
Addition is Most You Need: E�icient Floating-Point SRAM
Compute-in-Memory by Harnessing Mantissa Addition

Weidong Cao1,∗, Jian Gao2,∗, Xin Xin3, Xuan Zhang2
1The George Washington University; 2Northeastern University; 3University of Central Florida

ABSTRACT

The compute-in-memory (CIM) paradigm holds great promise to

e�ciently accelerate machine learning workloads. Among memory

devices, static random-access memory (SRAM) stands out as a prac-

tical choice for its exceptional reliability in the digital domain and

excellent scalability. Recently, there has been a growing interest in

accelerating �oating-point (FP) deep neural networks (DNNs) with

SRAM CIM due to their critical importance in DNN training and

high-accurate inference. This paper proposes an energy-e�cient

SRAM CIM macro for FP DNNs. To achieve the design, we identify

a lightweight approach that decomposes conventional FP mantissa

multiplication into two parts: mantissa sub-addition (sub-ADD) and

mantissa sub-multiplication (sub-MUL). Our study shows that while

mantissa sub-MUL is compute-intensive, it only contributes to the

minority of FP products, whereas mantissa sub-ADD, although

compute-light, accounts for the majority of FP products. Recog-

nizing “Addition is Most You Need”, we develop a novel hybrid-

domain SRAM CIM macro to accurately handle mantissa sub-ADD

in the digital domain while improving the energy e�ciency of

mantissa sub-MUL using analog computing. Experiments with the

MLPerf benchmark show its remarkable improvement in energy

e�ciency on average by 3×∼ 3.6× (2.5×∼3.1×) in inference (train-

ing) compared to a fully digital baseline without any accuracy loss,

showcasing its great potential for FP DNN acceleration.

1 INTRODUCTION

The compute-in-memory (CIM) has emerged as a highly promis-

ing computing paradigm by colocating computation and storage

in close proximity [1, 2, 4, 10, 16, 21]. In particular, it has shown

remarkable energy e�ciency in accelerating a variety of machine

learning tasks, ranging from image classi�cation and object recog-

nition to natural language processing [14, 16, 19, 21]. Among the

various memory devices explored [6, 8, 14, 16, 17, 19, 21, 22], static

random-access memory (SRAM) stands out in building up CIM

systems [14–16, 19, 21] for practical applications due to its excep-

tional reliability in the digital domain while maintaining superior

performance, power, and area. Although both academia [14, 16]

and industry [3, 5] have been advancing the performance of SRAM

CIM, most endeavors [3, 5, 14] have been limited to accelerate

quantized deep neural network (DNN) models for inference [20]

due to their relatively simple arithmetic operations, lightweight

computing unit, and, accordingly, high energy e�ciency compared

to their �oating-point (FP) counterparts [12].

*Equal contribution.
Correspondence: weidong.cao@gwu.edu & xuan.zhang@northeastern.edu.
This work is partially supported by NSF CCF #1942900.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

DAC ’24, June 23–27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3655930

Recently, there has been a growing interest in studying FP SRAM

CIM macros [16, 19, 21]. This is because DNN models have been

predominantly based on FP arithmetic operations to achieve the

highest training quality [11, 12]. In addition, for mission-critical ap-

plications such as autonomous driving, security robots, and defense

drones, quantized DNN models do not always ensure the stringent

accuracy requirement [6, 12, 13]. As a result, e�cient CIM systems

to accelerate FP DNN models are highly coveted and crucial for

unlocking the full power of machine learning (ML). Unfortunately,

only a few SRAM CIM macros have been proposed to speed up FP

DNN models for edge or cloud applications [16, 19, 21]. Despite the

notable performance improvements compared to GPUs and systolic

neural processing units, there is still substantial untapped poten-

tial to further optimize the energy e�ciency of FP CIM macros.

In particular, current SRAM CIM macros [16, 19, 21] that focus on

boosting vector-matrix multiplication (VMM) often treat FP multi-

plication and FP addition as the basic units of computation in the

digital domain. They implement these FP operations by overmini-

mizing computation error on every single bit operation. Our studies

show that fully accurate computations incur energy ine�ciency

and are not necessary for FP DNNs due to their inherent resilience

to small perturbations. Such insights provide us with promising

opportunities to enhance the performance of FP SRAM CIMmacros.

This paper proposes an e�cient SRAM CIM macro to accelerate

FP DNNs by harnessing the inherent advantage of FP arithmetic. By

dividing the mantissa multiplication into two parts, i.e., mantissa

sub-addition (sub-ADD) and sub-multiplication (sub-MUL), we �nd

that sub-ADD contributes to ∼75% of FP products while consuming

<10% of the total energy (Section. 3.1). This insight of “Addition is

Most You Need” motivates our design approach for the proposed

FP SRAM CIM macro: dedicating digital resources to guarantee the

accuracy of lightweightmantissa sub-ADD,while exploiting energy-

e�cient analog computing to reduce the complexity of mantissa

sub-MUL. This hybrid-domain acceleration achieves state-of-the-

art energy e�ciency without compromising the accuracy of DNN

models, outperforming the traditional fully-accurate digital-only

baseline [21]. Key contributions of this work are listed below.

• We identify a lightweight mechanism to accelerate FP DNNs

by decomposing FP mantissa multiplication into two parts:

accuracy-orientedmantissa sub-ADD and e�ciency-oriented

mantissa sub-MUL.

