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Abstract—Compressed edge DNN models usually experience
decreasing model accuracy when performing inference due to
data drift. To maintain the inference accuracy, retraining mod-
els with continuous learning is usually employed in the edge.
However, online edge DNN inference with continuous learning
faces new challenges. First, introducing retraining jobs leads
to resource competition with the existing edge inference tasks,
which will affect the inference latency. Second, retraining jobs
and inference tasks exhibit significant differences in workload
and latency requirements. These two jobs cannot adopt the
same scheduling policy. To overcome the challenges, we propose
an Online scheduling algorithm for INference with Continuous
learning (OINC). OINC minimizes the weighted sum of the latency
of inference tasks and the completion time of retraining jobs
with limited edge resources, while ensuring the satisfaction of
the inference task’s service level objective (SLO) and meeting
the deadlines of retraining jobs. OINC first reserves a portion of
resources to complete all current inference tasks and allocates
the remaining resources to retraining jobs. Subsequently, based
on the reserved resource ratio, OINC invokes two sub-algorithms
to select edges and allocate resources for each inference task and
retraining job respectively. Compared with six state-of-the-art
algorithms, OINC can reduce the weighted sum by up to 23.7%,
and increase the success rate by up to 35.6%.

I. INTRODUCTION

N increasing number of artificial intelligence (AI) appli-
cations are being designed to run on devices, address-
ing various problems such as object recognition, augmented
reality, autonomous driving, and more. Al applications often
require significant computing and storage resources [1]. How-
ever, due to limitations in computing capacity, storage space,
and battery capacity, a single device is insufficient for handling
such tasks [2]. Meanwhile, traditional cloud-based approaches
are constrained by high transmission latency, bandwidth costs,
and the risk of privacy breaches [3]. Edge inference offloads
the inference tasks from devices to edge servers, enhancing the
processing capabilities of devices while meeting the latency
requirements of tasks.
Edge computing offers limited resources, necessitating the
deployment of compressed deep neural network (DNN) mod-
els [4]. However, compressed models have fewer weight
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parameters and shallower model structures, and struggle to
adapt to significant data variations. Because of the deviation of
input data from the training data, which is known as data drift
[5], compressed models experience decreasing model accuracy
when deployed in the edges [6]. For instance, in object
recognition tasks, variations in object pose, scene density, and
lighting over time can challenge edge DNNs in accurately
identifying the objects of interest. To address the challenges
posed by rapidly changing environments, continuous learning,
also known as model retraining, has been proposed. Contin-
uous learning collects real-time drift data and continuously
retrains a personalized compressed model based on the original
model for devices [6]. This approach enables edge DNN
models to maintain high accuracy when processing real-world
data streams, effectively adapting to the dynamic environment.

However, online edge DNN inference with continuous learn-
ing poses unique challenges. First, offloading retraining jobs
on edges will result in resource competition with existing
inference tasks. Allocating more resources to retraining jobs
can expedite model retraining while resulting in increased
inference latency because of fewer resources available for
inference tasks. On the other hand, the prompt completion of
model retraining facilitates timely improvements in inference
accuracy. Balancing the allocation of resources becomes chal-
lenging due to the interdependence between inference tasks
and retraining jobs. Second, there is a substantial difference
in the computing workload between retraining and inference
tasks. Given that the workload of inference tasks is signif-
icantly smaller than retraining jobs [7], [8], it is essential
to properly distinguish them when scheduling. Otherwise,
inference tasks may be allocated minimal resources, leading to
excessive inference latency. Similarly, the time scale for these
tasks differs as well, with inference tasks typically measured in
milliseconds and retraining jobs measured in minutes or hours.
There is a substantial difference in the impact of inference
latency and retraining completion time on minimizing the total
latency and completion time. Last but not least, in practice,
both retraining and inference tasks arrive online. While the
arrival rate of some inference tasks may be predicted based
on historical data, the generation of retraining tasks depends
entirely on the data drift, making it unpredictable. Therefore,
it is difficult to design efficient online scheduling algorithms
to quickly respond to dynamic changes while satisfying the



inference task’s service level objective (SLO) and meeting the
deadlines of retraining jobs.

Existing papers on continuous learning focus primarily on
how to perform retraining and when to update models on
edges to minimize costs and meet requirements for latency
and accuracy [7], [9]-[11]. They process retraining jobs on
the cloud or a fixed edge, resulting in excessive costs. Their
approaches hinder the timely completion of jobs, particularly
in the multi-task scenario. Existing schedulers in edges only
consider either inference tasks or retraining jobs individually
[12], [13], but the differences between these two types of jobs
make it difficult to schedule them together. Some approaches
use heuristic algorithms [14] or iterative algorithms [15], but
these methods often require long scheduling time and struggle
to meet the latency requirement of inference tasks. One
recent work [16] addresses the resource allocation problem
for inference tasks and retraining jobs on edge servers by
using a micro-profiler to estimate the accuracy and resource
requirements of different configurations for model retraining.
Howeyver, it does not consider the online arrival of inference
and retraining tasks. We will discuss this in detail in Sec. II.

To address the aforementioned challenges, to the best of our
knowledge, we are the first to propose an Online scheduling
algorithm for INference with Continuous learning (OINC) to
simultaneously schedule inference and retraining in multi-task
edge networks. Our approach aims to minimize the weighted
sum of the latency of inference tasks and the completion time
of retraining jobs while ensuring the inference SLO and the
deadline for retraining jobs.

