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Abstract—Quantum machine learning, noted for its remarkable
advancements in enhancing computational speed and augmenting
data processing efficacy, is acquiring considerable recognition
within the scientific community. Despite the noteworthy advance-
ments of quantum machine learning, it shares with its traditional
counterpart a susceptibility to adversarial threats. This presents
a significant challenge and underscores the need for robust coun-
termeasures in this emerging field of study. Developing effective
adversarial attack algorithms, such as the Quantum Fast Gradient
Sign Method (QFGSM), is crucial to opening the path for explor-
ing robust defense mechanisms against these threats. However,
unlike traditional machine learning, the quantum field currently
lacks the effective techniques to orchestrate adversarial attacks.
This study introduces and assesses the QFGSM, a adversarial
attack algorithm tailored for QNNs. Additionally, we evaluate
the effect of random noise and its quantum version on these
models, providing a comprehensive comparison to understand
the efficacy of adversarial attack methods. The evaluation is
conducted on both traditional Neural Networks (NNs) and QNNs
using the ClaMP dataset, a cybersecurity-focused dataset, and
involves performance metrics like Accuracy, Precision, Recall, and
F1 score. Our findings underscore the differential resilience of NNs
and QNNs under adversarial attacks and reveal the contrasting
effects of FGSM, QFGSM, and random noise-based methods.
Our study reveals that Quantum Neural Networks (QNNs) show
significant vulnerability to our proposed Quantum Fast Gradient
Sign Method (QFGSM) compared to random noise, indicating a
need for quantum-specific defenses in the face of this advanced
adversarial attack algorithm.

Adversarial Attack, Quantum Neural Network (QNN), Neu-
ral Network (NN), FGSM, QFGSM

I. INTRODUCTION

In recent years, machine learning models become increas-
ingly prevalent across various sensitive sectors, including
healthcare [1], cybersecurity [2], autonomous vehicles [3], and
other sectors[4–7]. It is crucial to comprehend and combat
the potential adversarial vulnerabilities associated with these
advancements. Adversarial attacks typically involve the intro-
duction of subtly altered inputs designed to trick the model
into erroneous predictions, posing serious threats to the model’s
reliability and integrity. The training process for quantum ma-
chine learning follows a similar approach to classical machine
learning, with the distinction that qubits are employed instead
of classical bits. However, it is important to note that despite
this quantum framework, perturbations can still be leveraged on

the input data to induce adversarial attacks. There are several
effective techniques exist such as Fast Gradient Sign Method
(FGSM), Basic Iterative Method (BIM), DeepFool (DF), and
Jacobian-based Saliency Map Attack (JSMA). FGSM is a well-
established method used to generate adversarial examples in
the classical machine learning realm. This technique lever-
ages the gradients of the model’s loss function to formulate
perturbations, leading to increased loss, and consequently, a
decrease in model performance. In contrast, such a technique
remains largely unexplored in the quantum realm. Our re-
search, thus, not only investigates the resilience of NNs and
QNNs to adversarial attacks, but also introduces the quantum
fast gradient sign method (QFGSM), an adversarial attack
algorithm designed specifically for quantum machine learning
models. Alongside the conception and deployment of QFGSM,
our study involves a comparison of the impacts of random
noise and its quantum equivalent on the performance of NNs
and QNNs in the cybersecurity field. This effort is aimed
at providing a thorough evaluation of the effectiveness of
adversarial attack methodologies. Our findings, derived from
comparative evaluations using key performance metrics such
as accuracy, precision, recall, and F1 score, demonstrate that
the QFGSM methodology results in a significant decline in the
accuracy of the QNN model following the adversarial attack.
Our work contributes in two distinct ways: first, we develop and
implement the Quantum Fast Gradient Sign Method (QFGSM),
an adversarial attack algorithm designed explicitly for Quantum
Neural Networks (QNNs). This represents a significant step for-
ward in understanding the vulnerabilities of quantum machine
learning models, bridging the gap in knowledge regarding the
susceptibilities of these models to adversarial attacks. Second,
our research delivers a comprehensive evaluation of the im-
pact of random and quantum noise on both classical Neural
Networks (NNs) and QNNs. This comparative study provides
solid information on the differential effects of noise types on
these machine learning models, furthering our understanding of
their resilience and vulnerabilities.