• We tailor a hybrid-domain SRAM CIM macro to implement

the proposed mechanism by placing mantissa sub-ADD in

the digital domain and performing mantissa sub-MUL in the

analog domain.

• Detailed circuit- and microarchitecture-level features of the

proposed FP SRAM CIM macro, such as local computing

cells and computation �ow, are elaborated.

• Experimental evaluations reveal that the proposed hybrid-

domain SRAM CIM macro can improve energy e�ciency

by 3.0×∼ 3.6× (2.5×∼3.1×) in inference (training) without

degrading accuracy compared to the FP digital baseline.



2 BACKGROUND

2.1 Floating-Point Arithmetic Operations

We �rst brie�y introduce the essential FP arithmetic operations

underpinning FP DNN models.

FP format: A general FP number in scienti�c notation is expressed

as 5 = (−1)( ·2� ·1." . Here, ( (( = 0 or ( = 1), �, and" (" ∈ (0, 1))

represent the sign, exponent, and mantissa (fraction) of the number,

respectively. Note that ‘1’ before ‘"’ is a hidden bit, which is not

explicitly shown in the binary format of an FP number and � is

the actual exponent with an o�set to the exponent encoded in the

standard format. Taking the IEEE half-precision FP format (FP16)

as an example, ( is 1-bit, � is 5-bit," is 10-bit (refer to Figure 2(d)).

FP multiplication: The multiplication of FP numbers is straight-

forward, i.e., exponent summation ( 1ï) and mantissa multiplication

( 2ï), as shown below using two positive numbers for simplicity.

(2�0 · 1."0) · (2
�1 · 1."1) = (2�0+�1 )

︸    ︷︷    ︸
1ï

· (1."0 · 1."1)
︸          ︷︷          ︸

2ï

. (1)

FP addition: However, the addition of FP numbers is non-trivial,

which is expressed as

2�0 · 1."0 + 2�1 · 1."1 = 2�max

︸︷︷︸
1ï

·

ùüüüüüüüú
üüüüüüüû

2�0−�max

︸    ︷︷    ︸
2ï

· 1."0

+

2�1−�max

︸    ︷︷    ︸
2ï

· 1."1

︸                       ︷︷                       ︸
3ï

. (2)

It involves alignment �rst, i.e., �nding the maximum exponent,

�max = max{�0, �1}, among all exponents ( 1ï) and obtaining the

exponent di�erence, �0(1) − �max, between each exponent and

the maximum one ( 2ï). Subsequently, the mantissa part would

be shifted towards the right according to the exponent di�erence

and then summed together ( 3ï). The sum will then undergo extra

processes like truncation to comply with the standard FP format.

FP vector-matrix multiplication: By generalizing Eq. (2) to the

accumulation of = FP numbers, where each number, 2�8 · 1."8 is

assumed to be a product of a weight-activation pair, i.e., (−1),(,8 ·

2,�,8 · 1.,",8 and (−1)-(,8 · 2-�,8 · 1.-",8 based on Eq. (1) (i.e.,

�8 = ,�,8 + -�,8 and 1."8 = 1.,",8 · 1.-",8 ), the vector-matrix

multiplication (VMM) of FP numbers is achieved, which is the

backbone operation of FP DNN models. FP VMM can support the

computation of DNN models with the highest accuracy and the

best training quality [12]. Therefore, e�cient FP VMM acceleration

on hardware is highly desirable.

2.2 Compute-in-Memory for FP DNNs

Compute-in-Memory (CIM) to accelerate FP VMM is concep-

tually illustrated in Figure 1. First, the alignment is carried out

by summing the exponent parts of weight-activation pairs (,�,8

and -�,8 , Step 1ï) and obtaining the exponent di�erence between

each exponent sum, �8 , and the maximum one, �max (Step 2ï). Sub-

sequently, exponent di�erences (�8 − �max) are used to shift the

mantissa parts of activations, which are then used for mantissa

multiplication and accumulation (Step 3ï). Note that these steps in

Figure 1 exactly match those shown in Eq. (2).

×
×
×

&
&

&
&

&
&

×
×
×

&
&

&
&

&
&

&
&

&
&

&
&

&
&

&
&

&
&

&
&

XM,0

XM,i

XM,n-1

WM,0

WM,i

WM,n-1

XE,0

XE,i

XE,n-1

WE,0

WE,i

WE,n-1

E0 

Ei

En-1

E0 - Emax

Ei - Emax

En-1 - Emax

Emax

Shift

V
M

M

Exponent

difference

Mantissa multiplication

&
&

CIM CIM

+

+

+

Exponent summation

&
&

&
&

&
&

1

2

3

Figure 1: Illustration of CIM for FP VMM acceleration. -�,8 and,�,8 are the
exponent parts of activation and weight.-",8 and,",8 are the mantissa parts
of activation and weight. 1ï, 2ï, and 3ï are circuit-level representations of
the steps in Eq. (2).

Previous work has explored CIM acceleration for FP DNNmodels

with emerging non-volatile memory (NVM) devices [6, 9]. Despite

their great promise compared to GPUs and systolic neural process-

ing units, such NVM devices are still in the early stages of develop-

ment and are not reliable enough for practical applications. Recently,

static random-access memory (SRAM) has emerged as the corner-

stone in the design of CIM systems for practical applications be-

cause of its exceptional accuracy in digital computing, coupled with

superior performance, power e�ciency, and area [14, 16, 19, 21].