To handle the differences between inference and retraining,
we propose a reservation algorithm that allocates resources
for both inference and retraining based on their respective
workloads. We devise distinct online scheduling algorithms
for inference tasks and retraining jobs respectively, employ-
ing spatial and temporal resource sharing strategies. In the
inference scheduling stage, OINC leverages a reinforcement
learning (RL) algorithm based on soft actor-critic with discrete
actions (SAC-D) to learn the coupling relationships between
two discrete decisions (i.e., task offloading and resource allo-
cation). By combining an actor-critic architecture with discrete
actions, the RL algorithm facilitates efficient adaptation to the
dynamic generation patterns of inference tasks. This approach
enables quick decision-making, thereby meeting the latency
requirements of inference tasks that are sensitive to response
time. In the retraining scheduling stage, retraining jobs are
characterized by their large computational requirements, un-
predictable duration, and high switching costs, making them
unsuitable for frequent adjustments of resource space allo-
cation. Therefore, we employ a resource time-sharing strat-
egy. OINC selects a retraining job to process in each edge
based on factors such as job weight, computing workload,
and completion deadline at each time slot. This approach
reduces preemption and job switching while ensuring the
timely handling of urgent jobs. When the reserved resources
for inference are insufficient, OINC prioritizes the completion
of inference tasks by temporarily pausing retraining jobs and

allocating the available computing resources to inference tasks.
We summarize our main contributions as follows:

i. Joint Online Scheduling of Inference and Retraining
Model. We analyze the characteristics of inference tasks and
retraining jobs, and explicitly model the inference latency
and retraining completion time in multi-task edge scenario.
Based on that, we formulate an online weighted latency and
completion time minimization problem.

ii. Online Scheduling Algorithm OINC. To solve the for-
mulated problem, OINC first reserves part of its resources for
inference tasks, and then decomposes the problem into two
subproblems, inference scheduling and retraining scheduling.
For the first subproblem, OINC utilizes the RL algorithm based
on SAC-D to determine task offloading and resource allocation
efficiently. For the second subproblem, the retraining schedul-
ing algorithm dispatches each job to an edge and determines
which retraining job will be processed on its edge at each time
slot. It can be proved that the retraining scheduling algorithm
is O(2)-competitive with (1 + €)-speed augmentation, where
ee (0,1).

iii. We evaluate the effectiveness of OINC through extensive
experiments. The results show that: i) OINC achieves both
low inference latency and low retraining completion time,
compared to six baselines; ii) OINC reduces the weighted sum
by up to 23.7%. OINC improves the success rate by up to
35.6%.

II. RELATED WORK
A. Inference Scheduling in Edge Computing

Existing research on edge inference mainly focused on
inference latency minimization [8], [17], inference cost mini-
mization [18], and energy utility minimization [14], [19], etc.
Liu et al. [8] proposed an approach for edge-cloud orchestrated
computing to minimize the latency of tasks. Chu et al. [14]
jointly optimized service selection, resource allocation, and
task offloading to maximize users’ QoE. Liu et al. [17]
additionally considered the heterogeneity of edge resources
and proposed a jointly determined algorithm to minimize the
total latency. Eshraghi et al. [18] formulated the problem as a
mixed-integer program and designed an algorithm to minimize
the average cost. Jiang et al. [19] focused on task latency
and energy consumption, and used Lyapunov optimization to
solve the joint offloading and allocation problem. Moro et al.
[20] employed convex programming to maximize fairness and
diverse requirements of different inference services. However,
due to the differences between inference tasks and retraining
tasks, especially in terms of workload and processing time,
existing inference scheduling approaches cannot jointly handle
both tasks.

B. Continuous Learning and Model Updating

A common approach to update retraining models is using
new data [9], [10]. Chen et al. [9] addressed the requirement to
perform model retraining on the cloud server and subsequently
update the model to edges while minimizing the data transfer
volume for bandwidth limits. Zhang et al. [10] designed an



active learner to sample drift data for labeling and use labeled
data for continuous learning, which can reduce costs while
maintaining the accuracy of edge models. The timing of model
updates is also a hot topic. Tian et al. [7] provided two
update policies, best-effort, and cost-aware, to decide when to
update models to cope with dynamic data, with and without
considering training cost, respectively. Aleksandrova et al. [11]
designed the system for continuous learning and studied the
approach to update models based on the Optimal Stopping
Theory (OST) principles. However, they have not considered
the scheduling problem of retraining jobs, not to mention
jointly scheduling with inference tasks.

C. Retraining Scheduling in Edges

The previous ML scheduling methods [12], [13] are not
suitable for scheduling retraining jobs and inference tasks
together. Bhardwaj et al. [16] jointly allocated resources
for inference and retraining tasks to maximize the average
accuracy. However, their offline algorithm is not suitable for
the online multi-task edge environment. Bhattacharjee et al.
[21] presented a scheduler that reduces the total retraining
time while considering heterogeneity among the edges and the
resource interference caused by the colocation of the model
updating jobs and latency-critical tasks. But [21] only con-
sidered the inference tasks as a known background program,
and did not consider the resource allocation for both inference
tasks and retraining jobs. Therefore, an approach to handle the
joint online scheduling problem needs to be devised.

III. SYSTEM MODEL

A. System Overview
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Fig. 1: System Overview.

As shown in Fig. 1, we consider a three-layer device-edge-
cloud system consisting of a cloud, multiple edges, and multi-
ple devices. Devices are equipped with radio access networks
to communicate with edges, while the cloud is connected
to the devices and edges through a wide area network. We
assume that the cloud has sufficient storage resources and
computing resources, and can assist the system in performing
high-precision inference. The edges, with different computing
capabilities (i.e., maximal CPU frequency) and wireless band-
width, store pre-trained compressed models for inference. The
devices receive input data online and generate inference tasks.
Each device is associated with a specific compressed DNN
model to process the inference task. Due to the insufficient

computing resources on devices and the high cost/latency
of data transmission to the cloud, devices rely on edges to
efficiently process inference tasks. Let [X] denote the set
{1,2,...,X}. The set of devices is denoted as [I], and the
set of edges is denoted as [J]. To facilitate the study of the
online system, we discretize time into equal-interval time slots,
denoted by [T']. Each time slot of ¢ € [T'] represents a decision
interval that matches the change of the system dynamics. In
practice, the length of a time slot (i.e., 1 second) is longer
than a typical end-to-end latency of DNN model inference.

