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Fi g ur e 1.  T h e first c ol u m n pr es e nts vis u all y c o m p elli n g  AI- g e n er at e d i m a g es.  H o w e v er, a cl os er e x a mi n ati o n r e v e als f u n d a m e nt al
i n c o nsist e n ci es, s u c h as t h os e i n s h a d o w ali g n m e nt (s e c o n d c ol u m n) a n d v a nis hi n g p oi nt a c c ur a c y (f o urt h c ol u m n).  O ur  m o d el’s a n al ysis,
s h o w n i n t h e t hir d a n d fift h c ol u m ns, d et e cts t h es e s h a d o w a n d p ers p e cti v e g e o m etr y err ors.  We s h o w t h at t h es e err ors ar e s yst e m ati c a n d
c a n b e us e d t o i d e ntif y g e n er at e d i m a g es.

A b st r a ct

G e n er ati v e  m o d els c a n pr o d u c e i m pr essi v el y r e alisti c i m-
a g es. T his p a p er d e m o nstr at es t h at g e n er at e d i m a g es h a v e
g e o m etri c f e at ur es diff er e nt fr o m t h os e of r e al i m a g es.  We
b uil d a s et of c oll e cti o ns of g e n er at e d i m a g es, pr e q u ali fi e d t o
f o ol si m pl e, si g n al- b as e d cl assi fi ers i nt o b eli e vi n g t h e y ar e
r e al.  We t h e n s h o w t h at pr e q u ali fi e d g e n er at e d i m a g es c a n b e
i d e nti fi e d r eli a bl y b y cl assi fi ers t h at o nl y l o o k at g e o m etri c
pr o p erti es.  We us e t hr e e s u c h cl assi fi ers.  All t hr e e cl assi fi ers
ar e d e ni e d a c c ess t o i m a g e pi x els, a n d l o o k o nl y at d eri v e d
g e o m etri c f e at ur es. T h e first cl assi fi er l o o ks at t h e p ers p e c-
ti v e fi el d of t h e i m a g e, t h e s e c o n d l o o ks at li n es d et e ct e d i n
t h e i m a g e, a n d t h e t hir d l o o ks at r el ati o ns b et w e e n d et e ct e d
o bj e cts a n d s h a d o ws.  O ur pr o c e d ur e d et e cts g e n er at e d i m-
a g es  m or e r eli a bl y t h a n S O T A l o c al si g n al b as e d d et e ct ors,

* e q u al c o ntri b uti o n

f o r i m a g es fr o m a n u m b er of disti n ct g e n er at ors. S ali e n c y
m a ps s u g g est t h at t h e cl assi fi ers c a n i d e ntif y g e o m etri c pr o b-
l e ms r eli a bl y.  We c o n cl u d e t h at c urr e nt g e n er at ors c a n n ot
r eli a bl y r e pr o d u c e g e o m etri c pr o p erti es of r e al i m a g es.

1. I nt r o d u cti o n

B ot h St yl e G A N [ 2 2 – 2 4 ] a n d diff usi o n  m o d els [3 6 – 3 8 ] ar e
r e n o w n e d f or g e n er ati n g i m a g es t h at ar e stri ki n gl y si mil ar t o
r e al- w orl d p h ot os a n d c o nsist e ntl y f o ol p e o pl e.  B ut, as  w e
s h o w, g e n er at e d i m a g es h a v e disti n cti v e g e o m etri c f e at ur es,
li k el y fr o m a f ail ur e t o f ull y c a pt ur e pr oj e cti v e g e o m etr y.

B h att a d et al. [ 5 , 6 ],  C h e n et al. [1 0 ],  D u et al. [1 3 ],
Z h a n et al. [ 4 9 ], a n d h a v e s h o w n g e n er ati v e  m o d els i m pli c-
itl y c a pt ur e t h e c o m pl e x s c e n e pr o p erti es, i n cl u di n g n or-
m als, d e pt h, al b e d o, a n d s u p p ort r el ati o ns.  T h es e  w or ks
s u g g est t h es e  m o d els “ u n d erst a n d ” g e o m etr y,  w hi c h  w o ul d