However, exploration of FP SRAM CIM macros has been limited to

a few edge/cloud applications [16, 19, 21]. As an example, a prior

work [16] proposes a recon�gurable FP/INT CIM processor to en-

able �exible support of BFloat16 (BF16)/FP32 and INT8/16 in the

same digital CIM macro. Another work [21] divides FP operations

into high-e�ciency intensive-CIM and �exible sparse-digital parts,

as it observes that most exponents of FP data are clustered in a

small range. Circuit-level techniques, such as the time-domain ex-

ponent summation mechanism, are also used to improve the energy

e�ciency of CIM macros [19]. Despite these di�erent implementa-

tions, they primarily focus on accurately accelerating almost every

exponent summation and mantissa multiplication in the digital

domain, resulting in remarkable, yet unnecessary energy waste.

Our analysis reveals that by leveraging the inherent advantage

of FP arithmetic operations and exploiting the inherent resilience

of DNN models to small computation errors, there is signi�cant

untapped potential to leverage approximating computing (e.g., ana-

log computing) to accelerate FP DNNs without degrading their

accuracy (Section 3.1). This revelation opens valuable opportunities

to further enhance the performance of FP SRAM CIM macros.

3 APPROACH

3.1 Insight: Addition is Most You Need

By carefully examining FP arithmetics, we �nd a lightweight

manner to allow hardware-friendly implementation of SRAM CIM

macros with enhanced energy e�ciency while maintaining the

accuracy of FP DNNs. To show the key idea, we decomposed the

conventional FP mantissa multiplication in Eq. (1) into two parts as

(1."0 · 1."1) = (1+"0) · (1+"1) = (1 +"0 +"1︸         ︷︷         ︸
sub-ADD

+"0 ·"1︸   ︷︷   ︸
sub-MUL

), (3)

where (1 +"0 +"1) and ("0 · "1) are de�ned as mantissa sub-

addition (sub-ADD) and mantissa sub-multiplication (sub-MUL).

Following the decomposition and given "0(1) ∈ (0, 1), we study

2



the signi�cance of sub-MUL in mantissa multiplication, i.e.,

"0 ·"1

(1 +"0) · (1 +"1)
=

1

(1 + 1/"0) · (1 + 1/"1)
≤

1

4
. (4)

Here, the ‘=’ holds true if and only if"0 = "1 → 1. Eq. (4) shows

that for a single weight-activation pair, if the computation accu-

racy of sub-ADD can be ensured, the total computation error of

mantissa multiplication (also for the FP product) does not exceed

1/4 compared to its ground truth even by aggressively removing the

sub-MUL. Figure 5 shows our experimental results (the red dots)

by throwing away sub-MUL operations in FP multiplication of a

single weight-activation pair with exemplary FP DNN models from

our benchmark. The experiment veri�es that the total computation

error resulting from removing all sub-MUL operations is bounded

by 1/4, and the error is smaller than 1/4 in most cases.

The analysis here shows that although mantissa sub-MUL oper-

ations are computationally intensive, they often impact a minority

of FP products. In contrast, mantissa sub-ADD, although compu-

tationally lighter, often constitutes the majority of FP products.

And addition is much more energy e�cient compared to multipli-

cation. For example, INT8 addition consumes about 10% energy

of INT8 multiplication according to previous work [7]. This piv-

otal insight of “Addition is Most You Need” inspires our FP SRAM

CIM macro-design strategy: allocating digital resources to en-

sure the precision of compute-light mantissa sub-ADD and

employing energy-e�cient analog computing for compute-

intensive mantissa sub-MUL.

3.2 Hybrid-Domain FP SRAM CIM Macro

Microarchitecture overview: Figure 2(a) illustrates the microar-

chitecture of the proposed SRAM CIM macro (targeting FP16 DNN

models as an example). It consists of a time-domain CIM expo-

nent summation array (ESA, to add the exponent parts of weight-

activation pairs), time-domainMAX identi�er (to �nd themaximum

exponent sum), exponent di�erence extractor (EDE, to extract the

exponent di�erence between each exponent sum and the maximum

one), time-to-digital processing unit (to convert the exponent dif-

ference in the time domain into digits), EDE-based input alignment

unit (to shift mantissa parts of activations), hybrid-domain CIM

mantissa VMM array (HD-MVA, for FP VMM), analog-to-digital

converters (ADCs), shift-and-add (S&A) module, local digital adder

tree, partial-product management (PM) unit, and other auxiliary

modules such as the IO module and pipeline and timing control

unit. For exponent summation and alignment, we implement them

in the time domain, since previous work [18, 19] has shown that the

time-domain implementation is more energy e�cient as compared

to other digital implementation manners. For mantissa multiplica-

tion, we develop a hybrid-domain SRAM CIM macro to precisely

manage mantissa sub-ADD in the digital realm while enhancing the

energy e�ciency of mantissa sub-MUL through analog computing.

Computation �ow: The computation process of the proposed

SRAM CIM Macro is shown in Figure 2(b), which contains seven

key steps. In Step 1ï, ESA computes the sum of the exponent parts of

each weight-activation pair in the time domain, i.e., �8 =,�,8 +-�,8 .