Inference Task Information. In this work, we consider
the online stochastic generation of heterogeneous inference
tasks from devices. Each device will continuously generate
or receive input data samples. At each time slot, devices
offload inference tasks to edges for completion. We assume
that tasks generated by each device ¢ € [I] at each time slot
t € [T] have different input data and workload, denoted as
Task: = {di ct, SLO!}. Here, d' represents the input data
size of the task 7 (i.e., the amount of data to be delivered
to the edge in MB), ¢! indicates the computing workload
of the task ¢ (i.e., the number of CPU cycles required in
total to complete the task), and SLO! represents the service-
level objective requirement (in terms of latency) of the task.
The SLOs for inference tasks may vary, but they all require
completion within a single time slot. Note that each device
only knows which task is generated in the current time slot,
without any information in the future.

Model Retraining. In dynamic environments, the data gen-
erated continuously in real time is referred to as data streams
[22]. In our system, each device has its own data stream,
and the distribution of these streams may vary over time. The
concept drift is used to represent the change of data streams
in data characteristics. The DNN models, which are hosted in
edges to process inference tasks, are compressed models due
to the limited storage resources of the edges. When confronted
with concept drift, the precision of compressed models tends to
deteriorate [6], leading to a compromised quality of inference.
Consequently, it becomes imperative to retrain the models.

To detect the concept drift, we utilize an unsupervised drift
detector IBDD [23] for each device. The drift detectors can
identify the sample with concept drift in data streams without
depending on labeled data or the outputs of DNNs. Since
manual labeling is not feasible for the continuous retraining
system, we deploy a teacher model in the cloud to label
the drift data used for retraining. The teacher model is a
highly accurate but computationally expensive model with a
deeper architecture and a large number of weights. The system
transfers the drift data samples from devices to the cloud,
and obtains the ground-truth labels of them from the teacher
model. Given that the communication between devices and the
cloud is costly and time consuming, the teacher model is used
only to label drift data samples, which are a small fraction of
the data streams of devices.

Let [K] denote the set of retraining jobs. The retraining job
k is denoted as Joby = {ik, ax, wr, Di}, where ¢ is the index of
the model, a;, denotes the generated time, wy, is the workload



of job (i.e., the number of CPU cycles required in total to
retrain the model i), Dy is the deadline to complete the job.

System Workflow. At time ¢, the system works as follows:

Step 1: Detection. Devices receive input data samples,
package them into an inference task at each time slot, and
offload them to an edge. Each device has a drift detector. If a
drift data sample is found, the device will also transmit it to
the cloud.

Step 2: Labeling. The drift data samples are labeled by the
teacher model in the cloud. The cloud compares whether the
ground-truth labels from the teacher model are consistent with
the inference results from the edge models, and calculates the
accuracy of each edge model. When the accuracy is lower
than the predefined threshold, the cloud will inform the edge
to start a retraining job. The drift data samples and labels will
be transmitted to the edge for retraining.

Step 3: Inference and Retraining. Both the inference tasks
and the retraining jobs are processed in edges. After a model
is retrained, the new parameters of the model will be updated
to each edge to continue inference.

Decision Variables. After the generation of inference tasks
and retraining jobs at time slot ¢, the decisions made include:
i) yf; € {0,1}, whether edge j is selected for inference task
i at ¢; ii) z{; € [0,1], the proportion of computing resources
allocated to inference task i in edge j at ¢; iii) v ; € [0, 1], the
proportion of bandwidth allocated to device ¢ in edge j at ¢.
iv) f, ; € {0,1}, whether edge j is selected for retraining job
k at t; v) uj, ; € [0,1], the proportion of computing resources
allocated to retraining job k in edge j at ¢.

B. Inference Latency

The inference latency includes the time for uploading input
data, the computation time, and the time for transmitting the
output data back. Similar to some other works [24], we ignore
the output data of tasks due to their small size. Therefore, the
downlink transmission time for sending output back to devices
is omitted in our work.

Transmission Latency. The device communicates with the
edge via a wireless network connection. The transmission
interference can be ignored by exploiting the orthogonal fre-
quency division multiple access [25]. Then, the data transmis-
sion rate between device ¢ and edge j at time slot ¢ its obtained
by the Shannon formula as r{ ; = v} ; B;*log,(1+ pijé’-f ), where
vi ; denotes the proportion of bandwidth allocated to model i
in edge j at time slot ¢, B; indicates the wireless channel
bandwidth of edge j, p; indicates the transmission power of
device i, g; ; represents the channel gain between device  and
edge j, and o denotes the power of the Gaussian noise in the
device-to-edge channel. The input data transmission latency
between device ¢ and edge j can be calculated by i

rt

Computation Latency. The computation latency is the ex-
ecution time of the DNN model in the edge, which can be
represented by ﬁ, where z{; stands for the computing
resource allocated fo inference task 7 in edge j, and f; denotes
the computing capacity of edge j.

