
Heterogeneous Distributed Subgradient

Yixuan Lin Marco Gamarra Ji Liu

Abstract— The paper proposes a heterogeneous push-sum
based subgradient algorithm for multi-agent distributed convex
optimization, in which each agent can arbitrarily switch be-
tween subgradient-push and push-subgradient at any time. It is
shown that the heterogeneous algorithm converges to an optimal
point at an optimal rate over time-varying directed graphs. The
switching process within the heterogeneous algorithm can help
prevent the leakage of agents’ subgradient information.

I. INTRODUCTION

Stemming from the pioneering work by Nedić and
Ozdaglar [1], distributed optimization for multi-agent sys-
tems has attracted considerable interest and achieved great
success in both theory and practice. Surveys of this area
can be found in [2]–[4]. A typical distributed optimization
problem is formulated as follows.

Consider a multi-agent network consisting of n agents,
labeled 1 through n for the purpose of presentation. Every
agent is not conscious of such a global labeling, but is ca-
pable of distinguishing between its neighbors. The neighbor
relations among the n agents are characterized by a possibly
time-dependent directed graph G(t) = (V, E(t)) whose
vertices correspond to agents and whose directed edges (or
arcs) depict neighbor relations, where V = {1, . . . , n} is the
vertex set and E(t) ⊂ V ×V is the directed edge set at time
t. To be more precise, agent j is an in-neighbor of agent i
at time t if (j, i) ∈ E(t), and similarly, agent k is an out-
neighbor of agent i at time t if (i, k) ∈ E(t). The directions
of arcs represent the directions of information flow in that
each agent can send information to its out-neighbors and
receive information from its in-neighbors. For convenience,
we assume that each agent is always an in- and out-neighbor
of itself, implying that G(t) has self-arcs at all vertices for
any time t. We use Ni(t) and N−

i (t) to denote the in- and
out-neighbor set of agent i at time t, respectively, i.e.,

Ni(t) = {j ∈ V : (j, i) ∈ E(t)},
N−

i (t) = {k ∈ V : (i, k) ∈ E(t)}.

It is easy to see that Ni(t) and N−
i (t) are always nonempty

since they both contain index i. The goal of the n agents is

The work of Y. Lin and J. Liu was supported in part by the National
Science Foundation (NSF) under grant 2230101, by the Air Force Office
of Scientific Research (AFOSR) under award number FA9550-23-1-0175,
and by U.S. Air Force Task Order FA8650-23-F-2603. Y. Lin is currently
with Meta and was previously affiliated with the Department of Applied
Mathematics and Statistics at Stony Brook University. M. Gamarra is with
the Air Force Research Laboratory (marco.gamarra@us.af.mil).
J. Liu is with the Department of Electrical and Computer Engineering at
Stony Brook University (ji.liu@stonybrook.edu).

Distribution A. Approved for public release: distribution unlimited. Case
Number: AFRL-2024-1004. Dated 23 Feb 2024.

to cooperatively minimize the cost function

f(z) =
1

n

n∑
i=1

fi(z)

in which each fi : IRd → IR is a “private” convex (not
necessarily differentiable) function only known to agent i. It
is assumed that the set of optimal solutions to f , denoted by
Z , is nonempty and bounded.

To solve the distributed optimization problem just de-
scribed, efforts have been made to design distributed multi-
agent versions for various optimization algorithms, including
the subgradient method [1], alternating direction method
of multipliers (ADMM) [5], Nesterov accelerated gradient
method [6], and proximal gradient descent [7], to name a few.
Most existing distributed optimization algorithms require that
the underlying communication graph be bi-directional or
balanced1, which allows a distributed manner to construct
a doubly stochastic matrix [9], [10]. To tackle more general,
unbalanced, directed graphs, the push-sum based algorithms
have been proposed, with subgradient-push [11] being the
first one, including notable DEXTRA [12] (a push-sum based
variant of the well-known EXTRA algorithm [13]) and Push-
DIGing [14]. Another approach to deal with unbalanced
directed graphs is called push-pull [15], [16] while its state-
of-the-art analysis assumes strongly connectedness at each
time instance or relies on a carefully choosen small stepsize
[17]. Push-sum is thus the most popular and probably the
most powerful existing approach to design distributed (opti-
mization) algorithms over time-varying directed graphs.

All the existing distributed optimization algorithms are
homogeneous in that all the agents in a multi-agent network
perform the same (order of) operations. Certain types of het-
erogeneity have recently been considered and incorporated in
algorithm design. Examples include heterogeneous (uncoor-
dinated) stepsize design for a gradient tracking method [18],
[19], heterogeneous algorithm picking due to the coexistence
of different types of agent dynamics in the network (e.g., a
mix of continuous- and discrete-time dynamic agents) [20],
and, particularly popular in machine learning, heterogeneous
data training for distributed stochastic optimization [21].
Notwithstanding this, every agent in these algorithms has
to adhere to a single protocol, without theoretical guarantee
if any deviation from the protocol occurs.

With these in mind, this paper aims to design a hetero-
geneous distributed optimization algorithm in which each
agent can change its protocol. To be more precise, the

1A weighted directed graph is called balanced if the sum of all in-weights
equals the sum of all out-weights at each of its vertices [8].

2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

979-8-3503-8264-8/$31.00 ©2024 AACC 2794

iterative algorithm to be proposed will allow each agent to
independently decide its order of operations in any iteration.
To illustrate the idea, we focus on the subgradient-push
method, and expect that the idea also works for other push-
sum based first-order optimization methods.

