Addition is Most You Need: Efficient Floating-Point SRAM
Compute-in-Memory by Harnessing Mantissa Addition

Weidong Cao’*, Jian Gao?*, Xin Xin®, Xuan Zhang?
'The George Washington University; “Northeastern University; *University of Central Florida

ABSTRACT

The compute-in-memory (CIM) paradigm holds great promise to
efficiently accelerate machine learning workloads. Among memory
devices, static random-access memory (SRAM) stands out as a prac-
tical choice for its exceptional reliability in the digital domain and
excellent scalability. Recently, there has been a growing interest in
accelerating floating-point (FP) deep neural networks (DNNs) with
SRAM CIM due to their critical importance in DNN training and
high-accurate inference. This paper proposes an energy-efficient
SRAM CIM macro for FP DNNs. To achieve the design, we identify
a lightweight approach that decomposes conventional FP mantissa
multiplication into two parts: mantissa sub-addition (sub-ADD) and
mantissa sub-multiplication (sub-MUL). Our study shows that while
mantissa sub-MUL is compute-intensive, it only contributes to the
minority of FP products, whereas mantissa sub-ADD, although
compute-light, accounts for the majority of FP products. Recog-
nizing “Addition is Most You Need”, we develop a novel hybrid-
domain SRAM CIM macro to accurately handle mantissa sub-ADD
in the digital domain while improving the energy efficiency of
mantissa sub-MUL using analog computing. Experiments with the
MLPerf benchmark show its remarkable improvement in energy
efficiency on average by 3x~ 3.6X (2.5X~3.1X) in inference (train-
ing) compared to a fully digital baseline without any accuracy loss,
showecasing its great potential for FP DNN acceleration.

1 INTRODUCTION

The compute-in-memory (CIM) has emerged as a highly promis-
ing computing paradigm by colocating computation and storage
in close proximity [1, 2, 4, 10, 16, 21]. In particular, it has shown
remarkable energy efficiency in accelerating a variety of machine
learning tasks, ranging from image classification and object recog-
nition to natural language processing [14, 16, 19, 21]. Among the
various memory devices explored [6, 8, 14, 16, 17, 19, 21, 22], static
random-access memory (SRAM) stands out in building up CIM
systems [14-16, 19, 21] for practical applications due to its excep-
tional reliability in the digital domain while maintaining superior
performance, power, and area. Although both academia [14, 16]
and industry [3, 5] have been advancing the performance of SRAM
CIM, most endeavors [3, 5, 14] have been limited to accelerate
quantized deep neural network (DNN) models for inference [20]
due to their relatively simple arithmetic operations, lightweight
computing unit, and, accordingly, high energy efficiency compared
to their floating-point (FP) counterparts [12].
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Recently, there has been a growing interest in studying FP SRAM
CIM macros [16, 19, 21]. This is because DNN models have been
predominantly based on FP arithmetic operations to achieve the
highest training quality [11, 12]. In addition, for mission-critical ap-
plications such as autonomous driving, security robots, and defense
drones, quantized DNN models do not always ensure the stringent
accuracy requirement [6, 12, 13]. As a result, efficient CIM systems
to accelerate FP DNN models are highly coveted and crucial for
unlocking the full power of machine learning (ML). Unfortunately,
only a few SRAM CIM macros have been proposed to speed up FP
DNN models for edge or cloud applications [16, 19, 21]. Despite the
notable performance improvements compared to GPUs and systolic
neural processing units, there is still substantial untapped poten-
tial to further optimize the energy efficiency of FP CIM macros.
In particular, current SRAM CIM macros [16, 19, 21] that focus on
boosting vector-matrix multiplication (VMM) often treat FP multi-
plication and FP addition as the basic units of computation in the
digital domain. They implement these FP operations by overmini-
mizing computation error on every single bit operation. Our studies
show that fully accurate computations incur energy inefficiency
and are not necessary for FP DNNs due to their inherent resilience
to small perturbations. Such insights provide us with promising
opportunities to enhance the performance of FP SRAM CIM macros.