T his  C V P R p a p er is t h e  O p e n  A c c ess v ersi o n, pr o vi d e d b y t h e  C o m p ut er  Visi o n F o u n d ati o n.
E x c e pt f or t his  w at er m ar k, it is i d e nti c al t o t h e a c c e pt e d v ersi o n;

t h e fi n al p u blis h e d v ersi o n of t h e pr o c e e di n gs is a v ail a bl e o n I E E E  X pl or e.
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be useful for rendering 3D scenes. Our detailed, population-
level analysis of generated images suggests generative mod-
els [1, 3, 4, 12, 32] cannot fully translate this “understanding”
into accurate geometry. Specifically, we demonstrate that
generative models produce images with lines that differ from
those of real images (likely due to problems aligning vanish-
ing points); that generative models produce images with per-
spective fields that are unlike those of real images; and that
object-shadow relations in generated images differ reliably
from those in real images. We use advanced pretrained mod-
els (Line Segment Detection [31]; Perspective Fields [21];
and PointNet [34]) that inspect geometric representations to
distinguish between real and generated images. We rely on
derived geometry cues from SOTA methods as manual im-
age analysis and explicit geometry-based rules like drawing
lines perspective lines are not scalable or automatable.

To guarantee the accuracy of our findings, we follow a
strict process of data curation. This involves using a con-
trolled pixel-level classifier to filter out any biases related
to color, texture, and local features within our test set. This
precision in data selection is crucial to isolate and accurately
assess the inconsistencies in projective geometry and illumi-
nation present in generated images. By carefully screening
the data, we can ensure that our results are not obscured
by common artifacts that are usually found in generated im-
ages. This enhances the reliability of our conclusions. Our
contributions are:
• Unearthing Geometric Discrepancies: We present a

comprehensive analysis that goes beyond existing liter-
ature to both demonstrate and quantify geometric discrep-
ancies produced by current generative models.

• Scalable, Data-Driven Approach: We introduce a scal-
able, data-driven approach by utilizing three distinct pro-
jective geometry cues to detect geometric inaccuracies.

• Robust and Generalizable: We demonstrate robustness
and generalizability by effectively identifying geometric
errors across a wide array of images from recent generative
models, including those with the latest time stamps.

• Broadening the Scope of Model Assessment: Our ap-
proach can be used as an alternative method for evaluating
models: do they get projective geometry right?

2. Related Work
Generative Models: The advancement of generative mod-
els, particularly in creating visually realistic images, marks a
significant milestone in computer vision. Pioneering efforts
by Karras et al. [22–24] with StyleGAN, and the emergence
of diffusion models [36–38], have set new benchmarks in
realism. These models, used in diverse fields from art to data
augmentation, have yet to fully grasp the nuances of projec-
tive geometry, which is the focus of our analysis, primarily
using open diffusion models.
Geometric Understanding in Generative Models: While

studies like Bhattad et al. [6], Du et al.[13], Chen et al. [10]
and Zhan et al. [49] demonstrate these models’ potential in
understanding scene geometry, our work diverges by scru-
tinizing the generated images themselves, examining their
adherence to the principles of projective geometry and illu-
mination, rather than analyzing learned features.

Detecting Generated Images: The realism of modern gen-
erative models has made image forensics increasingly chal-
lenging. Traditional methods focused on detecting synthetic
images using signals like resampling artifacts [33] and JPEG
quantization [2]. Kee et al. [25] introduced a geometric
technique for detecting shadow inconsistencies, paralleling
our pursuit of physical realism. However, our work extends
beyond identifying photo manipulation to evaluating the
overall perspective geometry and illumination consistency
in images from generative models.

Zhang et al.’s work [14] focuses on detecting AI-
generated images using diverse generative models and on-
line training for future model adaptation. Our research, in
contrast, assesses the projective geometry in these images,
examining their ability to render scenes with accurate per-
spective and illumination. Boháček et al. [7], while detecting
geometric inconsistencies related to shadows, align with our
interest in physical realism. However, we delve deeper, thor-
oughly evaluating perspective geometry and illumination in
generative models for a more comprehensive understanding
of their geometric accuracy.