It turns out that the proposed heterogeneous push-sum
based distributed subgradient algorithm not only converges
to an optimal point at an optimal convergence rate for
time-varying directed graphs, but also prevents the leakage
of an agent’s private subgradient information through its
operation switching process. Therefore, this paper proposes
an operationally flexible and privacy preserving distributed
optimization algorithm for convex functions.

II. SUBGRADIENT-PUSH AND PUSH-SUBGRADIENT

We begin with the subgradient-push algorithm proposed in
[11]. The subgradient method was first proposed in [22] for
convex but not differentiable functions. For such a convex
function h : IRd → IR, a vector g ∈ IRd is called a
subgradient of h at point x if

h(y) ≥ h(x) + g⊤(y − x) for all y ∈ IRd. (1)

Such a vector g always exists for any x and may not be
unique. In the special case when h is differentiable at x, the
subgradient g is unique and equals the gradient of h at x.
From (1) and the Cauchy-Schwarz inequality,

h(y)− h(x) ≥ −G∥y − x∥,

where ∥ · ∥ denotes the 2-norm and G is an upper bound for
the 2-norm of the subgradients of h at both x and y.

The subgradient-push algorithm is as follows2:

xi(t+ 1) =
∑

j∈Ni(t)

wij(t)
[
xj(t)− α(t)gj(t)

]
, (2)

yi(t+ 1) =
∑

j∈Ni(t)

wij(t)yj(t), yi(0) = 1, (3)

where α(t) is the stepsize, gj(t) is a subgradient of fj(z)
at xj(t)/yj(t), and wij(t), j ∈ Ni(t), are positive weights
satisfying the following assumption.

Assumption 1: There exists a constant β > 0 such that for
all i, j ∈ V and t, wij(t) ≥ β whenever j ∈ Ni(t). For all
i ∈ V and t,

∑
j∈N−

i (t) wji(t) = 1.

A simple choice of wij(t) is 1/|N−
j (t)| for all j ∈ Ni(t)

which can be easily computed in a distributed manner and
satisfies Assumption 1 with β = 1/n. Thus, push-sum based
algorithms require that each agent be aware of the number
of its out-neighbors.

Let W (t) be the n × n matrix whose ijth entry equals
wij(t) if j ∈ Ni(t) and zero otherwise; in other words, we
set wij(t) = 0 for all j /∈ Ni(t). Assumption 1 implies that
W (t) is a column stochastic matrix3 with positive diagonal

2The algorithm is written in a different but mathematically equivalent
form in [11].

3A square nonnegative matrix is called a column stochastic matrix if its
column sums all equal one.

entries whose zero-nonzero pattern is compliant with the
neighbor graph G(t) for all time t.

In implementation, at each time t, each agent j transmits
two pieces of information, wij(t)[xj(t) − α(t)gj(t)] and
wij(t)yj(t), to its out-neighbour i, and then each agent i up-
dates its two variables as above. Note that if all α(t)gj(t) =
0, the algorithm simplifies to the push-sum algorithm [23].
Thus, at each time, each agent first performs a subgradient
operation, and then follows the push-sum updates. This is
why the algorithm (2)–(3) is called subgradient-push. It has
been recently proved that subgradient-push converges at a
rate of O(1/

√
T) over time-varying unbalanced directed

graphs, which is the same as that of the single-agent sub-
gradient and thus optimal [24].

Note that in the subgradient-push algorithm, all the agents
in a multi-agent network perform the same order of oper-
ations, namely an optimization step (subgradient) followed
by the push-sum updates. In this paper, we aim to relax this
order restriction. To this end, we first introduce a variant
of subgradient-push in which the order of subgradient and
push-sum operations is swapped. To be more precise, each
agent i updates its variables as

xi(t+ 1) =
∑

j∈Ni(t)

wij(t)xj(t)− α(t)gi(t), (4)

yi(t+ 1) =
∑

j∈Ni(t)

wij(t)yj(t), yi(0) = 1, (5)

where α(t), wij(t), and gi(t) are the same as those in
subgradient-push. In the above algorithm (4)–(5) each agent i
performs the push-sum updates first for both variables and
then the subgradient update for xi variable. We thus call the
algorithm push-subgradient, which has never been studied,
although its convergence may be analyzed similarly to that
of the subgradient-push.

Push-subgradient can achieve the same performance as
subgradient-push, namely, it converges to an optimal solution
at a rate of O(1/

√
T) for general convex functions over time-

varying unbalanced directed graphs. It turns out that both
push-subgradient and subgradient-push are special cases of
the following heterogeneous algorithm.

III. HETEROGENEOUS SUBGRADIENT

Let σi(t) be a switching signal of agent i which takes
values in {0, 1}. At each time t, each agent j transmits two
pieces of information, wij(t)[xj(t) − α(t)gj(t)σj(t)] and
wij(t)yj(t), to its out-neighbour i, and then each agent i
updates its variables as follows:

xi(t+ 1) =
∑

j∈Ni(t)

wij(t)
[
xj(t)− α(t)gj(t)σj(t)

]
− α(t)gi(t)

(
1− σi(t)

)
, xi(0) ∈ IRd, (6)

yi(t+ 1) =
∑

j∈Ni(t)

wij(t)yj(t), yi(0) = 1, (7)

where α(t) is the stepsize, wij(t), j ∈ Ni(t), are positive
weights satisfying Assumption 1.

2795

In the case when all σi(t) = 1, i ∈ V , the above algorithm
simplifies to the subgradient-push algorithm (2)–(3). In the
case when all σi(t) = 0, i ∈ V , the above algorithm
simplifies to the push-subgradient algorithm (4)–(5). Thus,
the algorithm (6)–(7) allows each agent to arbitrarily switch
between subgradient-push and push-subgradient at any time,
and we hence call it heterogeneous distributed subgradient.