This paper proposes an efficient SRAM CIM macro to accelerate
FP DNNs by harnessing the inherent advantage of FP arithmetic. By
dividing the mantissa multiplication into two parts, i.e., mantissa
sub-addition (sub-ADD) and sub-multiplication (sub-MUL), we find
that sub-ADD contributes to ~75% of FP products while consuming
<10% of the total energy (Section. 3.1). This insight of “Addition is
Most You Need” motivates our design approach for the proposed
FP SRAM CIM macro: dedicating digital resources to guarantee the
accuracy of lightweight mantissa sub-ADD, while exploiting energy-
efficient analog computing to reduce the complexity of mantissa
sub-MUL. This hybrid-domain acceleration achieves state-of-the-
art energy efficiency without compromising the accuracy of DNN
models, outperforming the traditional fully-accurate digital-only
baseline [21]. Key contributions of this work are listed below.

o We identify a lightweight mechanism to accelerate FP DNNs
by decomposing FP mantissa multiplication into two parts:
accuracy-oriented mantissa sub-ADD and efficiency-oriented
mantissa sub-MUL.

e We tailor a hybrid-domain SRAM CIM macro to implement
the proposed mechanism by placing mantissa sub-ADD in
the digital domain and performing mantissa sub-MUL in the
analog domain.

o Detailed circuit- and microarchitecture-level features of the
proposed FP SRAM CIM macro, such as local computing
cells and computation flow, are elaborated.

e Experimental evaluations reveal that the proposed hybrid-
domain SRAM CIM macro can improve energy efficiency
by 3.0X~ 3.6X (2.5X~3.1x) in inference (training) without
degrading accuracy compared to the FP digital baseline.



2 BACKGROUND
2.1 Floating-Point Arithmetic Operations

We first briefly introduce the essential FP arithmetic operations
underpinning FP DNN models.
FP format: A general FP number in scientific notation is expressed
as f = (-1)5-2E.1.M.Here, S (S = 0or S = 1), E,and M (M € (0, 1))
represent the sign, exponent, and mantissa (fraction) of the number,
respectively. Note that ‘1’ before ‘M’ is a hidden bit, which is not
explicitly shown in the binary format of an FP number and E is
the actual exponent with an offset to the exponent encoded in the
standard format. Taking the IEEE half-precision FP format (FP16)
as an example, S is 1-bit, E is 5-bit, M is 10-bit (refer to Figure 2(d)).
FP multiplication: The multiplication of FP numbers is straight-
forward, i.e., exponent summation ((D)) and mantissa multiplication
(@), as shown below using two positive numbers for simplicity.
(280 . 1.Mp) - (2B - 1.My) = (2B*EY) L (1M - 1.My). (1)
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FP addition: However, the addition of FP numbers is non-trivial,
which is expressed as
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It involves alignment first, i.e., finding the maximum exponent,
Emax = max{Eo, E1}, among all exponents (D)) and obtaining the
exponent difference, Ey(1) — Emax, between each exponent and
the maximum one ((2)). Subsequently, the mantissa part would
be shifted towards the right according to the exponent difference
and then summed together (). The sum will then undergo extra
processes like truncation to comply with the standard FP format.
FP vector-matrix multiplication: By generalizing Eq. (2) to the
accumulation of n FP numbers, where each number, 2F: - 1.M; is
assumed to be a product of a weight-activation pair, i.e., (~1)"s. -
2Wei . 1.Wpy,; and (-1)%si . 2Xei . 1.Xp,; based on Eq. (1) (ie.,
Ej = Wg; + Xg,; and 1.M; = 1.W)pg; - 1.Xp;), the vector-matrix
multiplication (VMM) of FP numbers is achieved, which is the
backbone operation of FP DNN models. FP VMM can support the
computation of DNN models with the highest accuracy and the
best training quality [12]. Therefore, efficient FP VMM acceleration
on hardware is highly desirable.

