor NPU, where the ROI prediction DNN resides. The

ROI bounding box is then fedback to the pixel array, which
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û

Fig. 8: Timing diagram of our eye tracking system, which includes operations both in sensor (Exposure, Eventification, ROI

Prediction, Sampling, Readout) and off sensor (Eye Segmentation and Gaze Prediction). We overlap processing of different

frames to ensure high frame rate while respecting data dependencies (indicated by filled arrows). The figure is not drawn to

scale; the additional latency introduced by the new in-sensor operations is much smaller compared to the exposure time, so

the overall tracking rate is minimally impacted.
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Fig. 9: The circuit diagram of the proposed DPS; the red

components are new hardware added to a conventional DPS.

The top layer is a standard pixel design (4T APS) that converts

photons to charges, and the bottom layer performs eventifica-

tion, analog memory, ADC, and sparse readout by reusing the

same circuitry. Blue arrows: signals used to determine if the

pixel performs ADC. Green arrows: signals that output 0 if

the pixel skips ADC. Black arrow: output analog pixel value

if the pixel performs ADC (sampled).

randomly samples pixels in the ROI and reads out only those

sampled pixels to the output buffer. The output buffer connects

to the MIPI interface, which transfers the pixels to the host.

The pixel array is implemented following a typical two-

layer DPS architecture where the top layer is the array of

pixel cells (e.g. a 4-transistor Active Pixel Sensor [95]), and the

bottom layer consists of an array of per-pixel ADC and SRAM.

The two layers are connected by per-pixel hybrid bonds. In

Sec. IV-C, we will dive into our novel augmentation to each

DPS pixel at the bottom logic layer to support additional

operations (i.e., eventification and sampling).

C. Design

The detailed design of the pixel circuits, which are based on

the standard DPS design, is illustrated in Fig. 9. For each pixel,

a standard 4T Active Pixel Sensor (APS) circuit (responsible

for converting photons to charges based on the photoelectric

effect [46]) resides in the top layer; the bottom layer contains

a 10-bit SRAM and a configurable analog readout circuit.

In a standard DPS, the pixel readout is performed by an

Single-Slope ADC (SS ADC) for pixel quantization. The SS

ADC operates as follows: a comparator receives the ana-

log pixel value and a monotonically decreasing ramp signal

(Vramp) at its two input Auto-Zero (AZ) capacitors (Caz+ and

Caz−), respectively; the comparator’s output will not toggle

until the ramp signal crosses the analog pixel value; a counter

counts the number of cycles it takes for the toggle of the

comparator’s output, and the counted cycles is the quantized

pixel value.

Conventional SS ADC is a fixed-function unit that performs

just the quantization. To perform the in-sensor operations

required by our learned sampling algorithm, BLISSCAM aug-

ments the SS ADC with a few extra switch transistors and a

simple logic unit (highlighted in red in Fig. 9) while reusing

many existing ADC components—the AZ capacitors/switches,

the comparator, and the counter. In a sense, we time-multiplex

the same analog readout circuit between different operations,

e.g., analog buffering, eventification, and normal quantization.

Fig. 10 shows different configurations of the readout circuit.

We also minimally augment the circuitry to support sparse

readout, where only sampled pixels within an ROI go through

the ADC and MIPI interface. This is achieved by the “If Skip

ADC” logic in Fig. 9, which is conditioned upon the row-

select and column-select signals. Finally, we reuse the per-

pixel SRAM for storing the eventification result and for in-ROI

random sampling. We now discuss the circuit-level behaviors.

Eventification. Eventification generates a binary map as

the input to the ROI prediction DNN. According to Eqn. 1,

eventification requires the retention of the previous frame

Framet−1, the subtraction between the current frame Framet
and the previous frame Framet−1, and comparing the frame

difference with predefined bipolar thresholds ±σ.