To state the convergence result of the heterogeneous
subgradient algorithm just proposed, we need the following
typical assumption and concept.

Assumption 2: The step-size sequence {α(t)} is posi-
tive, non-increasing, and satisfies

∑∞
t=0 α(t) = ∞ and∑∞

t=0 α
2(t) < ∞.

We say that an infinite directed graph sequence {G(t)} is
uniformly strongly connected if there exists a positive integer
L such that for any t ≥ 0, the union graph ∪t+L−1

k=t G(k) is
strongly connected.4 If such an integer exists, we sometimes
say that {G(t)} is uniformly strongly connected by sub-
sequences of length L. It is not hard to prove that the above
definition is equivalent to the two popular joint connectivity
definitions in consensus literature, namely “B-connected”
[25] and “repeatedly jointly strongly connected” [26].

Define zi(t) = xi(t)/yi(t) for all i ∈ V and z̄(t) =
1
n

∑n
i=1 zi(t). It is easy to see that at the initial time zi(0) =

xi(0) for all i ∈ V and z̄(0) = 1
n

∑n
i=1 xi(0).

The following theorem shows that the heterogeneous
distributed subgradient algorithm (6)–(7) still achieves the
optimal rate of convergence to an optimal point.

Theorem 1: Suppose that {G(t)} is uniformly strongly
connected and ∥gi(t)∥ is uniformly bounded for all i and t.

1) If the stepsize α(t) is time-varying and satisfies As-
sumption 2, then with z∗ ∈ Z ,

lim
t→∞

f

(∑t
τ=0 α(τ)z̄(τ)∑t

τ=0 α(τ)

)
= f(z∗),

lim
t→∞

f

(∑t
τ=0 α(τ)zk(τ)∑t

τ=0 α(τ)

)
= f(z∗), k ∈ V .

2) If the stepsize is fixed and α(t) = 1/
√
T for T > 0

steps, i.e., t ∈ {0, 1, . . . , T − 1}, then with z∗ ∈ Z ,

f

(∑T−1
τ=0 z̄(τ)

T

)
− f(z∗) ≤ O

(1√
T

)
,

f

(∑T−1
τ=0 zk(τ)

T

)
− f(z∗) ≤ O

(1√
T

)
, k ∈ V .

It is easy to show that the above theorem is a consequence
of the following theorem.

Theorem 2: Suppose that {G(t)} is uniformly strongly
connected by sub-sequences of length L and that ∥gi(t)∥

4A directed graph is strongly connected if it has a directed path from any
vertex to any other vertex. The union of two directed graphs, Gp and Gq ,
with the same vertex set, written Gp∪Gq , is meant the directed graph with
the same vertex set and edge set being the union of the edge set of Gp and
Gq . Since this union is a commutative and associative binary operation, the
definition extends unambiguously to any finite sequence of directed graphs
with the same vertex set.

is uniformly bounded above by a positive number G for all
i ∈ V and t ≥ 0.

1) If the stepsize α(t) is time-varying and satisfies As-
sumption 2, then for all t ≥ 0,

f

(∑t
τ=0 α(τ)z̄(τ)∑t

τ=0 α(τ)

)
− f(z∗)

≤
∥z̄(0)− z∗∥2 +G2

∑t
τ=0 α

2(τ)

2
∑t

τ=0 α(τ)

+
2Gα(0)

∑n
i=1 ∥z̄(0)− zi(0)∥

n
∑t

τ=0 α(τ)

+
32G

∑n
i=1 ∥xi(0)∥
η

∑t−1
τ=0 α(τ)µ

τ∑t
τ=0 α(τ)

+
32nG2

ηµ(1− µ)

∑t−1
τ=0 α(τ)(α(0)µ

τ
2 + α(⌈ τ

2 ⌉))∑t
τ=0 α(τ)

,

f

(∑t
τ=0 α(τ)zk(τ)∑t

τ=0 α(τ)

)
− f(z∗)

≤
∥z̄(0)− z∗∥2 +G2

∑t
τ=0 α

2(τ)

2
∑t

τ=0 α(τ)

+
Gα(0)

∑n
i=1(∥z̄(0)− zi(0)∥+ ∥zk(0)− zi(0)∥)

n
∑t

τ=0 α(τ)

+
32nG2

ηµ(1− µ)

∑t−1
τ=0 α(τ)(α(0)µ

τ
2 + α(⌈ τ

2 ⌉))∑t
τ=0 α(τ)

+
32G

∑n
i=1 ∥xi(0)∥
η

∑t−1
τ=0 α(τ)µ

τ∑t
τ=0 α(τ)

, k ∈ V .

2) If the stepsize is fixed and α(t) = 1/
√
T for T > 0

steps, then

f

(∑T−1
τ=0 z̄(τ)

T

)
− f(z∗)

≤ ∥z̄(0)− z∗∥2 +G2

2
√
T

+
2G

∑n
i=1 ∥z̄(0)− zi(0)∥

nT

+
32G

∑n
i=1 ∥xi(0)∥

η(1− µ)T
+

32nG2

ηµ(1− µ)
√
T
,

f

(∑T−1
τ=0 zk(τ)

T

)
− f(z∗)

≤ ∥z̄(0)− z∗∥2 +G2

2
√
T

+
32G

∑n
i=1 ∥xi(0)∥

η(1− µ)T

+
G
∑n

i=1(∥z̄(0)− zi(0)∥+ ∥zk(0)− zi(0)∥)
nT

+
32nG2

ηµ(1− µ)
√
T
, k ∈ V .