In Step 2ï, the maximum exponent sum, �max, among all sums, is

found by the time-domain MAX identi�er. In Step 3ï, all exponent

sums (�8 , 8 = 0, ..., = − 1) and �max are sent to the EDE unit, where

m1

m2

m3

m4

m5

0

0

m0

m1

m2

m3

m4

0

0

ý

ý

ý

ý

ø ùý û

ø ùü ý û

ý

ý ý

ø ùü ý û

ø ùû

ø ùû

ø ùý û

 3 

 3 

 3 

 3 
 3 

 3 

 3 
 3 

 3 

 3 

 3 

 3 
 3 

 3 

 3 
 3 

XE,i

FP32 productFP16 inputs (X)

ESA computing 

(Ei = WE,i + XE,i)
1

Finding Emax 
2

 Extracting Ediff,i
3

Ei

Emax Ei

Partial-product 

management (PM)
7

MVA for VMM6

Time-Digital 

Processing Unit
4

Shifting XM,i 

based on Ediff,i

5Ediff,i

XM-SA,i XM-A,i [10:0]

sub-ADDsub-MUL

XM-A,i[(10+k):0]
0

5

XM-SA,0

1 2 3 4 5

XM-SA,1

XM-SA,63

Ediff,0

Ediff,1

Ediff,63

Emax

...

Ediff,0 = Emax

Ediff,1 = Emax - 5

Ediff,63= Emax 3 (11+k)

(10+k)

(11+k)

 Emax 3 (11+k)

1 m5m9 m8 m7 m6 m4 m3

0 m61 m9 m8 m7 m5 m4

0 m70 1 m9 m8 m6 m5

0 m80 0 1 m9 m7 m6

0 m90 0 0 1 m8 m7

0 00 0 0 0 0 0

0 00 0 0 0 0 0

m2

m3

m4

m5

m6

0

0

Ediff Aligned input mantissa (XM-A) according to Ediff

In
c

re
a

s
e

d
 i
n

p
u

t 
s
p

a
rs

it
y SA

(b)

0

1

2

3

4

11 + k

11 + k

Emax

Emax 3 1

Emax 3 3
Emax 3 2

Emax 3 4

Emax 3 (11 + k)

< Emax 3 (11 + k)

(c)

(d) k

(a)

ADCs

Time-Domain CIM 

Exponent Summation

Array (ESA)

Exponent Difference 

Extractor (EDE)

EDE-based Input 

Alignment Hybrid-domain CIM 

Mantissa VMM Array 

(MVA)

L
o

c
a

l 
D

ig
it
a
l 

A
d

d
e

r 
T

re
e

PM

IO Module

Time Domain Emax 

Identifier

Pipeline & Timing Control

Shift and Add (S&A)

1

2

3 6

7

s
u

b
-A

D
D

sub-MUL

Time-Digital 

Processing Unit

3

4

5

...

...

...

...

...

...

...

0

0

0

0

0

1

0

m9 m8 m7 m6 m5 m4 m3 m2 m1 m0e0e1e2e3e4s

Sign (S) Exponent (E) Mantissa (M)

ø ù 154 3 2 1 0
9 8 7 6 5 4 3 2 1 01 2 1.

s e e e e e
m m m m m m m m m m

ýý ÷ ÷

Figure 2: (a) Structure overview of the proposed FP SRAM CIM macro. (b)
Computation �ow. (c) Illustration of the exponent di�erence extraction in
the time domain. (d) Illustration of mantissa shift based on the exponent
di�erence (using FP16 as an example).

the exponent di�erence �di�,8 between �8 and �max is obtained, i.e.,

�di�,8 = �max−�8 . In particular, �di�,8 is calculated bymeasuring the

time interval between the rising edges of �8 and �max as shown in

Figure 2(c). In Step 4ï, the time-to-digital processing unit converts

�di�,8 from the time domain into a digital shift-amount (SA) value,

-M-SA,8 , for each mantissa, -",8 . The conversion relation between

�di�,8 and -M-SA,8 is straightforward as illustrated in Figure 2(c).

With this -M-SA,8 , in step 5ï, the original mantissa -",8 is shifted

to generate the aligned mantissa, -M-A,8 with the same bit-width,

i.e., 11 + : . If �di�,8 > (11 + :), -M-A,8 would become 0, allowing

computation to be skipped. “11” is the bit width of the mantissa part

in FP16 format (1 hidden bit plus 10 explicit mantissa bits). Note

that : is a tuning value, allowing for a further trade-o� between

accuracy and energy e�ciency [19], which is discussed in the next

paragraph. Otherwise, if �di�,8 ≤ (11 + :), -M-A,8 , as shown in

Figure 2(d), the insert-0 behavior coupled with the growth of the

exponent di�erence increases the bit-level sparsity, which reduces

the energy consumption of the proposed HD-MVA with the input-

sparsity-aware circuit. In step 6ï, MVA uses the aligned mantissa

parts to achieve VMMwith analog computing, sub-MUL, and digital

computing, sub-ADD. Finally (Step 7ï), �max, the partial products

from sub-MUL and sub-ADD are post-processed by the PM unit to

obtain the �nal product in the standard FP32 format.

3



6T SRAM Cell 64 rows x 12 cols 

ADC and S&A

XM-A, 0[i]

XM-A, 63[i]

WMA,0

...

...

2

2

...

In
p

u
t S

p
a

rs
ity

-A
w

a
re

 W
o

rd
 L

in
e
 (W

L
)  D

riv
e

r &
 D

e
c

o
d

e
r

2i+i-12i+i+1 2i + i

2i+i+12i+i+1 2i + i

2
i + i

P
M

L
o
c
a
l D

ig
ital A

d
d
e
r T

re
e
 (L

D
A

T
)

LAS0,i

LAC0,i

LAS63,i

LAC63,i

WMA,0[i]

WMA,63[i]WMA,63

CTRL 

LCC #63

LCC #0

HD-MVB 
#0

HD-MVB 
#63

HD-MVA

(a)

...