2.2 Compute-in-Memory for FP DNNs

Compute-in-Memory (CIM) to accelerate FP VMM is concep-
tually illustrated in Figure 1. First, the alignment is carried out
by summing the exponent parts of weight-activation pairs (Wg;
and X ;, Step D) and obtaining the exponent difference between
each exponent sum, E;, and the maximum one, Epax (Step ). Sub-
sequently, exponent differences (E; — Emax) are used to shift the
mantissa parts of activations, which are then used for mantissa
multiplication and accumulation (Step (3). Note that these steps in
Figure 1 exactly match those shown in Eq. (2).
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Figure 1: Illustration of CIM for FP VMM acceleration. Xg; and Wg; are the
exponent parts of activation and weight. Xj1; and W) ; are the mantissa parts
of activation and weight. @, @, and @) are circuit-level representations of
the steps in Eq. (2).

Previous work has explored CIM acceleration for FP DNN models
with emerging non-volatile memory (NVM) devices [6, 9]. Despite
their great promise compared to GPUs and systolic neural process-
ing units, such NVM devices are still in the early stages of develop-
ment and are not reliable enough for practical applications. Recently,
static random-access memory (SRAM) has emerged as the corner-
stone in the design of CIM systems for practical applications be-
cause of its exceptional accuracy in digital computing, coupled with
superior performance, power efficiency, and area [14, 16, 19, 21].
However, exploration of FP SRAM CIM macros has been limited to
a few edge/cloud applications [16, 19, 21]. As an example, a prior
work [16] proposes a reconfigurable FP/INT CIM processor to en-
able flexible support of BFloat16 (BF16)/FP32 and INT8/16 in the
same digital CIM macro. Another work [21] divides FP operations
into high-efficiency intensive-CIM and flexible sparse-digital parts,
as it observes that most exponents of FP data are clustered in a
small range. Circuit-level techniques, such as the time-domain ex-
ponent summation mechanism, are also used to improve the energy
efficiency of CIM macros [19]. Despite these different implementa-
tions, they primarily focus on accurately accelerating almost every
exponent summation and mantissa multiplication in the digital
domain, resulting in remarkable, yet unnecessary energy waste.

Our analysis reveals that by leveraging the inherent advantage
of FP arithmetic operations and exploiting the inherent resilience
of DNN models to small computation errors, there is significant
untapped potential to leverage approximating computing (e.g., ana-
log computing) to accelerate FP DNNs without degrading their
accuracy (Section 3.1). This revelation opens valuable opportunities
to further enhance the performance of FP SRAM CIM macros.

3 APPROACH

3.1 Insight: Addition is Most You Need

By carefully examining FP arithmetics, we find a lightweight
manner to allow hardware-friendly implementation of SRAM CIM
macros with enhanced energy efficiency while maintaining the
accuracy of FP DNNs. To show the key idea, we decomposed the
conventional FP mantissa multiplication in Eq. (1) into two parts as

(1.Mp-1.My) = (1+My) - (1+My) = (1+ My + My + M, - My), (3)
—_——— ——
sub-ADD sub-MUL

where (1 + My + M) and (M, - M;) are defined as mantissa sub-
addition (sub-ADD) and mantissa sub-multiplication (sub-MUL).
Following the decomposition and given My (1) € (0,1), we study



the significance of sub-MUL in mantissa multiplication, i.e.,
My - My _ 1 < 1
(1+My) - (1+M;) ~ (1+1/My)-(1+1/My) ~ 4

Here, the ‘=" holds true if and only if My = M; — 1. Eq. (4) shows
that for a single weight-activation pair, if the computation accu-
racy of sub-ADD can be ensured, the total computation error of
mantissa multiplication (also for the FP product) does not exceed
1/4 compared to its ground truth even by aggressively removing the
sub-MUL. Figure 5 shows our experimental results (the red dots)
by throwing away sub-MUL operations in FP multiplication of a
single weight-activation pair with exemplary FP DNN models from
our benchmark. The experiment verifies that the total computation
error resulting from removing all sub-MUL operations is bounded
by 1/4, and the error is smaller than 1/4 in most cases.