To hold Framet−1 during the exposure of Framet, we
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The in-sensor NPU generates the coordinates the two ROI

corners (x1, y1) and (x2, y2). The coordinates are used to

driven the row/column decoders to select the ROI. All pixels

inside the ROI are read to the output buffer (in a column-wise

manner), but only the sampled pixels are quantized while the

unsampled pixels output 0s. The output buffer transmits the

bits to the MIPI interface through a run-length encoder.

configure the comparator as an analog buffer by closing the

Hold switch to form a negative feedback loop, as shown in

Fig. 10 1 . Framet−1 is held on Caz−, one of the two input

AZ capacitors of the analog readout circuit.

The subtraction is done through a switched-capacitor con-

figuration of the comparator circuit. As shown in Fig. 10 2 ,

with Hold open to disconnect the negative feedback loop,

the charges of the new frame Framet are thus transferred

onto Caz− and the result is naturally the frame difference

(Framet−1 − Framet).

To compare against a threshold, we utilize the comparison

function that an ADC intrinsically performs by simply con-

necting the other input AZ capacitor, Caz+, to the thresholding

value σ. The comparison result is naturally the output of the

analog readout circuit, as shown in Fig. 10 2 . Note, however,

that the mathematical formulation (Eqn. 1) requires comparing

against the absolute value of the threshold, so we apply ±σ

sequentially through Vth1 and Vth2 (Fig. 9).

ROI Prediction. Following the eventification step, the

output of the frame difference compared with the thresholds

forms the binary event map and is stored using the per-pixel

SRAM. The SRAM is read by the in-sensor NPU to execute

the ROI prediction DNN. Our design uses a systolic array-like

accelerator, and we claim no novelty here (see Sec. V).

The output of the ROI prediction is four numbers

(x1, x2, y1, y2), representing the xy-coordinates of the two

opposing corners of the ROI box. Fig. 11 shows how these

values are used to drive the ROI selection. The two row

coordinates (y1, y2) are sent to the row decoder and the

output buffer, and the two column coordinates (x1, x2) are

sent to the column decoder. The row decoder activates all

the rows between y1 and y2 simultaneously, whereas the

column decoder activates all the columns between x1 and

x2 sequentially because the read-out to the output buffer is

necessarily column-by-column. Note that not all the pixels in

the ROI will be read out; only those that are sampled do, the

mechanism of which will be discussed next.

Random Sampling. A random bit is generated locally at

every pixel to determine whether the pixel will be quantized

and read-out. To avoid additional in-pixel circuitry, we utilize

the metastability [118] of the inherent 10-bit SRAM for

random bit generation. The randomness comes from the meta-

stability of a typical 6-transistor (6T) SRAM cell when the

SRAM is powered-up. The meta-stable state will randomly

latch to a 1 or a 0 due to random noise when the cell is

powered-up [120]. The randomness is not spatially correlated

due to the differential signaling of the cross-coupled pair.

Although using SRAM for random bit generation requires

intermittent SRAM power-up/down, it does not affect the

system timing nor the SRAM’s memory function (i.e. storing

the result of eventification and ADC). This is because the

SRAM is intrinsically power-gated during its inactive periods

in the normal functional pipeline: the SRAM is powered-down

after the event map is used by the ROI prediction DNN,

and will then be powered up to store the quantized pixels.

We leverage the SRAM’s intrinsic duty cycle to generate the

random bits for every frame.

To control the sample rate, during a one-time offline cali-

bration all the SRAM cells are powered up and down multiple

cycles to profile the distribution of the sum of the 10 power-up

bits in each pixel. From the profiling result, we build a look-

up table that translates a sampling rate to a threshold θ. The θ

is in 4-bit, thus the table has only 24=16 entries to cover the

sum which ranges from 0 to 10. In our simulation, we use the

statistics from measurements in prior work [58], [125].

During run time, at each power-up event the counter of each

pixel sums the 10 power-up bits by counting the number of 1s
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in that pixel. This (4-bit) number is compared with θ in the “If

Skip ADC” logic in Fig. 9. Only when the sum surpasses θ will

the pixel be actively sampled. Summing the power-up bits of

all the 10 bits in a pixel mitigates the non-uniform randomness

across SRAM cells due to the process variation [58].