Therefore, the total inference latency of task from device 4
t t
in edge j at time slot ¢ is calculated as: 7/ ; = chi + - .
) i,577

C. Completion Time for Retraining

Due to the limited resources in edges, a retraining job
may not be processed immediately after being assigned to an
edge, and the processing may be interrupted by more urgent
retraining jobs or inference tasks. Therefore, our goal is to
minimize the completion time of retraining jobs, rather than
the processing latency, to avoid excessive waiting time. At
time slot by, denoting as the completion time of job k, all the
workload of the job has been fully processed and finished, i.e.,
b, = argmingsa, (3,24 ;juk ; f; < 0).

D. Problem Formulation

The objective of the system is to minimize the weighted sum
of the DNN inference latency and retraining job completion
time, subject to the SLOs of inference tasks, the deadline
of retraining jobs, and the limited resources of edges. We
use a; to denote the weights for inference tasks generated
at time ¢. [y is used to denote the weights for retraining job k.
We normalized the range of inference latency and retraining
completion time values based on their actual values obtained
from pertaining. The weights assigned to inference tasks and
retraining jobs are used to indicate their respective priorities.

The online problem for DNN inference and retraining can
be formulated as follows:

minimize P = 3,30, owyt ;7 4+ X Brbr (1)
st Y,visTi, < SLOj, Vi, Vi, (1a)
Svig =1, ViV, (1b)
t .
Duvig <1, V4, Vi, (1c)
vk =1, Vk,Vt, (1d)
P o 2Tk Uk 5 f5 = Wk, VE, (le)
wtk,j € {07 1}7Utk,]’ € [07 1]7 Vk,V], Vt7 (lg)

yi; €1{0,1}, 27 ;v ; € [0,1], Vi, V5, V¢ (1h)

Constraint (1a) means that the total inference latency of the
task cannot exceed its SLO. Constraint (1b) guarantees that
only one edge is selected for each generated inference task.
Constraints (1c) and (1f) ensure that the edge bandwidth and
computing resources allocated to retraining jobs and inference
tasks do not exceed the resource capacity. Constraints (1d)
means that each retraining job only can select one edge.
Constraint (1e) guarantees that each job is allocated sufficient
resources to retrain.

Challenge. Problem (1) in an online problem and a mix-
integer non-linear optimization problem, which is NP-hard. It
is different to solve the problem in the offline setting and will
be more challenging to solve in an online setting. Furthermore,
the interdependence among the decision variables of the prob-
lem (1), e.g., constraint (1f), introduces additional complexity,
making the problem more difficult to address.



IV. THE DESIGN OF OINC
A. Main Idea

In this section, we propose our online algorithm OINC,
followed by the theoretical analysis. OINC comprises the
following components:

i. When a retraining job is generated, OINC first checks
whether there are any edges that have not been utilized for
retraining jobs. If so, OINC invokes the reservation algorithm
(Alg. 2). It reserves a portion of computing resources for
inference tasks and calculates the proportion of resources that
can be used for retraining. Otherwise, OINC proceeds to the
next stage.

ii. OINC invokes the inference scheduling algorithm (A
in Alg. 3) to process inference tasks and allocate resources
to tasks from reserved resources. A;,; is based on an actor
network.

iii. For retraining jobs, OINC employs the retraining
scheduling algorithm (A,.; in Alg. 4) to schedule them based
on the reserved proportion of resources. A,.; calculates the
weighted density for each job, and then dispatches the job
based on it. Each edge sorts the assigned retraining jobs and
decides which job to process at each time slot.

Design of OINC. Our online algorithm framework OINC
is presented in Alg. 1. At each time slot, OINC receives
the information of retraining jobs Joby = {i,t,w!, D!} and
inference tasks Task! = {d!,ct, SLO!} (line 3). According
to the information, OINC updates the number of retraining
jobs numjo,, and the number of edges without retaining
jobs numeqge (line 4). Next, OINC invokes the reservation
algorithm (Alg. 2) to allocate the resource for retraining in
each edge when there are edges that have not been deployed
with retraining jobs (line 7). p represents the proportion of
resources available for retraining jobs in edge j, and then the
total proportion of resources allocated to inference tasks in
edge j is 1—p}. Finally, OINC invokes the inference scheduling
algorithm (Alg. 3) and calls the retraining scheduling algo-
rithm (Alg. 4) with p} as input (lines 10-11).

B. Resource Reservation

The reservation algorithm partitions resources for retraining
jobs while reserving a portion of resources for inference tasks.
The workflow of the reservation algorithm is as follows:

First, Alg. 2 obtains the minimum computing resource
required by inference tasks resmin, based on the historical
input patterns and the current workload of tasks (line 1).
num is set as the minimum of numj. and numeqqge, Where
numjop 1S the number of retraining jobs generated at ¢ and
numeqge 1S the number of edges without retraining jobs (line
2). Then Alg. 2 greedily selects the num edges with maximum
computing capacity into [J'] in line 3. For each j' € [J'],
j = argmax;ep\[. 1.p7=0(f5), where {p}};e; is the proportion
of resources allocated to retraining jobs in each edge. We allo-
cate resources evenly from the remaining available resources
for edges in [J']. The retraining resource of edge j' € [J'] can
be calculated as:

r_ By (f5 — pf) — resmin)
Py = T + Br) x num = fir

) Vg (€3

We denote [R] as a set of possible weight ratios. Then
the weight ratio between inference and retraining is selected
from set [R], aiming to find the ratio o/f; that minimizes
the overall latency at the current time slot (lines 4-9). After
getting o, and S, Alg. 2 calculates the value of pf,, j' € [J],
and returns p; for each edge. Note that p} is not fixed, it
returns to O when there are no retraining jobs to be processed
in edge j. Once all edges have been deployed with retraining
jobs, subsequent jobs are distributed to an edge according to
Aret, rather than allocating additional resources in the edge.