The rise of generative methods has steered image foren-
sics towards using discriminative methods to detect synthetic
content [8, 15, 19, 42, 43, 48, 50]. These advancements align
with our objective of analyzing the physical and geometrical
congruence of generated images. However, our work goes a
step further by critically assessing whether generative mod-
els fundamentally understand and accurately replicate pro-
jective geometry, rather than simply distinguishing between
real and synthetic images. This deeper level of analysis aims
to unveil the intricacies and limitations of current models in
faithfully rendering geometrically coherent images.

Evaluation Metrics: Traditional metrics like the Inception
Score (IS) [39] and Fréchet Inception Distance (FID) [18]
focus on pixel-level fidelity. The emergence of CLIP-based
scores [17, 35] and DIRE [45] offers a semantic perspective.
In contrast, our approach, distinct in its focus on perspec-
tive geometry and illumination consistency, seeks to ensure
comprehensive realism, bridging the gap between visual and
physical authenticity.

Recent studies like Davidsonian Scene Graph [11] and
ImagenHub [26] address fine-grained evaluation inconsis-
tencies, while the HEIM benchmark [27] assesses models
across multiple aspects. Our work complements these by pro-
viding an in-depth evaluation of the physical and geometric
realism of images generated by state-of-the-art models.
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3. Background on Projective Geometry
Projective geometry is a mathematical framework that en-
ables the accurate representation of three-dimensional spaces
in two-dimensional images. It provides the rules for perspec-
tive, which are crucial for creating realistic scenes with depth
and spatial orientation [16]. In this section, we will examine
the common inconsistencies that may arise during image
synthesis according to projective geometry. Our evaluation
framework is intended to detect and measure these discrep-
ancies, which are essential for evaluating the realism and
physical plausibility of generated images.
Inconsistent Vanishing Points. Vanishing points are fun-
damental to capturing the essence of perspective in images.
They should align with the direction of parallel lines con-
verging at a distance. Generated images often exhibit in-
consistencies where these lines do not meet at the correct
vanishing points, leading to a distorted sense of perspective.
Lighting and Shadow Inconsistencies. Accurate shadows
are essential for reinforcing the position and shape of objects
within a scene. Discrepancies in shadow direction, length,
and softness can indicate a misalignment with the scene’s
light sources, disrupting the image’s three-dimensionality.
Scale Discrepancies. The principle of size constancy dic-
tates that objects of the same size should appear smaller as
their distance from the observer increases. Generated im-
ages sometimes fail to maintain this scaling, resulting in a
compromised depth perception.
Distortion of Geometric Figures. Geometric figures should
maintain their shape when projected onto the image plane,
barring intentional perspective distortion. Errors in this pro-
jection can result in circles appearing as ellipses or squares
as trapezoids, indicating a flawed perspective rendering.
Depth Cues. Depth perception in images is conveyed
through cues such as overlapping, texture gradients, and
relative size. Misrepresentation of these cues can lead to an
unnatural spatial arrangement that the human eye can readily
detect as artificial.

Our evaluation framework, detailed in the subsequent sec-
tions, is designed to rigorously test generated images against
these projective geometry principles. While a comprehen-
sive evaluation of projective geometry would consider all the
aforementioned inconsistencies, our framework prioritizes
the detection of inconsistent vanishing points and lighting
and shadow inconsistencies. These elements are particularly
telling indicators of an image’s projective geometry realism
and are often the most challenging for generative models to
replicate accurately.

4. Dataset Curation
Our data curation process is carefully designed to distinguish
between real images and generated images from several
generative models. This process includes models that the

classifier has not seen during its training. Another important
goal is to ensure our prequalifier effectively identifies images
with recent timestamps. This helps prevent the classifier
from relying on cues specific to the dataset, such as whether
the image is from the training distribution or not, rather than
determining whether the image is real or generated.

4.1. Real Images

We experiment with a diverse set of images, including:
(a) Indoor Scenes: A collection of 400,000 interior images
featuring a variety of furniture arrangements and lighting
conditions, sourced from LSUN [46]. Specifically, we used
100,000 images each from Bedroom, Dining Room, Kitchen,
and Living Room categories.
(b) Outdoor Scenes: A dataset of 125,000 outdoor scenes
with varying landscapes and urban settings, sourced from
Berkeley Deep Drive 100K [47] and Mapillary Vistas [30].
We selected images that represent a wide range of weather
conditions and times of day.
(c) Combination of Indoor and Outdoor scenes: We also
analyzed a combination of above indoor and outdoor scenes
to assess the performance on a more diverse dataset.
(d) Recent Timestamp Images: A curated test set of 500
indoor and 500 outdoor images with timestamps ranging
from May 2023 to March 2024. These images were collected
from various social media platforms and online sources to
ensure our classifier’s ability to handle recent real-world
data and that the models are not obscured because of any
data-source-specific biases.