Sparse Readout. At this stage, the sampled pixels must

be read out. Fig. 11 shows that all the pixels within the ROI

are transferred to the output buffer in a column-wise manner,

where the column select signals are sequentially activated (as

is in the baseline DPS). However, only when a pixel is sampled

will it be quantized by the ADC, which is controlled by the

“If Skip ADC” logic in Fig. 9. If the pixel is sampled, its

comparator is configured to the normal SS ADC (Fig. 10 3 ).

If a pixel is not selected, the “If Skip ADC” logic connects a

constant 0 to the pixel’s output port.

The output buffer thus contains both the sampled pixels and

the un-selected ones within the ROI. Since only approximately

20% of the pixels within the ROI are sampled, we use the

run-length encoder [54] to compress the data. For example, a

sequence of 1110000000 is compressed to 1307 where 3 and 7

denote the number of 1s and 0s in the sequence, respectively.

A corresponding run length decoder is implemented in the host

NPU to decompress the ROI images before being processed

by the eye segmentation algorithm.

V. EXPERIMENTAL SETUP

Hardware Configurations. The overall hardware system

consists of a custom designed image sensor and a conventional

DNN accelerator (NPU); we claim no contribution in the

latter. Without losing generality, we assume a systolic array-

like NPU, which consist of a 32 × 32 MAC array operating

at 1 GHz. This NPU is responsible for computations outside

the sensor. The NPU’s global buffer is sized at 2 MB and

is banked at a 128 KB granularity. We also assume a systolic

array-style NPU sitting at the bottom layer of the image sensor.

The NPU is consists of an 8 × 8 MAC array clocked at 0.5

GHz with a 512 KB SRAM, which is sized to hold the input

and intermediate feature maps needed for ROI prediction.

Experimental Methodology. All the digital logic is im-

plemented in RTL. We synthesize, place, and route the design

using an EDA flow consisting of Synopsys and Cadence tools.

The SRAMs are compiled by an ARM memory compiler.

Power is simulated using Synopsys PrimeTimePX, with fully

annotated switching activity. The pixel design on the sensor

top layer follows that in Seo et al. [111]. The analog circuit

on the bottom layer is implemented in standard CMOS 65 nm
technology and simulated using Cadence Virtuoso.

Following the typical technology nodes in today’s image

sensors, we assume that the top layer of the image sensor

uses a standard CMOS 65 nm process node, the bottom analog

and logic layer uses a 22 nm process node, and the off-sensor

NPU uses a 7 nm process node. We use the synthesis results

from a TSMC 16 nm FinFET library and scale the results to

other process nodes using the DeepScaleTool [108], [115],

which models the classic CMOS scaling by “fitting published

data by a leading commercial fabrication company for silicon

fabrication technology generations from 130 nm to 7 nm.”

We model noises in the image sensor, following classic ana-

lytical models of various noise sources [27], [48], [95], [106].

Specifically, the analog readout circuits (on the bottom layer

of the sensor) are carefully designed such that its read noise

does not introduce functional errors to the binary eventification

and ADC quantization. We model the photon shot noise using

the classic method (drawing from a Poisson distribution) [95]

and considered it during training and evaluation.

The DRAM parameters are modeled after Micron 16 Gb

LPDDR3-1600 (4 channels) as detailed in its datasheet [10].

The calculation of DRAM energy is based on Micron’s System

Power Calculators [11] using the memory traffic, including

kernels and activations of segmentation ViT. We use the energy

per byte over the MIPI CSI interface from Liu et al. [83].

Algorithm Baselines. To evaluate the accuracy of our ViT-

based eye segmentation algorithm (specifically designed to

leverage the sparse eye image input; Sec. III-B), we compare

against two state-of-the-art eye segmentation algorithms, both

operate on dense eye images: RITNET [34], which uses an

encoder-decoder architecture, and EDGAZE [49], which uses

depthwise separable convolution network.