Algorithm 1 OINC Algorithm

Input: [, J, T, Bj, f;, [Jobs]t7 [Tasks]:, Vt,Vj
Output: xk],utk],yw, i ”,Vt Vi, Vi, Vk
1: Initialize numjop = 0, nuMeage = J,p; = 0,Q;
2:fort=1toT do
3: Receive [Jobs]: and [Tasks]t;

= J,V75;

4 Update numjob, numedge based on [Jobs]; and p7, j € [J];
5: if num;jop # 0 then

6: if numeage # 0 then

7: =Alg. 2(t, num;op, NUMedge);

8: end if

9: end if

10: invoke A,y (Alg. 3) with p; to schedule inference tasks;
11: invoke Are: (Alg. 4) with p} to schedule retraining jobs;
12: end for

Algorithm 2 Reservation Algorithm

Input: ¢, num;op, nuMedge
Output: p},Vj € [J]
1: Obtain resmq, with the historical and current workload;
2: Calculate num = min(num;ob, NuMedge);
3: Select the num edges with maximum computing capacity into
[J'];
4: for a/B € [R] do
5. Calculate p,, j’ € [J'] with Eq. (2);
6: Calculate the latency of inference tasks and retraining jobs
loyp at time t;
Store (la/g, @,
: end for
. Select av, ﬁk m [L¢] with minimize l,/g;
: Calculate p],,] € [J'] with (2) based on given ay, SBx;
: return p},Vj e [J];

) into [L];

[—
— S v o=

C. Inference Scheduling

Recall that p’; denotes the proportion of resources allocated
to retraining jobs in edge j. f; is the proportion of resources
that can be utilized by inference tasks in edge j at ¢, f{ = 1—p}.
The inference scheduling sub-problem can be formulated as:

minimize P’ = 3,33 yi ;71 3)
st Nzig < f, ViV (3a)
(1a),(1b),(1c),(1h)

Problem Transformation. For the inference tasks, we re-
formulate the scheduling problem into a Markov Decision
Process (MDP). An MDP can be denoted by the tuple
{S, A, P,R,v}, where S indicates the state space, .A denotes
the action space, P represents the state transition probability,



R denotes the reward, and ~ € [0, 1] is the discount factor. In
our scenario, the MDP can be defined as follows.

i) State. The controller observes the state information from
edges and devices at each time slot ¢. The state is formulated as
Si = {di, ci, f}}ier jes, Where {di}icr and {ci}ic; respectively
represent the data size and computing workload of the tasks
generated by each device at ¢, and {ff};es indicates the
proportion of computing resources of each edge that can be
used for inference tasks.

ii) Action. Given the observed state S;, the controller
determines the action A; of the scheduling results for all
inference tasks at time ¢, i.e., the edge selection {y} ;}icr, jes,
the proportion of computing resources {z{;}ir,jes and the
proportion of bandwidth {v} ;}ics jes. Therefore, the action A,
can be defined as A: = {y; ;, 2} j, v} }ier jes-

iii) Reward. Given the state and action at ¢, the controller
will receive a reward R, from the environment to evaluate the
quality of action A;. Based on the objective of minimizing
total latency, the reward function follows the principle that
actions that mitigate latency are associated with higher re-
wards. Moreover, considering the constraint (1a), we develop
a reward to impose penalties on actions that fail to meet the
required SLO. The reward function is defined as follows:

1
Rie = —2c1, Rit, where “)
I =&

R _T'Lt7
YT = (),

Ri: denotes the reward of task from device ¢ at ¢, and
¢ indicates the penalty factor. When the constraint (la) is
satisfied, the reward is the negative value of the task latency;
otherwise, an augmented penalty ¢ is appended to the reward.
Note that the value of 1) must significantly exceed the average
latency of tasks, enabling the controller to select actions that
satisfy the constraint. The parameters are listed in Sec. V.

Design of RL Training Algorithm. Reinforcement Learning
(RL) has emerged as a promising approach for solving this
MDP problem. The selection of an RL network is crucial for
fast training and exploration in MDP problems with high-
dimensional states and multiple discrete actions. In our RL
training algorithm, we exploit SAC-D to handle the inference
scheduling MDP problem (3). The RL training algorithm
includes an actor-critic architecture with an actor network,
evaluative critic networks, and target critic networks. The actor
network makes action decisions from the current state based on
its policy . In the output layer of the actor network, decision
elements are addressed via discretization. Both evaluation
critic networks and target critic networks use the clipped
double Q-networks technique to mitigate the problem of Q-
value overestimation and speed up training [26], and critic
networks output the Q-value of each possible action rather
than simply providing the action as input. The evaluation critic
networks output a pair of Q-values (Q.,,Qu,) to evaluate
the actor’s actions, while the target critic networks calculate
(Quy, Quy). For the algorithm, the goal of the controller is to
find a policy 7* that maximizes the maximum entropy ob-
jective: m* = arg maxy SyerE(s, a)~er [V (Re + AH(w(|Se)))],

constraint (la) is satisfied,

otherwise.

where A\ denotes the temperature parameter that balances the
reward and entropy, &, indicates the distribution of trajectories
induced by policy 7, and H(n(.|S:)) represents the entropy of
the policy = at state S;. The transitions of the networks (i.e.,
{8, A, Te, St+1 }ier) are stored into a replay buffer, which will
be sampled randomly to train the networks later.

The details of the SAC-D based RL training algorithm for
inference tasks can be found in our techmical report [27].

Inference Scheduling Algorithm. We employ an RL train-
ing algorithm to train an actor network ws(S) based on
historical information of inference tasks. This actor network
is utilized to make decisions regarding task offloading and
resource allocation for current inference tasks. A;,; works as
follows: A;ns gets the state S; from the information of tasks
and edges (line 2). Then the policy 7s is used to get the action
A, for tasks scheduling (line 3).