...

...

...

Vi

...

...

...

...

...

...

...

...

...

...

...

...

N0 N1

P0

VDD

L
B

L

L
B

L
B

G
B

L
B

 (
i)

G
B

L
B

 (
i+

1
)

HWL

6T SRAM

MUL

XOR

AND

Column #i

G
B

L
 (

i)

G
B

L
 (

i-
1
)

XM-A,0[i]

XBM-A,0[i]

LAS0,i

LAC0,i

ENS

sub-MUL

sub-ADD

N2 N3

M
U

X

LCC #0

...

...

(c)

WMA,0[i]

Vi

... ...

W

X

XB

VSS

LACW

X

XB
VSS

GBLB

ENS

(b)

MUL AND XOR

LAS
X

XB

W

Figure 3: (a) Structure of HD-MVA. (b) Elementary circuits used in local computing cells, such as the analog MUL unit and the digital AND and OR gate. (c) Local
computing cell to implement the proposed hybrid computing mechanism.

Ideally, the bit-width of an aligned activation mantissa is (11 +

�max − �min), where �min is the minimum exponent sum among all

�8 . However, if (�max − �min) is too large, the product of a weigh-

activation pair whose exponent sum is in the neighbors of �min

could have a negligible contribution to the �nal product of the VMM.

Therefore, we use the tunable : to �nd a proper shift-amount value

for alignment, which can ensure the accuracy of the computation

while further improving the energy e�ciency. Additionally, we use

a coarse pipeline to increase the throughput of the proposed CIM

macro, where Steps 1ï to 4ï are classi�ed into pipeline stage one

and the remaining steps are in pipeline stage two.

Sub-circuit design: The key circuit blocks to implement steps 1ï

to 5ï are similar to the previous work [18, 19], whose details are

thus omitted here. Instead, we focus on introducing the proposed

HD-MVA as shown in Figure 3(a). The HD-MVA contains 64 hybrid-

domain CIM mantissa VMM banks (HD-MVB). Each HD-MVB is

used for computing the product of aligned activation mantissa-M-A

and weight mantissa,MA, i.e.,
∑
(-M-A,8 ·,MA,8 ). Here, -M-A,8 is

(11 + :)-b wide;,MA,8 is 12-b wide and represented in 2’s comple-

ment. To show the working mechanism of HD-MVB, we assume

: = 0 for simplicity and take the circuit in Figure 3(b) as an example.

Each HD-MVB comprises a 6T-SRAM cell array (64 rows and 12

columns) and a local computing cell (LCC) associated with each

row. In particular, each bit of,MA,8 is stored in the same row but

across di�erent columns of the 6T-SRAM cell array in the order

from the most signi�cant bit (MSB) to the least signi�cant bit (LSB).

Each LCC includes a one-bit multiplication unit (MUL) for sub-

MUL in the analog domain and a half-adder for sub-ADD in the

digital domain. In each input cycle 9 , the row 8 sends a 2-b sum of

(-M-A,8 [ 9] +,MA,8 [ 9]), i.e., LAS8, 9 and LAC8, 9 , to the local digital

adder tree (LDAT). Here, LAS8, 9 is the local-add sum bit, and LAC8, 9
is the local-add carry bit. In the same cycle, each column (global

bitline bar, GBLB) also generates a partial product of -M-A [ 9] and

,MA. Across cycles, the LDAT accumulates partial sums of mantissa

summation and the S&A logic accumulates the partial products

of mantissa multiplication. Finally, PM combines these results to

generate the standard FP32 product for subsequent processing.

Similarly to previous LCC structures [18, 19], the two pass-

transistors (# 0/# 1) connect GLB/GBLB to the local bitline (LBL/LBLB)

for read and write operations in SRAM mode. In standby mode,

the horizontal wordline (HWL) is activated, i.e., HWL = 1, with

GBLs pre-charging LBLs. In CIM mode, # 0/# 1 are switched o� to

decoupled GBLs from LBLs. The selected WL is activated to read 1b

Table 1: Benchmark from the MLPerf Inference: Edge Benchmark Suite v3.1.

Task Model Dataset Quality (99% FP32)

Image classi�cation ResNet50-v1.5 ImageNet 76.014% (top1 Acc)
Object detection Retinanet OpenImages 0.3755 mAP
Language processing BERT-large SQuAD v1.1 90.874% (f1_score)
Speech-to-text RNNT Librispeech 92.548% (1 - WER)

of weight mantissa (e.g.,,MA [ 9]), which is stored in the SRAM cell

accessed with a large voltage swing. The multiplexer (MUX) is used

to select a speci�c bit of -M-A to be added to the corresponding

bit of the weight mantissa in a cycle, whose control signal is from

the decoder in the input module of the HD-MVA. The schematics

of the MUL unit for sub-MUL operations and the AND/XOR gate

for sub-ADD operations are illustrated in Figure 3(c). All of these

circuits use a two-transistor structure to minimize area overhead.