We follow the same training procedure in prior work [49],

[75] and use OpenEDS [53], a widely-used eye tracking

dataset. We train the eye segmentation algorithm using a batch

size of 4 with 250 epochs. We train the ROI prediction network

for 100 epochs with a batch size of 8.

System Variants. To tease apart the contribution of differ-

ent components in our system and to support ablation studies,

we compare against the following variants:

• NPU-FULL: represents a conventional eye tracking sys-

tem: a non-computational image sensor with a host NPU.

The sensor transmits the full-size eye images to the host

NPU, which executes the eye segmentation algorithm.

• NPU-ROI: this variant has the same hardware configu-

ration as NPU-FULL, except the host NPU executes the

ROI prediction DNN to extract the ROI, on which the

subsequent eye segmentation algorithm operates.

• S+NPU: same as our proposed design except it executes

sparse sampling in the digital domain inside the sensor.

VI. EVALUATION

This section starts by demonstrating that BLISSCAM

achieves adequate accuracy against baselines even when sig-

nificantly reducing the pixels (Sec. VI-A). Following this, we

demonstrate that our sensor design reduces the overall energy

consumption (Sec. VI-B) and tracking latency (Sec. VI-C).

We show that our hardware augmentation introduces little

area overhead (Sec. VI-D) and that our sampling strategy

out-performs alternatives (Sec. VI-E). Finally, we conduct a

sensitivity study to understand how BLISSCAM’s performance

and energy savings vary under diverse settings (Sec. VI-F).

A. Accuracy vs. Compression Rate

Our eye tracking algorithm achieves higher accuracy com-

pared to existing eye tracking algorithms across a range of
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(a) Vertical angular error. (b) Horizontal angular error.

Fig. 12: End-to-end gaze prediction vs. compression rate (uncompressed size over compressed size; 1 for full frame). The error

bars denote one standard deviation. We annotate different variants of our method for ablation studies. NPU-Full opeates on

full eye images. NPU-ROI applies operates on ROI images. NPU-ROI-Sample is our full-fledged pipeline.

compression rates (uncompressed size over compressed size).

Fig. 12 presents the accuracy-vs-compression-rate compar-

isons on both vertical angular error (Fig. 12a) and horizontal

angular error (Fig. 12b). The input images to the two baseline

algorithms are downsampled by different amounts to achieve

different compression rates.

Across all compression ratios, our algorithm consistently

maintains the gaze estimation accuracy within the accept-

able error threshold (1◦) in both directions [5], [6], [7], [12].

Specifically, we achieve a 20.6× data reduction with 0.8◦

vertical angular error and 0.7◦ horizontal angular error. Unless

otherwise noted, this is the compress rate we will use in

the rest of the evaluation. Our algorithm also consistently

outperforms existing algorithms across all compression rates

with much higher robustness. The robustness can be seen by

comparing the standard deviation of our method with that of

the two baselines: our method has a much smaller accuracy

variation, showing a stronger ability to tolerate temporal drifts.

While not shown in the figure, our algorithm is also more

computationally efficient compared to RITNET and EDGAZE.

For instance, compared to RITNET, we reduce the MAC

operation counts by a factor of 4.

B. Energy Reduction

BLISSCAM also significantly reduces the eye tracking en-

ergy consumption. Fig. 13 compares BLISSCAM with three

variants disucssed as the end of Sec. V using a stacked bar plot,

dissecting the contributions of different hardware components.

Compared to NPU-FULL, BLISSCAM achieves a 4.0×
energy reduction. The reduction comes from three sources:

the analog readout energy, MIPI data transfer energy, and the

off-sensor work (e.g., eye segmentation NPU and accessing

the on-chip buffer). The latter is especially significantly, con-

tributing to 60.1% energy of NPU-FULL. By predicting ROIs

and operating only on sampled pixels, BLISSCAM reduces the

off-sensor work significantly.