Algorithm 3 Inference Scheduling Algorithm (A4;,) ,Vt

Input: By, f;,p}, [Tasks]:, Vi
Output: v ;, 2f ;, vf ;, Vi, Vj
1: Calculate f; =1 — p7;
2: Update state Sy = {d;, ¢}, f} }ie[1],e[7;
3: Get action from the actor network A: ~ 7s(St),
Ay = {yg,y Zf,jy”f,j}ie[l],je[]];

D. Retraining Scheduling

For retraining jobs, OINC will make decisions regarding job
dispatching and resource allocation at each time slot.

Job Dispatching. The goal is to dispatch a job to the edge
that brings the least increase to the total completion time. We
assume edge j as the edge to which job k is dispatched. Set
sk;(t) = 1k (t)/hi;(t) as the weight density of job k at time slot
t if it is dispatched to edge j. Here, I (¢) is the weight of job
k, which is inversely proportional to the length of time until
the deadline at time ¢. And hy;(t) is the remaining processing
time of job k in edge j at time ¢, which/can/ be calculated as:

Wy — Zi’:atzszvjuzd 5
hij () T, (&)

Assuming that no jobs will arrive in the future, the increase
in total weighted completion time consists of three parts: 1)
the weighted waiting time of job k, due to the other jobs with
larger density than k (in the set of Qj;(t)); ii) the weighted
processing time of job k; iii) the weighted time of jobs with
smaller density than k (in the set of Q7,(t)). Then we can
calculate the increase in completion time Cj;(t) of job k in
edge j: 1

Crj(t) = m{lk(t)Zk’eQ}cj(t)hk/j (t) + Lk (t) s (2)

e, b O (1)
1

11 1s the speed augmentation factor. The dispatching algo-
rithm is to assign the job k to edge j; which minimizes Cy;(t).

Job Processing Queue. Each edge maintains a queue of
retraining jobs. In each time slot, each edge can process at
most one retraining task. The edge determines the retraining
jobs to be processed based on the scheduling algorithm,
thereby ensuring that more urgent and weighted tasks are

processed first. Let @;(¢) denote the jobs in edge j, which




have been dispatched but not completed at time ¢. Each edge
sequences the jobs in Q,;(t) according to their density s;(¢),
and selects the job with the largest density to process at the
current time. Note that, if a job k1 has a higher density than
another job k. at time ¢, k1 will always have the higher density
at a later time in the same edge. This avoids frequent switching
of jobs processing in the edge.

Retraining Scheduling Algorithm. For retraining jobs, A,
first calls the dispatching algorithm, which distributes each
job to an edge with the minimum increased completion time
C;(t) (lines 1-4). Then sequencing algorithm is invoked to
select a retraining job to process for each edge at the current
time (lines 6-7). Finally, the remaining process time hg;(¢) is
updated based on the decisions z, ;,ux,; (line 8). The edge j
removes Joby if hi;(t) < 0 (line 9-12).

Algorithm 4 Retraining Scheduling Algorithm (A4,¢) ,Vt

Input: Bj, f;,p5,Qj, [Jobs]:, V]
Output: z}, ;, uj, ;,Vj, Vk
. for Joby € [Jobs]: do

/*Job Dispatching*/

1

2: Dispatch Joby to edge j*, j* = argmin;e(s;Cr;(t);
3: Qjx () = Q= (t) U {k}:

4: end for

5: for j € [J] do /*Job Sequencing*/
6: Select Jobyx to process, k* = argmingeq, (1)sk;(t);
T s, = Lugs ;=D

8: Update hyx;(t) with Eq. (5);

9: if hyx;(t) < O then

11: Remove Job,« from edge j;

12: end if

13: end for

E. Theoretical Analysis

First, we analyze the competitive ratio of the retraining
scheduling algorithm (A,.:) by Theorem 1. The competitive
ratio is defined as the largest possible ratio between the
performance of the online algorithm and the offline optimal
algorithm for any possible set of jobs. We use it as a metric
to evaluate our online algorithm OINC. Then, we analyze the
feasibility and time complexity of OINC in Theorem 2 and
Theorem 3, respectively.

In order to analyze the competitive ratio, we offline the re-
training job scheduling problem, which has all the information
of jobs beforehand. We adopt the dual fitting technique to find
the lower bound of the total weighted completion time of the
offline problem.

i) LP Relaxation. We first derive an LP (Linear Program-
ming) relaxation of the offline problem and prove that the LP
relaxation has a lower bound. In the LP relaxation problem,
time slots can be divided into different parts and allocated to
process different jobs. We use my; to denote the proportion
of time slot [¢,¢ + 1] used by job k in edge j. For each job k,
e define 6 25, () = 5, dum (¢ ) @
where m is the collection of all mf;. The LP relaxation of

the offline problem is shown as P;:
min P = Zk¢k (m) (8)

mp;

J
S.t. Z]Zt hkj Vk7 (83)
Somi; <1, V4V, (8b)
mi; =0, Yk, Vit > ax, (8¢)

The constraint (8a) means each job must be completed.
Constraint (8b) guarantees that each edge can only process
at most one retraining job at one time slot. We set F' as the
feasible solution of the offline problem, which can be uniquely
translated to the feasible solution mg of problem P;.

The following lemma claims problem P; gives a lower
bound of the offline problem. The missing proofs can be found
in our technical report [27].

Lemma 1. The total weighted completion time of any feasible
solution F for the offline problem is at least ¢ (mp).