4 EXPERIMENTS

4.1 Experimental Methodology

Benchmarks: We evaluate both the inference and training perfor-

mance of the proposed FP SRAM CIM macro. Current FP SRAM

CIM macros mainly target edge applications with FP16 DNN mod-

els [16, 19, 21]. We follow the convention and use the MLPerf

Inference: Edge benchmark suite v3.1 [13] and MLPerf Training

Benchmark Suite v3.1 [11] as our benchmarks. The inference bench-

mark includes image classi�cation, object detection/segmentation,

speech-to-text, language processing, and recommendation tasks,

while the training benchmark extends them further to large lan-

guage models and image generation. We select four inference tasks

and one training task to showcase our proposed CIM macro’s per-

formance. Their associated datasets, models, and quality metrics

for inference are listed in Table 1. The metrics for these models are

top-1 accuracy for the image classi�cation (ResNet50-v1.5), mean

average precision (mAP) for the objection detection (Retinanet),

f1_score which represents the harmonic mean of the precision and

recall for the language processing (BERT-large), and 1-word error

rate (WER) for the speech-to-text (RNNT).

Baseline: The fully digital architecture of the state-of-the-art FP

SRAM CIM macro [21] is used as our baseline. This work imple-

ments FP operations in two parts: high-e�ciency intensive-CIM

and �exible sparse-digital parts, as it is observed that most of the

exponents of FP data are clustered in a small range. This macro ac-

celerates FP VMM in the digital domain without any approximate

computation. For a fair comparison, we build the two architec-

tures based on the same pipeline with 28nm CMOS technology

4



76.014%

62.848%
18 dB

0.2355

0.3759

20 dB

90.772%

6.039%

20 dB

92.376%

92.541%

5 dB

Figure 4: Inference accuracy comparison between our proposed CIM macro with sub-ADD (Digital compute, D) + sub-MUL (Analog compute, A), the macro with
sub-ADD (Digital compute, D) only, and the accurate digital baseline with MLPerf Inference: Edge Benchmark Suite v3.1 Tasks.

Figure 5: Noise/error characterization of our proposed macro (blue) and the
macro with sub-ADD only (red, discarding sub-MUL) in FP element-wise multi-
plication with exemplary DNN layers from MLPerf. The ground truth is from
the fully accurate digital baseline. Our macro achieves SINADhw = 30 dB with
a much smaller computation error.

and use the same capacity of SRAM cells, i.e., 832kb. We use the

same power supply +DD = 0.8+ and the clock frequency of 200

MHz for them. We do not consider the tunable parameter : men-

tioned in Section 3.2 when comparing with two architectures, i.e.,

: = (�max − �min). We �rst evaluate the computation accuracy of

the analog �ow (for the sub-MUL operations) used in our proposed

CIM macro. We then evaluate the accuracy/energy e�ciency for

the two designs. Finally, we present a summary.

4.2 Macro Accuracy Evaluation

Noise characterization of the analog data�ow: We �rst charac-

terize the computation accuracy of the analog �ow used for the sub-

MUL operations. The proposed SRAM CIM macro employs an ana-

log data�ow for sub-MUL operations and hence is subject to various

hardware non-idealities, such as process, voltage, and temperature

(PVT) variations, thermal noise, and quantization noise of ADCs.

Together, these non-idealities act to in�uence the computation ac-

curacy of the macro. We adopt the signal-to-noise and distortion

ratio (SINAD) to represent the computation accuracy of the analog

data�ow for sub-MUL operations [2]. To characterize the SINAD

of our proposed CIM macro, we perform hundreds of such Monte

Carlo (MC) simulations on hardware by using random weight-

activation pairs, the errors statistics between the hardware com-

putation results, �hw, and the software ground truth, �sw, can be

obtained. The variation n of the hardware noise is then expressed as

(n)2 = %noise = mean(�hw−�sw)
2. With the variations, the signal-

to-noise and distortion ratio (SINAD) of the analog data�ow is

characterized as SINADhw = 10 log10 ((%sig (�sw) + %noise)/%noise).

Intuitively, the smaller variation n is, the higher the SINAD is, and

the more accurate the computation is. The evaluations in Figure 5

are from thousands of simulations with exemplary DNN layers from

MLPerf image classi�cation and language processing tasks. The

ground truth is the element-wise product from the accurate digital

baseline. The statistics of the normalized absolute error between

�hw and �sw of our proposed macro (blue) shows an equivalent

SINADhw of 30 dB with analog computing. The results indicate that

our proposed macro yields a mean normalized absolute error that is

around 12× smaller compared to the one (red) of the sub-ADD-only

computation (i.e., discarding sub-MUL).

Inference accuracy: To examine whether the SINADhw derived

from our analog data�ow can support adequate system-level infer-

ence accuracy, we analyze the inference accuracy of an FP DNN

model on the proposed CIM macro by sweeping the level of SINAD.

In this way, we can obtain SINADmin, the minimum SINAD re-

quired to achieve the software-equivalent inference accuracy. In

particular, we apply a reverse method to inject equivalent software-

level noise into each layer’s input activations of an FP DNN model,

i.e., adding noise to �sw with the corresponding SINAD.

Figure 4 demonstrates the e�ects of varying the SINAD on the

inference accuracy of di�erent DNNs with software-level sweeping,

where the blue line represents the sweeping curve of our proposed

CIM macro (sub-ADD (Digital compute, D) + sub-MUL (Analog

compute, A)). Typically, a 20 dB SINAD is su�cient for all DNN

models to reach the ideal inference accuracy. Especially, RNNT on

Librispeech only needs 5 dB to achieve the accuracy of the digital

baseline. We believe that the robustness of RNNT against the noise

from the sub-MUL analog computing is attributed to its network

architecture by using Long short-termmemory (LSTM) cells. LSTMs

have a unique architecture with input, output, and forget gates.