II. RELATED WORK

Several studies have delved into quantum machine learning
and adversarial attacks. Lu et al. [8] explored adversarial attacks
on quantum classifiers but did not develop a quantum version of
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the FGSM method. Du et al. [9] addressed the vulnerability of
quantum classifiers, touching on the iterative-fast gradient sign
method (I-FGSM) without creating a quantum-specific FGSM.
West et al. [10] benchmarked the robustness of quantum ML
networks against adversarial attacks, including FGSM, but did
not propose a quantum FGSM version. Suryotrisongko et al.
[11] researched the adversarial vulnerability of hybrid quan-
tum deep learning models and showed a 5.9% accuracy gain
through adversarial training. They employed FGSM, among
other attacks, but did not suggest a quantum-specific FGSM. In
essence, while the principles of FGSM have been adapted for
quantum settings, a quantum-specific FGSM, potentially termed
QFGSM, remains unexplored, presenting a promising avenue
for future research.

III. METHODOLOGY

A. Dataset

The dataset named “ClaMP” [12] used in this study consists
of a total of 5,184 samples, including both malware and benign
instances. The malware samples were collected from the virus
share dataset. The benign samples were obtained from Windows
XP and Windows 7 program files. Additionally, some benign
samples were collected from online free software archives.
The data set comprises 69 features, which can be categorized
into two types: raw features and derived features. The raw
features encompass 54 variables that directly extract values
from specific fields within the Portable Executable (PE) header
of executable files. The PE format is a common file format used
in Windows operating systems to store executable programs
and libraries. Various fields of the PE header were utilized to
discriminate between malware and benign files. Specifically,
fields such as NumberOfSections, SizeOfInitializedData, Num-
berOfSymbols, etc., were observed to exhibit larger deviations
between malware and benign files. These field values were
found to be informative in distinguishing between the two
classes, as they demonstrated significant variations in statistical
properties, such as mean and standard deviation. In addition to
raw features, derived features were generated by validating the
raw values against a set of predefined rules. These rules were
derived from guidelines provided for PE header fields. There
exists a mild imbalance between the categories, with Category
1 representing 52. 2% and Category 0 comprising 47.8% of the
total. Although this skew is not severe, it does imply a moderate
imbalance within the dataset. This imbalance, while notable,
does not substantially affect the validity or reliability of the
experimental analyzes performed in this study. However, while
performing the experiments, we ensured balanced sampling by
selecting different proportions from the total data set.

B. Experimental Work

In this study, we utilize a Quantum Neural Network (QNN),
a derivative of Quantum Machine Learning (QML), and apply
it to the ClaMP dataset [12]. The initial step involves prepro-
cessing the raw data to prepare it as input for the QNN model.
This preprocessing was done using Python and Scikit-Learn’s

(sklearn) shuffle function. Additionally, we employed the reset
index and drop functions from the Python library, as well as
the encoder from the sklearn library for labeling. To ensure
prediction accuracy, we took measures to maintain class balance
within the dataset, specifically focusing on balanced sections for
the experimental phase. After applying the shuffle function, we
reset the index to sequentially organize the dataset. The drop
function was utilized to eliminate irrelevant columns that do
not contribute to the prediction process. Given that quantum
machine learning models require numerical input, categorical
values were transformed into numerical ones, and all numerical
values were normalized to ensure a uniform scale. Given the
limited number of available qubits for quantum computations,
we faced a challenge in processing high-dimensional data. To
resolve this issue, we utilized Principal Component Analysis
(PCA), a common dimensionality reduction technique. The
original dataset consisted of 69 features, which we successfully
reduced to 2 principal components using PCA. Despite the
significant reduction in dimensionality, the PCA transformation
ensured that the essential patterns and features in the data
were preserved. This is because PCA operates by projecting
the original data onto a new subspace where the variance (or
information content) is maximized. Hence, the two principal
components that we ended up with represented the directions in
the high-dimensional space along which the original data varied
the most. We divided the entire dataset, consisting of 5,210
rows, into 20 distinct sections. Each section started at 5 percent
of the total dataset, incrementally increasing by 5 percent up
to the full 100 percent. Subsequently, the quantum machine
learning model was applied to each divided dataset. Before
input into the QML model, features were encoded into quantum
states. Furthermore, each portion of the dataset was subjected
to perturbation using both random noise and FGSM (Fast
Gradient Sign Method) techniques, followed by QFGSM for
the QNN model. This served to test the robustness of both the
neural network and quantum neural network models. Initially,
we introduced clean data to both models, subsequently adding
perturbed data to the same proportion to assess the robustness.
A comparative performance analysis was carried out between
QML and traditional machine learning, based on experimental
results with different portions of the dataset. A variational
classifier is a type of hybrid quantum-classical machine learning
model that combines the power of quantum computation with
classical optimization techniques to solve classification tasks. A
quantum circuit is a series of quantum gates and operations that
manipulate qubits, the fundamental units of quantum computa-
tion. Given a dataset X ∈ Rn×m, where n is the number of data
samples and m is the number of features, we first preprocess
the data by encoding it into the quantum state of m qubits
using angle encoding scheme. The algorithm for building this
quantum circuit is outlined in Algorithm 1, and the procedure
for the variational classifier is detailed in Algorithm 2. Let xij

