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Abstract The Fokas method, also known as the unified transform, is one of the most
remarkable breakthroughs noted in the study of linear and integrable nonlinear partial
differential equations at the turn of the new millennium. Its numerous implications,
along with the elegance of the ideas forming its foundation, led the great Israel
Gelfand to once describe it as one of the most exciting developments in the area
of partial differential equations since the time of Fourier. In this article, we offer
further evidence in support of that statement by elucidating the analogy between
the Fokas method and the celebrated Fourier transform in the context of both linear
and nonlinear dispersive equations. First, we review the Fokas-Gelfand derivation
of the Fourier transform pair via the technique of inverse scattering but applied to
linear (as opposed to nonlinear) equations—an idea that subsequently contributed to
the development of the linear component of the Fokas method. Then, we discuss a
novel approach for proving thewell-posedness of initial-boundary value problems for
general nonlinear (i.e. not necessarily integrable) dispersive equations. This approach
utilizes the Fokas method in analogy with the way that the Fourier transform is used
in the classical harmonic analysis-based approach for proving the well-posedness
of the initial value problem for these nonlinear equations. In this regard, the new
approach further establishes the Fokas method as the direct analogue of the Fourier
transform in domains with a boundary.
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1 Introduction

Dispersive partial differential equations describe phenomena in which waves of dif-
ferent wavelengths propagate at different speeds. Two prominent examples are the
Korteweg-de Vries (KdV) equation1

ut + uxxx + uux = 0 (1)

and the (cubic) nonlinear Schrödinger (NLS) equation

iut + uxx ± |u|2u = 0. (2)

In the above equations, u = u(x, t) is a function of space x and time t , with the
various indices denoting partial derivatives with respect to the relevant variable.
Moreover, in Eq. (2), the positive sign in front of the nonlinearity corresponds to the
focusing NLS and the negative sign to the defocusing NLS. Both KdV and NLS are
nonlinear evolution equations that arise as approximations, under certain regimes, of
the fundamental Euler equations for incompressible and inviscid flow. Furthermore,
NLS has a ubiquitous presence in mathematical physics, being a central model in
such diverse areas as optics, plasmas, and Bose-Einstein condensates.

When considered on the infinite line −∞ < x < ∞, Eqs. (1) and (2) must be
supplemented with an initial condition of the form

u(x, 0) = u0(x) (3)

for some given function u0(x). This is known as the initial value problem (IVP) or
Cauchy problem. One can then ask whether such an IVP can be solved and, if so,
how and in what sense. In particular, one can also ask whether the choice of initial
data u0(x) affects the solvability of the IVP and the various properties of its solution.

A key element in regard to the above questions is the fact that both KdV and
NLS have a remarkably rich structure as completely integrable systems. For KdV,
this feature was discovered by Gardner et al. [18], and for NLS it was established by
Zakharov and Shabat [43], while the seminal 1968 work of Lax [36] provided a solid
theoretical framework for studying completely integrable equations with the help of
what are nowadays known as Lax pairs. These are systems of linear equations that
allow integrable nonlinear equations to be “linearized” by means of expressing them
as compatibility conditions of these linear systems. For example, a Lax pair for the
KdV Eq. (1) is given by the 2 × 2 linear system

µxx +
( 1
6u − k

)
µ = 0,

µt +
( 1
3u + 4k

)
µx − 1

6uxµ = 0,
µ = µ(x, t, k), k ∈ C, (4)

1 Although KdV also contains the linear term ux , for our purposes it suffices to consider the sim-
plified form (1).



The Fokas Method for the Well-posedness of Nonlinear … 349

Fig. 1 Outline of the inverse
scattering transform method

since KdV follows from that system under the simple symmetry condition µxxt =
µt xx (which for continuous mixed derivatives follows by the Clairaut/Schwarz the-
orem). In [18], the authors studied the IVP (1), (3) for KdV on the infinite line by
introducing the inverse scattering transform method. For the NLS equation and the
IVP (2), (3), the corresponding formalism was developed in [43]. The method con-
sists of three main steps that can be outlined as follows (see also the diagram of
Fig. 1):

• the spectral analysis of the t-independent component of the Lax pair (first equation
in (4)), thus mapping the initial data u0(x) to spectral data û0(k);

• the evolution of the spectral data û0(k) via the t-dependent component of the Lax
pair (second equation in (4));

• the inversion of the resulting time-dependent spectral function û(k, t) from the
spectral kt-space to the physical xt-space, in order to recover the solution u(x, t)
of the IVP. This step typically involves the formulation and analysis of a Riemann-
Hilbert problem.