These gates e�ectively regulate the �ow of information, allowing

the network to retain important information over long sequences

and forget irrelevant data. This gating mechanism allows the errors

to propagate through the network in a more controlled manner.

Since our macro provides a SINAD as high as 30 dB, all inference

accuracy can be guaranteed without degeneration. However, if the

sub-MUL operations are excluded from the FP VMM, the accuracy

of models signi�cantly drops. As an example, the Top-1 accuracy

of ResNet50-v1.5 on ImageNet decreases to 62.848% without the

sub-MUL operations. The BERT-large on SQuAD v1.1 can even fail

to work by throwing away the sub-MUL operations.

Training accuracy: We adopt the same manner as above to evalu-

ate the training accuracy of an FP DNNmodel on the proposed CIM

macro. We inject the noise based on the obtained SINADhw into

the FP DNN models during the training to emulate the non-ideal

hardware. Figure 6(a) shows a training example by using ResNet-50

v1.5 on ImageNet. The top-1 training accuracy with the proposed

CIM macro is 75.91% with no accuracy loss to the digital baseline.

4.3 Macro System-Level Evaluation

Energy e�ciency:We further evaluate the energy e�ciency of our

proposed CIMmacro on FP DNN acceleration by comparing it to the

fully digital baseline [21]. On average, our proposed CIMmacro can

improve energy e�ciency by 3×∼3.6× (2.5×∼3.1×) for inference

If SINADhw ≥ SINADmin , we consider that the analog data�ow has su�cient compu-
tation accuracy to guarantee the system-level inference accuracy.

5



(a)

75.91%

75.90%

(b)

Figure 6: (a) The training trajectory on MLPerf Training Benchmark Suite v3.1
Image classi�cation task with our proposed macro. (b) Normalized inference
(training) energy e�ciency to the digital baseline using model layers with a
more dense distribution of exponents of FP weights/activations.

Table 2: Summary of performance of the proposed CIM macro for layers with
dense exponent distribution or on average.

Inference Training
Accuracy Energy E�ciency ACC EE

Baseline [21] No loss 1× No loss 1×
Our work (Dense) No loss 8.7×∼ 9.3× No loss 7.3×∼8.2×
Our work (AVG) No loss 3×∼ 3.6× No loss 2.5×∼3.1×

(training) compared to the baseline across various benchmark mod-

els. The improvement is mainly due to the e�cient acceleration of

sub-MUL operations in the analog domain. In particular, as shown

in Figure 6, if the exponent distribution of FP weight/activations in

a particular model layer is more dense, our macro is able to improve

the energy e�ciency by 8.7×∼ 9.3× (7.3×∼8.2×) during inference

(training) compared to the baseline. This further improvement is

primarily due to the lower cost of the mantissa alignment.

Performance and area: Since our proposed macro aligns the

mantissa in the time domain, it can reduce the time of each pipeline

stage, leading to a 1.23× improvement in performance compared to

the baseline. The local digital adder tree (LDAT) in our proposed

macro is only used for the accumulation of partial sums of sub-

ADD, which minimizes the area overhead. In contrast, the baseline

requires area-intensive digital adder trees for the accumulation of all

partial sums, and RISC-V CPU for the computation of weights and

activations that are sparse in their distributions. Compared to this

baseline, our proposed CIM macro achieves 1.43× area e�ciency.

Summary: Finally, we make a summary of the performance of the

proposed CIM macro for FP DNN acceleration as shown in Table 2.

It achieves better performance in terms of energy e�ciency, latency,

and area e�ciency compared to baseline [21] with the same amount

of computing resources. This comparison is preliminary and based

on circuit simulations without detailed optimizations. Future e�orts

will focus on optimizing the hardware con�guration of the proposed

macro and evaluating it with silicon prototypes.

5 CONCLUSION

This paper has introduced an e�cient SRAM CIM macro for

FP DNNs. It splits FP mantissa multiplication into mantissa sub-

addition (sub-ADD) and sub-multiplication (sub-MUL). It shows that

sub-MUL is compute-intensive but contributes less to FP vector-

matrix-multiplication (VMM), sub-ADD contributes more to FP

VMM yet less compute-heavy. Leveraging this insight, we develop

a hybrid-domain SRAM CIM macro that e�ciently processes sub-

ADD digitally and enhances sub-MUL’s energy e�ciency through

analog computing. Experiments show signi�cant improvements in

energy e�ciency over digital baselines without hurting accuracy.

REFERENCES
[1] Weidong Cao and Xuan Zhang. 2023. A/D Alleviator: Reducing Analog-to-Digital

Conversions in Compute-In-Memory with Augmented Analog Accumulation. In
2023 IEEE International Symposium on Circuits and Systems (ISCAS). 1–5.

[2] Weidong Cao, Yilong Zhao, and et al. 2022. Neural-PIM: E�cient Processing-In-
Memory With Neural Approximation of Peripherals. IEEE Trans. Comput. 71, 9
(2022), 2142–2155.