Here η = 1
nnL and µ = (1− 1

nnL)
1/L.

It is worth emphasizing that the uniform boundedness of
all sugradients is a standard assumption in the literature
of distributed subgradient [1], [11], [27]. Such a uniform
boundedness assumption is not needed for distributed gradi-
ent descent [28].

2796

Theorem 2 is a generalization of Theorems 2 and 3 in
[24], so its proof requires a more complicated treatment than
those of Theorems 2 and 3 in [24]. It is not surprising that
the bounds given in Theorems 2 and 3 in [24] are slightly
better than those in Theorem 2 here as the former are tailored
for a special case.

A. Analysis

We begin with a property of the yi(t) dynamics (7) which
is independent of the xi(t) dynamics (6). Define a time-
dependent n× n matrix S(t) whose ijth entry is

sij(t) =
wij(t)yj(t)

yi(t+ 1)
=

wij(t)yj(t)∑n
k=1 wik(t)yk(t)

. (8)

The following lemma guarantees that each sij(t), and thus
S(t), are well defined.

Lemma 1: If {G(t)} is uniformly strongly connected, then
there exists a constant η > 0 such that n ≥ yi(t) ≥ η for all
i ∈ V and t ≥ 0.

The lemma is essentially the same as Corollary 2 (b)
in [11], which further proves that if {G(t)} is uniformly
strongly connected by sub-sequences of length L, η ≥ 1

nnL .
It is easy to show that each S(t) is a stochastic matrix5.

An important property of S(t) matrices is as follows. Let
y(t) be a vector in IRn whose ith entry is yi(t) for all t ≥ 0.

Lemma 2: y⊤(t) = y⊤(t+ 1)S(t) for all t ≥ 0.

Proof of Lemma 2: From Assumption 1,
∑n

i=1 wij(t) =
1 for any j ∈ V . Then, from (8),

[y⊤(t+ 1)S(t)]j =

n∑
i=1

yi(t+ 1)sij(t)

=
n∑

i=1

yi(t+ 1)
wij(t)yj(t)

yi(t+ 1)
= yj(t),

in which [·]j denotes the jth entry of a column vector.

The above property can be linked to the concept of
“absolute probability sequence” of the sequence of stochastic
matrices {S(t)}; see Proposition 2 in [24].

To proceed, define the following time-dependent quantity:

⟨z(t)⟩ ∆
=

1

n

n∑
i=1

yi(t)zi(t) =
1

n

n∑
i=1

xi(t). (9)

Since yi(t) > 0 by Lemma 1 and
∑n

i=1 yi(t) = n, the above
quantity is a time-varying convex combination of all zi(t).
From update (6), for all i ∈ V ,

zi(t+ 1) =
xi(t+ 1)

yi(t+ 1)
=

∑n
j=1 wij(t)xj(t)− α(t)gi(t)

yi(t+ 1)

=
n∑

j=1

wij(t)yj(t)

yi(t+ 1)
zj(t)−

α(t)gi(t)

yi(t+ 1)

=
n∑

j=1

sij(t)zj(t)−
α(t)gi(t)

yi(t+ 1)
,

5A square nonnegative matrix is called a row stochastic matrix, or simply
stochastic matrix, if its row sums all equal one.

which, from Lemma 2, leads to

⟨z(t+ 1)⟩ =
n∑

i=1

yi(t+ 1)

n
zi(t+ 1)

=
n∑

i=1

yi(t+ 1)

n

n∑
j=1

sij(t)zj(t)−
n∑

i=1

yi(t+ 1)

n

α(t)gi(t)

yi(t+ 1)

=
n∑

j=1

yj(t)

n
zj(t)−

n∑
i=1

α(t)gi(t)

n

= ⟨z(t)⟩ − α(t)

n

n∑
i=1

gi(t). (10)

It is easy to show that the subgradient-push algorithm (2)–
(3) and push-subgradient algorithm (4)–(5) share the same
⟨z(t)⟩ dynamics as given in (10). This common dynamics is
the basis of the following unified analysis for heterogeneous
distributed subgradient. It is also straightforward to get (10)
from equation (9), update (6), and Assumption 1 as follows:

⟨z(t+ 1)⟩ = 1

n

n∑
i=1

xi(t+ 1)

=
1

n

n∑
i=1

n∑
j=1

wij(t)
[
xj(t)− α(t)gj(t)σj(t)

]
− α(t)

n

n∑
i=1

gi(t)
(
1− σi(t)

)
=

n∑
j=1

1

n

[
xj(t)− α(t)gj(t)σj(t)

]
− α(t)

n
gj(t)

(
1− σj(t)

)
= ⟨z(t)⟩ − α(t)

n

n∑
i=1

gi(t).

The above iterative dynamics of ⟨z⟩ can be treated (though
not exactly the same) as a single-agent subgradient process
for the convex cost function 1

n

∑n
i=1 fi(z), which is a critical

intermediate step.
The remaining analysis logic is as follows. Using the

inequality ∥zi(t) − z∗∥2 ≤ 2∥⟨z(t)⟩ − z∗∥2 + 2∥⟨z(t)⟩ −
zi(t)∥2, the analysis is then to bound ∥⟨z(t)⟩ − z∗∥2 and
∥⟨z(t)⟩ − zi(t)∥2 separately. For the term ∥⟨z(t)⟩ − zi(t)∥2,
since all zi form a consensus process and ⟨z(t)⟩ is always a
convex combination of all zi(t), the term can be bounded
using consensus related techniques and relatively easy to
deal with. Most analysis will focus on bounding the term
∥⟨z(t)⟩ − z∗∥2. It is worth noting that from (9), ∥⟨z(t)⟩ −
z∗∥2 = ∥ 1

n

∑n
i=1 yi(t)(zi(t) − z∗)∥2 = ∥ 1

n

∑n
i=1 xi(t) −

z∗∥2, which is the actual Lyapunov function. Also note that
update (10) is equivalent to x̄(t+1) = x̄(t)− α(t)

n

∑n
i=1 gi(t)

where x̄(t) = 1
n

∑n
i=1 xi(t), which is almost the same as the

case of average consensus based subgradient [1] except that
each subgradient gi is taken at point zi instead of xi. But
this x̄ dynamics is elusive without Lemma 2.