4.2. Image Captions

We use the ViT-bigG-14/laion2b s39b b160k model [20]
and the BLIP model [28] in succession, to generate refined
captions for real images. These models were chosen for their
state-of-the-art performance in image captioning tasks. The
ViT model uses a Vision Transformer architecture, while
BLIP employs a multimodal pre-training approach. By us-
ing common captions, we ensure a fair evaluation of the
projective geometry in generated images.

4.3. Generated Images

We generate images from Stable Diffusion XL v1.0 [32],
Kandinsky-v3 [3], DeepFloyd IF v1.0 [12], and PixArt-α
v1.0 [9]. We use the same caption from the real images
to generate these images with the default settings of each
generative model.

4.4. Robust Prequalifier

Our goal is to identify challenging images that a signal-
based classifier may struggle to differentiate. Therefore, we
need to develop a robust prequalifier. This is to ensure that
our results are not affected by any false data signals. Thus,
we aim to eliminate all potential factors that may influence
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Table 1. Statistical overview of the Data Curation and Filtering Process: We present the distribution of real and generated images for indoor
and outdoor datasets. The ResNet50 Prequalifier helps us curate datasets, creating an ‘Unconfident Set’ for images with low classifier
certainty and a ‘Misclassified Subset’ for images incorrectly labeled by the classifier. These rigorously curated sets are instrumental
for our subsequent analysis, concentrating on projective geometry while mitigating the influence of signal cues. The datasets for each
prequalifier—indoor, outdoor, and combined—are prepared separately to tailor the models to their specific contexts.

Indoor Real Indoor Generated Outdoor Real Outdoor Generated Combined Real Combined Generated

Total Images 400,000 400,000 125,000 125,000 525,000 525,000

Training and Test Sets

Training Set Size 75,000 75,000 25,000 25,000 100,000 100,000
Validation Set Size 10,000 10,000 5,000 5,000 15,000 15,000
Test Set Size 315,000 315,000 95,000 95,000 410,000 410,000

Post ResNet50 Prequalifier

Unconfident Set 23213 13840 1444 1018 44392 2540
Misclassified Subset 10399 5756 609 443 23800 825

the geometry cues we obtain because of signal weirdness
in the generated images. To accomplish this, we begin by
training signal-based classifiers using a vanilla ResNet-50
and primarily concentrate on identifying instances that prove
challenging for these signal-based classifiers.

We trained prequalifiers on three distinct settings - indoor
scenes, outdoor scenes and a combination of the two. Each
prequalifier was trained on a dataset consisting of real im-
ages and images generated by one of the four models: Stable
Diffusion XL, Kandinsky-v3, DeepFloyd IF, and PixArt-α.
While all four types of prequalifiers performed well on their
respective test sets, we found that Kandinsky exhibited su-
perior generalization capabilities when evaluated on images
generated by other models or on recent timestamp images.
The fundamental experiment conducted to assess the gener-
alizability of different generators is covered in Figure 9 in
the Supplementary Material.

For indoor scenes, our Kandinsky-based prequalifier
achieves an Area Under the Curve (AUC) of 0.99 on its
test set with an accuracy of 97.43 and maintained high per-
formance on images generated by other models such as Sta-
ble Diffusion XL and PixArt-α, achieving AUCs of 0.97
and 0.98 respectively. Furthermore, our Kandinsky-trained
prequalifier meant for both indoor and outdoor settings com-
bined showed robust performance on recent timestamp gen-
erated indoor and outdoor images, achieving AUC scores of
0.90, 0.95, and 0.72 on images generated by Stable Diffusion
XL, PixArt-α, and DeepFloyd IF, respectively.