[3] Yu-Der Chih, Po-Hao Lee, Hidehiro Fujiwara, Yi-Chun Shih, Chia-Fu Lee, Rawan
Naous, Yu-Lin Chen, and et al. 2021. 16.4 An 89TOPS/W and 16.3TOPS/mm2
All-Digital SRAM-Based Full-Precision Compute-In Memory Macro in 22nm
for Machine-Learning Edge Applications. In 2021 IEEE International Solid-State
Circuits Conference (ISSCC), Vol. 64. 252–254.

[4] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-Speci�c Hardware
Accelerators. Commun. ACM 63, 7 (jun 2020), 48–57.

[5] Hidehiro Fujiwara, Haruki Mori, Wei-Chang Zhao, Mei-Chen Chuang, Rawan
Naous, Chao-Kai Chuang, and et al. 2022. A 5-nm 254-TOPS/W 221-TOPS/mm2
Fully-Digital Computing-in-Memory Macro Supporting Wide-Range Dynamic-
Voltage-Frequency Scaling and Simultaneous MAC and Write Operations. In 2022
IEEE International Solid-State Circuits Conference (ISSCC), Vol. 65. 1–3.

[6] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. FloatPIM:
In-Memory Acceleration of Deep Neural Network Training with High Precision.
In 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA). 802–815.

[7] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, and et al.
2021. Ten Lessons From Three Generations Shaped Google’s TPUv4i : Industrial
Product. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). 1–14.

[8] Heesu Kim, Hanmin Park, Taehyun Kim, Kwanheum Cho, Eojin Lee, Soojung
Ryu, Hyuk-Jae Lee, Kiyoung Choi, and Jinho Lee. 2021. GradPIM: A Practical
Processing-in-DRAM Architecture for Gradient Descent. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 249–262.

[9] Yandong Luo and Shimeng Yu. 2020. Accelerating deep neural network in-situ
training with non-volatile and volatile memory based hybrid precision synapses.
IEEE Trans. Comput. 69, 8 (2020), 1113–1127.

[10] Tianrui Ma, Weidong Cao, Fei Qiao, Ayan Chakrabarti, and Xuan Zhang. 2022.
HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-
Stacked Image Sensors. In Proceedings of the ACM/IEEE International Symposium
on Low Power Electronics and Design.

[11] Peter Mattson, Christine Cheng, and et al. 2020. MLPerf Training Benchmark.
arXiv:cs.LG/1910.01500

[12] PauliusMicikevicius, Dusan Stosic, and et al. 2022. FP8 Formats for Deep Learning.
arXiv:cs.LG/2209.05433

[13] Vijay Janapa Reddi, Christine Cheng, and et al. 2020. MLPerf Inference Bench-
mark. arXiv:cs.LG/1911.02549

[14] Jian-Wei Su, Yen-Chi Chou, and et al. 2021. 16.3 A 28nm 384kb 6T-SRAM
Computation-in-Memory Macro with 8b Precision for AI Edge Chips. In 2021
IEEE International Solid-State Circuits Conference (ISSCC). 250–252.

[15] Xiaoyu Sun, Weidong Cao, and et al. 2024. E�cient Processing of MLPerf Mobile
Workloads Using Digital Compute-In-Memory Macros. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 43, 4 (2024), 1191–1205.

[16] Fengbin Tu and et al. 2022. A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8
Recon�gurable Digital CIM Processor with Uni�ed FP/INT Pipeline and Bitwise
In-Memory Booth Multiplication for Cloud Deep Learning Acceleration. In 2022
IEEE International Solid-State Circuits Conference (ISSCC). 1–3.

[17] H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Goodson. 2010. Phase Change
Memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[18] Ping-Chun Wu, Jian-Wei Su, Yen-Lin Chung, and et al. 2022. A 28nm 1Mb
Time-Domain Computing-in-Memory 6T-SRAM Macro with a 6.6ns Latency,
1241GOPS and 37.01TOPS/W for 8b-MAC Operations for Edge-AI Devices. In
2022 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 65. 1–3.

[19] Ping-Chun Wu, Jian-Wei Su, and et al. 2023. A 22nm 832Kb Hybrid-Domain
Floating-Point SRAM In-Memory-Compute Macro with 16.2-70.2TFLOPS/W for
High-Accuracy AI-Edge Devices. In 2023 IEEE International Solid-State Circuits
Conference (ISSCC). 126–128.

[20] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang
Huang, and Xian-sheng Hua. 2019. Quantization Networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21] Jinshan Yue, Chaojie He, and et al. 2023. A 28nm 16.9-300TOPS/W Computing-
in-Memory Processor Supporting Floating-Point NN Inference/Training with
Intensive-CIM Sparse-Digital Architecture. In 2023 IEEE International Solid-State
Circuits Conference (ISSCC). 1–3.

[22] Feichi Zhou, Zheng Zhou, Jiewei Chen, Tsz Hin Choy, Jingli Wang, Ning Zhang,
Ziyuan Lin, Shimeng Yu, Jinfeng Kang, H-S Philip Wong, et al. 2019. Optoelec-
tronic resistive random access memory for neuromorphic vision sensors. Nature
nanotechnology 14, 8 (2019), 776–782.

6


	Abstract
	1 Introduction
	2 Background
	2.1 Floating-Point Arithmetic Operations
	2.2 Compute-in-Memory for FP DNNs

	3 Approach
	3.1 Insight: Addition is Most You Need
	3.2 Hybrid-Domain FP SRAM CIM Macro

	4 Experiments
	4.1 Experimental Methodology
	4.2 Macro Accuracy Evaluation
	4.3 Macro System-Level Evaluation

	5 Conclusion
	References