The above procedure is conceptually identical to the well-known Fourier transform
method for solving the IVP of linear evolution equations. In this sense, the inverse
scattering transform can be regarded as a nonlinear analogue of the Fourier transform.

When available, the inverse scattering transform is a truly powerful method.
Nevertheless, from the broader perspective of the analysis of nonlinear dispersive
equations (and, more generally, nonlinear evolution equations), the method has
some important limitations in its applicability. First and foremost, it can only be
employed for integrable equations.2 In addition, even then it comes with certain
restrictions on the smoothness and decay at infinity of the initial data, e.g. on the
infinite line these must belong in the class of “rapidly decaying” functions satisfying∫ ∞
−∞ (1+ |x |) |u0(x)| dx < ∞. These limitations rule out the vast majority of non-
linear evolution equations and, importantly, any such equation in space dimension
three or higher. Moreover, even when studying integrable equations like KdV and
NLS, conditions like the one above exclude large and significant classes of initial
data. Indeed, as noted on page 257 of [33], the inverse scattering transformmachinery
seems to break down “even under very mild relaxations” of the “rapidly decaying”
condition (see also [7]).

2 There does not exist a universally accepted definition of complete integrability. Here, we identify
an integrable equation by its ability to be “linearized” via a Lax pair.
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Although the above limitations cannot be overcome in the context of the inverse
scattering transform method, they do not pose a problem if one changes perspective
and revisits the IVPs with a different goal, i.e. without the ambition of constructing
an explicit solution map like the one produced via inverse scattering. In fact, the
most fundamental question for the KdV and NLS IVPs is that of well-posedness.
Originally formulated by Hadamard, this notion refers to the existence and unique-
ness of solution of a given equation, as well as to the continuous dependence of
that solution on the data. In the absence of well-posedness, the analysis of a model
becomes pointless, regardless of the other features that this may have. For example,
the “bad” Boussinesq equation, the first equation for which a soliton solution was
written down, is not particularly useful otherwise since it is ill-posed. Through the
years, various techniques have been developed for proving the well-posedness of
IVPs that involve evolution equations. In the case of dispersive equations, a very
effective such technique combines the powerful tools of harmonic analysis and the
Fourier transform with the contraction mapping theorem for studying these equa-
tions in suitable Banach spaces. We hereafter refer to this technique as the Fourier
transform approach.

It iswidely known thatwell-posedness is affected by anumber of factors, including
the nature of the equation and the regularity and decay of the data. However, it is
often less emphasized that it is also affected by the nature of the associated physical
domain. In the case of a fully unbounded domain like the infinite line, one has an
IVP; on the other hand, when the spatial domain involves a boundary (e.g. in one
dimension, the half-line 0 < x < ∞ or the finite interval [0, 1]), one instead has an
initial-boundary value problem (IBVP). For any given equation, these two types of
problems are generally very different, and this is also reflected in the analysis of
their well-posedness. In fact, the well-posedness of nonlinear dispersive equations
in the context of IBVPs is much less studied (and understood) than their IVP well-
posedness.