To prove Theorem 2, we need the following lemmas.

Lemma 3: If {G(t)} is uniformly strongly connected, then
for any fixed τ ≥ 0, W (t) · · ·W (τ + 1)W (τ) will converge

2797

to the set {v1⊤ : v ∈ IRn,1⊤v = 1, v > 0} exponentially
fast as t → ∞.6

The lemma is essentially the same as Corollary 2 (a)
in [11]. If {G(t)} is uniformly strongly connected by sub-
sequences of length L, Lemma 3 implies that there exist
constants c > 0 and µ ∈ [0, 1) and a sequence of stochastic
vectors7 {v(t)} such that for all i, j ∈ V and t ≥ τ ≥ 0,∣∣[W (t) · · ·W (τ + 1)W (τ)

]
ij
− vi(t)

∣∣ ≤ cµt−τ , (11)

where [·]ij denotes the ijth entry of a matrix. It has been
further shown in [11] that c = 4 and µ = (1− 1

nnL)
1/L.

The following lemma is a generalization of Lemma 8 in
[24], even though its proof follows the similar flow to that
in the proof of Lemma 8 in [24].

Lemma 4: If {G(t)} is uniformly strongly connected by
sub-sequences of length L and ∥gi(t)∥ is uniformly bounded
above by a positive number G for all i and t, then for all
t ≥ 0 and i ∈ V ,∥∥∥zi(t+ 1)− 1

n

n∑
k=1

xk(t)
∥∥∥

≤ 8

η
µt

n∑
k=1

∥xk(0)∥+
8nG

ηµ

t∑
s=0

µt−sα(s).

If, in addition, Assumption 2 holds, for all t ≥ 0 and i ∈ V ,∥∥∥zi(t+ 1)− 1

n

n∑
k=1

xk(t)
∥∥∥

≤ 8

η
µt

n∑
k=1

∥xk(0)∥+
8nG

ηµ(1− µ)

(
α(0)µt/2 + α(⌈t/2⌉)

)
.

Here η > 0 and µ ∈ (0, 1) are constants defined in Lemma 1
and (11), respectively.

The proofs of Lemma 4 and Theorem 2 are omitted due
to space limitations and can be found in [29, Lemma 14 and
Theorem 7].

B. A Special Case

In this subsection, we discuss a special case in which
W (t) is a doubly stochastic matrix8 at all time t ≥ 0. In
this case, it is easy to see from (7) that yi(t) = 1 for all
i ∈ V and t ≥ 0, and thus zi(t) = xi(t) for all i ∈ V
and t ≥ 0. This observation holds for all push-sum based
distributed optimization algorithms studied in this paper as
they share the same yi(t) dynamics which is independent
of their xi(t) dynamics. Then, the subgradient-push, push-
subgradient, and heterogeneous subgradient algorithms all

6We use 0 and 1 to denote the vectors whose entries all equal to 0 or
1, respectively, where the dimensions of the vectors are to be understood
from the context. We use v > 0 to denote a positive vector, i.e., each entry
of v is positive.

7A nonnegative vector is called a stochastic vector if its entries sum to 1.
8A square nonnegative matrix is called a doubly stochastic matrix if its

row sums and column sums all equal one.

simplify to average consensus based subgradient algorithms.
Specifically, subgradient-push (2)–(3) simplifies to

xi(t+ 1) =
∑

j∈Ni(t)

wij(t)
[
xj(t)− α(t)gj(xj(t))

]
, (12)

and push-subgradient (4)–(5) simplifies to

xi(t+ 1) =
∑

j∈Ni(t)

wij(t)xj(t)− α(t)gi(xi(t)), (13)

which is the “standard” average consensus based distributed
subgradient proposed in [1]. The two updates (12) and
(13) are analogous to the so-called “adapt-then-combine”
and “combine-then-adapt” diffusion strategies in distributed
optimization and learning [30]. Thus, in the special case un-
der consideration, the heterogeneous distributed subgradient
algorithm (6)–(7) simplifies to

xi(t+ 1) =
∑

j∈Ni(t)

wij(t)
[
xj(t)− α(t)gj(xj(t))σj(t)

]
− α(t)gi(xi(t))

(
1− σi(t)

)
,

which is an average consensus based heterogeneous dis-
tributed subgradient algorithm allowing each agent to arbi-
trarily switch between updates (12) and (13). The preceding
discussion implies that the results in this paper apply to the
corresponding average consensus based algorithms.

IV. PRIVACY PROTECTION

In a multi-agent distributed computation process, agents
have to collaborate via information transmission, while com-
munication between neighboring agents may lead to infor-
mation leakage in the presence of adversarial agents. There
exist three major methods for privacy preserving: differential
privacy [31], [32], partially homomorphic encryption [33],
[34], and state decomposition [35], [36]. Each approach has
its advantages and disadvantages. The differential privacy
based approach faces a tradeoff between accuracy level
and privacy guarantee probability, while encryption and de-
cryption operations in the partially homomorphic encryption
approach require expensive computation costs. The state
decomposition approach overcomes these limitations but
requires additional storage space.