denote the scalar value of the j-th feature for the i-th data
sample, with xij ∈ R. The angle encoding transforms the scalar
values xij into rotation angles θij = arccos(

√
xij), which
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are then used to apply single-qubit rotations to the quantum
state. The encoded quantum state is then processed through a
series of parameterized quantum gates, typically organized into
layers, to create a quantum variational circuit. The choice of
quantum gates and their arrangement can vary depending on
the problem, but common choices include Hadamard, Pauli-
X, Pauli-Y, Pauli-Z, CNOT, and other entangling gates [13].
In our project, we specifically chose to utilize the Hadamard
gate. We opted for the Hadamard gate over other parameterized
quantum gates because it’s capacity to generate superposition
states allowed us to fully explore PCA-derived data space,
despite its reduced dimensionality. We could efficiently scan
through the entire transformed solution space and capture the
patterns differentiating malware from benign instances. This is
due to the Hadamard gate’s ability to transform computational
basis states into superpositions, thereby allowing our quantum
algorithm to address the complexities inherent in this binary
classification problem. The output of the quantum circuit is
obtained by measuring the quantum state of the qubits, usually
in the computational basis, which provides an expectation value
that can be used for classification tasks. Classical optimization
methods, like gradient descent and the Adam optimizer, are
utilized to optimize the parameters of quantum gates. These
techniques work in conjunction with evaluations conducted on
a quantum computer or simulator. The objective is to minimize
a predefined cost function - in this case, cross-entropy, which
is used for classification purposes. During the optimization
process, the scalar training data is used to compute the cost
function and its gradients with respect to the parameters of
the quantum gates, guiding the optimization towards better
solutions.

Algorithm 1 Quantum Circuit for Quantum Variational Clas-
sifier
Function quantum_circuit(parameters, data)

// Create a quantum circuit using
Pennylane

for i in range(num qubits) do
Apply Hadamard gate to the i-th qubit

end
// Apply AngleEmbedding with data and

rotation
AngleEmbedding(features = data, wires =

range(num qubits), rotation = ’Y’)
// Apply StronglyEntanglingLayers with

parameters
StronglyEntanglingLayers(weights = parameters, wires =

range(num qubits))
return Expectation value of PauliZ on the first qubit

EndFunction

Algorithm 2 Variational Classifier Function
Function variational_classifier(weights, bias, x)

// Call the quantum_circuit function
with the given parameters and input
data

circuit output ← quantum circuit(weights, x)
// Add bias to the circuit output
classifier output ← circuit output + bias
return classifier output

EndFunction

In this study, we devoted to develop a quantum counterpart
for random noise and quantum adaptation of the Fast Gradient
Sign Method (FGSM). However, for the classical neural net-
work model, we opted to employ existing methodologies for
both random noise and classical FGSM [14]. This approach
allowed us to concentrate on our primary objective while
ensuring robustness in the conventional aspects of our model.
We add random perturbations to the training dataset by gener-
ating a noise matrix. This synthetic noise can be considered a
controlled simulation of quantum noise, given its random and
unpredictable nature. The procedure for introducing random
perturbation is outlined in Algorithm 3. We can add random
perturbations by generating a noise matrix N ∈ Rn×m with
elements Nij sampled from a standard normal distribution
(Nij ∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . ,m). We
then scale the noise matrix N by a factor ϵ to create a new
matrix S ∈ Rn×m, where Sij = ϵNij for i = 1, . . . , n and
j = 1, . . . ,m. The factor ϵ controls the magnitude of the
random perturbations added to the training data set. Adjusting
the value of ϵ, we can effectively control the level of noise
introduced into the data during the training process. A lower
value of ϵ would result in minor perturbations, while a higher
value would lead to more significant perturbations.