Through a systematic effort that began in 2012, Alex Himonas and the author
introduced a new approach for the well-posedness of IBVPs for nonlinear dispersive
equations which takes advantage of the Fokas method in analogy to the way that
the classical Fourier transform approach utilizes the Fourier transform. In that sense,
the Fokas method can be regarded as the natural analogue of the Fourier transform
in the IBVP setting. This novel well-posedness approach is reviewed in Sect. 3.
Of course, the connection of the Fokas method with the Fourier transform dates
back a lot further—specifically, its origins can be traced back to the 1994 paper of
Fokas and Gelfand [14], where the Fourier transform pair is rediscovered through
an inverse scattering analysis of the linear Schrödinger equation on the infinite line.
This understanding later contributed to the realization that the Fokas method has
significant implications at the level of IBVPs for linear equations, despite the fact
that it had originally been motivated through the study of IBVPs for integrable
nonlinear equations. For that reason, and due to the fact that the linear component
of the Fokas method plays a fundamental role in the new well-posedness approach
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discussed in Sect. 3, in Sect. 2 we review the derivation of the Fourier transform pair
in the style of [14], using some of the ideas that later led to the integrable nonlinear
component of the Fokas method.

2 Inverse Scattering for Linear Equations: Rediscovering
the Fourier Transform

Themotivation behind the discovery of Lax pairs and the introduction and subsequent
development of the inverse scattering transform method had to do with the study of
integrable nonlinear equations; linear equations were not part of that motivation,
since their IVP could be easily solved via the Fourier transform. Nevertheless, Fokas
and Gelfand [14] came to the realization that every linear evolution equation can
also be expressed as the compatibility condition of a Lax pair. Let us, for example,
consider the Airy equation

ut + uxxx = 0, (5)

which corresponds to the linear part of the KdV Eq. (1). With the help of the
formal adjoint equation −ũt − ũxxx = 0, which is obtained by replacing ∂ j with
(−1) j∂ j in the x and t partial derivatives, we can write (5) in the divergence
form (e−ikx−ik3t u)t + (e−ikx−ik3t [uxx + ikux − k2u])x = 0, k ∈ C. Seeking M =
M(x, t, k) such thatMx = e−ikx−ik3t u andMt = −e−ikx−ik3t (uxx + ikux − k2u), we
see that the above divergence form (which is equivalent to (5)) is nothing but the sym-
metry requirementMxt = Mtx . That is, theAiry Eq. (5) is the compatibility condition
of the linear system for M , which is therefore a Lax pair for that equation. In fact, the
exponential term can be absorbed by lettingM(x, t, k) = e−ikx−ik3tµ(x, t, k), giving
rise to the Lax pair

µx − ikµ = u, µt − ik3µ = −
(
uxx + ikux − k2u

)
. (6)

Following the above realization, Fokas and Gelfand applied the inverse scattering
transform formalism to Lax pairs like (6) in order to solve the IVP of linear evolution
equations analogously to their integrable nonlinear counterparts, i.e. as if Fourier
transform were not known/available. This direction was especially motivated by
a long-standing open problem, namely the advancement of the inverse scattering
transformmethod from the IVP to the IBVP setting, e.g. for solving theKdV equation
on the half-line with nonzero Dirichlet data. Indeed, as noted on page 1 of [13], when
this problem was first suggested to Ablowitz and Fokas by Julian Cole in 1982, they
first attempted to solve the corresponding linear problem, namely the Airy Eq. (5) on
the half-line, by using an appropriate spatial transform. The reason for first seeking
a spatial transform for the linear IBVP had to do with the observation that, in the
case of the IVP, in the linear limit the inverse scattering transform reduces to the
Fourier transform [2]. Thus, knowledge of the relevant spatial transform in the case
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of the linear IBVP could provide the basis for developing the analogue of the inverse
scattering transformmethod for integrable nonlinear IBVPs. To their surprise, Fokas
and Ablowitz could not find an appropriate spatial transform for solving the linear
Airy equation on the half-line; in fact, such a transform does not exist for any linear
evolution of spatial order higher than two3 [13]. Taking into account that even the
“simple” task of solving linear IBVPs via spatial transforms was an open problem, it
becomes evident that any progress made in the study of linear equations via inverse
scattering ideas, like the one pursued in [14] as mentioned above, could have far-
reaching implications also for integrable nonlinear equations.