Given their robustness and strong generalizability, we
selected the Kandinsky-trained prequalifiers as the basis
for training our derived geometry classifiers on Kandinsky-
generated images. This choice ensures that our classifiers
effectively look at geometric discrepancies and can handle
various generated images. This enhances the reliability of
our approach and supports our conclusion that the classifiers
are not affected by spurious signal artifacts.

4.5. Final Test Sets

We categorize our test sets into three groups based on the
accuracy of the prequalifier: easy, unconfident, and misclassi-
fied. The easy test set includes images with 100% accuracy,
indicating that the prequalifier can reliably distinguish be-
tween real and generated images. The unconfident test set
includes images where the prequalifier performs at chance
level, suggesting that it struggles to make confident predic-
tions. Finally, the misclassified test set includes images
where the prequalifier makes completely wrong predictions,
either classifying real images as generated or vice versa. A
summary of this split for Kandinsky-v3 is provided in Tab. 1.

Our approach primarily evaluates the “hard set” (uncon-
fident and misclassified) for geometric and shadow incon-
sistencies, assessing adherence to projective geometry prin-
ciples. This ensures rigorous testing of generative models’
ability to reproduce geometric correctness and photometric
accuracy, beyond surface-level or signal details.

It is important to note that projective geometry incon-
sistencies are prevalent in generated images but often go
undetected by conventional methods. Our models, trained
on geometric abstractions and projective cues, can identify
subtle but critical inaccuracies that texture artifacts cannot
explain. This distinction is critical, as it allows us to rigor-
ously test our models, which, unlike the prequalifier, do not
have direct access to the images.

We employ a suite of models to capture different facets
of projective geometry, trained on datasets emphasizing geo-
metric consistency and photometric accuracy. By combining
their strengths, we comprehensively assess the quality of
generated images and provide insights into the limitations
and potential improvements of generative models from a
projective geometry perspective.

5. Analyzing Projective Geometry
For our analysis, we rely on three geometry cues – object
shadow, line segments, and perspective fields. We train
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Figure 2. We train three classifiers to identify discrepancies in projective geometry. These classifiers are trained using derived geometry cues
such as object-shadow associations (left), perspective fields (middle), and line segments (right) without looking at image intensity. We use
the ResNet architecture for Object-Shadow and Perspective Fields, and PointNet for Line Segments to process unordered data sets.

three separate classifiers solely based on these derived ge-
ometry cues, without utilizing any pixel information. The
training process for each classifier is described below, and a
schematic pipeline of these classifiers can be found in Fig. 2.

5.1. Object-Shadow Cues

Our first model examines object-shadow relationships to
address illumination. Shadows follow projective geometry
principles, and inconsistencies can reveal generated images.

We use a pretrained object-shadow instance detection
model [44] to identify shadows and geometric heuristics to
evaluate their plausibility given the objects and their orien-
tation. A ResNet50 classifier is trained on binary masks
of object and shadow instances to score the consistency of
shadows with objects. Images with implausible shadows are
marked as likely generated.

5.2. Perspective Field Cues

Our framework’s second model uses Perspective Fields [21],
vector fields encoding the spatial orientation of pixels relative
to vanishing points and the horizon, to assess projective
geometry. We generate these fields from single images using
a pretrained model.

We train a ResNet50 classifier on the Perspective Fields
to differentiate real from generated images by focusing on
projective geometry anomalies. The classifier evaluates the
consistency of these fields with projective geometry princi-
ples, scoring images on their geometric plausibility. This
method enables precise evaluation of projective geometry,
enhancing the detection of subtle inconsistencies.

5.3. Line Segment Cues

Our method also assesses projective geometry in gener-
ated images by identifying key structural lines using Deep

LSD [31]. These lines indicate adherence to perspective
rules. We then train a PointNet-like architecture [34] to clas-
sify images based on line segment patterns, differentiating
real from generated images.

PointNet’s flexibility in handling unordered data makes
it suitable for analyzing line segments without pre-sorting.
The model assigns scores representing the likelihood of an
image being real based on the spatial arrangement of its
lines. Analyzing these scores reveals the model’s ability to
detect subtle discrepancies in line arrangements, which often
indicate a generated image.