While performing ROI prediction reduces overall energy,

where ROI prediction is executed also matters. NPU-ROI ex-

ecutes ROI prediction on the host SoC, taking advantage of the

more advanced process nodes, thus reducing the energy spent

on executing ROI prediction. In contrast, S+NPU executes

ROI prediction inside the sensor, which has the advantage

of reducing readout and MIPI energy but increases the ROI

prediction and buffer energy, because the process node of

the sensor uses an older process node. As a result, S+NPU

actually increases the energy by 1.1× over NPU-ROI, mainly

due to the high leakage power of the in-sensor frame buffer.

The leakage power of the frame buffer can not be eliminated

by power gating because the frame buffer must continuously

retain the previous frames for eventification.

BLISSCAM combines the benefits of both S+NPU and

NPU-ROI by storing the previous frames in analog memory

and executes eventification in the analog domain. That way,

BLISSCAM reduces both the in-sensor frame buffer energy

and the MIPI data transfer. As a result, BLISSCAM achieves

1.7× and 1.6× energy reduction compared to S+NPU and

NPU-ROI, respectively.

Overhead. The results above show that the overhead intro-

duced by BLISSCAM is clearly out-weighted by its benefits. In

particular, there are two main energy overhead: the additional

transfer of the previous frame’s segmentation map from the

host SoC (in assisting ROI prediction; see Fig. 8) and the

RLE (see Fig. 11). The two sources account for only 0.6%

and 0.04% of the overall energy, respectively.

C. Tracking Latency and Frequency

The energy saving of BLISSCAM comes with little impact

on the overall tracking frequency while significantly reducing

the tracking latency. To ensure a fair comparison, we choose

the same process node combination across all variants, and the

clock rates of sensors and host SoCs are set to 0.5 GHz and

1 GHz, respectively, across all variants.

Fig. 14 compares the end-to-end tracking latency under the

120 FPS requirement. BLISSCAM reduces the tracking latency

by 1.4 × over NPU-FULL, primarily because the segmentation

DNN latency is accelerated by 7.7×, since it operates only on a

small amount of pixels (10.8%). The average execution time of

eye segmentation is 0.87 ms with a standard deviation of 0.48

ms. The latency varies across frames, because different frames
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Fig. 13: Comparison of energy savings across different sensor-

SoC designs at 120 FPS. Numbers inside each parenthesis

represent the process node of sensor analog layer, sensor

digital logic layer and host SoC, respectively.

Fig. 14: End-to-end latency comparison across different

sensor-SoC designs at 120 FPS. Our sensor design does not

affect the sensor exposure and achieves similar latency as

S+NPU and NPU-ROI. Numbers inside each parenthesis

represent the process node of sensor top layer, sensor bottom

logic layer and the host SoC, respectively.

have different ROI sizes: the average ROI size is 34257.8

pixels with a standard deviation of 18803.6.

Even with additional work in the analog domain, our latency

is similar to that of S+NPU and NPU-ROI. This is because

the latency in all three schemes is by far dominated by the

exposure time, which is held constant. The additional compu-

tations introduce a latency overhead that is orders of magnitude

shorter than the exposure time. For instance, compared to a 8.3

ms exposure time, eventification and ROI prediction introduce

an overhead of 5 µs and 150 µs, respectively.

Because the in-sensor analog operations are much faster

than the exposure time, BLISSCAM also has little effect on

the exposure time (see Fig. 8). Overall, BLISSCAM reduces

the overall exposure time by only 1.8%, which has a minimal

impact on the overall eye tracking accuracy (as results in

Fig. 12 factor in this exposure time change).

D. Area Estimation

While the power and the timing of the proposed DPS are

directly obtained from circuit simulations, the area has to be

estimated: DPS consists mostly of analog circuitry whose area

is sensitive to manual layout and, thus, is not directly available

from synthesis. Our pixel area estimation is based on previous

DPS designs that have similar complexity.