The analysis here shows that although mantissa sub-MUL oper-
ations are computationally intensive, they often impact a minority
of FP products. In contrast, mantissa sub-ADD, although compu-
tationally lighter, often constitutes the majority of FP products.
And addition is much more energy efficient compared to multipli-
cation. For example, INT8 addition consumes about 10% energy
of INT8 multiplication according to previous work [7]. This piv-
otal insight of “Addition is Most You Need” inspires our FP SRAM
CIM macro-design strategy: allocating digital resources to en-
sure the precision of compute-light mantissa sub-ADD and
employing energy-efficient analog computing for compute-
intensive mantissa sub-MUL.

©

3.2 Hybrid-Domain FP SRAM CIM Macro

Microarchitecture overview: Figure 2(a) illustrates the microar-
chitecture of the proposed SRAM CIM macro (targeting FP16 DNN
models as an example). It consists of a time-domain CIM expo-
nent summation array (ESA, to add the exponent parts of weight-
activation pairs), time-domain MAX identifier (to find the maximum
exponent sum), exponent difference extractor (EDE, to extract the
exponent difference between each exponent sum and the maximum
one), time-to-digital processing unit (to convert the exponent dif-
ference in the time domain into digits), EDE-based input alignment
unit (to shift mantissa parts of activations), hybrid-domain CIM
mantissa VMM array (HD-MVA, for FP VMM), analog-to-digital
converters (ADCs), shift-and-add (S&A) module, local digital adder
tree, partial-product management (PM) unit, and other auxiliary
modules such as the IO module and pipeline and timing control
unit. For exponent summation and alignment, we implement them
in the time domain, since previous work [18, 19] has shown that the
time-domain implementation is more energy efficient as compared
to other digital implementation manners. For mantissa multiplica-
tion, we develop a hybrid-domain SRAM CIM macro to precisely
manage mantissa sub-ADD in the digital realm while enhancing the
energy efficiency of mantissa sub-MUL through analog computing.
Computation flow: The computation process of the proposed
SRAM CIM Macro is shown in Figure 2(b), which contains seven
key steps. In Step (D, ESA computes the sum of the exponent parts of
each weight-activation pair in the time domain, i.e., E; = Wg; + XEg ;.
In Step @), the maximum exponent sum, Epay, among all sums, is
found by the time-domain MAX identifier. In Step (3), all exponent
sums (Ej, i = 0,...,n — 1) and Ep,x are sent to the EDE unit, where
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Figure 2: (a) Structure overview of the proposed FP SRAM CIM macro. (b)
Computation flow. (c) Illustration of the exponent difference extraction in
the time domain. (d) Illustration of mantissa shift based on the exponent
difference (using FP16 as an example).
the exponent difference Eg;g; between E; and Epay is obtained, i.e.,
Egiffj = Emax—E;. In particular, Eqjg ; is calculated by measuring the
time interval between the rising edges of E; and Epax as shown in
Figure 2(c). In Step (@, the time-to-digital processing unit converts
Egig ; from the time domain into a digital shift-amount (SA) value,
XM-sA,i» for each mantissa, Xjz ;. The conversion relation between
Egifr; and Xp-sa; is straightforward as illustrated in Figure 2(c).
With this Xj1-sa i, in step (), the original mantissa Xj; is shifted
to generate the aligned mantissa, Xp4 ; with the same bit-width,
ie, 11+ k. If Egig; > (11 + k), Xpm-a,; would become 0, allowing
computation to be skipped. “11” is the bit width of the mantissa part
in FP16 format (1 hidden bit plus 10 explicit mantissa bits). Note
that k is a tuning value, allowing for a further trade-off between
accuracy and energy efficiency [19], which is discussed in the next
paragraph. Otherwise, if Egig; < (11 + k), Xum.a i, as shown in
Figure 2(d), the insert-0 behavior coupled with the growth of the
exponent difference increases the bit-level sparsity, which reduces
the energy consumption of the proposed HD-MVA with the input-
sparsity-aware circuit. In step (), MVA uses the aligned mantissa
parts to achieve VMM with analog computing, sub-MUL, and digital
computing, sub-ADD. Finally (Step (D), Emax., the partial products
from sub-MUL and sub-ADD are post-processed by the PM unit to
obtain the final product in the standard FP32 format.
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Figure 3: (a) Structure of HD-MVA. (b) Elementary circuits used in local computing cells, such as the analog MUL unit and the digital AND and OR gate. (c) Local