Finally, we add the scaled noise matrix S to the original
training data set Xtrain to create a perturbed dataset Xperturbed ∈
Rn×m, with Xperturbed,ij = Xtrain,ij + Sij for i = 1, . . . , n and
j = 1, . . . ,m.

Algorithm 3 Function to add random perturbations to input
data.
Function add_perturbation(data, epsilon)

noise ← np.random.randn(*data.shape) scaled noise ←
epsilon * noise perturbed data ← data + scaled noise
return perturbed data

EndFunction

C. QFGSM Algorithm

The Fast Gradient Sign Method (FGSM) is an alternative and
robust methodology to assess the vulnerability of our quantum
machine learning model. This approach revolves around the
concept of adversarial examples, which are essentially manip-
ulated inputs created to mislead the machine learning model.
In quantum machine learning, we employ the FGSM algorithm
to generate adversarial examples by introducing small pertur-
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bations to the parameters of a quantum circuit (i.e., weights
and bias). The FGSM algorithm operates by first calculating
the gradient of the loss function with respect to the input data.
Subsequently, it forms a perturbation proportional to the sign
of this gradient. The original input data are then altered by
adding this perturbation, thereby creating the adversarial exam-
ple. Mathematically, given a quantum model parameterized by
weights w and bias b, the FGSM algorithm proceeds as follows.
First, it computes the gradient of the loss function L(w, b, x, y)
with respect to w and b given an input x and a target output y.
The detailed steps of this procedure are described in Algorithm
4. This is achieved using the qml.grad function:

∇wL,∇bL = qml.grad(L(w, b, x, y), argnum = [0, 1]) (1)

The sign function is then applied to these gradients to
generate a binary vector that only considers the direction of
the steepest increase of the function:

sign(∇wL), sign(∇bL) = np.sign(∇wL), np.sign(∇bL) (2)

Here, the distinction between ”sign” and ”np.sign” is mostly
a difference of notation and context: ”sign” is the general math-
ematical function, and ”np.sign” is a specific implementation
of it that operates on arrays.

Next, the algorithm computes the perturbation by multiplying
the sign of the gradient by a small constant ϵ:

∆w,∆b = ϵ · sign(∇wL), ϵ · sign(∇bL) (3)

Finally, adversarial examples are created by adding the
perturbation to the original weights and bias:

wperturbed, bperturbed = w +∆w, b+∆b (4)

The overall effect of the FGSM algorithm is to generate
inputs that result in incorrect predictions, providing a means to
investigate the robustness of quantum machine learning models.

Algorithm 4 Quantum FGSM Function.
Function QuantumFGSM(weights, bias, x, y, ϵ)

/* Initialize gradient function */
gradient fn← qml.grad(cost fn, argnum=[0, 1])
/* Compute gradients */
gradient weights, gradient bias ←
gradient fn(weights,bias,x,y)
/* Compute perturbations */
perturbation weights ← ϵ ×

np.sign(gradient weights) perturbation bias ←
ϵ× np.sign(gradient bias)
/* Generate perturbed weights and biases

*/
weights perturbed ← weights +
perturbation weights bias perturbed ←
bias+ perturbation bias