Specifically, compared to a typical DPS with the ADC func-

tion only, our hardware augmentation to support functional

multiplexing takes up only 7 extra switching transistors and

simple digital logic (red components in Fig. 9), whose area is

estimated to be comparable to 12 single-bit SRAM cells. The

bottom layer of our design has 2 capacitors (233 fF each),
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Fig. 15: Comparison between our sparse sampling and other

sampling alternatives. Our method can retain acceptable accu-

racy even at high compression rates.

one comparator, 13 switching transistors, 10 6T SRAM cells,

and trivial digital logic (a 4-bit digital comparator, 21 gates)

in 22 nm technology.

Comparably, a stacked DPS by Meta [65] has 2 capacitors,

one comparator, 28 switching/logic transistors, and 10 6T

SRAM cells on its bottom layer, achieving 4.6 µm pixel size

in 65 nm node. Another stacked DPS by Samsung [111] has

one comparator, one positive-feedback amplifier, and 22 6T

SRAM cells on its bottom layer, achieving 4.95 µm pixel size

in 28 nm node. Thus, we choose a pixel pitch of 5 µm×5 µm.

With this pixel size, the pixel array (640× 400), the in-

sensor NPU, and the output buffer (including run-length

encoder) attribute to 6.4 mm2, 0.4 mm2, and 0.1 mm2,

respectively. The run-length decoder area on the host is also

negligible; it is estimated to be less than 0.1% of the host area.

E. Comparison with Sampling Alternatives

We show that the in-ROI pseudo-random sampling strategy

outperforms other sampling alternatives:

• FULL+RANDOM: a method that uniformly at random

samples the full-size frame without ROI prediction

• FULL+DS: a method that uniformly downsamples the

full-size frame without ROI prediction

• SKIP: a method that detects the event density within each

frame to determine whether to skip subsequent eye seg-

mentations and reuse previous segmentation results [49]

• ROI+DS: a method that uniformly downsamples within

the predicted ROI

• ROI+FIXED: a method that uses dataset statistics to

overfit a fixed ROI sampling mask offline

• ROI+LEARNED: a method that uses an additional ViT

network to learn the pixel sampling within the ROI

Fig. 15 compares the horizontal angular error under differ-

ent compression rates. BLISSCAM consistently outperforms

all other methods across all compression rates. The highest

accuracy gains are achieved against the full-frame methods,

showing the benefits of ROI prediction. At a 21× compress

rate, only ours and ROI+LEARNED can achieve an accuracy

below the tolerable threshold of 1◦. ROI+LEARNED, however,

requires an additional in-sensor DNN to predict the sampling

pattern, introducing intolerable pixel-wise overhead.

F. Sensitivity Study

Frame Rate. Fig. 16 shows how the end-to-end horizontal

gaze accuracy (left y-axis) and energy saving over NPU-FULL
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Fig. 16: Sensitivity of end-

to-end gaze error and energy

saving over NPU-FULL with

respect to frame rate.
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Fig. 17: Energy saving over

NPU-FULL with respect to

logic layer’s process node un-

der two SoC process nodes.

TABLE I: Sensitivity of gaze error, standard deviation, and

energy savings (over NPU-ROI) to ROI reuse window.

Reuse Window 1 4 16

Vertical Angular Error (std.) 0.25 (0.15) 0.49 (0.30) 0.75 (0.69)

Energy Savings 0% 0.023% 0.029%

(right y-axis) change with the prescribed frame rate. The

overall gaze error slightly increases by 0.03◦ as the frame rate

increases from 30 FPS to 500 FPS. The primary contributor

to the accuracy drop is that a higher frame rate reduces

exposure time, which leads to a lower SNR (primarily driven

by the photon shot noise [106]). Nevertheless, BLISSCAM

retains tolerable gaze accuracy (1◦) even at 500 FPS. As the

frame rate increases from 30 FPS to 500 FPS, the energy

saving over NPU-FULL increases from 3.6× to 6.7×. The

energy reduction is because a higher frame rate means shorter

exposure time, which reduces the retention time of the analog

frame buffer and reduces the leakage energy.