computing cell to implement the proposed hybrid computing mechanism.

Ideally, the bit-width of an aligned activation mantissa is (11 +
Emax — Emin), where Epjy, is the minimum exponent sum among all
E;. However, if (Emax — Emin) is too large, the product of a weigh-
activation pair whose exponent sum is in the neighbors of Ep,
could have a negligible contribution to the final product of the VMM.
Therefore, we use the tunable k to find a proper shift-amount value
for alignment, which can ensure the accuracy of the computation
while further improving the energy efficiency. Additionally, we use
a coarse pipeline to increase the throughput of the proposed CIM
macro, where Steps (D to (@ are classified into pipeline stage one
and the remaining steps are in pipeline stage two.

Sub-circuit design: The key circuit blocks to implement steps @
to (& are similar to the previous work [18, 19], whose details are
thus omitted here. Instead, we focus on introducing the proposed
HD-MVA as shown in Figure 3(a). The HD-MVA contains 64 hybrid-
domain CIM mantissa VMM banks (HD-MVB). Each HD-MVB is
used for computing the product of aligned activation mantissa Xp-o
and weight mantissa Wya, i.e., 2, (Xp-a,i - Wnma,i)- Here, Xp-a ;i is
(11 + k)-b wide; W4 ; is 12-b wide and represented in 2’s comple-
ment. To show the working mechanism of HD-MVB, we assume
k = 0 for simplicity and take the circuit in Figure 3(b) as an example.

Each HD-MVB comprises a 6T-SRAM cell array (64 rows and 12
columns) and a local computing cell (LCC) associated with each
row. In particular, each bit of W4 ; is stored in the same row but
across different columns of the 6T-SRAM cell array in the order
from the most significant bit (MSB) to the least significant bit (LSB).
Each LCC includes a one-bit multiplication unit (MUL) for sub-
MUL in the analog domain and a half-adder for sub-ADD in the
digital domain. In each input cycle j, the row i sends a 2-b sum of
(Xnm-a,i [7] + Wpma,i[j]1), i.e., LAS; j and LAC; j, to the local digital
adder tree (LDAT). Here, LAS; j is the local-add sum bit, and LAC; ;
is the local-add carry bit. In the same cycle, each column (global
bitline bar, GBLB) also generates a partial product of Xyi.a [j] and
WMa. Across cycles, the LDAT accumulates partial sums of mantissa
summation and the S&A logic accumulates the partial products
of mantissa multiplication. Finally, PM combines these results to
generate the standard FP32 product for subsequent processing.

Similarly to previous LCC structures [18, 19], the two pass-

transistors (N0/N1) connect GLB/GBLB to the local bitline (LBL/LBLB)

for read and write operations in SRAM mode. In standby mode,
the horizontal wordline (HWL) is activated, i.e., HWL = 1, with
GBLs pre-charging LBLs. In CIM mode, N0/N1 are switched off to
decoupled GBLs from LBLs. The selected WL is activated to read 1b

Table 1: Benchmark from the MLPerf Inference: Edge Benchmark Suite v3.1.