Therefore, ¢x(mr) is the lower bound of the total weighted
completion time of feasible solution F' in the offline problem.
ii) Dual LP. The dual LP of the LP relaxation problem is
given as:

max Py =30k — > njt ©)
S.t. 97]6 — Nt < Skj(t —ak) + li, Vk,Vj, t = ar, (9a)
hi; 2

ek = Oanjt = 07 Vkavjv Vt7
where 6, and 7;; are the dual variables.

(9b)

Theorem 1. (Competitive Analysis) There exists a feasible
solution to P2, such that the objective value (i.e. 3,0 —3; ;1;t)
is Q(eF).

Given that the objective value of the dual problem is a
lower bound of the total weighted completion time of the
offline problem. It can be proved that the retraining schedul-
ing algorithm (A,.;) is O(%)-competitive with (1 + €)-speed
augmentation.

Theorem 2. (Feasibility Analysis) Our online algorithm
Jramework OINC produces a feasible solution to the optimiza-
tion problem (1).

Theorem 3. (Time Complexity) The time complexity of the
algorithm OINC is O(KJR+T(I + J + 1J)).

V. EXPERIMENT EVALUATION
A. Evaluation Settings

System Setup. The number of edges is set within [10, 15]
(default J = 12), and the number of devices varies between
20 to 50 with an increment of 10 (default 7 = 40). Similar
to [28], the computing capability of edges is [5,9] GHz, and
the wireless bandwidth is set to [2,3] MHz. Each edge has
a different computing capacity and bandwidth. The channel
gain g ; is modeled as 140.7 + 36.7 = log, o (dis) + 4, where dis
denotes the transmission distance between edges and devices
[29], which is randomly set from 0.15 to 0.45 in km [8]. The
transmission power p; is set within [80,100] mW [30], and
the Gaussian noise is set to —40 dbm/Hz.

Inference Tasks. Similar to [31], we adopt the 24-hour
traces of the Alibaba production cluster to simulate the genera-
tion and workload of tasks from different devices [32]. Specif-
ically, we randomly select I different jobs from the traces



within 10 seconds, and expand each of them in reasonable
proportions to the total runtime of the system, according to the
real-world situation. The data size of inference tasks is within
[0.8,1.6] MB, while the computing workload is set from 100
to 200 Megacycles. The SLO of tasks varies according to the
devices. For retraining jobs, the workload is determined by
the batch size, the number of retraining epochs, and the size
of the retraining dataset. We set the batch size as 8 [16] and
the default size of the retraining set as 1024. We consider 1
second as a single time slot, and the number of total time slots
T is set as 200.

DNNs and Datasets. We demonstrate OINC’s effective-
ness using five compressed DNNs [16]: ResNet18 [33], Mo-
bileNetV2 [34], ShuffleNet [35], TinyYOLOv2 [36], AlexNet
[37]. As explained in Sec.III-A, We use ResNeXt-101 [38] as
the teacher model to label drift data in the cloud. Both infer-
ence and retraining stages utilize the widely used ImageNet
dataset [39] and a specialized dataset CORe50 [40], which is
designed for continuous learning to simulate data drift.

RL Networks. In the RL training algorithm, the actor
network and critic networks are all four-layer neural networks,
which consist of an input layer, an output layer, and two hidden
layers. The number of neurons in the hidden layers is 1024
and 512, respectively. The penalty factor of reward ¢ is set to
3. Other parameters of RL networks are listed in our technical
report [27].

Baselines. To evaluate the performance of the OINC algo-
rithm, we compare it with the following six baselines.

1) Ekya [16]: Ekya is a heuristic algorithm that makes
inference and retraining scheduling jointly. In this approach,
inference tasks and retraining jobs are treated as the same kind
of tasks when scheduling.

2) Kalmia [41]: Kalmia schedules urgent and non-urgent
tasks to guarantee deadlines and improve throughput. We
assume inference tasks as urgent tasks and retraining jobs as
non-urgent tasks.

3) Greedy: Greedy sorts inference tasks according to SLOs
and greedily selects an edge for tasks in order. Then it uses a
convex optimization solver to determine resource allocation.

4) Liu [8]: Liu offloads edge inference tasks based on a
primal-dual approximation algorithm and allocates resources
by utilizing the Lagrangian multiplier method.

5) Dedas [12]: Dedas dispatches and schedules jobs greedily
to satisfy deadlines as much as possible.

6) Zhang [13]: Zhang schedules jobs in batches and config-
ures a weight for each job in the batch.

Among the six baselines, Fkya and Kalmia are two algo-
rithms to jointly schedule both inference tasks and retraining
jobs. They are used to compare with OINC for performance
evaluation. Among the remaining four baselines, Greedy and
Liu are inference task scheduling algorithms, while Dedas and
Zhang are retraining job scheduling algorithms. We conduct
ablation experiments using these four algorithms to demon-
strate the significance of our two sub-algorithms (A4;,s and
A,er) in Sec. V-B.

B. Evaluation Results

Evaluation Metrics. Considering the limitations of edge
resources and the requirements of inference task SLO and
retraining job deadlines, not all tasks and jobs can be success-
fully completed. Therefore, we consider the following metrics
to evaluate the performance of OINC. i) Weighted sum, which
is the weighted sum of the latency of inference tasks and the
completion time of retraining jobs. ii) Success rate, which is
calculated as the number of successfully completed tasks over
the total number of tasks. Inference tasks that meet the SLOs in
terms of latency and retraining jobs that are completed within
the deadlines are both considered as successfully completed
tasks.
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formance of RL. formance details of RL.
Convergence of RL. The convergence performance of the

RL algorithm is presented in Fig. 2. The light blue region rep-
resents the standard deviation of the reward. It can be observed
that the reward value rises gradually as the number of training
episodes increases until it reaches a relatively stable value.
The results show that the RL training algorithm converges
after parameter iterations for 2000 episodes. Specifically, we
plot the success rate and the average inference latency under
each epoch in Fig. 3. It illustrates that the average inference
latency decreases and the success rate rises gradually as the
number of episodes grows, which further proves that the RL
training algorithm has a good convergence effect.