Process Node. Throughout the sensitivity study we keep

the process nodes for both the top layer and the bottom analog

circuits fixed; and we synthesize the logic layer and off-

sensor NPU with a TSMC 16 nm FinFET library, and use

DeepScaleTool [108], [115] to scale them to different nodes.

We note that mixing technology nodes is the norm in image

sensors, as discussed in Sec. II-B.

Fig. 17 shows the sensitivity of the energy saving (over

NPU-FULL) as the sensor and SoC process nodes change.

We study two SoC process nodes (the two curves), 7 nm and

22 nm, and sweep (on the x-axis) the process node of the

sensor’s logic layer from 16 nm to 65 nm.

The overall energy saving is more sensitive to the processor

node of the logic layer when the SoC uses a 7 nm node over

that of a 22 nm node. This reason is simple: when the SoC

uses a 22 nm node, the off-sensor work tends to dominates

the total energy, leaving less room for optimization.

ROI Reuse. Instead of predicting an ROI for each frame,

one can also reuse a previously ROI. We implement a ROI-

reuse version of NPU-ROI, where a previously predicted ROI

is reused over a number of subsequent frames quantified by

the reuse window. Tbl. I shows how the gaze error and energy

savings of the ROI-reused version of NPU-ROI over itself

without ROI reuse change with the reuse window.

Overall, reusing previous ROIs leads to a significant accu-

racy drop with negligible energy savings. For instance, when

we reuse an ROI for the next consecutive 16 frames, there

is only a 0.03% energy saving but an 0.75◦ error increase.

Worse, the standard deviation of the angular error increases

with the reuse window, showing a decrease in robustness. The

reason the energy gain is small from ROI reuse is because

the prediction network’s energy consumption is insignificant

(1.04% of the total in-sensor energy).

VII. RELATED WORK

Computational Image Sensors. Image sensors are in-

creasingly integrating computation capabilities. The compu-

tation is conventionally done in the digital domain, such as

Sony IMX 500 CIS [47], which integrates DNN accelerator

inside the sensor. Recent proposals move computation into the

analog domain to, e.g., computes logarithmic gradients [132],

extract HOG features [86], eventification [50], [80], random

sampling [96], ROI-based readout [37], and even analog

DNNs [39], [127]. BLISSCAM performs eventification, ran-

dom sampling, and ROI-based readout inside the sensor with

little area overhead by reusing existing in-sensor hardware.

RedEye [81] is proposed as an analog ConvNet image sen-

sor architecture. BLISSCAM exhibits three major differences.

First, most importantly, the two works differ in high-level

system design strategies: RedEye splits pre-trained DNNs

to execute early DNN layers inside the sensor. It does not

consider co-design or joint training of the algorithm with the

hardware and is highly constrained in the type and size of

the DNN layers it can accommodate. In contrast, BLISSCAM

co-designs the in-sensor operations (sparse sampling) with the

off-sensor downstream DNN, and therefore works more flex-

ibly with diverse downstream vision algorithms and network

architectures. Second, they have different hardware implemen-

tations: RedEye assumes a conventional analog image sensor

and implements the DNN layers in the analog domain whereas

BLISSCAM adopts a stacked DPS, where the DNN executes in

the digital layer, naturally mitigating the noise issue in analog

processing. Finally, BLISSCAM also proposes in-sensor sparse

sampling and readout, which are unconcerned with in RedEye.

BLISSCAM not only augments the sensor hardware but

jointly designs the in-sensor work (sampling) with off-sensor

algorithm (segmentation) to ensure high task accuracy. Prior

work explored such co-designs. LeCA [85] jointly trains an in-

sensor encoder with downstream tasks; Bong et al. construct

image sensor-processor systems for eye tracking [25] and face

recognition [24], respectively; their eye tracking system only

achieves 30 FPS and consumes 4.3 nJ per pixel, which is more

than 10 × higher than that of BLISSCAM.