6. Evaluation
Based on our prequalification analysis, we use Kandinsky
as the primary source for our generated data to train our
classifiers. We evaluated our three geometry-derived cues
classifiers and analyzed their ability to generalize to other
generated images that were not used during training. In
addition, we performed a GradCam analysis [40] to identify
any potential geometric discrepancies in images.

6.1. Classifiers Results

Fig. 3 shows ROC curves for each of our methods on in-
door, outdoor and combined (indoor+outdoor) scenes. In
each case, classifiers are trained on images that are not pre-
qualified and tested on prequalified scenes, meaning that
performance estimates are biased low — likely training on
prequalified data would lead to even more accurate classi-
fication. Each classifier is effective, with AUCs ranging
from 0.72 to 0.97. Recall these classifiers see only derived
geometric features and do not see the image itself.

Qualitative examples using Grad-CAM appear in Fig. 5
and Fig. 4. Notice how images that might be acceptable to
a line analysis often fail a shadow analysis. Fig. 6 shows
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(a) Easy Test Set (Indoor) (b) Recent Timestamp Set (Indoor) (c) Unconfident Test Set (Indoor) (d) Misclassified Test Set (Indoor)

(e) Easy Test Set (Outdoor) (f) Recent Timestamp Set (Outdoor) (g) Unconfident Test Set (Outdoor) (h) Misclassified Test Set ((Outdoor))

(i) Easy Test Set (Combined) (j) Recent Timestamp Set (Combined) (k) Unconfident Test Set (Combined) (l) Misclassified Test Set (Combined)

Figure 3. ROC Curves Assessing Projective Geometry Cues in Generated Images trained on Kandinsky-v3. We trained separate models
for indoor scenes (top row), outdoor scenes (middle row), and a combination of indoor and outdoor scenes (last row). All our derived
geometry cues classifiers are trained without looking at image intensity information and can reliably detect projective geometry errors. The
recent timestamp test set (second column) confirms that these models are robust. We find hard examples using a prequalifier trained on
image pixels. Our derived geometry cues consistently show high AUC for finding projective geometry errors on hard test sets – the last two
columns – unconfident and misclassified test sets. For the unconfident test set, where the prequalifier has an AUC of 0.51 (c), 0.51 (g), and
0.49 (h) for indoor, outdoor, and combined partition, our classifiers can still accurately identify the generated images with high AUCs – 0.82
from line segments in the indoor set, 0.84 from perspective fields in the outdoor set, and 0.80 from perspective field cues and object shadows
in the combined set. Similarly, for the misclassified test set, where the prequalifier has an AUC of 0.00, as it should, our classifiers remain
reliable with AUC up to 0.82. We conclude that generated images contain geometric structures not seen in real images, and these structures
very reliably identify generated images by only looking at derived geometry cues.

examples to emphasize this point.

7. Other Generators Evaluated
Our classifiers do not see pixels, but derived geometric fea-
tures. This means that one could expect a form of generaliza-
tion across generators. We illustrate that this generalization
occurs - ROC curves in Fig. 7 demonstrate that classifiers
trained to distinguish Kandinsky images from real images
can also reliably distinguish Stable DIffusion XL [3], Deep-
Floyd [12] and PixArt-α[9] from the open-source domain.
Additionally, we assess the efficacy of our models against
images from proprietary generators such as OpenAI’s Dalle-
3[4] and Adobe’s Firefly [1], representing some of the most
advanced tools in image generation. Finally, we show we
can detect composite made by a recent SOTA method [29]

by looking at Object-Shadow cues in the supplement.

8. Discussion
We have shown that generated images can be reliably dis-
tinguished from real images by looking only at derived ge-
ometric cues. This is likely because image generators do
not fully implement the geometry one observes in real im-
ages. Producing accurate perspective geometry or accurate
shadow geometry requires very tight coordination of detailed
information over very long spatial scales. Our results, to-
gether with the notorious tendency of face image generators
to award subjects’ left and right earlobes of different shapes,
suggest that doing so is beyond the capacity of current gen-
erators. Our findings have significant implications for the
development of image generation models, as the inability to
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Generated Image Shadow Errors Object-Shadow (OS) OS GradCam VP Errors Perspective Fields (PF) PF GradCam