Task Model Dataset Quality (99% FP32)
Image classification ResNet50-v1.5 | ImageNet 76.014% (top1 Acc)
Object detection Retinanet Openlmages | 0.3755 mAP
Language processing | BERT-large SQuAD v1.1 | 90.874% (f1_score)
Speech-to-text RNNT Librispeech 92.548% (1 - WER)

of weight mantissa (e.g., Waa [ j]), which is stored in the SRAM cell
accessed with a large voltage swing. The multiplexer (MUX) is used
to select a specific bit of Xj1.a to be added to the corresponding
bit of the weight mantissa in a cycle, whose control signal is from
the decoder in the input module of the HD-MVA. The schematics
of the MUL unit for sub-MUL operations and the AND/XOR gate
for sub-ADD operations are illustrated in Figure 3(c). All of these
circuits use a two-transistor structure to minimize area overhead.

4 EXPERIMENTS
4.1 Experimental Methodology

Benchmarks: We evaluate both the inference and training perfor-
mance of the proposed FP SRAM CIM macro. Current FP SRAM
CIM macros mainly target edge applications with FP16 DNN mod-
els [16, 19, 21]. We follow the convention and use the MLPerf
Inference: Edge benchmark suite v3.1 [13] and MLPerf Training
Benchmark Suite v3.1 [11] as our benchmarks. The inference bench-
mark includes image classification, object detection/segmentation,
speech-to-text, language processing, and recommendation tasks,
while the training benchmark extends them further to large lan-
guage models and image generation. We select four inference tasks
and one training task to showcase our proposed CIM macro’s per-
formance. Their associated datasets, models, and quality metrics
for inference are listed in Table 1. The metrics for these models are
top-1 accuracy for the image classification (ResNet50-v1.5), mean
average precision (mAP) for the objection detection (Retinanet),
f1_score which represents the harmonic mean of the precision and
recall for the language processing (BERT-large), and 1-word error
rate (WER) for the speech-to-text (RNNT).

Baseline: The fully digital architecture of the state-of-the-art FP
SRAM CIM macro [21] is used as our baseline. This work imple-
ments FP operations in two parts: high-efficiency intensive-CIM
and flexible sparse-digital parts, as it is observed that most of the
exponents of FP data are clustered in a small range. This macro ac-
celerates FP VMM in the digital domain without any approximate
computation. For a fair comparison, we build the two architec-
tures based on the same pipeline with 28nm CMOS technology



Resnet50-v1.5 on ImageNet Retinanet on Openimages

BERT-large on SQUAD v1.1 RNNT on Librispeech
Py

_______ T T
- 75 1 ! 76.014% [ (a5 | : 90.772% 92.541%
< 704 i i = 92.376%
3 ! 0.30 | &
2 | 18 dB £ | g
] i i
;d 65 1 62.848% | & 0.5 4 1 g 20 dB 5dB
- 1 ittt I r !
g 60 1—=— sub-ADD (D) + sub-MUL (A) . | ! =
= -~-sub-ADD (D) only : 1 6.039%
---Accurate digital baseline e —
551~
T — T T T 015 <5 T t T T T T T T T T T T T
1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 10 20 30 40 50
SINAD (dB) SINAD (dB) SINAD (dB) SINAD (dB)

Figure 4: Inference accuracy comparison between our proposed CIM macro with sub-ADD (Digital compute, D) + sub-MUL (Analog compute, A), the macro with
sub-ADD (Digital compute, D) only, and the accurate digital baseline with MLPerf Inference: Edge Benchmark Suite v3.1 Tasks.

Resnet50-v1.5 on ImageNet BERT-large on SQUAD v1.1

£ 251 25 =

5 * mean: 7.46%, std: 5.76% * mean: 7.81%, std: 6.12%

ﬁ 204 ¢ mean: 0.60%, std: 0.73% 20 4 ¢ mean: 0.64%, std: 0.80%

) L 3Py [T

315 151 . s

2 N

< 10 10 A - -

o ° .