return weights perturbed, bias perturbed
EndFunction

IV. RESULTS AND DISCUSSION

Table 1 and Table 2 provide comprehensive comparative eval-
uations of two types of machine learning models – traditional
Neural Networks (NN) and Quantum Neural Networks (QNN).
Each model’s performance is assessed using four key metrics:
Accuracy, Precision, Recall, and F1 score, before and after
adversarial attacks. Two distinct types of adversarial attacks
are investigated: an algorithm introducing random noise (Table
1), and Fast Gradient Sign Method (FGSM) combined with
Quantum Fast Gradient Sign Method (QFGSM) (Table 2). In
Table 1, a distinct trend can be observed in the performance
of the NN and QNN models under the influence of random
noise. For both models, performance tends to decrease with in-
creasing noise, reflecting the degradation in the model’s ability
to make accurate predictions as noise contaminates the data.
However, there are several instances where the performance
remains the same or slightly improves after the attack. This
could potentially be due to the model overfitting to the noise,
misinterpreting it as useful information or there might also
be instances where the noise does not significantly impact the
model’s performance. This could occur if the noise introduced
does not substantially distort the relevant features the model
uses to make its predictions. The model could still identify
and use the meaningful patterns in the data to make relatively
accurate predictions, despite the presence of noise. This would
indicate a certain level of robustness in the model to noise, but it
could also reflect the fact that the noise added was not substan-
tial or impactful enough to meaningfully disrupt the model’s
performance. Random noise introduces uncertainty and disrupts
the inherent structure within the dataset. The impact of this
disruption manifests as a decrease in the model’s performance
as it becomes more challenging to identify the underlying
patterns in the noisy data. Therefore, in the case of random
noise, the adversarial attack might not be effective enough to
decrease the model’s performance. Random noise, unlike more
sophisticated adversarial attacks like FGSM, doesn’t necessarily
exploit model’s weaknesses. Hence, the impact of random noise
can be less damaging. From the table 1 ( NN model), at a 0.05
proportion, the accuracy before the attack is 0.54, and after the
attack is 0.54 as well. This suggests that the noise introduced
during the adversarial attack did not affect the model’s ability
to correctly classify instances. It’s important to keep in mind
that this doesn’t necessarily mean the model is robust against
all adversarial attacks but rather in this instance, the introduced
random noise didn’t significantly change the input data in a
way that affected the model’s decision boundary. For the QNN
model at a 0.15 proportion, the accuracy actually improved
slightly from 0.50 to 0.52 after the adversarial attack. The
analysis of data presented in Table 2 provides an insight-
ful evaluation of the performance of both Neural Networks
(NN) and Quantum Neural Networks (QNN) in relation to
adversarial attacks, specifically using the Fast Gradient Sign
Method (FGSM) and its quantum counterpart QFGSM. Before
the adversarial attack, both models display a fluctuating but
relatively strong performance with respect to these metrics,
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across a range of proportions from 0.05 to 1.00. The highest
accuracy achieved by the NN and QNN prior to attack is 0.62
(at proportion 0.30) and 0.68 (at proportion 0.25), respectively.
However, upon the introduction of adversarial noise through
FGSM, a decline in the performance metrics is observed for
both models. FGSM, a white-box adversarial attack, operates by
utilizing the gradients of the neural network loss function with
respect to the input data to create perturbations that maximize
the loss. This effectively crafts adversarial samples that mislead
the model, resulting in erroneous predictions and consequently,
reduced performance. In the context of this study, the impact of
FGSM appears more profoundly on the QNN as compared to
the NN. For example, the minimum accuracy of the QNN post-
attack dips drastically to 0.21 (at proportion 0.15), significantly
lower than that of the NN, which maintains a lowest post-attack
accuracy of 0.40 (at proportion 0.35). The precision, recall, and
F1 scores of the QNN also experience substantial reductions,
echoing the trend observed in the accuracy. Even though the NN
also exhibits a decrease in performance post-attack, its metrics
remain relatively higher across all proportions compared to
the QNN. This might be indicative of the NN’s comparatively
higher resilience to adversarial attacks introduced by FGSM.
Both NN and QNN models show performance degradation after
the adversarial attack using FGSM, with the QNN showing a
higher degree of vulnerability. The QFGSM, being the quantum
variant of FGSM, was designed to provide perturbations in
a way that would increase the likelihood of misclassification
by the model. The fact that the QNN shows a higher degree
of vulnerability to these adversarial attacks indicates that the
QFGSM is indeed fulfilling its intended purpose effectively.
In addition to accuracy, precision, recall, and F1 score met-
rics, we also utilized Receiver Operating Characteristic (ROC)
curves to evaluate the performance of our models. Due to page
constraints, these graphs are not included in this manuscript.
However, they can be accessed here.