Figure 4. Grad-CAM applied to our Object-Shadow and Perspective Field classifiers reveals that the high AUCs in Fig. 3 are based on real
geometric errors in indoor scenes generated by Kandinsky, Stable Diffusion XL and Dalle-3 shown in each row respectively. The second
and fifth columns highlight shadow and vanishing point errors, respectively. The third column overlays detected object-shadow pairs [44].
Grad-CAM applied to our Object-Shadow classifier (fourth column) identifies diagnostic areas for synthetic generation, such as inconsistent
shadow directions (in all three rows), mismatched shadow lengths (second row). The sixth column shows Perspective Fields [21], and
Grad-CAM applied to our Perspective Fields classifier (last column) reveals geometric errors in all three rows, particularly at ceilings and
side walls, with noticeable errors also present in window grills in the first and second rows.

Generated Image Shadow Errors Object-Shadow (OS) OS GradCam VP Errors Perspective Fields PF GradCam

Figure 5. Grad-CAM results for outdoor scenes generated by Kandinsky, Stable Diffusion XL, and Adobe Firefly, shown in each row
respectively. The second column highlights shadow errors, while the third column overlays detected object-shadow pairs [44]. Grad-CAM
applied to our Object-Shadow classifier (fourth column) reveals incorrect shadow shapes in the first and second rows, with shadows on the
right-side pedestrians pointing in a different direction than those on the left. The fifth column shows vanishing point errors, and the sixth
column presents Perspective Fields [21]. Grad-CAM applied to our Perspective Fields classifier (last column) confirms large perspective
distortions on building facades and road markings, corroborating the vanishing point errors in the fifth column.
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Generated Image Shadow Errors Object-Shadow (OS) OS GradCam VP Errors Perspective Fields (PF) PF GradCam

Figure 6. Our projective geometry classifiers identify distinct types of problems in generated images. The top row presents an example
that was classified as real by the Object-Shadow classifier but correctly identified as generated by the Perspective Fields classifier. While
the shadow cast by the person appears realistic, the Perspective Fields Grad-CAM highlights the problematic geometry of the shelf on
the top left. In contrast, the bottom row shows an example that was correctly identified as generated by the Object-Shadow classifier but
misclassified as real by the Perspective Fields classifier. Although the perspective effects in the image appear plausible, the Grad-CAM
weights correctly reveal that the two chairs are casting shadows from different light sources, indicating inconsistency in scene’s illumination.

(a) Dall-E 3 (Indoor) (b) DeepFloyd (Indoor) (c) Adobe Firefly (Indoor) (d) PixArt-α (Indoor) (e) SDXL (Indoor)

(f) Dall-E 3 (Outdoor) (g) DeepFloyd (Outdoor) (h) Adobe Firefly (Outdoor) (i) PixArt-α (Outdoor) (j) SDXL (Outdoor)

Figure 7. Our model trained on Kandinsky-v3 generalizes in detecting projective geometry errors from images generated by various unseen
models. We evaluate the model’s performance on test sets generated by Dall-E 3 (a), DeepFloyd (b), Adobe Firefly (c), PixArt-α (d), and
Stable Diffusion XL or SDXL (e) using the same text prompts from the ‘misclassified’ Kandinsky-v3 generated test set. The top row shows
indoor scenes and the last row shows outdoor scenes. Our model generalizes to all evaluated generators except DeepFloyd. However,
DeepFloyd-generated images can be reliably detected when the model is trained on a DeepFloyd-generated training set, but it shows poor
generalization capabilities to other generators compared to Kandinsky.

accurately replicate projective geometry extends across var-
ious state-of-the-art models, indicating a widespread issue
rather than a problem specific to a particular generator.