In a distributed optimization process, each agent’s cost
function fi is typically treated as its private information. To
preserve the privacy of fi, it is necessary to protect agent i’s
(sub)gradient gi from leaking. To see this, a subgradient of
a convex function at a point provides a valid gradient at that
point or a range of gradients in the case of nonsmooth points.
Thus, by collecting (sub)gradient information at various
points, one can infer properties about the convex function,
such as its behavior and shape. This information can then
be used to approximate or reconstruct the function itself.
For example, the seminal work [37] shows that transmitted
gradients leak private training data in federated learning.
Another example is in a distributed optimization based
multi-robot rendezvous process, exchanging gradients with
neighbors discloses an agent’s position [31]. With these in

2798

mind, we treat subgradients as agents’ private information in
a distributed subgradient algorithm. In the sequel, we will
consider two common types of adversarial agents, namely
honest-but-curious adversaries and eavesdroppers, and show
that the proposed heterogeneous algorithm (6)–(7) is ca-
pable of preventing the leakage of subgradients, whereas
the subgradient-push and push-subgradient algorithms are
vulnerable in the presence of these adversarial agents.

We begin with the definitions. An honest-but-curious
adversary is an agent within the network which knows
the network topology, follows the given algorithm, and
attempts to infer the private information of other agents [38]9.
An eavesdropper is an external adversary who knows the
network topology and is able to eavesdrop on (a portion
of) transmitted data [39]. Since both adversaries know the
network topology, we assume they both know all weights
wij(t), i ∈ V , j ∈ Ni(t), t ≥ 0 because a typical choice of
wij(t) is 1/|N−

j (t)| for all j ∈ Ni(t), which are uniquely
determined by the network topology. It is also assumed that
both adversaries know all stepsizes α(t), t ≥ 0, which are
shared among all agents.

Let H be the set of all honest-but-curious adversaries
and IH(t) be the information set accessible to the ad-
versaries in H at time t. Let ED be the set of directed
edges that an eavesdropper D can eavesdrop and ID(t)
be the information set accessible to the eavesdropper D
at time t. We next specify IH(t) and ID(t) for the
subgradient-push, push-subgradient, and heterogeneous sub-
gradient algorithms. From on the update of subgradient-
push (2)-(3), IH(t) = {xi(t), yi(t), gi(t), wij(t)[xj(t) −
α(t)gj(t)], wij(t)yj(t), i ∈ H, j ∈ Ni(t)} and ID(t) =
{wij(t)[xj(t) − α(t)gj(t)], wij(t)yj(t), (j, i) ∈ ED}. Since
both adversaries know all wij(t) weights, it follows that

IH(t) =
{
xi(t), yi(t), gi(t), xj(t)− α(t)gj(t), yj(t),

i ∈ H, j ∈ Ni(t)
}
,

ID(t) =
{
xj(t)− α(t)gj(t), yj(t), (j, i) ∈ ED

}
.

Similarly, from the update of push-subgradient (4)-(5),

IH(t) =
{
xi(t), yi(t), gi(t), xj(t), yj(t), i ∈ H, j ∈ Ni(t)

}
,

ID(t) =
{
xj(t), yj(t), (j, i) ∈ ED

}
.

Also, from the heterogeneous subgradient algorithm (6)-(7),

IH(t) =
{
xi(t), yi(t), gi(t), xj(t)− α(t)gj(t)σj(t), yj(t),

i ∈ H, j ∈ Ni(t)
}
,

ID(t) =
{
xj(t)− α(t)gj(t)σj(t), yj(t), (j, i) ∈ ED

}
.

The following results show that a set of honest-but-curious
adversaries or an eavesdropper can infer a normal agent’s
subgradient information under appropriate assumptions in
both subgradient-push and push-subgradient algorithms.

It is worth noting that any piece of subgradient information
is always associated with a point in IRd. To emphasize this,
we will from now on write gi(t) as gi(zi(t)). Inferring an

9An honest-but-curious adversary is called semi-honest in [38].

agent i’s subgradient information involves determining both
a point zi(t) and its corresponding subgradient gi(zi(t)). For
the purpose of simple notation, we define Mi(t) = Ni \ {i}
and M−

i (t) = N−
i (t) \ {i} for all i ∈ V .

Lemma 5: For the subgradient-push algorithm (2)-(3) and
at any time t > 0, a set of honest-but-curious adversaries H
can infer zi(t) and gi(zi(t)) if Mi(t−1) ⊂ H, M−

i (t−1)∩
H ̸= Ø, and M−

i (t) ∩ H ̸= Ø, and an eavesdropper D can
infer zi(t) and gi(zi(t)) if {(j, i) : j ∈ Mi(t − 1)} ⊂ ED,
{(i, k) : k ∈ M−

i (t − 1)} ∩ ED ̸= Ø, and {(i, k) : k ∈
M−

i (t)} ∩ ED ̸= Ø.