V. CONCLUSION

This paper investigates the capacity of both traditional and
quantum neural networks to withstand disruptive influences.
Performance of these networks was evaluated based on four
standard metrics: accuracy, precision, recall, and the F1 score.
These networks were then subjected to two types of disruptions:
one generated through random noise, and the other utilizing
a more sophisticated approach known as the Quantum Fast
Gradient Sign Method (QFGSM). As anticipated, the introduc-
tion of additional random noise resulted in a decline in the
network performance. However, a significantly steeper drop in
performance was observed when FGSM and QFGSM methods.
This decline was particularly prominent in quantum neural
networks, especially during the application of a quantum-
enhanced FGSM attack. Our findings underscore the urgent
need for improved defensive measures for these networks
against disruptive influences. The development of such protec-
tions is particularly crucial for quantum neural networks, given
the expanding interest and research in this field.
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TABLE II: Performance metrics for NN and QNN against adversarial attack with FGSM and QFGSM noise algorithm

Model Proportion Before Adversarial Attack After Adversarial Attack
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

NN

0.05 0.54 1.00 0.54 0.70 0.53 1.00 0.53 0.70
0.10 0.54 1.00 0.54 0.70 0.45 0.65 0.51 0.60
0.15 0.57 0.94 0.57 0.67 0.45 0.45 0.55 0.50
0.20 0.52 0.81 0.53 0.60 0.48 0.50 0.52 0.54
0.25 0.48 0.92 0.47 0.56 0.44 0.53 0.55 0.52
0.30 0.62 1.00 0.62 0.77 0.42 0.42 0.42 0.53
0.35 0.42 0.71 0.42 0.52 0.40 0.41 0.41 0.50
0.40 0.57 0.98 0.57 0.71 0.45 0.45 0.45 0.45
0.45 0.65 0.87 0.65 0.71 0.47 0.45 0.43 0.46
0.50 0.56 1.00 0.48 0.65 0.43 0.43 0.44 0.45
0.55 0.53 1.00 0.53 0.70 0.41 0.47 0.46 0.48
0.60 0.50 1.00 0.50 0.66 0.51 0.55 0.55 0.55
0.65 0.57 1.00 0.57 0.72 0.46 0.46 0.48 0.49
0.70 0.52 1.00 0.52 0.68 0.45 0.45 0.45 0.55
0.75 0.49 1.00 0.49 0.66 0.43 0.44 0.41 0.42
0.80 0.50 1.00 0.50 0.67 0.43 0.45 0.45 0.45
0.85 0.53 1.00 0.53 0.69 0.45 0.56 0.54 0.55
0.90 0.52 1.00 0.52 0.69 0.46 0.55 0.56 0.58
0.95 0.57 0.55 0.55 0.55 0.55 0.58 0.58 0.58
1.00 0.56 0.55 0.55 0.55 0.54 0.55 0.55 0.55

QNN

0.05 0.52 0.84 0.52 0.64 0.39 0.42 0.25 0.30
0.10 0.52 0.98 0.53 0.66 0.41 0.42 0.42 0.42
0.15 0.57 0.92 0.57 0.65 0. 21 0.00 0.00 0.00
0.20 0.38 0.53 0.38 0.43 0.31 0.45 0.45 0.45
0.25 0.68 0.87 0.68 0.70 0.41 0.39 0.46 0.44
0.30 0.40 0.92 0.40 0.56 0.41 0.43 0.37 0.41
0.35 0.53 0.76 0.53 0.62 0.46 0.37 0.35 0.38
0.40 0.55 0.57 0.68 0.71 0.48 0.55 0.56 0.55
0.45 0.57 0.87 0.57 0.66 0.30 0.34 0.37 0.36
0.50 0.42 0.51 0.42 0.45 0.33 0.36 0.39 0.40
0.55 0.40 0.62 0.40 0.49 0.36 35 0.37 0.40
0.60 0.57 0.87 0.57 0.51 0.47 0.45 0.43 0.41
0.65 0.53 0.81 0.53 0.64 0.32 0.38 0.27 0.31
0.70 0.48 0.79 0.47 0.51 0.25 0.27 0.32 0.32
0.75 0.62 0.82 0.62 0.66 0.21 0.20 0.20 0.20
0.80 0.42 0.79 0.42 0.55 0.21 0.23 0.22 0.20
0.85 0.68 0.89 0.68 0.71 0.41 0.43 0.44 0.42
0.90 0.60 0.79 0.60 0.65 0.35 0.36 0.36 0.37
0.95 0.53 0.52 0.54 0.52 0.45 0.48 0.48 0.48
1.00 0.55 0.53 0.54 0.53 0.44 0.45 0.45 0.45
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