We speculate that fixing this difficulty requires structural
innovation in the generator, rather than simply exposing
the generator to more data. The complex interplay of light,
shadows, and perspective in real-world scenes may neces-
sitate novel approaches to modeling and encoding spatial
relationships within the generator’s architecture. Potential
avenues for improvement could include incorporating ex-
plicit geometric reasoning or developing new loss functions
that prioritize the consistency of projective geometry. Fur-

thermore, our work highlights the importance of developing
robust evaluation metrics for image generation models that
assess the geometric coherence of generated images. By
tackling these challenges, we could create image-generation
models that more faithfully capture the complex geometric
relationships in real-world scenes.
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[7] Matyáš Boháček and Hany Farid. A geometric and photo-
metric exploration of gan and diffusion synthesized faces.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 874–883, 2023. 2

[8] Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola. What
makes fake images detectable? understanding properties that
generalize. In ECCV, 2020. 2

[9] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze
Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo,
Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of
diffusion transformer for photorealistic text-to-image synthe-
sis, 2023. 3, 6

[10] Yida Chen, Fernanda Viégas, and Martin Wattenberg. Beyond
surface statistics: Scene representations in a latent diffusion
model. arXiv preprint arXiv:2306.05720, 2023. 1, 2

[11] Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay
Krishna, Jason Baldridge, Mohit Bansal, Jordi Pont-Tuset,
and Su Wang. Davidsonian scene graph: Improving reliability
in fine-grained evaluation for text-image generation. arXiv
preprint arXiv:2310.18235, 2023. 2

[12] Deep Floyd. Iterative filter. https://github.com/
deep-floyd/IF, 2023. Accessed: 2023-11. 2, 3, 6

[13] Xiaodan Du, Nicholas Kolkin, Greg Shakhnarovich, and
Anand Bhattad. Generative models: What do they know?
do they know things? let’s find out! arXiv preprint
arXiv:2311.17137, 2023. 1, 2

[14] David C. Epstein, Ishan Jain, Oliver Wang, and Richard
Zhang. Online detection of ai-generated images. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV) Workshops, pages 382–392, 2023. 2

[15] David C Epstein, Ishan Jain, Oliver Wang, and Richard Zhang.
Online detection of ai-generated images. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 382–392, 2023. 2

[16] David A Forsyth and Jean Ponce. Computer vision: a modern
approach. prentice hall professional technical reference, 2002.
3

[17] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. CLIPScore: A reference-free evaluation
metric for image captioning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Process-
ing, pages 7514–7528, Online and Punta Cana, Dominican
Republic, 2021. Association for Computational Linguistics.
2

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In
Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2017. 2

[19] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A
Efros. Fighting fake news: Image splice detection via learned
self-consistency. In ECCV, 2018. 2

[20] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal
Shankar, Hongseok Namkoong, John Miller, Hannaneh Ha-
jishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip, 2021.
If you use this software, please cite it as below. 3

[21] Linyi Jin, Jianming Zhang, Yannick Hold-Geoffroy, Oliver
Wang, Kevin Blackburn-Matzen, Matthew Sticha, and
David F Fouhey. Perspective fields for single image cam-
era calibration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17307–
17316, 2023. 2, 5, 7, 16, 17

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019. 1, 2

[23] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[24] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 1, 2

[25] Eric Kee, James F O’Brien, and Hany Farid. Exposing photo
manipulation with inconsistent shadows. ACM Transactions
on Graphics (ToG), 32(3):1–12, 2013. 2

[26] Max Ku, Tianle Li, Kai Zhang, Yujie Lu, Xingyu Fu, Wenwen
Zhuang, and Wenhu Chen. Imagenhub: Standardizing the
evaluation of conditional image generation models. arXiv
preprint arXiv:2310.01596, 2023. 2

[27] Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai,
Joon Sung Park, Agrim Gupta, Yunzhi Zhang, Deepak
Narayanan, Hannah Benita Teufel, Marco Bellagente, Min-
guk Kang, Taesung Park, Jure Leskovec, Jun-Yan Zhu, Li
Fei-Fei, Jiajun Wu, Stefano Ermon, and Percy Liang. Holistic
evaluation of text-to-image models. In Thirty-seventh Con-
ference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023. 2

28148



[28] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP:
Bootstrapping language-image pre-training for unified vision-
language understanding and generation. In Proceedings of the
39th International Conference on Machine Learning, pages
12888–12900. PMLR, 2022. 3

[29] Oscar Michel, Anand Bhattad, Eli VanderBilt, Ranjay Kr-
ishna, Aniruddha Kembhavi, and Tanmay Gupta. Object 3dit:
Language-guided 3d-aware image editing. In Advances in
Neural Information Processing Systems (NeurIPS), 2023. 6

[30] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and
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