Let us now follow the approach of [14] in order to integrate the Lax pair (6)
and hence solve the IVP for the Airy equation on the infinite line.4 As usual in the
inverse scattering transform method, we work under the assumption of existence of
solution and, in particular, we assume sufficient smoothness and decay at infinity as
necessary. As noted earlier (see diagram of Fig.1), there are three main steps: the
direct problem, the inverse problem, and the time evolution of the spectral data.

Direct problem. Treating t , k as parameters—and thus suppressing them from the
arguments of µ, u—we integrate the t-independent part of the Lax pair (6) to obtain
the following expressions for the particular solutions µ± that correspond to zero
“boundary” conditions at ±∞, i.e. limx→±∞ µ±(x) = 0:

µ+(x) =
∫ x

−∞
eik(x−y)u(y)dy, µ−(x) = −

∫ ∞

x
eik(x−y)u(y)dy. (7)

Inverse problem. Changing our perspective, we use the expressions (7) in order to
define µ as a piecewise function of k (this time, we suppress the dependence on x , t)
by µ(k) = µ+(k) for Im(k) > 0 and µ(k) = µ−(k) for Im(k) < 0. Then, introducing
the notation

û(k) :=
∫ ∞

−∞
e−iky u(y)dy, k ∈ R, (8)

we observe that µ(k) satisfies the following scalar Riemann-Hilbert problem:

• µ(k) is analytic in C \ R (by the form of (7) and a Paley-Wiener theorem like
Theorem 7.2.4 in [40]);

• along R, µ(k) satisfies the jump condition µ+(k) − µ−(k) = eikx û(k), k ∈ R;
• integration by parts in (7) implies µ(k) = O(1/k) as |k| → ∞.

The solution of this scalar Riemann-Hilbert problem is readily obtained via the
Plemelj formulae (Lemma 7.2.1 in [1]) as

3 Although a temporal Laplace transform is available, it comes with certain disadvantages, most
notably its inability to generalize to the integrable nonlinear equations.
4 In [14], the authors illustrated their approach via the linear Schrödinger equation; the analysis is
essentially the same in both cases.
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µ(x, k) = 1
2iπ

∫ ∞

−∞

eiλx û(λ)
λ − k

dλ, k /∈ R. (9)

Inserting this expression into the t-independent part of the Lax pair (6) and taking
|k| → ∞ yields the following representation for u(x) in terms of the notation û(k)
introduced by (8):

u(x) = 1
2π

∫ ∞

−∞
eikx û(k)dk, x ∈ R. (10)

Time evolution.Observe that the expressions (7) satisfy limx→±∞(e−ikxµ±) = ±û.
Therefore, restoring the time variable t and taking the two limits x → ±∞ of the
t-dependent part of the Lax pair (6) while assuming that u, ux , uxx → 0 in those
limits, we obtain the equation ût − ik3 û = 0. In view of the initial condition (3) and
the notation (8), this equation implies û(k, t) = eik

3t û0(k), which can be combined
with the representation (10) to yield the solution to the IVP (6), (3) in the explicit
form

u(x, t) = 1
2π

∫ ∞

−∞
eikx+ik3t û0(k)dk, x ∈ R, t ≥ 0. (11)

What is truly remarkable is the fact that the spectral transform (8), which arises
spontaneously in the above analysis, is nothing but the celebrated Fourier transform!
Furthermore, the solution of the relevant inverse (Riemann-Hilbert) problem readily
yields the inversion of this spontaneously emerging transform, namely the inverse
Fourier transform (10)! That is, in addition to providing the explicit solution for-
mula to the Airy equation IVP (6), (3) (which is, of course, the well-known Fourier
transform solution of this problem), the analysis of [14] leads to the rediscovery of
the Fourier transform itself, and also to an elegant proof of its inversion!

In this regard, as noted at the beginning of this section, the contribution of [14] was
of crucial importance because it suggested that devising a method for the spectral
analysis of the Lax pairs of linear equations in the IBVP setting could provide
the correct way of generalizing the inverse scattering transform method from the
IVP to the IBVP setting. Soon after, this turned out to be indeed the case with the
introduction and subsequent development of the Fokas method for both linear and
integrable nonlinear equations in the IBVP setting.