Proof of Lemma 5: From (2) and Ni(t) = Mi(t) ∪ {i},
xi(t) can be decomposed as

xi(t) = wii(t− 1)
[
xi(t− 1)− α(t− 1)gi(zi(t− 1))

]
+

∑
j∈Mi(t−1)

wij(t− 1)
[
xj(t− 1)− α(t− 1)gj(zj(t− 1))

]
Since Mi(t− 1) ⊂ H, H knows the summation term in the
above expression. At time t − 1, agent i transmits wki(t −
1)[xi(t − 1) − α(t − 1)gi(zi(t − 1))] to each out-neighbor
k ∈ M−

i (t−1). Since M−
i (t−1)∩H ̸= Ø and H knows all

wki(t−1) weights, H can infer the value of xi(t−1)−α(t−
1)gi(zi(t− 1)). Consequently, H can infer xi(t). Similarly,
from (3), H can infer yi(t) and therefore zi(t) = xi(t)/yi(t).
At time t, as M−

i (t)∩H ̸= Ø, using the preceding argument,
H can infer the value of xi(t)−α(t)gi(zi(t)). With this value,
H can infer gi(zi(t)) using inferred xi(t) and known α(t).

It is easy to see that all the information used by H for
inferring zi(t) and gi(zi(t)) is accessible to the eavesdropper
D under the given conditions {(j, i) : j ∈ Mi(t−1)} ⊂ ED,
{(i, k) : k ∈ M−

i (t − 1)} ∩ ED ̸= Ø, and {(i, k) : k ∈
M−

i (t)} ∩ ED ̸= Ø. Therefore, D is also able to infer zi(t)
and gi(zi(t)).

Lemma 6: For the push-subgradient algorithm (4)-(5) and
at any time t + 1 with t ≥ 0, a set of honest-but-curious
adversaries H can infer zi(t) and gi(zi(t)) if Mi(t) ⊂ H,
M−

i (t) ∩ H ̸= Ø, and M−
i (t + 1) ∩ H ̸= Ø, and an

eavesdropper D can infer zi(t) and gi(zi(t)) if {(j, i) : j ∈
Mi(t)} ⊂ ED, {(i, k) : k ∈ M−

i (t)} ∩ ED ̸= Ø, and
{(i, k) : k ∈ M−

i (t+ 1)} ∩ ED ̸= Ø.

Proof of Lemma 6: It is clear that under the given
conditions, H has access to more information than D. Thus,
it is sufficient to show that D can infer zi(t) and gi(zi(t)).
At time t, agent i transmits wki(t)xi(t) to each out-neighbor
k ∈ M−

i (t). Since {(i, k) : k ∈ M−
i (t)} ∩ ED ̸= Ø and D

knows all wki(t) weights, D can infer xi(t). Similarly, D can
infer yi(t) and therefore zi(t) = xi(t)/yi(t). At time t+ 1,
as {(i, k) : k ∈ M−

i (t+ 1)} ∩ ED ̸= Ø, using the preceding
argument, D can infer xi(t + 1). From (4) and Ni(t) =
Mi(t) ∪ {i}, xi(t + 1) can be decomposed as xi(t + 1) =
wii(t)xi(t) +

∑
j∈Mi(t)

wij(t)xj(t) − α(t)gi(zi(t)). Since
{(j, i) : j ∈ Mi(t)} ⊂ ED, D knows the summation term
in the decomposition, and therefore can infer gi(zi(t)) using
inferred xi(t) and known α(t).

2799

In contrast to subgradient-push and push-subgradient, the
proposed heterogeneous subgradient algorithm (6)-(7) can
prevent subgradients from leaking because the inferring
approaches used in the proofs of Lemma 5 and Lemma 6
cannot be applied to the heterogeneous subgradient algo-
rithm. This is due to the independent and private switching
signal sequence {σi(t)} at any normal agent i. It can be
seen from (6) that gi(t) always appears multiplied by a
private binary value σi(t) or 1 − σi(t), which makes it
impossible for any set of honest-but-curious adversaries and
eavesdropper to deterministically infer a normal agent i’s
subgradient information. We summarize as follows:

Lemma 7: Without knowledge of {σi(t)}, neither a set
of honest-but-curious adversaries nor an eavesdropper can
deterministically infer the subgradient information of any
normal agent i through the heterogeneous subgradient al-
gorithm (6)-(7).

While deterministic inference is impossible, adversaries
may employ probabilistic inference strategies, which is a
direction for future research.

ACKNOWLEDGEMENT

The authors wish to thank Yongqiang Wang (Clemson
University) for useful discussion.

REFERENCES

[1] A. Nedić and A. Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control,
54(1):48–61, 2009.

[2] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K.H. Johansson. A survey of distributed optimization.
Annual Reviews in Control, 47:278–305, 2019.

[3] A. Nedić and J. Liu. Distributed optimization for control. Annual
Review of Control, Robotics, and Autonomous Systems, 1:77–103,
2018.

[4] D.K. Molzahn, F. Dörfler, H. Sandberg, S.H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei. A survey of distributed optimization and
control algorithms for electric power systems. IEEE Transactions on
Smart Grid, 8(6):2941–2962, 2017.

[5] E. Wei and A. Ozdaglar. Distributed alternating direction method of
multipliers. In Proceedings of the 51st IEEE Conference on Decision
and Control, pages 5445–5450, 2012.

[6] G. Qu and N. Li. Accelerated distributed Nesterov gradient descent.
IEEE Transactions on Automatic Control, 65(6):2566–2581, 2019.

[7] Z. Li, W. Shi, and M. Yan. A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates.
IEEE Transactions on Signal Processing, 67(17):4494–4506, 2019.

[8] B. Gharesifard and J. Cortés. Distributed continuous-time convex
optimization on weight-balanced digraphs. IEEE Transactions on
Automatic Control, 59(3):781–786, 2013.

[9] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed
sensor fusion based on average consensus. In Proceedings of the
4th International Conference on Information Processing in Sensor
Networks, pages 63–70, 2005.