E 54 " ™ * 5

g @ L L] L] °

5 04°* 1 e ® od® e e =

z T L T T T T
-0.01 0.00 0.01 -0.1 0.0 0.1

Ground Truth Ground Truth
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plication with exemplary DNN layers from MLPerf. The ground truth is from
the fully accurate digital baseline. Our macro achieves SINADy,,, = 30 dB with
a much smaller computation error.

and use the same capacity of SRAM cells, i.e., 832kb. We use the
same power supply Vpp = 0.8V and the clock frequency of 200
MHz for them. We do not consider the tunable parameter k men-
tioned in Section 3.2 when comparing with two architectures, i.e.,
k = (Emax — Emin). We first evaluate the computation accuracy of
the analog flow (for the sub-MUL operations) used in our proposed
CIM macro. We then evaluate the accuracy/energy efficiency for
the two designs. Finally, we present a summary.

4.2 Macro Accuracy Evaluation

Noise characterization of the analog dataflow: We first charac-
terize the computation accuracy of the analog flow used for the sub-
MUL operations. The proposed SRAM CIM macro employs an ana-
log dataflow for sub-MUL operations and hence is subject to various
hardware non-idealities, such as process, voltage, and temperature
(PVT) variations, thermal noise, and quantization noise of ADCs.
Together, these non-idealities act to influence the computation ac-
curacy of the macro. We adopt the signal-to-noise and distortion
ratio (SINAD) to represent the computation accuracy of the analog
dataflow for sub-MUL operations [2]. To characterize the SINAD
of our proposed CIM macro, we perform hundreds of such Monte
Carlo (MC) simulations on hardware by using random weight-
activation pairs, the errors statistics between the hardware com-
putation results, Dy, and the software ground truth, Dgy,, can be
obtained. The variation € of the hardware noise is then expressed as
(€)% = Pyoise = mean(Dyy, — Dgw)?. With the variations, the signal-
to-noise and distortion ratio (SINAD) of the analog dataflow is
characterized as SINADy,, = 101log;(((Psig(Dsw) + Prnoise)/Pnoise)-
Intuitively, the smaller variation ¢ is, the higher the SINAD is, and
the more accurate the computation is. The evaluations in Figure 5
are from thousands of simulations with exemplary DNN layers from
MLPerf image classification and language processing tasks. The
ground truth is the element-wise product from the accurate digital
baseline. The statistics of the normalized absolute error between
Dy and Dygy, of our proposed macro (blue) shows an equivalent
SINADy,y, of 30 dB with analog computing. The results indicate that
our proposed macro yields a mean normalized absolute error that is

around 12x smaller compared to the one (red) of the sub-ADD-only
computation (i.e., discarding sub-MUL).

Inference accuracy: To examine whether the SINADy,, derived
from our analog dataflow can support adequate system-level infer-
ence accuracy, we analyze the inference accuracy of an FP DNN
model on the proposed CIM macro by sweeping the level of SINAD.
In this way, we can obtain SINADy,j,, the minimum SINAD re-
quired to achieve the software-equivalent inference accuracy. In
particular, we apply a reverse method to inject equivalent software-
level noise into each layer’s input activations of an FP DNN model,
i.e., adding noise to Dsy with the corresponding SINAD.

Figure 4 demonstrates the effects of varying the SINAD on the
inference accuracy of different DNNs with software-level sweeping,
where the blue line represents the sweeping curve of our proposed
CIM macro (sub-ADD (Digital compute, D) + sub-MUL (Analog
compute, A)). Typically, a 20 dB SINAD is sufficient for all DNN
models to reach the ideal inference accuracy. Especially, RNNT on
Librispeech only needs 5 dB to achieve the accuracy of the digital
baseline. We believe that the robustness of RNNT against the noise
from the sub-MUL analog computing is attributed to its network
architecture by using Long short-term memory (LSTM) cells. LSTMs
have a unique architecture with input, output, and forget gates.
These gates effectively regulate the flow of information, allowing
the network to retain important information over long sequences
and forget irrelevant data. This gating mechanism allows the errors
to propagate through the network in a more controlled manner.
Since our macro provides a SINAD as high as 30 dB, all inference
accuracy can be guaranteed without degeneration. However, if the
sub-MUL operations are excluded from the FP VMM, the accuracy
of models significantly drops. As an example, the Top-1 accuracy
of ResNet50-v1.5 on ImageNet decreases to 62.848% without the
sub-MUL operations. The BERT-large on SQuAD v1.1 can even fail
to work by throwing away the sub-MUL operations.