3 A Novel Approach for the Well-posedness of IBVPs

The Fokas method, also known as the unified transform, was introduced by Fokas
in 1997 [12] and subsequently developed by him and numerous collaborators (see
[13, 17] and the references therein). Themethod has groundbreaking implications not
only for integrable nonlinear equations, but also for linear equations. In the nonlinear
case, it provides the extension of the inverse scattering transformmethod to the IBVP
setting. In the linear case, it produces novel solution formulae for IBVPs formulated
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in various physical domains, with different types of nonzero boundary conditions,
and in any number of spatial dimensions; as such, the linear component of the Fokas
method is the direct analogue of the Fourier transform in the IBVP setting.

As noted in the introduction, a fundamental question for any given nonlinear dis-
persive equation is the one of (Hadamard) well-posedness, i.e. existence, uniqueness,
and continuous dependence of the data-to-solutionmap. Although this topic has been
studied extensively in the direction of the IVP (see, for example, the books [6, 8,
34, 37, 42] and the vast number of references therein), until recently it had remained
largely unexplored in the case of IBVPs (essentially, the works [3, 9–11, 29, 30,
38]), despite the fact that this latter class of problems is very significant with regard
to applications.

The main reason for this disproportion is the absence of the Fourier transform
from the IBVP setting. Indeed, in the case of dispersive equations, the proof of well-
posedness for the IVP relies heavily on the rich and powerful collection of harmonic
analysis techniques that surround the Fourier transform. Importantly, the solution via
the Fourier transform of the associated forced linear IBVP provides the starting point
for defining the iteration map used for proving existence and uniqueness of solution
via a fixed point argument (contraction mapping approach). Hence, in the case of
IBVPs, without even a way of solving the linearized equations (recall discussion
in Sect. 2), it is not surprising that very little progress had been made towards a
general approach for establishing well-posedness of these problems in the case of
(dispersive) nonlinear equations.

A systematic effort towards this goal began in 2012, when the author arrived at the
University of Notre Dame to work under the mentorship of Professor Alex Himonas.
The main idea had been proposed to Himonas by Fokas a few years earlier, in 2008,
and consisted in employing the explicit solution formulae produced by the Fokas
method in the case of (forced) linear IBVPs in order to set up the iterations for
proving the well-posedness of the corresponding nonlinear problems via contraction
mapping. The main source of optimism in regard to this suggestion was that, as
mentioned earlier, for linear equations, the Fokas method is the analogue of the
Fourier transform in the IBVP setting. Hence, it seemed reasonable to expect that
the Fokas solution formulae could fulfill the role of generating iteration maps for
nonlinear IBVPs in the same way that the Fourier transform formulae do in the case
of nonlinear IVPs.

Regardless of how natural this idea may at first seem, however, when attempting
to implement it one is quickly met with important challenges. For example, one
must figure out how to obtain estimates in those function spaces that are natural
to dispersive equations—such as Sobolev spaces or Bourgain spaces, which are
typically studied (and even defined) with the help of the Fourier transform—when
the Fokas solution formulae involve integrals along complex contours of the spectral
k-plane (as opposed to the Fourier transform (8), which is defined only for k ∈ R).

Another challenge has to do with the correct function space for the boundary
data. For example, in the case of the IVP (2), (3) for the NLS equation, the initial
datum u0(x) is typically placed in Sobolev spaces Hs and the solution is obtained
in the associated Hadamard-type spaces Ct Hs

x (at least for smooth enough data, i.e.
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high enough s). However, on the half-line, one must additionally prescribe data at
the boundary x = 0, e.g. via the Dirichlet boundary condition u(0, t) = g0(t) and
so one must determine a suitable function space also for g0(t). Whether or not this
space depends on the space Hs for u0(x) and if so, the precise relationship between
the two spaces, is a question that adds to the complexity of IBVPs when compared
to the IVP.5