Random Sampling Image Sensors. The concept of ran-

dom sampling in image sensors has been explored in com-

pressive sensing and HDR imaging applications. In com-

pressive sensing, random numbers are spatially assigned to

the pixel array. However, the random number generator is

either off-chip in the optical domain [43] or on-chip but

resides beside the pixel array for row-wise processing [96]
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or requires complicated in-pixel logic [88]. Thus, none meets

the requirement for compact DPS in BLISSCAM. In HDR

imaging, random numbers are temporally assigned to each

pixel’s sub-exposure slots. However, the random numbers are

generated with coarse granularity (in pixel tiles) [130] or

complicated in-pixel logic [90]. More crucially, such coded

exposure scheme destroys the original pixel value, making it

unsuitable for our design.

In contrast, BLISSCAM exploits existent in-pixel SRAMs

with simple logic to realize fine-granular random sampling

with a compact design, and buffer the necessary pixel values

for eventification. The sampling method implemented in our

sensor is customized to eye tracking, but prior work [84] has

shown that other computer vision tasks such as classification

can also benefit from sparse sampling. While our sampling

network will have to adapt to different tasks, the actual hard-

ware support for random sampling (Fig. 11) readily applies.

Eye Tracking Acceleration. Researchers explored dedi-

cated accelerators to accelerate eye tracking. Bong et al. [25]

and Hong et al. [59] design accelerators for in-sensor gaze es-

timation. They target non-DNN algorithms with much inferior

accuracy as compared to the state of art DNN-based algo-

rithms. I-flatcam [135] and EyeCoD [131] design accelerators

for an eye tracking algorithm targeting lensless cameras while

leaving the sensor front-end un-optimized. BLISSCAM shows

that reducing sensor readout and sensor-host communication

leads to significant overall energy reduction.

Prior studies have explored lightweight eye segmentation

algorithms [49], [87], [131], [135]. For instance, EdGaze [49]

predicts the ROI of an image before segmentation. Previ-

ous work has also explored ROI-based machine vision sys-

tems [50], [74], [87]. Built on top of the ROI prediction idea,

we show that pseudo-random sampling within the ROI can

further reduce energy consumption with minimal hardware

support. We also co-design a ViT-based segmentation DNN

to be robust against sparse inputs, as the accuracy of previous

eye segmentation algorithms tends to drop under sparse inputs.

Event Cameras. Readers familiar with event cam-

eras [52] might recognize that our eventification algorithm

(Eqn. 1) is an emulation of an event camera. Indeed, our idea

is inspired by event cameras — with one crucial difference:

classic event cameras normalize pixel difference with respect

to the previous value. We simplify the design to remove the

normalization operation, which only complicates the sensor

hardware design without providing noticeable accuracy bene-

fits for eye tracking as we empirically find.

While there are generic object/ROI detection algorithms in

event cameras [94], [102], our lightweight ROI detection can

be seen as a specialized algorithm tailored for eye tracking,

based on the observation that background pixel values in

eye tracking do not change much over frames, so a very

lightweight frame differencing would reveal ROI.

VIII. CONCLUSION

Sparse in-sensor sampling is critical to reducing the energy

consumption and end-to-end latency of eye tracking, a crucial

component in emerging domains such as AR/VR. Sampling

within an image sensor dramatically reduces the amount

of data that has to go through the energy-intensive image

readout chain and sensor-host communication interface, two

major power contributors to image sensors. The host, as a

result, also operates on far fewer pixels, further reducing the

computation cost. To support in-sensor sparse sampling with

little hardware augmentation, BLISSCAM reuses the existing

pixel-level analog readout circuitry to support eventification,

random sampling, and sparse readout; and BLISSCAM uses a

small in-sensor NPU to support ROI prediction. BLISSCAM

reduces pixel volume by about 95% and thus achieves an 8.2 ×
energy reduction and a 1.4 × tracking latency reduction with

little tracking accuracy degradation, compared to existing eye

tracking systems.
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