Training accuracy: We adopt the same manner as above to evalu-
ate the training accuracy of an FP DNN model on the proposed CIM
macro. We inject the noise based on the obtained SINADy,, into
the FP DNN models during the training to emulate the non-ideal
hardware. Figure 6(a) shows a training example by using ResNet-50
v1.5 on ImageNet. The top-1 training accuracy with the proposed
CIM macro is 75.91% with no accuracy loss to the digital baseline.

4.3 Macro System-Level Evaluation

Energy efficiency: We further evaluate the energy efficiency of our
proposed CIM macro on FP DNN acceleration by comparing it to the
fully digital baseline [21]. On average, our proposed CIM macro can
improve energy efficiency by 3x~3.6x (2.5x~3.1x) for inference

If SINAD}y, > SINADyyin, we consider that the analog dataflow has sufficient compu-
tation accuracy to guarantee the system-level inference accuracy.
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Figure 6: (a) The training trajectory on MLPerf Training Benchmark Suite v3.1
Image classification task with our proposed macro. (b) Normalized inference
(training) energy efficiency to the digital baseline using model layers with a
more dense distribution of exponents of FP weights/activations.

Table 2: Summary of performance of the proposed CIM macro for layers with
dense exponent distribution or on average.

Inference Training
Accuracy | Energy Efficiency ACC EE
Baseline [21] No loss 1x No loss 1x
Our work (Dense) No loss 8.7X~ 9.3X No loss | 7.3xX~8.2X
Our work (AVG) No loss 3X~ 3.6X Noloss | 2.5%X~3.1X

(training) compared to the baseline across various benchmark mod-
els. The improvement is mainly due to the efficient acceleration of
sub-MUL operations in the analog domain. In particular, as shown
in Figure 6, if the exponent distribution of FP weight/activations in
a particular model layer is more dense, our macro is able to improve
the energy efficiency by 8.7x~ 9.3x (7.3X~8.2x) during inference
(training) compared to the baseline. This further improvement is
primarily due to the lower cost of the mantissa alignment.
Performance and area: Since our proposed macro aligns the
mantissa in the time domain, it can reduce the time of each pipeline
stage, leading to a 1.23X improvement in performance compared to
the baseline. The local digital adder tree (LDAT) in our proposed
macro is only used for the accumulation of partial sums of sub-
ADD, which minimizes the area overhead. In contrast, the baseline
requires area-intensive digital adder trees for the accumulation of all
partial sums, and RISC-V CPU for the computation of weights and
activations that are sparse in their distributions. Compared to this
baseline, our proposed CIM macro achieves 1.43X area efficiency.
Summary: Finally, we make a summary of the performance of the
proposed CIM macro for FP DNN acceleration as shown in Table 2.
It achieves better performance in terms of energy efficiency, latency,
and area efficiency compared to baseline [21] with the same amount
of computing resources. This comparison is preliminary and based
on circuit simulations without detailed optimizations. Future efforts
will focus on optimizing the hardware configuration of the proposed
macro and evaluating it with silicon prototypes.

5 CONCLUSION

This paper has introduced an efficient SRAM CIM macro for
FP DNN:G. It splits FP mantissa multiplication into mantissa sub-
addition (sub-ADD) and sub-multiplication (sub-MUL). It shows that
sub-MUL is compute-intensive but contributes less to FP vector-
matrix-multiplication (VMM), sub-ADD contributes more to FP
VMM yet less compute-heavy. Leveraging this insight, we develop
a hybrid-domain SRAM CIM macro that efficiently processes sub-
ADD digitally and enhances sub-MUL’s energy efficiency through
analog computing. Experiments show significant improvements in
energy efficiency over digital baselines without hurting accuracy.
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