A combination of ideas inspired by aspects of the Fokas method, together with
suitably adapted results from the classical harmonic analysis toolbox used for the
IVP, made it possible to pursue Fokas’s suggestion and introduce an approach for
establishing the well-posedness of IBVPs for nonlinear dispersive equations in a
way conceptually analogous to the Fourier transform approach used for the IVP.
This new approach has been employed for various problems involving the NLS,
KdV, “good” Boussinesq, and biharmonic Schrödinger equations [15, 16, 20, 22,
24, 25, 35, 39], while it has also proved effective outside the dispersive class, for a
nonlinear reaction-diffusion model [26]. In the new approach, the key to overcoming
the challenges described above was the study of what we refer to as the pure linear
IBVP. This problem consists of the homogeneous linearized version of the equation
under study, supplementedwith zero initial data andnonzero but compactly supported
boundary data. The pure linear IBVP can be thought of as the simplest genuine IBVP,
since it incorporates the challenges of an IBVP without the “distractions” caused by
the initial data and the nonlinearity/forcing.

In the case of the Dirichlet half-line problem for the NLS Eq. (2), the pure linear
IBVP is given by

iut + uxx = 0, 0 < x < ∞, 0 < t < T,

u(x, 0) = 0, u(0, t) = g(t), supp(g) ⊂ (0, T ),
(12)

where T > 0 is fixed (since we are interested in local well-posedness). Using the
Fokas method, the solution of problem (12) is found to be

u(x, t) = 1
π

∫

C
eikx−ik2t k ĝ(−k2)dk, (13)

where ĝ(−k2) is the Fourier transform (8) of g(t) evaluated at −k2 and the complex
contour C is the positively oriented boundary of the first quadrant of the complex
k-plane. Below, we illustrate how the Fokas formula (13) can be used in order to
estimate the solution of (12) for each t ∈ [0, T ] as a function in the Sobolev space
Hs(0,∞), s ≥ 0, on the half-line. Note that this space can be defined either as a
restriction of the infinite-line space Hs(R) or, directly, via the norm equal to the
sum of the L2(0,∞)-norms of the derivatives up to order s (using the Slobodeckij

5 In some cases, there exist results on the time regularity of the IVP solution that can provide helpful
insights about the regularity of the boundary data [32]. In general, however, such results may not
be available.
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seminorm if s is fractional). We shall only provide the details for the case s = 0,
which corresponds to L2(0,∞); the full estimation can be found in [15].

The contour C comprises the positive halves of the real and imaginary axes.
Denoting the respective parts of the solution by ure and uim, we have u = ure + uim
with

ure(x, t) =
1
π

∫ ∞

0
eikx · e−ik2t k ĝ(−k2)dk, uim(x, t) =

1
π

∫ ∞

0
e−kx · eik2t k ĝ(k2)dk.

Since the expression for ure also makes sense for x < 0, it can be regarded as a
function on the infinite line. Thus, by the Plancherel theorem,

sup
t∈[0,T ]

∥ure(t)∥L2
x (0,∞) !

∥∥e−ik2t k ĝ(−k2)
∥∥
L2
k (0,∞)

≃ ∥g∥
H

1
4
t (R)

. (14)

On the other hand, the expression for uim does not make sense for x < 0, thus a
different idea is needed. In particular, observe that, up to a constant, the L2

x (0,∞)-
norm of uim is just the L2

x (0,∞)-norm of the Laplace transform with respect to k
of the quantity eik

2t k ĝ(k2). Hence, by the boundedness of the Laplace transform in
L2(0,∞) [19],

sup
t∈[0,T ]

∥uim(t)∥L2
x (0,∞) !