[10] B. Gharesifard and J. Cortés. Distributed strategies for generating
weight-balanced and doubly stochastic digraphs. European Journal of
Control, 18(6):539–557, 2012.

[11] A. Nedić and A. Olshevsky. Distributed optimization over time-
varying directed graphs. IEEE Transactions on Automatic Control,
60(3):601–615, 2015.

[12] C. Xi and U.A. Khan. DEXTRA: A fast algorithm for optimization
over directed graphs. IEEE Transactions on Automatic Control,
62(10):4980–4993, 2017.

[13] W. Shi, Q. Ling, G. Wu, and W. Yin. EXTRA: An exact first-order
algorithm for decentralized consensus optimization. SIAM Journal on
Optimization, 25(2):944–966, 2015.

[14] A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence
for distributed optimization over time-varying graphs. SIAM Journal
on Optimization, 27(4):2597–2633, 2017.

[15] S. Pu, W. Shi, J. Xu, and A. Nedić. Push-pull gradient methods for
distributed optimization in networks. IEEE Transactions on Automatic
Control, 66(1):1–16, 2021.

[16] R. Xin and U.A. Khan. A linear algorithm for optimization over
directed graphs with geometric convergence. IEEE Control Systems
Letters, 2(3):315–320, 2018.

[17] D.T.A. Nguyen, D.T. Nguyen, and A. Nedić. Accelerated AB/Push-
Pull methods for distributed optimization over time-varying directed
networks. IEEE Transactions on Control of Network Systems, 2023.
accepted.

[18] A. Nedić, A. Olshevsky, W. Shi, and C.A. Uribe. Geometrically
convergent distributed optimization with uncoordinated step-sizes. In
Proceedings of the 2017 American Control Conference, pages 3950–
3955, 2017.

[19] Y. Wang and A. Nedić. Decentralized gradient methods with time-
varying uncoordinated stepsizes: Convergence analysis and privacy
design. IEEE Transactions on Automatic Control, 2023. accepted.

[20] C. Sun, M. Ye, and G. Hu. Distributed optimization for two types
of heterogeneous multiagent systems. IEEE Transactions on Neural
Networks and Learning Systems, 32(3):1314–1324, 2021.

[21] T. Vogels, L. He, A. Koloskova, S.P. Karimireddy, T. Lin, S.U.
Stich, and M. Jaggi. RelaySum for decentralized deep learning on
heterogeneous data. In Advances in Neural Information Processing
Systems, volume 34, pages 28004–28015, 2021.

[22] B. Polyak. A general method for solving extremum problems. Doklady
Akademii Nauk, 8(3):593–597, 1967.

[23] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of
aggregate information. In Proceedings of the 44th IEEE Symposium
on Foundations of Computer Science, pages 482–491, 2003.

[24] Y. Lin and J. Liu. Subgradient-push is of the optimal convergence
rate. In Proceedings of the 61st IEEE Conference on Decision and
Control, pages 5849–5856, 2022.

[25] A. Nedić, A. Olshevsky, A. Ozdaglar, and J.N. Tsitsiklis. On
distributed averaging algorithms and quantization effects. IEEE
Transactions on Automatic Control, 54(11):2506–2517, 2009.

[26] M. Cao, A.S. Morse, and B.D.O. Anderson. Reaching a consensus
in a dynamically changing environment: A graphical approach. SIAM
Journal on Control and Optimization, 47(2):575–600, 2008.

[27] A. Nedić, A. Olshevsky, and M.G. Rabbat. Network topology and
communication-computation tradeoffs in decentralized optimization.
Proceedings of the IEEE, 106(5):953–976, 2018.

[28] A. Nedić and A. Olshevsky. Stochastic gradient-push for strongly
convex functions on time-varying directed graphs. IEEE Transactions
on Automatic Control, 61(12):3936–3947, 2016.

[29] Y. Lin and J. Liu. An analysis tool for push-sum based distributed
optimization. arXiv preprint, 2023. arXiv:2304.09443 [math.OC].

[30] A.H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z.J. Towfic. Diffusion
strategies for adaptation and learning over networks. IEEE Signal
Processing Magazine, 30(3):155–171, 2013.

[31] Z. Huang, S. Mitra, and N. Vaidya. Differentially private distributed
optimization. In Proceedings of the 16th International Conference on
Distributed Computing and Networking, pages 1–10, 2015.

[32] S. Han, U. Topcu, and G.J. Pappas. Differentially private distributed
constrained optimization. IEEE Transactions on Automatic Control,
62(1):50–64, 2017.

[33] N.M. Freris and P. Patrinos. Distributed computing over encrypted
data. In Proceedings of the 54th Annual Allerton Conference on
Communication, Control, and Computing, pages 1116–1122, 2016.

[34] Y. Lu and M. Zhu. Privacy preserving distributed optimization using
homomorphic encryption. Automatica, 96:314–325, 2018.

[35] Y. Wang. Privacy-preserving average consensus via state decompo-
sition. IEEE Transactions on Automatic Control, 64(11):4711–4716,
2019.

[36] X. Chen, L. Huang, K. Ding, S. Dey, and L. Shi. Privacy-preserving
push-sum average consensus via state decomposition. IEEE Transac-
tions on Automatic Control, 68(12):7974–7981, 2023.

[37] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In Advances
in Neural Information Processing Systems, volume 32, 2019.

[38] O. Goldreich. Secure Multi-Party Computation. Manuscript. Prelimi-
nary version, 78(110), 1998.

[39] R.L. Rivest and A. Shamir. How to expose an eavesdropper. Commu-
nications of the ACM, 27(4):393–394, 1984.

2800