TABLE I: Average latency for inference and retraining with
different algorithms

1000 2000 3000 4000
Training Episode

Algorithms / Latency (s) | Inference | Retraining Sum
OINC (Ajn&Aret) 0.250 96.209 96.459
Ekya 0.277 101.691 101.968
Kalmia 0.262 98.372 98.634
Greedy & Aret 0.479 100.684 101.163
Liu & Aret 0.271 100.684 100.955
Ainy & Dedas 0.256 101.286 101.542
Ainy & Zhang 0.256 144.326 144.582

Performance Detail. To verify the performance of OINC,
we compare it with two baselines: Eyka and Kalmia. The
average inference latency, average retraining completion time,
and the sum of them are listed in TABLE 1. Eyka allocates
resources to both inference tasks and retraining jobs without
distinguishing between them. Additionally, once the resources
are allocated, they remain unchanged. Kalmia prioritizes the
allocation of resources to inference tasks and allocates remain-
ing resources in each time slot to retraining jobs. However,
OINC takes into account both the SLOs of inference tasks
and the deadlines of retraining jobs simultaneously. The results
show that OINC can effectively reduce the average latency of
the entire system compared with the Eyka and Kalmia.



Ablation Result. We further combine the inference schedul-
ing algorithm (A;ns) and the retraining scheduling algorithm
(Ayer) with four comparison algorithms respectively, which
aim to separately explore the impact of the two scheduling
algorithms on latency. The ablation experiment result is also
listed in TABLE I. When A;,; and A,. are used with
other algorithms, we simply divide the computing resources
into two parts based on the weight of inference tasks and
retraining jobs. Then we use scheduling algorithms to allocate
resources to inference tasks and retraining jobs respectively.
The results illustrate that the lack of any one of the two
scheduling algorithms, A;,; and A,.., will increase the latency
of inference and retraining. In addition, the experiment also
demonstrates that our reservation algorithm (Alg. 2) performs

better than just allocating resources according to weights.
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illustrate the weighted sum and the success rate of three
algorithms in terms of the number of devices (), when the
number of edges is fixed. The results show that the weighted
sum increases gradually as the number of devices increases,
while the success rate decreases. This is attributed to the
increase in the number of inference tasks as the number of
devices increases. With a constant number of edges, indicating
a fixed total computing resources, the computing latency
increases and the success rate decreases. As evident from
the figures, even with limited edge resource capacity, OINC
enhances the success rate by up to 33.2% while reducing the
weighted sum by up to 23.7%.
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Impact of Edge Number. Fig. 6 and Fig. 7 respectively

investigate the weighted sum and the success rate of three
algorithms in terms of the number of edges (J). As the number
of edges increases, the total capacity of computing resources in
the system also increases, resulting in lower latency and higher
success rates for both inference and retraining tasks. As can be
seen from Fig. 6, to obtain the same weighted sum as OINC
under 10 edges, Ekya requires 14 edges and Kalmia requires
12 edges. Similarly, Ekya and Kalmia need additional edges

and computing resources, to achieve an equivalent success rate
as OINC.

Impact of Retraining Workload. Fig. 8 and Fig. 9 re-
spectively visualize the weighted sum and success rate as
the size of the retraining dataset varies, which is directly
proportional to the workload of retraining jobs. As the size
of the retraining dataset increases, both Ekya and Kalmia tend
to disregard the impact of increased retraining workload on
scheduling priorities for retraining and inference, resulting in
an increase in latency and a significant decrease in success
rate. In contrast, OINC consistently produces a low weighted
sum and maintains a high success rate through the explicit
consideration of the weight of inference and retraining based
on their workload in the reservation algorithm (Alg. 2).
Specifically, OINC can boost success rate by up to 35.6%
while reducing latency by 21%.
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workload.

Impact of Wireless Bandwidth. Fig. 10 shows the weighted
sum as the wireless bandwidth (B;) varies. For instance,
a value of —20% in the figure denotes that the wireless
bandwidth of each edge decreases to 0.8 times its initial
value. The figure illustrates the stability of our algorithm
when faced with changing wireless transmission environments.
OINC performs better than other algorithms with different
wireless bandwidths.
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Execution Time. Fig. 11 compares the execution time of
the algorithms as the number of devices increases. We run
all the algorithms 5 times and calculate the average as the
execution time. The results show that OINC runs at a slightly
slower pace than Kalmia, but faster than other algorithms.
The total duration of the system is set as 200 seconds. The
total execution time of OINC is less than 5 seconds, which
is 2.5% of each time slot. Considering the low latency and
high success rate of OINC in limited computing resources
and heavy workload, our execution time is deemed acceptable
compared with the other six algorithms.



VI. CONCLUSION

Online edge DNN inference with continuous learning brings
new challenges to scheduling both inference tasks and retain-
ing jobs on edges. To this end, we propose a new online
algorithm, OINC, to simultaneously schedule inference tasks
and retraining jobs in edge networks, aiming to minimize
the weighted total latency of these two types of tasks. OINC
first reserves resources for inference and retraining according
to the workload. Next, OINC leverages an RL algorithm to
offload inference tasks and designs a preemptive algorithm
for scheduling retraining jobs. Both theoretical analysis and
experiment results validate the superiority of OINC.
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