∥∥eik2t k ĝ(k2)
∥∥
L2
k (0,∞)

≃ ∥g∥
H

1
4
t (R)

. (15)

Together, estimates (14) and (15) imply that if the boundary datum of the pure
linear IBVP (12) belongs to H 1/4

t then the solution of this problem belongs to
Ct L2

x (0,∞). Furthermore, through the generalizations of these estimates for s ≥ 0,
the Sobolev space H (2s+1)/4

t spontaneously emerges as the correct space for the
Dirichlet boundary datum g0(t). This fact is corroborated via a separate analysis of
the time regularity of the homogeneous and forced linear Schrödinger IVPs, which
actually shows that the above choice of space for the boundary datum is sharp.
Eventually, via a contraction mapping argument, the various linear estimates derived
with the help of the Fokas method solution formula (12) imply the Hadamard well-
posedness of the Dirichlet problem for NLS on the half-line. More precisely:

Theorem ([15]). Suppose 1/2 < s " 3/2. Then, the IBVP for the cubic NLS Eq. (2)
on the half-line with initial data u0 ∈ Hs(0,∞) and Dirichlet boundary data g0 ∈
H (2s+1)/4(0, T ) is well-posed in the sense of Hadamard. In particular, there exists a
unique solution u ∈ C ([0, T ∗] ; Hs(0,∞)), which satisfies

sup
t∈[0,T ∗]

∥u(t)∥Hs (0,∞) " cs
( ∥u0∥Hs (0,∞) + ∥g0∥H

2s+1
4 (0,T )

)

with cs = c(s) > 0 and 0 < T ∗ " min
{
T, cs

( ∥u0∥Hs (0,∞) + ∥g0∥H
2s+1
4 (0,T )

)−4},
and the data-to-solution map {u0, g0} +→ u is locally Lipschitz continuous.
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The above result can also be established for the general semilinear Schrödinger
equation of nonlinearity α > 1. Moreover, by adapting the proof of the famous
Strichartz estimates [41] that are used for sharp well-posedness of the NLS IVP, it
is possible to extend the above result to the interval 0 ≤ s < 1/2 and hence obtain
sharp well-posedness on the half-line (like for the IVP, the solution will now belong
in a finer space motivated by the Strichartz estimates). Indeed, a sharp result of this
kind was proved in [21], where the approach introduced in [15] was advanced for
the first time to higher than one spatial dimensions for the NLS equation on the
half-plane R × R+.

In fact, the analysis carried out in [21] and, more recently, in [23], led to a remark-
able and perhaps unexpected discovery, namely that the celebrated Xs,b spaces,which
were introduced by Bourgain [4, 5] as solution spaces for proving the sharp well-
posedness of the periodic and non-periodic NLS and KdV IVPs, now arise spon-
taneously as boundary data spaces in the estimation of the Fokas method solution
for the pure linear IBVP associated with NLS on the half-plane. More precisely,
for initial data u0 ∈ Hs(R × R+), it is shown in [21] that the Dirichlet boundary
data must belong to a certain restriction of the space Xs,1/4 ∩ X0,(2s+1)/4. In the case
of the Neumann and Robin problems studied in [23], the corresponding space is a
restriction of Xs,−1/4 ∩ X0,(2s−1)/4.

In lieu of an epilogue, we emphasize that, despite the substantial progress made
during the last decade on the well-posedness of nonlinear IBVPs via the novel Fokas-
method-inspired approach outlined above, a plethora of important problems remain
open. For example, recently the new approach was further extended in the direction
of Bourgain spaces [27, 28], improving the result of [16] for the KdV equation on
the half-line from Hs with 3/4 < s < 1 (which is consistent with the IVP result of
[31]) down to s > −3/4, matching the IVP result of [32]. Nevertheless, although the
results of [27, 28, 32] are optimal with respect to contraction mapping techniques,
they are not sharp in general, since it was recently shown in [33] without using a
contraction mapping technique that the KdV IVP is well-posed in H−1. Whether or
not this result also holds on the half-line is currently unknown. The adaptation of
the new approach to other higher-dimensional equations and/or domains such as the
quarter-plane is another interesting direction that should be explored.

In conclusion, the Fokas method has provided the key to developing an effective,
universal approach for the rigorous well-posedness of IBVPs that involve nonlinear
dispersive (and non-dispersive) equations. This is yet another aspect of the remark-
able impact that the method has had on the analysis of linear and nonlinear IBVPs
since its introduction in 1997. Furthermore, it is also indicative of the influence that
the method will continue to have on the field for the years to come.
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